## Learning in the Worst Case

David K. Levine

September 1, 2005

### **Global Convergence?**

- "grail" of learning research: global convergence theorem for convincing learning processes
- easy to construct examples of learning processes that don't converge
- non-convergence looks like cob-web; people repeat the same mistakes over and over; not terrifically plausible
- we seem to see much "equilibriumness" around us (traffic example)

- possible and difficult to construct learning processes with global convergence properties (more or less must be stochastic) to Nash equilibrium; but the processes don't make much sense (fishing for Nash equilibrium)
- I'll try to convince you that "all sensible" learning procedures lead in the long-run to correlated equilibrium
- I'll start by motivating learning processes from an individual perspective (i.e. processes that "work")
- I'm only going to talk about pure forecasting (no causality)

### Worst-case or Universal analysis vs. Bayesian analysis

- opponents may be smarter than you
- their process of optimization may result in play not in the support of your prior
- probability 1 with respect to your own beliefs is not meaningful in the setting of a game
- example: everyone believing that they face a stationary process (a common statistical assumption) implies that no one will actually behave in a stationary way
- these deficiencies in the robustness of Bayes learning are why there is no satisfactory global convergence theorem for learning procedures

## "Classical" Case of Fictitious Play

- keep track of frequencies of opponents' play
- begin with an initial or prior sample
- play a best-response to historical frequencies
- not well defined if there are ties, but for generic payoff/prior there will be no ties
- optimal procedure against i.i.d. opponents
- how well does fictitious play do if the i.i.d. assumption is wrong?

#### How well can fictitious play do in the long-run?

- notice that fictitious play only keeps track of frequencies: can fictitious play do as well in the long-run as if those frequencies (but not the order of the sample) was known in advance?
- alternatively: suppose that a player is constrained to play the same action in every period, so that he does not care about the order of observations

#### Universal Consistency

let  $u_t^i$  be actual utility at time t

let  $\phi_t^{-i}$  be frequency of opponents' play (joint distribution over  $S^{-i}$ )

suppose that for *all* (note that this does not say "for almost all") sequences of opponent play

 $\liminf_{T \to \infty} (1/T) \sum_{t=1}^{T} u_t^i - \max_{s^i} u^i(s^i, \phi_T^{-i}) \ge 0$ 

then the learning procedure is universally consistent

Is fictitious play universally consistent? Fudenberg and Kreps example

| 0,0 | 1,1 |
|-----|-----|
| 1,1 | 0,0 |

this coordination game is played by two identical players

suppose they use *identical deterministic* learning procedures

then they play UL or DR and get 0 in every period

this is not individually rational, let alone universally consistent

*Theorem [Monderer, Samet, Sela; Fudenberg, Levine]:* fictitious play is consistent provided the frequency with which the player switches strategies goes to zero

# **Smooth Fictitious Play**

instead of maximizing  $u^i(s^i, \phi^i_{t-1})$  maximize

 $u^{i}(\sigma^{i},\phi^{i}_{t-1}) + \lambda v^{i}(\sigma^{i})$ 

where  $v^i$  is smooth, concave and has derivatives that are unbounded at the boundary of the unit simplex

example: the entropy

 $v^i(\sigma^i) = -\sum_{s^i} \sigma^i(s^i) \log \sigma^i(s^i)$ 

as  $\lambda \to 0$  this results in an approximate optimum to the original problem

however the solution to  $u^i(\sigma^i, \phi^i_{t-1}) + \lambda v^i(\sigma^i)$  is smooth and interior (always puts positive weight on all pure strategies)

Theorem [Blackwell, Hannan, Fudenberg and Levine and others]: smooth fictitious play is  $\varepsilon$  universally consistent with  $\varepsilon \to 0$  as  $\lambda \to 0$ 

9

## **Conditional Probability Models: Experts**

allow time dependent games

 $\liminf_{T \to \infty} (1/T) \sum_{t=1}^{T} u_t^i - (1/T) \sum_{t=1}^{T} \max_{s^i} u_t^i (s^i, s_t^{-i}) \ge 0$ 

same theorem holds, without change in proof

a "model" makes conditional probability forecasts an "expert" makes recommendations about how to play

 $s_t^i = e^i(h_{t-1}^i)$ 

**set**  $v_t^i(e^i, s_t^{-i}) = u^i(e^i(h_{t-1}^i), s_t^{-i})$ 

conclusion: can do as well as if you knew who the best expert was in advance

## **Conditional Probability Models: Direct**

```
classify observations into subsamples
countable collection of categories \Psi
classification rule \psi^i: H \times S \rightarrow \Psi
\psi^i(h_{t-1}^i, s_t^i)
```

 $\phi_t^{-i}(\psi)$  empirical distribution of opponent's play conditional on the category  $\psi$ ;  $n_t(\psi)$  is number of time category has occured

*effective categories:* minimal finite subset  $\Psi_t \in \Psi$  with all observations through time *t* 

 $m_t$  denotes the number of effective categories

**Assumption 1:**  $\lim_{t\to\infty} m_t / t = 0$ 

This is essentially the method of sieves

## **Universal Conditional Consistency**

total utility actually received in the subsample  $\psi$  is  $u_t^i(\psi)$ 

$$c_{t}^{i}(\psi) = \begin{cases} n_{t}(\psi) \max_{s^{i}} u^{i}(s^{i}, \phi_{t}^{-i}) - u_{t}^{i}(\psi) & n_{t}(\psi) > 0\\ 0 & n_{t}(\psi) = 0 \end{cases}$$

universal conditional consistency

 $\limsup(1/T)\sum_{\psi\in\Psi_t}c_T^i(\psi)\leq 0$ 

#### Non Calibrated Case

categorization rule depends only on history, not on own plans

- 1) given  $h_{t-1}^i$ ,  $\psi(h_{t-1}^i)$  chooses the category
- 2) play a smooth fictitious play against the sample in the chosen category  $\phi_{t-1}^{-i}(\psi)$
- 3) add the new observation  $s_t^{-i}$  to the category  $\psi(h_{t-1}^i)$

Works like smooth fictitious play within each category, so universally conditionally consistent

**Calibrated** Case

try to use a rule  $\psi(h_{t-1}^i, s_t^i)$ 

focus on special case  $\psi(s_t^i), \Psi = S$ 

each category  $\psi$  has a corresponding smooth fictitious play  $\sigma^{i}(\phi_{t-1}^{-i}(\psi))$ 

suppose we choose category  $\psi$  with probability  $\lambda(\psi)$ , then overall play is

 $pr(s^{i}) = \sum_{\psi} \lambda(\psi) \sigma^{i}(\phi_{t-1}^{-i}(\psi))[s^{i}]$ 

but categories correspond to own strategies: fixed point property:  $\lambda(s^i) = pr(s^i)$ 

 $\lambda(s^i) = \sum_{\psi} \lambda(\psi) \sigma^i(\phi_{t-1}^{-i}(\psi))[s^i]$ 

unique fixed point, solvable by linear algebra

Interpretation of Calibration

weather forecasting example: calibrated beliefs, versus calibrated actions

consequence of universal calibration: global convergence to the set of correlated equilibria

# Shapley Example

|   | А   | М   | В   |
|---|-----|-----|-----|
| А | 0,0 | 0,1 | 1,0 |
| М | 1,0 | 0,0 | 0,1 |
| В | 0,1 | 1,0 | 0,0 |

### smooth fictitious play (time in logs)





condition on opponents last period play (time in logs)

Learning Conditional on Opponent's Play



number of periods

## **Discounted Learning**

A learning procedure  $\hat{\rho}$  is  $\varepsilon$ -as good as a procedure  $\rho$  if for all sequences of discount factors  $\{\beta_t\}$  and all histories  $h_t^i$ 

$$\sum_{t=1}^{\infty} \beta_t u(\rho(h_{t-1}), s_t^{-i}) \le \sum_{t=1}^{\infty} \beta_t u(\hat{\rho}(h_{t-1}), s_t^{-i}) + \varepsilon$$

**Proposition 2:** For any learning procedure  $\rho$  and any  $\varepsilon$  there exists a categorical smooth fictitious play  $\hat{\rho}$  that is  $\varepsilon$ -as good as  $\rho$ 

exploits the fact that the time average result must be true for at every time

# **Questions**

- synchronicity and asynchronicity of play and the consequences for convergence.
- what constitute good categorization schemes (pattern recognition)
- how can data be pooled across "similar" categories?
- dynamic programming/ state variables
- inference of causality
- procedures in large strategy spaces (genetic algorithms, for example)
- empirical analysis of these learning rules vs. others such as stimulusresponse.
- use of payoff irrelevant information, such as observations about the experience of other players.
- averaging versus distributed lag