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Global Convergence? 
 

• “grail” of learning research: global convergence theorem for 
convincing learning processes 

• easy to construct examples of learning processes that don’t converge 

• non-convergence looks like cob-web; people repeat the same 
mistakes over and over; not terrifically plausible 

• we seem to see much “equilibriumness” around us (traffic example) 
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• possible and difficult to construct learning processes with global 
convergence properties (more or less must be stochastic) to Nash 
equilibrium; but the processes don’t make much sense (fishing for 
Nash equilibrium) 

• I’ll try to convince you that “all sensible” learning procedures lead in 
the long-run to correlated equilibrium 

• I’ll start by motivating learning processes from an individual 
perspective (i.e. processes that “work”) 

• I’m only going to talk about pure forecasting (no causality) 
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Worst-case or Universal analysis vs. Bayesian analysis 
 

• opponents may be smarter than you 

• their process of optimization may result in play not in the support of 
your prior 

• probability 1 with respect to your own beliefs is not meaningful in the 
setting of a game 

• example: everyone believing that they face a stationary process (a 
common statistical assumption) implies that no one will actually 
behave in a stationary way 

• these deficiencies in the robustness of Bayes learning are why there 
is no satisfactory global convergence theorem for learning 
procedures 
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“ Classical”  Case of Fictitious Play 
 

• keep track of frequencies of opponents’ play 

• begin with an initial or prior sample 

• play a best-response to historical frequencies 

• not well defined if there are ties, but for generic payoff/prior there will 
be no ties 

• optimal procedure against i.i.d. opponents 

• how well does fictitious play do if the i.i.d. assumption is wrong? 
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How well can fictitious play do in the long-run? 
 

• notice that fictitious play only keeps track of frequencies: can fictitious 
play do as well in the long-run as if those frequencies (but not the 
order of the sample) was known in advance?  

• alternatively: suppose that a player is constrained to play the same 
action in every period, so that he does not care about the order of 
observations 
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Universal Consistency 
 

let ut
i  be actual utility at time t 

let φ t
i−  be frequency of opponents’ play (joint distribution over S i− ) 

suppose that for all (note that this does not say “for almost all”) 
sequences of opponent play 

lim inf ( / ) max ( , )T t
i

s

i i
T

i

t

T
T u u si→∞

−
=

− ≥�1 0
1

φ  

then the learning procedure is universally consistent 
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Is fictitious play universally consistent? Fudenberg and Kreps example 
 

0,0 1,1 

1,1 0,0 

 

this coordination game is played by two identical players 

 

suppose they use identical deterministic learning procedures 

 

then they play UL or DR and get 0 in every period 

 

this is not individually rational, let alone universally consistent 
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Theorem [Monderer, Samet, Sela; Fudenberg, Levine]: fictitious play is 
consistent provided the  frequency with which the player switches 
strategies goes to zero 
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Smooth Fictitious Play 
 

instead of maximizing u si i
t
i( , )φ −1  maximize 

u vi i
t
i i i( , ) ( )σ φ λ σ− +1  

where vi  is smooth, concave and has derivatives that are unbounded at 
the boundary of the unit simplex 

example: the entropy 

v s si i i i i i

si( ) ( ) log ( )σ σ σ= −�  

as λ → 0 this results in an approximate optimum to the original problem 

however the solution to u vi i
t
i i i( , ) ( )σ φ λ σ− +1  is smooth and interior 

(always puts positive weight on all pure strategies) 

Theorem [Blackwell, Hannan, Fudenberg and Levine and others]:  
smooth fictitious play is ε  universally consistent with ε → 0 as λ → 0 
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Conditional Probability Models: Experts 
 

allow time dependent games 

liminf ( / ) ( / ) max ( , )T t
i

t

T

s t
i i

t
i

t

T
T u T u s si→∞ =

−
=

− ≥��1 1 0
11

 

same theorem holds, without change in proof 

 

a “model” makes conditional probability forecasts 

an “expert” makes recommendations about how to play 

s e ht
i i

t
i= −( )1  

set v e s u e h st
i i

t
i i i

t
i

t
i( , ) ( ( ), )−

−
−= 1  

conclusion: can do as well as if you knew who the best expert was in 
advance 
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Conditional Probability Models: Direct 
 

classify observations into subsamples 

countable collection of categories Ψ  

classification rule ψ i H S: × → Ψ  

ψ i
t
i

t
ih s( , )−1  

 

φ ψt
i− ( )  empirical distribution of opponent’s play conditional on the 

category ψ ; nt ( )ψ  is number of time category has occured 

 

effective categories: minimal finite subset Ψ Ψt ∈ with all observations 
through time t  

mt  denotes the number of effective categories   
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Assumption 1:  lim /t tm t→∞ = 0 

 

This is essentially the method of sieves 
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Universal Conditional Consistency  
 

total utility actually received in the subsampleψ  is ut
i ( )ψ  

c
n u s u n

n
t
i t s

i i
t

i
t
i

t

t

i( )
( ) max ( , ) ( ) ( )

( )
ψ

ψ φ ψ ψ
ψ

=
− >

=
�
�
�

− 0
0 0

 

 

universal conditional consistency 

 

 limsup( / ) ( )1 0T cT
i

t

ψ
ψ

≤
∈� Ψ
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Non Calibrated Case 
 

categorization rule depends only on history, not on own plans 

 

1) given ht
i
−1, ψ ( )ht

i
−1  chooses the category 

2) play a smooth fictitious play against the sample in the chosen 
category φ ψt

i
−

−
1( )  

3) add the new observation st
i−  to the category ψ ( )ht

i
−1  

 

Works like smooth fictitious play within each category, so universally 
conditionally consistent 
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Calibrated Case 
 

try to use a rule ψ ( , )h st
i

t
i

−1  

 

focus on special case ψ ( ),s St
i Ψ =  

 

each category ψ  has a corresponding smooth fictitious play σ φ ψi
t

i( ( ))−
−

1  

 

suppose we choose category ψ  with probability λ ψ( ) , then overall play 
is  

 

pr s si i
t

i i( ) ( ) ( ( ))[ ]= −
−

� λ ψ σ φ ψ
ψ 1  
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but categories correspond to own strategies: fixed point property: 
λ( ) ( )s pr si i=  

 

λ λ ψ σ φ ψ
ψ

( ) ( ) ( ( ))[ ]s si i
t

i i= −
−

� 1  

 

unique fixed point, solvable by linear algebra 
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Interpretation of Calibration 
 

weather forecasting example: calibrated beliefs, versus calibrated 
actions 

consequence of universal calibration: global convergence 
to the set of correlated equilibria 
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Shapley Example 
 

 A M B 

A 0,0 0,1 1,0 

M 1,0 0,0 0,1 

B 0,1 1,0 0,0 
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smooth fictitious play (time in logs) 

 

Exponential Ficti tious Play
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condition on opponents last period play (time in logs) 
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Learning Conditional on Opponent's Play
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Discounted Learning 
 

A learning procedure ��  is ε -as good as a procedure ρ  if for all 
sequences of discount factors { }β t  and all histories ht

i  

 � �� �
��� �� � �� �� �� �

� � � � � �
� �

� � � � � �� � � � �
� �� �

� �� �
� �� �  

 

Proposition 2:   For any learning procedure ρ   and any ε  there exists 
a categorical smooth fictitious play �ρ that is ε -as good as ρ  

 

exploits the fact that the time average result must be true for at every 
time 
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Questions 
 

• synchronicity and asynchronicity of play and the consequences for 
convergence.  

• what constitute good categorization schemes (pattern recognition) 

• how can data be pooled across “similar” categories? 

• dynamic programming/ state variables 

• inference of causality 

• procedures in large strategy spaces (genetic algorithms, for example) 

• empirical analysis of these learning rules vs. others such as stimulus-
response.  

• use of payoff irrelevant information, such as observations about the 
experience of other players.  

• averaging versus distributed lag  


