
Robust Permanent Income and Pricing

by

Lars Peter Hansen
University of Chicago, NBER and NORC

and

Thomas J. Sargent
Hoover Institution, Stanford University

University of Chicago

and

Thomas D. Tallarini, Jr.
Carnegie Mellon University

May 11, 1997

This research was funded by grants from the National Science Foundation. We thank
Andrew Abel, Evan Anderson, John Cochrane, Cristina de Nardi, Martin Eichenbaum,
John Heaton, Narayana Kocherlakota, Wen-Fang Liu, Jesus Santos, Kenneth Singleton
and Nancy Stokey for useful criticisms of earlier drafts. We are grateful to Wen-Fang Liu
for excellent research assistance. We thank two referees of an earlier draft for comments
that prompted an extensive reorientation of our research.



Robust Permanent Income and Pricing

\ : : : I suppose there exists an extremely powerful, and, if I may so speak, malignant being,

whose whole endeavors are directed toward deceiving me." Rene Descartes, Meditations,

II.1

1. Introduction

This paper uses a permanent income model as a laboratory to study how consump-
tion/savings pro�les and security market prices are altered when consumers are `robust
decision makers'. Robust decision makers use the same probabilistic speci�cation of the
income and endowment shocks as would expected utility maximizers. But they regard this
speci�cation as a reference point about which they suspect small speci�cation errors. They
want decisions to be insensitive to these errors. This leads them to focus on consequences
of their decisions under `worst cases'. We show that such a preference for robustness lies
concealed within the quantity implications of the permanent income model, and how its
presence can be coaxed out of market-based measures of `risk-aversion'. Indeed, we show
that large market-basedmeasures of risk aversion can emerge from a concern about making
small speci�cation errors.

The �rst part of this paper reinterprets the decision rules for saving and consumption
from a rational expectations version of Hall's (1978) permanent income model. We verify
identical behavior by someone who does not know enough about the probability laws for
income and preference shocks to have rational expectations, and who manages his ignorance
about them in a sophisticated and cautious way.2 We show that this new interpretation of
Hall's decision rules serves to move the `market price of risk' closer to empirical estimates.

Under a rational expectations interpretation, Hall's model excludes `precautionary sav-
ings,' as emphasized by Zeldes (1989). Under our `robust decision' interpretation, precau-
tionary savings emerge out of the decision maker's `worst case' analysis. Two o�setting
changes leave the decision rules unchanged. One change is to impute `irrational expecta-
tions' in the form of a particular class of misspeci�cations of the laws of motion of the
exogenous income and preference shocks. By itself, this would increase the household's de-
mand for capital, via a precautionary savings motive. We can o�set that e�ect by changing

1 Descartes (1901, p. 227).
2 Our setting relates to the max-min utility theory of Gilboa and Schmeidler (1989) and Epstein and
Wang (1994). A robust decision maker uses rules that work well for a speci�c stochastic environment, but
that are also insensitive to small perturbations of the probabilistic speci�cation (see Zames (1981), Frances
(1987), and Zhou, Glover, and Doyle (1996)). Similarly, by ascribing a family of possible probability laws
to a decision maker, the literature draws a sharp distinction between Knightian uncertainty and risk.
Knightian uncertainty corresponds to the `perturbations' in the probabilistic speci�cation envisioned by
the robust control theorists.
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2 Robust Permanent Income and Pricing

the discount factor by enough to leave Hall's original decision rule intact.3 We base our
estimation strategy on this observational equivalence result.

Actually, there is a third reinterpretation of Hall's decision rule, which emerges because
in formulating possible speci�cation errors, we build on a literature on risk-sensitive control
started by Jacobson (1973, 1977), and extended by Whittle (1982, 1983, 1989, 1990) and
others. This literature sought to enhance the impact of risk in control problems under what
amount to `rational expectations.' The literature induced bigger e�ects of risk on decision
rules (i.e., greater departures from `certainty equivalence') through a single additional `risk
sensitivity parameter' that alters the intertemporal objective of the decision-maker. For
undiscounted linear-quadratic control problems, Glover and Doyle (1988) connected the
risk-sensitive formulation to a type of robustness. They showed how the risk sensitivity
parameter can be reinterpreted in terms of concern about particular types of misspeci�-
cation. We use a discounted version of James's (1995) notion of robustness. Because we
adopt a formulation of robust decision theory induced by the risk-sensitivity parameteri-
zation, we are free to regard the consumer in our economy as being risk sensitive and as
forecasting the future using a correctly speci�ed probability model (i.e., as having rational
expectations). This leads to a third interpretation of the decision rules from Hall's model.
We attain this reinterpretation by modeling risk sensitivity with discounting in a recursive
manner, as in Epstein (1988), Weil (1989), Epstein and Zin (1989) and Hansen and Sar-
gent (1995).4 Because of the triple interpretation of the decision rules, readers skeptical
about robustness are free to read our paper from the vantage point of a rational expec-
tations reformulation of the permanent income model in which preferences are recursive
and risk sensitive. However, we prefer the robustness interpretation because it puts a new
perspective on market based measures of risk aversion.

Although our reinterpretation of the permanent income model preserves decisions for
consumption and investment, it moves asset prices. We investigate the asset pricing impli-
cations, and use them to help select a parameterization that matches some pricing patterns,
while preserving the implications for saving and consumption. In contrast to models in the
spirit of Bewley (1977), market incompleteness plays no role in our decentralization of the
permanent income model. Instead, following Hansen (1987), we interpret the permanent
income decision rule in terms of a social planning problem, where the consumption and in-
vestment processes are the equilibrium quantity allocations for a competitive equilibrium.
We then deduce asset prices in the manner of Lucas (1978) and Epstein (1988), namely as
shadow prices that clear security markets. These asset prices encode information about the

3 In e�ect, we are solving a particular `robust control' version of an `inverse optimal decision' problem.
Versions of such problems have played an important role in the development of rational expectations
theory. See Muth (1960). See Hansen and Sargent (1983) and Christiano (1987) for extensions of Muth's
work.
4 Epstein and Zin (1989) developed a version of recursive utility theory that raises the market price
of risk without altering the intertemporal substitution elasticity. Van Der Ploeg (1993) introduced risk
sensitivity into a permanent income model, but not in a recursive manner.
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2. Recursive Risk Sensitive Control 3

slopes of intertemporal indi�erence curves passing through the equilibrium consumption
process, and therefore measure the risk aversion of the consumer. To accommodate ro-
bustness, our decentralization copies Epstein and Wang's (1994). We study how the asset
pricing implications are altered by introducing a preference for robustness. In this way, we
show how the consumer's preoccupation with mistakes gets transmitted into equilibrium
security prices.5 We actually describe two asset pricing theories, one associated with the
`risk-sensitivity', another with the `robust decision theory' interpretation of Hall's decision
rule. Though the quantity implications of these reinterpretations of Hall's decision rule are
identical, the asset pricing implications are slightly di�erent. For our empirical application,
the quantitative di�erences are small.

The remainder of this paper is organized as follows. Section 2 summarizes the necessary
decision theory. We link risk-sensitive and robust decision theories by displaying two closely
connected value functions associated with super�cially di�erent problems. The problems
lead to identical decision rules. The second problem embodies a preference for robustness,
provides links to Gilboa-Schmeidler's version of Knightian uncertainty, and explains the
quote from Descartes. In sections 3 and 4, we describe and estimate our permanent income
model. The observational equivalence proposition of section 4 motivates a two part strategy
for using the quantity and asset price data. Section 5 exploits the links between robustness
and risk-sensitivity in developing asset pricing formulas in terms of probability measures
induced by `pessimistic' views of laws of motion that emerge as by-products of robust
decision making. These formulas prepare the way for our interpretations of the market
price of risk in terms of robustness. Section 6 quanti�es the amount of preference for
robustness required to push up the market price of risk. Section 7 measures intertemporal
mean-risk trade-o�s associated with di�erent amounts of concern with robustness. Section
8 concludes.

2. Recursive Risk Sensitive Control

The theory rests on two closely related recursive linear quadratic optimization prob-
lems. We describe a distortion of beliefs (i.e., a deviation from rational expectations)
that induces the same behavior as a particular modi�cation of preferences toward risk.
The equivalence of these two problems lets us interpret a `risk sensitivity' parameter as
measuring a preference for robustness.

The recursive risk sensitive control problem

The state transition equation is

xt+1 = Axt +Bit + Cwt+1:

5 See Melino and Epstein (1995) for an alternative attack on this same question. They use a recursive
formulation of an �{contamination speci�cation adapted from the theory of robust statistics.
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4 Robust Permanent Income and Pricing

where it is a control vector, xt is the state vector, and wt+1 is an i.i.d. Gaussian random
vector with Ewt+1 = 0; and Ewt+1w

0

t+1 = I . Let Jt be the sigma algebra induced by
fx0; ws; 0 � s � tg . The one-period return function is

u(i; x) = �i0Qi� x0Rx

where Q is positive de�nite and R is positive semide�nite. Following Epstein and Zin
(1989), Weil (1993), and Hansen and Sargent (1995), we use the following recursion to
induce intertemporal preferences:

Ut = u(it; xt) + �Rt(Ut+1) (1)

where

Rt(Ut+1) �
2

�
logE[exp

�
�Ut+1

2

�
jJt]: (2)

When � = 0 we take Rt � E(Ut+1jJt) , and we have the usual von Neumann-Morgenstern
form of state additivity. When � 6= 0, the operator Rt makes an additional risk adjust-
ment over and above that induced by the shape of u(�; �) . Values of � less than zero
correspond to more aversion to risk vis a vis the von Neumann-Morgenstern speci�ca-
tion.6 As emphasized by Hansen and Sargent (1995a), the (log; exp) speci�cation links
the general recursive utility speci�cation of Epstein and Zin (1989) to risk-sensitive con-
trol theory. The same (log; exp) speci�cation was used in Weil's (1993) version of the
permanent income model, but he did not exploit connections to the risk-sensitive control
literature.

The risk sensitive control problem is to maximize the time zero utility index U0 by
choosing a control process it adapted to Jt . Let W (x) denote the optimum value function
for this problem, so that W (x0) = Ue

0 . Hansen and Sargent (1995) extended the Jacobson-
Whittle risk-sensitive control theory to provide formulas for 
 and � in the following
representation of the value function:

Ue
t =W (xt) = x0t
xt + �: (3)

Let i = �Fx denote the optimal decision rule.
We shall have cause to evaluate Rt(Ut+1) for the quadratic value function (3) where 


is a negative semide�nite matrix of real numbers and � is a nonpositive real number. It
follows from Jacobson (1973), that

Rt(U
e
t+1) = x0t
̂xt + �̂ (4)

6 As in Kreps and Porteus (1978), this recursive utility formulation overturns the indi�erence to the timing
of the resolution of uncertainty inherent in state-separable preferences. The additional risk adjustment for
� < 0 implies a preference for early resolution of uncertainty.
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2. Recursive Risk Sensitive Control 5

where


̂ = A0[
 + �
C(I � �C 0
C)�1C 0
]A (5a)

and

�̂ = �� (1=�) log[det(I � �C 0
C)] (5b)

so long as the matrix (I � �C 0
C) is positive de�nite, which we assume.

A related game

The Markov perfect equilibrium of a particular two player game can be represented
in terms of a single value function ~W (x) that is related to W (x) . This is a special
game in which it turns out that sequential play, under the Markov perfect equilibrium
concept, leads to the same outcome as the game where players can precommit at time 0.
Therefore, as in a single-agent control problem, we are free to pose and solve the problem
recursively, or once-and-for-all from the vantage point of an initial period. The game has
one player choosing contingency rules for the control vector fitg , with two di�erences
vis a vis the single agent risk-sensitive control problem. First, this agent does not make
a risk adjustment in the utility function; and second, a distortion is introduced every time
period into the conditional mean of the shock process. Thus, one player maximizes a utility
index ~U0 = E0

P
1

t=0 �
tu(it; xt) by choice of state-feedback rules for fitg and subject to

the distorted law of motion

xt+1 = Axt +Bit + C(wt+1 + vt); (6)

where vt acts as a distortion of the mean of the innovation. A second player is introduced
as a device for determining the conditional mean distortions fvtg in a way that delivers a
speci�c form of robustness. We want the feedback rule for it to be insensitive to mistakes
vt in the conditional mean of wt+1 . To attain this insensitivity, we have the second
player be a malevolent opponent that minimizes ~U0 over state feedback rules for vt . This
opponent's choice of rule for vt is restrained by

E0

1X
t=0

�tjvt � vtj � �0: (7)

The Markov perfect equilibrium of this game has a value function that satis�es:

~W (x) = inf
v
sup
i
f�i0Qi� x0Rx+ �[�

1

�
v0v +E ~W (Ax +Bi + C(w+ v))]g

= x0
x + ~�;

(8)
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6 Robust Permanent Income and Pricing

where the E operator integrates w with respect to a normal distribution with mean zero
and covariance matrix I . Notice that this two-player min-max game can be characterized
in terms of a single value function ~W and so can be viewed as a zero sum game. Hansen
and Sargent (1997) show that the value functions W and ~W share the same matrix 
 in
their quadratic forms, but have di�erent constants � and ~� . Let i = �Fx; v = Gx denote
the policy rules that solve (8); the rules are linear, and the same rule for i also solves the
risk-sensitive control problem.

The relationship between the two value functions and the decision rules for i establishes
how the risk-sensitive preference speci�cation induces the same behavior that would occur
without the risk-sensitivity adjustment to preferences, but with the pessimistic view of the
conditional mean of innovations (the vt 's) re
ected in (8). In this `pessimistic' formulation,
���1 in (8) becomes a Lagrange multiplier on restriction (7). Here �0 indexes the degree
of pessimism, i.e., the size of the domain of sequences from which the `malevolent opponent'
selects adverse vt 's. Hansen and Sargent (1997) describe in detail why it is convenient
computationally to parameterize pessimism in this way.

`Uncertainty aversion' or robustness

The Markov perfect equilibrium summarized by (8) is the value function for a single
decision maker whose decisions are governed by a `worst case' analysis. By using a feed-
back rule of it that solves (8), the robust controller does better for some appropriately
constrained mistake sequences fvtg while sacri�cing utility when these mistakes are pre-
cluded. Our treatment of this robustness and its connection to risk sensitivity follows
closely James's (1995) recent survey of robust control, except that we have incorporated
discounting into the risk sensitive formulation of the problem and into the corresponding
constraints on the model misspeci�cation.

There is a closely related literature in economics spawned by the work of Gilboa and
Schmeidler (1989) and Epstein and Wang (1994). The decision theory axiomatized by
Gilboa and Schmeidler generalizes expected utility theory by studying a setting where
decisions are based on a `maxmin' criterion because beliefs are described by a family of
probability measures rather than a single probability measure. In our setup, there is a
`nominal model' corresponding to setting vt = 0 for all t . Alternative speci�cation error
sequences fvtg constrained by (7) deliver the resulting family of stochastic processes used
in the state evolution equation. Hence our decision maker can be viewed as being endowed
with preferences represented by the maxmin utility theory of Gilboa and Schmeidler. Fol-
lowing Epstein and Wang (1994), we can interpret the nonuniqueness of the stochastic
constraints as depicting a form of Knightian uncertainty: an ambiguity of beliefs not fully
speci�ed in probabilistic terms. This ambiguity is captured by our constrained sequence
of speci�cation errors obeying (7).

In intertemporal contexts, Epstein and Wang (1994) use a Markov formulation of the
two-player game to avoid inducing a form of time inconsistency. We follow the literature

6



2. Recursive Risk Sensitive Control 7

on robust control by holding �xed the Lagrange multiplier ���1 on the speci�cation error
constraint over time. This requires imposing the following sequence of restrictions on the
`malevolent opponent':

Et

1X
j=0

�j jvt+j � vt+j j � �t; (9)

where �t is a `continuation pessimism bound.'7 Below, we shall compute the left side of
(9), and use it to measure the amount of uncertainty aversion associated with alternative
values of � . To compute this measure, we avail ourselves of a formula for the matrix G

in v = Gx .

Solution for v

The solution for v within the Markov perfect equilibrium satis�es:

v̂t = �(I � �C 0
C)�1C 0
Aoxt; (10)

where xt+1 = Aoxt +Cwt+1 under the optimal control law for the risk-sensitive problem.
(Here we are assuming that the parameter � is su�ciently small that the matrix (I �
�C 0
C) is positive de�nite.)8

Below we shall compute v̂t and study how it alters measures of risk aversion extracted
from asset prices.

Modi�ed certainty equivalence

Whittle (1981) pointed out how the solution for v supports a modi�ed version of cer-
tainty equivalence. This version asserts the equivalence of two ways of evaluating time-
invariant decision rules it = �Fxt , one under rational expectations and risk-sensitive
preferences; the other under distorted expectations and ordinary (� = 0) quadratic pref-
erences. Let A� = (A �BF ); R� = R+ F 0QF . The two valuation algorithms are:

1. Ue
t = �x0tR

�xt + �RtU
e
t+1 , where Rt is de�ned in (2), and where the conditional

expectation operator in (2) is computed with respect to the (true) law of motion xt+1 =
A�xt + Cwt+1 . The criterion can be represented as the translated quadratic form

7 Hansen and Sargent (1997) discuss how the particular parameterization of `uncertainty aversion' embed-
ded in (8) { in which the `Lagrange multiplier' ���1 is time invariant { requires choosing the continuation
pessimism bounds �t in a way to make the opponent's decision problem recursive.
8 Although the matrix 
 depends implicitly on � , it can be shown that the requisite positive de�niteness
will be satis�ed for small values of � . The risk-sensitive control theory literature draws attention to the
breakdown point under which this positive de�niteness property ceases to hold (e.g., see Glover and Doyle
(1988)). At such points, the risk-adjusted recursive utility is �1 regardless of the controller's action.
The general equilibrium aspects of our analysis lead us to look at much smaller risk corrections than are
tolerated by the breakdown analysis.
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8 Robust Permanent Income and Pricing

Ue
t = x0t
xt + � , where the matrix 
 and the scalar � are �xed points of operators

de�ned by Hansen and Sargent (1995a).

2. ~Ut = �x0tR
�xt+� ~Et

~Ut+1 , where ~Et is an expectation operator computed with respect
to the distorted law of motion

xt+1 = Âxt + Cwt+1 (11)

where
Â = [I + �C(I � �C 0
C)�1C 0
]A�: (12)

The formula for Â is derived by adding Cv̂t to A� , where v̂t satis�es a version of (10)
with Ao = A� . The criterion ~Ut has the representation ~Ut = x0t
xt + ~� , where 
 is
the same matrix occurring in the �rst representation.

Evidently, these two evaluations yield the same ordering over time-invariant decision rules
it = �Fxt . This is the modi�ed certainty equivalence principle. Notice the appearance of

, computed from the �rst formulation, in the construction of the distorted law of motion
(12). We shall use Â from (12) again in computing asset prices.

3. Robust Permanent Income Theory

Hall (1978), Campbell (1987), Heaton (1993), and Hansen, Roberds, and Sargent (1991)
studied how closely a permanent income model approximates aggregate data on consump-
tion and investment. We formulate a risk-sensitive version of the permanent income model
with habit persistence, estimate it from data on consumption and investment, then use
it to compare the implications of risk-sensitivity for consumption and investment, on the
one hand, and asset prices, on the other. We demonstrate an observational equivalence
proposition asserting that the consumption and investment data alone are insu�cient si-
multaneously to identify the risk-sensitivity parameter � and the subjective discount fac-
tor � . This observational equivalence substantiates our claim to be reinterpreting decision
rules from a habit-persistence version of Hall's model in terms of robust decision making.
Furthermore, adding knowledge of the risk-free rate, which is constant in this model, does
not achieve identi�cation. But later we will show that the risk-sensitivity parameter has
strong e�ects on other asset prices, including the market price of risk.

The lack of identi�cation from consumption and investment data emerges as follows.
For a given speci�cation of shocks, introducing risk sensitivity provides an additional
precautionary motive for saving. In terms of implications for savings, this motive can be
o�set by diminishing the subjective discount factor to make saving less attractive. In terms
of e�ects on the valuation of risky assets, these changes are not o�setting.

8



3. Robust Permanent Income Theory 9

The model

We formulate the model in terms of a planner with preferences over consumption streams
fctg

1

t=0 , intermediated through the service stream fstg . Preferences are ordered by the
utility index U0 , de�ned through the recursion

Ut = �:5(st � bt)
2 + �Rt(Ut+1) (13)

where Rt(Ut+1) is de�ned by (2).
In (13), st is a scalar household service produced by the scalar consumption ct via the

household technology

st = (1 + �)ct � �ht�1; (14a)

ht = �hht�1 + (1� �h)ct (14b)

where � > 0 and �h 2 (0; 1). In (13), fbtg is an exogenous preference shock process.
System (14) accommodates habit persistence or rational addiction as in Ryder and Heal
(1973), Becker and Murphy (1988), Sundaresan (1989), Constantinides (1990) and Heaton
(1993). By construction, ht is a geometric weighted average of current and past con-
sumption. Setting � > 0 induces intertemporal complementarities. Consumption services
depend positively on current consumption, but negatively on a weighted average of past
consumptions, an embodiment of `habit persistence'.

There is a linear production technology

ct + it = 
kt�1 + dt

where the capital stock kt at the end of period t evolves according to

kt = �kkt�1 + it;

it is time t gross investment, and fdtg is an exogenously speci�ed endowment process.
The parameter 
 is the (constant) marginal product of capital, and �k is the depreciation
factor for capital. Solving the capital evolution equation for investment and substituting
into the linear production technology gives:

ct + kt = (�k + 
)kt�1 + dt: (15)

We de�ne:
R � �k + 


which is the physical (gross) return on capital taking account the fact that capital depre-
ciates over time. When the economy is decentralized, R will also coincide with the gross

9



10 Robust Permanent Income and Pricing

return on a risk free asset. We impose that the solution for fct; ht�1; kt�1g belong to L20 ,
the space of stochastic processes fytg de�ned as:

L20 = fy : yt is in Jt for t = 0; 1; � � � and E
1X
t=0

R�tyt � yt j J0 < +1g:

We suppose that the endowment and preference shocks (dt; bt) are governed by bt =
Ubzt; dt = Udzt where

zt+1 = A22zt + C2wt+1:

Here wt+1 is independent of Jt = fwt; wt�1; : : : ; w1; z0g , the eigenvalues of A22 are
bounded in modulus by unity, and wt+1 is normally distributed with mean zero and
covariance matrix I .

Given k0 , the planner chooses a sequence fct; ktg in L20 to maximize U0 subject to
(14), (15).9

Solution of model and identi�cation of �

To establish observational equivalence for the quantity observations, we proceed con-
structively. First, we compute a solution for � = 0 and �R = 1, i.e., a permanent income
economy without risk sensitivity. Then we use the allocation for this � = 0 economy to
construct an equivalence class of alternative (�; �) 's that generate the same allocation,
for �xed values of all the other parameters. This demonstrates that the pair (�; �) is not
identi�ed from quantity observations alone.

The � = 0; �R = 1 benchmark case

To produce a permanent income model in the � = 0 special case, we follow Hall (1978)
and impose that �R = 1. When � = 0, (13) { (2) reduces to

U0 = E0

1X
t=0

�tf�:5(st � bt)
2
g: (16)

Formulate the planning problem as a Lagrangian by putting random Lagrange multiplier
processes of �t�st on (14a), �t�ht on (14b), and �t�ct on (15). First-order necessary

9 We can convert this problem into a special case of the control problem posed in section 2 as follows.
Form a composite state vector xt by stacking ht1 , kt�1 and zt , let the control it be given by st � bt .
Solve (14a) for ct as a function of st � bt , bt and ht�1 and substitute into equations (14b) and (15).
Stack the resulting two equations along with the state evolution equation for zt to form the evolution
equation for xt+1 .

10



3. Robust Permanent Income Theory 11

conditions are

�st = bt � st (17a)

�ct = (1 + �)�st + (1� �h)�ht (17b)

�ht = �Et[�h�ht+1 � ��st+1] (17c)

�ct = �REt�ct+1; (17d)

and also (14), (15). When �R = 1, equation (17d) implies that �ct is a martingale; then
(17b) and (17c) solved forward imply that �st; �ht are also martingales. This implies that
�st has the representation

�st = �st�1 + �0wt (18)

for some vector � .
Use (17a) to write st = bt��st , substitute this into the household technology (14), and

rearrange to get the system

ct =
1

1 + �
(bt � �st) +

�

1 + �
ht�1 (19a)

ht = ~�hht�1 + (1 � ~�h)(bt � �st) (19b)

where ~�h = �h+�
1+� . Equation (19b) can be used to compute

Et

1X
j=0

�jht+j�1 = (1 � �~�h)
�1ht�1 +

�(1� ~�h)

(1� �~�h)
Et

1X
j=0

�j(bt+j � �st+j): (20)

For the purpose of solving the �rst-order conditions (17), (14), (15) subject to the side
condition that fct; ktg 2 L20 , treat the technology (15) as a di�erence equation in fktg ,
solve forward, and take conditional expectations on both sides to get

kt�1 =
1X
j=0

R�(j+1)Et(ct+j � dt+j): (21)

Use (19a) to eliminate fct+jg from (21), then use (18) and (20). Solve the resulting system
for �st , to get

�st = (1�R�1)�1
1X
j=0

R�jEtbt+j +  0

1X
j=0

R�jEtdt+j +  1ht�1 +  2kt�1; (22)

where  0;  1;  2 are constants. Equations (22), (19), and (15) represent the solution of
the planning problem.

11



12 Robust Permanent Income and Pricing

Notice that (22) makes �st depend on a geometric average of current and future values
of bt . Therefore, both the optimal consumption service process and optimal consumption
depend on the di�erence between bt and a geometric average of current and expected future
values of b . So there is no `level e�ect' of the preference shock on the optimal decision
rules for consumption and investment. However, the level of bt will a�ect equilibrium asset
prices.

Observational equivalence (for quantities) of � = 0 and � 6= 0

At this point, we state the following

Observational Equivalence Proposition: Given �R = 1, the optimal consumption-
investment plan without risk-sensitivity (� = 0) is identical to the optimal risk-sensitive

(� < 0) plan, but for a smaller discount factor �̂ .

This proposition means that, so far as the quantities fct; ktg are concerned, the risk-
sensitive (� < 0) version of the permanent income model is observationally equivalent to
the benchmark (� = 0) version. This insight will guide our estimation strategy, because
it sharply partitions the impact of risk-sensitivity into real and pricing parts.

The proof of the proposition is by construction.

Proof: This is the plan of the proof. Begin with a solution f�st; �ct; �kt; �htg for a benchmark
� = 0 economy. Form a comparison economy with a � 2 [�; 0], where � is the boundary
of an admissible set of � 's to be described below. Fix all parameters except (�; �) the
same as in the benchmark economy. Conjecture that f�st; �ct; �kt; �htg is also the optimal

allocation for the � < 0 economy. Finally, construct a � = �̂ that veri�es this conjecture.
Here are the details of the construction. The optimality of the allocation implies that

Et�ct+1 = �ct , and that (18) and (22) are satis�ed for the ( � ) allocation, where Et is
the expectation operator under the correct probability measure. The key idea is to form
the distorted expectation operator Êt , then choose � = �̂ to make the distorted version
of the Euler equation for �ct hold at the benchmark (� = 0) allocation.

To compute the distorted expectation operator, we follow the recipe given in formulas
(8), (12). First, we have to evaluate the utility index U0 by using (8). We want to
evaluate (13) with st � bt � ��st and �st given by the law of motion (18), which we take
as exogenous because the allocation is frozen. We take �st as the state. Since there is no
control, (8) collapses to


x2 = �x2 + �min
v

(�
1

�
v2 +
(x + �v)2); (23)

and we write �st = �st�1 + �(v + w) , where �2 = �0� and v is the speci�cation error

12



3. Robust Permanent Income Theory 13

`chosen' by the `opponent' in the �ctitious game. The scalar 
 that solves (23) is


(�) =
� � 1 + ��2 +

p
(� � 1 + ��2)2 + 4��2

�2��2
: (24)

It follows from (12) that the distorted law of motion for �st is

Et�st+1 = �̂�st (25)

where

�̂ = �̂(�) = 1 +
�2�
(�)

1� ��2
(�)
: (26)

Since �ct is proportional to �st , it follows that

Et�ct+1 = �̂�ct (27)

with the same �̂ given by (26). In terms of the distorted expectation operator, the Euler
equation for capital is

�̂REt�ct+1 = �ct

or

�̂R�̂(�̂) = 1: (28)

Let � be the lowest value for which the solution of (24) is real. Then given � 2 (�; 0],

there exists a �̂ satisfying (28) such that for (�; �̂) the benchmark allocation solves the

risk-adjusted problem. Therefore equations (24), (26), and (28) de�ne a locus of (�; �̂) 's,
each point of which is observationally equivalent to (0; �) for (ct; kt) observations, because
each supports the benchmark allocation.

Furthermore, according to the asset pricing theory to be developed shortly and (28),

the price of a sure claim on consumption one period ahead is R�1 for all t and all (�; �̂)
in the locus. Therefore, these di�erent parameter pairs are also observationally equivalent
with respect to the risk-free rate.10

In Figure 1, we report the (�; �) pairs that are observationally equivalent for our max-
imum likelihood estimates for the remaining parameters, which we are about to describe.

10 In this model, the technology (15) ties down the risk-free rate. For a version of the model with
quadratic costs of adjusting capital, the risk-free rate comes to depend on � , even though the observations
on quantities are nearly independent of � . See Hansen and Sargent (1996).
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14 Robust Permanent Income and Pricing
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Figure 1. Observationally equivalent (�; �)
pairs for maximum likelihood values of iden-
ti�ed parameters; � is the ordinate, � the
coordinate.

The observational equivalence depicted in Figure 1 shows that by lowering the discount
factor, we o�set the precautionary savings motive by making investment in a perfect fore-
sight world unattractive. As an indication of the important precautionary role for savings
in this model, suppose that future endowments and preference shifters could be forecast
perfectly. Then consumers would choose to draw down their capital stock. Investment
would be su�ciently unattractive that the optimal linear rule would eventually have both
consumption and capital cross zero.11 ; 12 Thus our robust control interpretation of the
permanent income decision rule, delivers a form of precautionary savings absent under the
usual interpretation.

For any given pair (�; �) depicted in Figure 1, the permanent income decision rule
can viewed as re
ecting either risk sensitivity or a concern for robustness. The familiar
version of the precautionary savings motive focuses on the role of variation in the shocks.
This version is delivered in our setup by the risk sensitive decision theoretic formulation.

11 Introducing nonnegativity constraints in capital and/or consumption would induce nonlinearities into
the consumption and and savings rules, especially near zero capital. But investment would remain
unattractive in the presence of those constraints for experiments like the one we are describing here. See
Deaton (1991) for a survey and quantitative assessment of consumption models with binding borrowing
constraints.
12 As emphasized by Carroll (1992), even when the discount factor is small are relative to the interest
rate, precautionary savings can emerge when there is a severe utility cost for zero consumption. Such a
utility cost is absent in our formulation.

14



4. Estimation 15

In contrast, the precautionary notion delivered by robust control theory emerges because
consumers guards against mistakes in conditional means of shocks. Thus, the emphasis
shifts from second to �rst moment properties of shocks. properties.

4. Estimation

Di�erent observationally equivalent (�; �) pairs identi�ed by our Proposition bear di�er-
ent implications about (i) the pricing risky assets; (ii) the amounts required to compensate
the social planner for confronting di�erent amounts of risk; (iii) the amount of model mis-
speci�cation used to justify the planner's decisions if risk sensitivity is reinterpreted as
aversion to Knightian uncertainty. To evaluate these implications, we �rst choose param-
eters, including noise variances, by estimating a � = 0 version of our permanent income
model, conditioning the likelihood function only on U.S. post-war quarterly consumption
and investment data. We estimated the permanent-income model with habit persistence
using U.S. quarterly data on consumption and investment for the period 1970I{1996III.13

1970 1975 1980 1985 1990 1995
0

2

4

6

8

10

12

14

16

Figure 2. Detrended consumption and invest-
ment (dotted line) data.

13 Our choice of starting the sample in 1970 corresponds to the second subsample analyzed by Burnside,
Eichenbaum and Rebello (1990). Thus we have omitted the earlier period of `higher productivity' in our
analysis. We initially estimated the model for the entire post war time period, but we found that the `pro-
ductivity slowdown' was captured in our likelihood estimation by an initial slow decline in the preference
shock process followed by a slow increase. Our illustrative permanent income model is apparently not well
suited to capture productivity slowdowns. Given the empirical results reported in Burnside, Eichenbaum
and Rebello (1990), the same could be said of the commonly used stochastic speci�cation of Solow's growth
model.

15



16 Robust Permanent Income and Pricing

Consumption is measured by nondurables plus services, while investment is measured
by the sum of durable consumption and gross private investment.14 We applied the model
to data that have been scaled through multiplication by 1:0033�t . The scaled time series
are plotted in Figure 2. We estimated the model from data on (ct; it) , setting � = 0,
then deduced pairs (�; �) that are observationally equivalent. We estimated parameters
by climbing a Gaussian likelihood function. We formed the likelihood function recursively,
and estimated the unobserved part of the initial state vector using procedures described
by Hansen and Sargent (1996).

We speci�ed two shock processes: an endowment process fdtg and a preference shift
process fbtg . Because we are modeling two observed time series as functions of two shock
processes, the model would lose its content were we to permit arbitrary cross correlation
between the endowment and preference shock processes. Therefore, we assumed that these
processes are orthogonal. In our initial estimation, we found that the preference shock
process was particularly persistent. As a consequence, for the results presented here, we
imposed a unit root and assumed that the �rst di�erence of the preference shock is a �rst-
order autoregression. For the endowment processes, we experimented with autorgressive
processes of order 1, 2, and 3, which revealed the log likelihood values depicted in Table 1.
In the table, `AR1' denotes the �rst-order autoregression, and so on. The likelihood values
show a substantial gain in increasing the order from 1 to 2, but little gain in going from
2 to 3. These results led us to specify a second order autoregression for the endowment
process.

Table 1

Likelihood Values

endowment 2� LogLikelihood
speci�cation
AR1 735.16
AR2 755.24
AR3 755.26

Note: The values reported di�er from twice the log likelihood by a common constant.

We write the forcing processes as:

b�t � b�t�1 = �(b�t�1 � b�t�2) + cbw
b
t

d�t = �1d
�

t�1 + �2d
�

t�2 + cdw
d
t :

14 We used `old data', not chain-weighted indexes.
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4. Estimation 17

with
bt = b�t + �b; dt = d�t + �d:

Thus the forcing processes are governed by seven free parameters: (�; cb; �1; �2; cd; �b; �d) .
While the parameter �b alters the marginal utilities, as we noted previously, it does not
in
uence the decision rules for consumption and investment. Consequently, we �xed �b at
an arbitrary number, namely 32, in our estimation.

The four parameters governing the endogenous dynamics are: (
; �h; �; �) . We set
�k = :975. We initially did not impose the permanent income restriction, �R = 1, but
the restriction was satis�ed by our estimates, so we proceeded to impose it. That is,
our estimates con�rmed the random walk prediction for both the marginal utility process
for consumption goods and the marginal utility process for consumption services. The
restrictions that �R = 1; �k = :975 pin down 
 once � is estimated. We chose to impose
a � = :9971, which after adjustment for the e�ects of the geometric growth factor of
1:0033 implies an annual real interest rate of 2:5%.15

When estimated freely from consumption and investment data, the point estimate was
considerably higher. However, imposition of this restriction caused only a modest reduction
in the likelihood function.

In Table 2 we report our estimates for the parameters governing the endogenous and
exogenous dynamics. In Figure 3 we report impulse response functions for consumption
and investment to innovations in both the endowment and the preference shift processes.
For sake of comparison, we also report estimates from a no habit persistence (� = 0)
model in Table 2, and the resulting impulse response functions in Figure 4.

Notice that the endowment shock process contributes much more to consumption and
investment 
uctuations than does the preference shock process.

15 When � = 0 (the expected utility, rational expectations case) we can scale the state variables to
account for geometric growth without a�ecting the subsequent analysis. However, when � < 0 , the same
transformation has the e�ect of imposing a time-varying risk adjustment. This problem does not arise
when the single period utility function has a di�erent form, say logarithmic. In order to preserve the
tractability of the quadratic speci�cation, we have decided to proceed despite this problem.

17



18 Robust Permanent Income and Pricing

Table 2

Parameter Estimates

Habit No habit
Persistence Persistence

risk free rate .025 .025
� .997 .997
�h .629
� .994 0
� .851 .945
�1 1.379 1.284
�2 -.386 -.298
�d 13.758 13.716
cb .018 .003
cd .205 .206

2� LogLikelihood 755.24 749.49
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Figure 3a. Impulse response of in-
vestment (circles) and consumption
(line) to innovation in endowment,
at maximum likelihood estimate of
habit persistence.

5 10 15 20 25 30 35 40 45 50
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Figure 3b. Impulse response of in-
vestment (circles) and consumption
(line) to innovation in preference shock,
at maximum likelihood estimate of
habit persistence.
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Figure 4a. Impulse response of in-
vestment (circles) and consumption
(line) to innovation in endowment, no
habit persistence.
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Figure 4b. Impulse response of in-
vestment (circles) and consumption
(line) to innovation in preference shock,
no habit persistence.
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Figure 5a. Twice log likelihood, the or-
dinate, as a function of � (other param-
eters being concentrated out).
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Figure 5b. Maximum likelihood �h , the
coordinate, as a function of � , the ordi-
nate.

To assess the statistical evidence for habit persistence, in Figure 5a we graph twice
the concentrated log likelihood function as a function of the habit persistence parameter.
Notice the asymmetry of this function, which has a much steeper descent towards zero.
A likelihood-based con�dence interval can be deduced by comparing the deterioration in
the likelihood to critical values obtained from the chi-square one distribution. Thus, while
values of � near zero are implausible, values considerably larger than the maximum are
harder to dismiss.16 Figure 5b shows the values of the depreciation parameter �h as a

16 The parameter �h is not identi�ed when � = 0.
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20 Robust Permanent Income and Pricing

function of the � obtained after concentrating the likelihood function. Estimates of the
depreciation parameter increase as � approaches zero, but remain around :6, within the
more plausible range of � 's.

We put our estimates of the habit persistence parameters, � and �h , into perspective
by comparing them with ones emerging from other empirical studies of aggregate U.S.
data. Heaton (1993) �nds a comparable value of � , but a higher depreciation factor �h
using a permanent income model without preference shocks �t to consumption. Heaton
also notes that his �h is estimated very imprecisely.17 As an extension to this work,
Heaton (1995) estimates a power utility, habit persistence model using consumption and
asset market data. In this alternative formulation, he provides evidence for larger values
of � and a larger depreciation factor �h . Again the estimate of �h has a large standard
error. From Heaton's work, we see that more pronounced habit persitence is estimated
only when it is o�set in the short run by local durability, a source of dynamics that we
ignore. Recently, Boldrin, Christiano and Fisher (1995) �nd smaller values of � and �h
than ours, although they model production in a di�erent and maybe more interesting way
than we. In contrast to Heaton (1995) and Boldrin, Christiano and Fisher (1995), our
estimates of habit persistence embody no asset market implications beyond one for the
risk free interest rate.

5. Asset Pricing

For the purposes of decentralization, we regard the robust (or risk-sensitive) solution to
the permanent income model as the solution to an optimal resource allocation problem.
This view point permits us to compute the equilibrium stochastic process of quantities be-
fore deducing the prices that clear a competitive security markets. We follow Lucas (1978)
in assuming a large number of identical agents who trade in security markets. We can
price assets by treating the consumption process that solves the robust permanent income
model as though it were an endowment process. Because agents are identical, equilibrium
prices become shadow prices that leave consumers content with that `endowment process.'
The single agent quality of the economy lets us compute (shadow) prices of a full array of
securities without altering the aggregate consumption and investment processes. The pric-
ing implications under robustness are slightly di�erent than those under risk-sensitivity.
We will proceed in this section by assuming risk-sensitivity and pointing out where the
analysis would di�er under robustness.

The state for the model is xt = [ht�1 kt�1 z0t ]
0

. The equilibrium consumption and
service processes can be represented as cet = Scxt , set = Ssxt . Represent the endowment
and preference shock processes as dt = Sdxt; bt = Sbxt . The equilibrium law of motion for

17 Like Christiano, Eichenbaum and Marshall (1991), Heaton (1993) also studies the implications of time
aggregation, which we abstract from, and at the same time he allows for local durability in a continuous-
time formulation of the model.
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5. Asset Pricing 21

the state has representation

xt+1 = Aoxt + Cwt+1: (29)

The value function at the optimal allocation can be represented as Ue
t = x0t
xt + � where


 = �(Ss � Sb)
0(Ss � Sb)=2 + �
̂ (30a)

� = ��̂; (30b)

and 
̂ satis�es (5a), with A evaluated at Ao .

Key subgradient inequality

We begin our analysis of asset pricing by computing the current time t price of a state-
contingent claim to utility Ut+1 tomorrow. This component of pricing is trivial when
preferences are represented as the usual recursive version of the von-Morgenstern speci-
�cation, but is nontrivial in the case of risk sensitivity. The pricing of state-contingent
utility will be a key ingredient for pricing state-continent consumption services tomorrow
and ultimately for the pricing of multi-period securities that are direct claims on consump-
tion goods. Let st be any service process measurable with respect to Jt , and Ut be the
associated utility index. For purposes of valuation, Appendix A establishes the following
subgradient inequality:

Rt(Ut+1) �Rt(U
e
t+1) � TtUt+1 � TtU

e
t+1 (31)

where

TtUt+1 � E(Vt+1Ut+1 j Jt)=E(Vt+1 j Jt) (32)

and

Vt+1 � exp(�Ue
t+1=2) : (33)

As elaborated further below, the operator Tt acts much like a conditional expectation.18

Combining (31) with the familiar gradient inequality for quadratic functions, it follows that

Ut � Ue
t � (st � set )M

s
t + �Tt(Ut+1 � Ue

t+1) (34)

where

18 Depicting prices of derivative claims using distorted expectations is a common technique in asset pricing
(e.g., see Harrison and Kreps (1979)). In our investigation and in Epstein and Wang (1994), the distortion
is also needed to price state-contingent utility.
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22 Robust Permanent Income and Pricing

M
s
t � (bt � set ): (35)

If we regard the marginal utility of services Ms
t as the price for time t services, then (34)

states that any pair (st; Ut+1) that is preferred to (set ; U
e
t+1) costs more at time t . This

justi�es treating Ms
t as the equilibrium time t price of services, and using �Tt to value

time t + 1 state-contingent utility.
The Tt operator can be computed as the conditional expectation of the state in the

transformed transition equation:

xt+1 = Âxt + Ĉwt+1 ; (36)

where Ĉ satis�es
ĈĈ 0 = C(I � �C 0
C)�1C 0 ; (37)

and Â is given by (12). Given the matrices Â and Ĉ , asset prices can be computed using
the algorithms described in Hansen and Sargent (1996). Formula (37) shows that when
� < 0 and 
 is negative semide�nite, the conditional variance associated with the operator
Tt is always greater than or equal to CC 0 , because an identity matrix is replaced by a
larger matrix (I��C 0
C)�1 . Thus, to interpret Tt as a conditional expectation operator
requires both a pessimistic assignment of the conditional mean for the future state vector
and an increase in its conditional variance.19

We can interchange the risk sensitivity and the uncertainty aversion interpretations of
the optimal resource allocation problem. As shown by Epstein and Wang (1994), equilib-
rium asset prices can be deduced by referring to the `pessimistic beliefs' that implement
optimal decisions. For the uncertainty aversion interpretation, the counterpart to the Tt
operator is the distorted conditional expectation operator, call it ~Et , induced by the state
transition equation of formula (11). This transition law distorts the conditional mean, but
not the conditional variance.20

Pricing multi-period streams

The valuation of the state-contingent utility can be used to evaluate future consumption
services. Construct a family of operators by sequential application of Tt :

St;� = TtTt+1 : : : Tt+��1 (38)

19 It follows from James (1992) that this covariance correction vanishes in the continuous time formulation
of the problem. Instead the original covariance structure is used.
20 Epstein and Wang (1994) consider di�erent ways of introducing Knightian uncertainty, including ones
in which there is an important di�erence between the game with time zero commitment and the game with
sequential choice. Their speci�cation of Knightian uncertainty can result in two-person games in which
the `beliefs' are not unique. This leads them to a form of price indeterminacy, which they link to empirical
�ndings of excess volatility. In our setup, the `beliefs' turn out to be unique and price indeterminacy is
absent.
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5. Asset Pricing 23

where St;0 is the identity map. Like Tt;St;� can be interpreted as a conditional expec-
tation under a transformed conditional probability measure except that St;� is a time t
conditional expectation applied to random variables that are measurable with respect to
Jt+� .

In the permanent income model below, the consumption good is a bundle of claims
to future consumption services. We can use the equilibrium prices of services to deduce
corresponding prices of consumption goods. Thus, consider any process fstg in L0 , and let
fUtg denote the associated utility process. Let fUe

t g denote the utility process associated
with the equilibrium service process fsetg . Then by iterating on (34), we �nd

Ut � Ue
t �

1X
�=0

��St;� (M
s
t+� st+� ) �

1X
�=0

��St;� (M
s
t+� s

e
t+� ) (39)

Inequality (39) says that whenever fstg is strictly preferred to fsetg as re
ected by the
associated time zero utility index, (Ut > Ue

t ), it also costs more. Hence fsetg is a solution
to the consumer's intertemporal optimization problem when the time t value of fstg is
computed according to the formula

P
1

�=0 �
�
St;� (Ms

t+� st+� ) . This justi�es regarding this
sum as the price of an asset o�ering a claim to the stream of services fstg .

If services are not traded `unbundled', but only as bundles of state and date contingent
claims, via the consumption goods, then what we really want is a consumption goods
counterpart to (39), namely:

Ut �Ue
t �

1X
�=0

��St;� (M
c
t+� ct+� ) �

1X
�=0

��St;� (M
c
t+� c

e
t+� ) (40)

A formula for the indirect marginal utility of consumption is deduced by ascertaining the
implicit service 
ow associated with that a unit of consumption and then pricing that
intertemporal bundle. Using this argument, it follows that Mc

t =Mcxt where:

Mc � [(1 + �) + (1� �h)
1X
�=1

�� (�h)
� (��)(Â)� ](Sb � Ss) : (41)

Single-period security pricing

A large body of empirical research has focused on pricing one-period securities. Imagine
purchasing a security at time t at a price qt , holding it for one time period, then collecting
the dividend and selling it at time t+ 1 for a total payo� pt+1 of the consumption good.
The payo� and price should satisfy:

qt = Ttf[�M
c
t+1=M

c
t ]pt+1; g (42)
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24 Robust Permanent Income and Pricing

where Mc
t =Mcxt is the marginal utility of consumption and the formula for Mc is given

in (41). Under robustness, the price-payo� relationship would be given by:

qt = ~Etf[�M
c
t+1=M

c
t ]pt+1; g (43)

where ~Et is the distorted conditional expectations operator described above. A formula
for qt in terms of the original conditional expectation operator is:

qt = E(mt+1;tpt+1 j Jt) (44)

where the exact speci�cation of mt+1;t will depend whether the robustness or the risk-
sensitivity is adopted. The two alternatives will be explored in the next section. The
random variable mt+1;t has an interpretation as a one-period stochastic discount factor,
or alternatively as an equilibrium intertemporal marginal rate of substitution for the con-
sumption good. The next section will show how risk-sensitivity and uncertainty aversion
are re
ected in the usual measure of the intertemporal marginal rate of substitution being
scaled by a random variable (that depends on the interpretation { robustness or risk-
sensitivity) with conditional expectation one. We use this multiplicative adjustment to
the stochastic discount factor to increase its variability and to enhance risk premia.

From the one-period stochastic discount factor, we can easily deduce the `market price of
risk.' For simplicity, think of a one period payo� on an asset as a bundle of two attributes:
its conditional mean and its conditional standard deviation. In our environment, these two
attributes only partially describe asset payo�s. Furthermore, we cannot extract unique
prices of the attributes, in part because one of the attributes, the standard deviation, is
a nonlinear function of the asset payo�. Nevertheless, like any stochastic discount factor
model, ours conveys information about how these attributes are valued (see Hansen and
Jagannathan, 1991). To see this, consider the covariance decomposition of the right-hand
side of (42):

qt = Et(pt+1)Et(mt+1) + covt(mt+1; pt+1);

where covt denotes the covariance conditioned on time t information. Applying the
Cauchy-Schwarz Inequality, we obtain the price bound:

qt � Et(pt+1)Et(mt+1) � stdt(mt+1)stdt(pt+1):

where stdt denotes the standard deviation conditioned at time t . Along the so called
`e�cient frontier,' the `price of risk' relative to expected return is given by the ratio:
stdt(mt+1;t)=Et(mt+1;t) which is commonly referred to as the market price of risk. This
ratio is one way to encode information about how risk averse consumers are at the equilib-
rium consumption process.21 Appendix C describes how to compute the stochastic process
for the market price of risk when � is negative under risk-sensitivity.

21 Gallant, Hansen, and Tauchen (1990), Hansen and Jagannathan (1991) and Cochrane and Hansen
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Figure 6a. Estimated process for en-
dowment, dt � �d .
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Figure 6b. Estimated process for the
preference shock process, bt � �b .

6. Quantifying Robustness from the Market Price of Risk

Because it is not identi�ed from data on consumption and investment, other informa-
tion must be used to restrict the risk sensitivity parameter. In this section, we study how
risk sensitivity alters the predicted market price of risk. We then exploit the connection
between risk sensitivity and Knightian uncertainty by computing the magnitude of the
speci�cation errors needed to generate implications comparable to various settings of the
parameter � . In particular, we show how allowing for mistakes transmits to the equilib-
rium market price of risk. We are attracted to the interpretation in terms of robustness as
a way of confronting an observation of Weil (1989), who noted how market prices of risk
can be enhanced by risk sensitivity, but at the cost of making the implied risk aversion
`extreme.' Risk aversion has typically been measured by studying choice problems with
unique speci�cations of the probability laws. That our risk sensitivity parameter has a
nearly equivalent interpretation as re
ecting aversion to uncertainty raises hopes for rein-
terpreting implausibly large estimates of risk aversion as coming partly from a `preference
for robustness.'

Market price of risk

While the risk-sensitivity parameter � and the preference curvature parameter �b are

(1992) interpret the equity premium puzzle as the large market price of risk implied by asset market

date. The market price of risk can be expressed as the least upper bound on Sharpe ratios
jEtrt+1�r

f
t
j

stdt(rt+1)

where rt+1 is a one-period return and r
f
t is the one-period riskless return. Thus the Sharpe ratio for the

one-period return on equity gives a lower bound on the market price of risk.
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26 Robust Permanent Income and Pricing

not identi�able from quantity data, we now show that they a�ect the market price of
risk. In Tables 3a and 3b, we report median market prices of risk as functions of the
risk sensitivity parameter for three choices of �b . The tables are constructed using the
implied state vectors obtained by applying the Kalman �lter. Where yt = [ ct it ]

0 ,
and xt = [ht�1 kt�1 d�t d�t�1 b�t b�t�1 ]

0 , we used the Kalman �lter to compute
E(xtjyt; yt�1; :::; y1) for each time t in our sample. It can be shown that the conditional
covariance of the time t state vector given time t information converges to zero, implying
that the `hidden' states should be approximately revealed by the observations. Deviations
around the means of the implied preference and endowment shift processes under habit
persistence are graphed in Figure 6. We used these �tted states to calculate the median
market price of risk over the sample. In Tables 3a and 3b, we report results for the model
estimated with and without habit persistence, respectively. The tables show how we can
achieve a `target' market price of risk with alternative (�; �b) pairs.

Table 3a

Median Market Price of Risk (with habit persistence)

�b � : 0 -.0001 -.0002 -.0003

18 0.0403 0.0559 0.0715 0.0873
24 0.0145 0.0578 0.1014 0.1454
30 0.0088 0.0800 0.1519 0.2251
36 0.0064 0.1054 0.2062 0.3102

Table 3b

Median Market Price of Risk (no habit persistence, � = 0)

�b � : 0 -.0001 -.0002 -.0003

18 0.0208 0.0280 0.0352 0.0425
24 0.0072 0.0280 0.0487 0.0696
30 0.0044 0.0387 0.0730 0.1076
36 0.0031 0.0510 0.0990 0.1474

Given our arguably high value of the risk free rate (2.5% per annum) and sampling error
in estimates of the market price of risk, model predictions in the range of :075� :150 seem
a reasonable \target."22 Thus in the absence of risk sensitivity, for the �b speci�cations
we consider, the market prices of risk are very small. The market price of risk can be

22 It is known from the work of Hansen and Jagannathan (1991) that achieving a market price of risk
target is weaker than satisfying the consumption Euler equation. For example, we have not enabled the
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6. Quantifying Robustness from the Market Price of Risk 27

raised by reducing further the parameter �b , but at the cost of enhancing the probability
of satiation in the quadratic preference ordering. But increasing j�j pushes the model
predictions towards more empirically plausible market prices of risk without altering the
satiation probabilities.23 Roughly speaking, introducing habit persistence doubles the
market price of risk across all of the (�b; �) speci�cations we study. This conclusion from
Table 3b emerges from the estimates from the second (No Habit Persistence) column of
Table 2. There the parameters governing the exogenous dynamics are adjusted to match
the temporal covariations of consumption and investment as closely as possible.

Holding �xed � and increasing the preference translation parameter �b also enhances
the market price of risk except when � is close to zero. To understand this �nding, note
that the stochastic discount factor can be represented as the product

mt+1;t =m
f
t+1;tm

r
t+1;t (45)

where

m
f
t+1;t � �

M
c
t+1

M
c
t

is the `familiar' intertemporal marginal rate of substitution in the absence of risk sensitivity
and

mr
t+1;t �

exp(�Ue
t+1=2)

E[exp(�Ue
t+1=2)jJt]

:

(See Appendix C for an explicit formula for mt+1;t in terms of the equilibrium laws of
motion.) When � = 0 this second term is one, and it always has conditional expectation
equal to one. The latter property is what permits us to interpret this second factor as
a pessimistic `distortion' of the conditional expectation operator. Finally, recall that the
market price of risk is simply the (conditional) standard deviation of mt+1;t divided by
its (conditional) mean.

When �b is increased and � = 0, the single-period utility function is closer to being
linear (risk neutral) over the empirically relevant portion of its domain. As a consequence,
the market price of risk decreases as �b is increased (see the �rst columns of Tables 3a
and 3b).

model to explain one of the glaring empirical failures of consumption-based asset pricing models: the
observed lack of correlation between the implied intertemporal marginal rates of substitution and stock
market returns. For a description of how to build statistical tests based on market price of risk targets,
see Burnside (1994), Cecchetti, Lamb and Mark (1994), and Hansen, Heaton and Luttmer (1995).
23 It can be argued that risk sensitivity is simply repairing a defect in quadratic preferences, a criticism to
which we are certainly vulnerable in this paper. The usual measure of relative risk aversion in the absence

of habit persistence is
�U00(c)

U0(c)c
. In the case of our quadratic preferences, this is given by 1

(b�c)c
, which

requires that the bliss point process be very close to the consumption process to attain a risk aversion
coe�cient even as big as unity. For an investigation of risk sensitive preferences and logarithmic utility,
see Tallarini (1996).
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28 Robust Permanent Income and Pricing

Consider next cases in which fm
f
t+1;tg is much smoother than fmr

t+1;tg , so that the
market price of risk is approximately std(mr

t+1;tjJt) . The (conditional) standard deviation
of fmr

t+1;tg will be large when the distortion in the conditional expectation operator is
large. As �b increases, the representative consumer's consumption is moved further away
from his ideal point and hence the scope for pessimism is more pronounced. Thus increasing
�b enhances the market price of risk.

More generally, the overall impact of increasing �b for a �xed � is ambiguous except
when � = 0 and depends on the particular features of the calibrated economy. For the
calculations reported in Tables 3a and 3b, the median market price of risk always increases
with �b except when �b = 0.

Market price of risk and robustness

As we have just seen, risk sensitivity introduces an additional (multiplicative) factor
mr

t+1;t into the stochastic discount factor. This factor changes only slightly when risk sen-
sitivity is reinterpreted as a preference for robustness. (See the remarks in the paragraphs
following (37).) When interpreted as a preference for robustness, we can abstract from the
covariance enhancement of the shocks. However, relative to those reported in Tables 3a
and 3b, the numbers for the market price of risk barely change when computed assuming
Knightian uncertainty rather than risk-sensitive preferences.

Let mu
t+1;t denote the resulting multiplicative factor, so that the composite stochastic

discount factor is:
mt+1;t =mu

t+1;tm
f
t+1;t:

To aid our understanding, suppose initially that mf
t+1;t is constant, so the market price

of risk is given by:
mprt = std(mu

t+1;tjJt):

The �rst columns of Tables 3A and 3B suggest that mu
t+1;t is indeed close to zero for the

preference speci�cation used in our calculations.
Under our particular speci�cation of uncertainty aversion, recall that asset prices are

computed using the `pessimistic' view of tomorrow's shock vector: wt+1 is normally dis-
tributed with conditional mean v̂t and covariance matrix I where v̂t is computed from
the solution to the two-person game. It follows that

mu
t+1;t =

exp[�(wt+1 � v̂t)
0(wt+1 � v̂t)=2]

exp(�wt+1
0wt+1=2)

;

which is the density ratio of the `distorted' relative to the `true' probability distribution.
By a straightforward calculation, it follows that

Et[(m
u
t+1;t)

2] = exp(v̂0tv̂t);
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and by construction
Et(m

u
t+1;t) = 1:

Therefore,
std(mu

t+1;tjJt) = [exp(v̂0tv̂t) � 1]1=2 � jv̂tj

for small distortions. In other words, the market price of risk is approximately equal to the
magnitude of the time t speci�cation error. Our market price of risk calculations under
uncertainty aversion are only slightly smaller than those computed under risk sensitivity
due to the small variance adjustment associated with the operator Tt .

Since the shocks are normalized to have unit variances, a conditional mean distortion of,
say, 10% of the shock standard deviation results in a market price of risk of approximately
:10, assuming that there is no variation in the usually constructed stochastic discount
factor. The fact that a mistake in forecasting wt+1 could lead to a direct enhancement
of the market price of risk by the magnitude of the mistake is perhaps not surprising.
What is conveyed here is that concern for robustness approximately directs the associated
pessimism to returns that are conditionally mean{standard deviation e�cient.

More generally, as a small noise approximation, jv̂tj is an upper bound on the approxi-
mate enhancement to the market price of risk caused by the concern for robustness. Given
the `pessimistic' construction of vt , we expect the two components mu

t+1;t and m
f
t+1;t of

the stochastic discount factor to be positively correlated. This upper bound is more nearly
attained when the two terms are highly positively correlated.

Table 4a

Mean Measure of Uncertainty Aversion, �b * (with habit persistence)

�b � : 0 -.0001 -.0002 -.0003

18 0 0.0166 0.0325 0.0479
(0,0) (.0146,.0196) (.0284,.0385) (.0416,.0571)

24 0 0.0392 0.0781 0.1169
(0,0) (.0368,.0425) (.0734,.0849) (.1097,.1270)

30 0 0.0630 0.1260 0.1888
(0,0) (.0606,.0665) (.1211,.1328) (.1816,.1991)

36 0 0.0871 0.1742 0.2613
(0,0) (.0847,.0905) (.1694,.1811) (.2540,.2716)

* Note: minimum and maximum values are in parenthesis below each mean � .
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30 Robust Permanent Income and Pricing

Table 4b

Mean Measure of Uncertainty Aversion �d * (with habit persistence)

�b � : 0 -.0001 -.0002 -.0003

18 0 0.0092 0.0179 0.0264
(0,0) (.0081,.0108) (.0157,.0213) (.0230,.0315)

24 0 0.0216 0.0431 0.0645
(0,0) (.0203,.0235) (.0405,.0468) (.0605,.0701)

30 0 0.0348 0.0695 0.1042
(0,0) (.0335,.0367) (.0668,.0733) (.1002,.1099)

36 0 0.0481 0.0961 0.1442
(0,0) (.0467,.0500) (.0935,.0999) (.1402,.1499)

Measuring Knightian uncertainty

Using formula (10), we can represent and compute the two components of v̂t , denoted
v̂d;t and v̂b;t , associated with the innovation to the endowment shock and preference shock,
respectively. From (10), these `worst case' speci�cation errors are linear functions of the
current Markov state. We take as our measure of Knightian uncertainty in the ` shock
(` = b; d):

�`(xt) =

vuut(1 � �)Et

1X
j=0

�j(v̂`;t+j)2; ` = d; b:

We report this measure for both shocks in Tables 4a and 4b. Included in these tables
are the sample means as well as the minima and maxima observed over the sample. Like
the market prices of risk, these measures are evaluated at the estimated values of the
shock processes (dt; bt) over the estimation period. Notice that the Knightian uncertainty
measures for the preference shock innovation are almost double those of the endowment
shock innovation.

The square of our measure of Knightian uncertainty is a long-run average of the squared
single-period speci�cation errors. This long-run averaging reduces the amount of time
variation, as is evident in the relatively narrow range of the computed �`(xt) 's. It also
suggests that the �`(xt) 's are approximately equal to the jv̂`;tj 's, which turns out to be a
good approximation in practice. Recall from our previous discussion that the enhancement
of the market price of risk caused by Knightian uncertainty is approximately jv̂tj . These
numbers are apparently dominated by speci�cation errors in the preference shock processes.
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7. Intertemporal Mean-Risk tradeo�s 31

7. Intertemporal Mean-Risk tradeoffs

The market price of risk reported above conveys information about the one-period
tradeo� between the mean and standard deviation of asset returns as encoded in shadow
prices. We now investigate the implied intertemporal tradeo� between means and standard
deviations associated with our alternative con�gurations of �b and � . Speci�cally, given a
proportionate reduction in the endowment shock, we aim to compute what proportionate
increase in the conditional mean of the endowment is required to keep the social planner
on the same indi�erence curve. Initially we answer this question `locally' by considering
small interventions. This partly imitates local measures of risk aversion. However, local
measures of risk aversion are often computed around certainty lines. In our case, we localize
around the solution to the permanent income optimal resource allocation problem. Our
localization permits us to depict risk-aversion as the ratio of two appropriately chosen
intertemporal prices. Thus, like the market price of risk, our intertemporal measure of risk
aversion also can be interpreted as a price ratio. We supplement this local experiment with
a global one in which the standard deviation of the shock is set to zero. The intertemporal
vantage point adopted in this section a�ects the character of the implied measures of risk
aversion. The calculations will be conducted using the `risk-sensitive' decentralization. A
corresponding `robust' decentralization gives rise to essentially the same numbers.

Local measure of risk aversion

We form a local intertemporal tradeo� between the standard deviation and the mean
of the endowment about the equilibrium process for consumption and investment. Specif-
ically, given a proportional enhancement of the endowment innovation in all future time
periods, we aim to compute what proportional increase in the endowment is required to
keep the social planner on the same indi�erence curve, at least locally. To perform this
computation we attain two `value expansions,' both of which we describe below. The �rst-
order terms or `derivatives' in these expansions can be interpreted as prices of appropriately
chosen in�nitely lived securities.

We implement a `local' modi�cation in the state evolution equation by adopting the
parameterization of the law of motion starting for j � 0 as

x�t+j+1 = A0x
�
t+j + (C + �G)wt+1+j ;

where � is a small positive scalar. A positive � initiates a change in the innovation standard
deviation starting with date t+1. Here the matrix G is designed to select the endowment
innovation. For example , it can be identical to C except with zeroes in the preference
shock entries. Let Ut = W �(xt) denote the value function for resulting control problem
indexed by � ; we take W 0 as the value function for a baseline control problem (say the
risk sensitive permanent income model). Let

xt+1 = A0xt + Cwt+1
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32 Robust Permanent Income and Pricing

be the corresponding � = 0 state evolution equation when the optimal control law is
imposed. We aim to compute an expansion of the form:

W �(x) =W 0(x) + �Wd(x) + o(�)

where o(�) converges to zero as � tends to zero uniformly on compact subsets of the state
space. We will derive an asset pricing formulation of Wd that, among other uses, facilitates
calculations.

A corresponding experiment delivers a `robust control' expansion. Alter the intervention
that takes place at time t by introducing `mistakes' in the conditional mean. Now suppose
instead that starting for j � 0 we have:

x�t+j+1 = A0xt+j + (C + �G)(wt+1+j + vt+j);

As before, the parameter � is used to restrain mistakes, rather than to make a risk
adjustment in the utility recursion. This perturbed system gives rise an expansion that,
from a quantitative vantage point, is virtually identical to that we report. The subsequent
asset pricing interpretation also applies, provided that we use the prices for the `robust'
decentralization in place of the prices of the `risk sensitive' decentralization.

Of course, W � is a translated quadratic function of the state vector. We write this
function as:

W �(x) = x0
�x + ��:

The function Wd is quadratic:

Wd(x) = x0
dx + �d:

In e�ect, 
d is the derivative with respect to � of the matrix function 
� , evaluated
at � = 0. Similarly, �d is the derivative with respect to � of the scalar function �� .
Computations of these derivatives are simpli�ed by the fact that we can abstract from the
role of optimization of the control vector for small changes in � . This familiar property
follows from the �rst-order conditions satis�ed by the optimal control law, which imply
that the contribution to the value function expansion is second order in � . Hence we
can compute the derivatives as if we are holding �xed the control law and hence the state
evolution matrix A0 . The matrix 
d can be computed easily as the solution of a Sylvester
equation.
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7. Intertemporal Mean-Risk tradeo�s 33

Measuring risk aversion by asset pricing

Holding �xed the equilibrium law of motion for consumption, c0t = Scxt , we can use
our asset pricing formula to evaluate how utility responds to changes in � . To compute
the desired `derivative' of Ut with respect to � , we begin by forming a new state vector
process:

x�t+j � x0t+j = �yt+j (46)

where fytg evolves according to

yt+j+1 = A0yt+j +Gwt+1+j

with yt = 0. Notice the linear scaling in � . A consumption process associated with � > 0
is:

c�t+j = c0t+j + �Scyt+j :

It follows from our subgradient inequality that

W �(xt) �W 0(xt)

�
�

1X
j=1

�jSt;j(M
c
t+jScyt+j):

It can be veri�ed that as � declines to zero, this becomes an equality. Therefore, we can
evaluate the desired `derivative' by using the following asset pricing formula:

1X
j=1

�jSt;j(M
c
t+jScyt+j)

This is the time t price, scaled in units of marginal utility, of an in�nitely-lived security
with dividend fScyt+jg .24

To compute the local mean-risk tradeo�, we also estimate the utility change associated
with a small change in the conditional mean of the endowment. We capture this small
change as follows:

x�t+1 = A0xt +Dxt +Cwt+1

x�t+j+1 = A0x
�
t+j +Cwt+1+j;

for j = 1; 2; : : : . This envisions the change in the conditional expectation as occurring at
date t+1 continuing into the future and leads us to the time t value-function expansion:

Ŵ �(x) =W 0(x) + �Ŵd(x) + o(�):

24 To perform the computation, �rst form the state transition equation for the composite state
�
x0t

0
yt

0
�
.

The transition equation has a block diagonal state matrix with diagonal blocks A0 . The counterpart to
C is constructed by stacking C on top of G . Consumption will be formed by using a matrix ( Sc 0 )
and the dividend will be formed by ( 0 Sc ) . Prices can now be computed recursively using a doubling
algorithm.
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34 Robust Permanent Income and Pricing

Here Ŵd is a quadratic function of the state vector, which we represent as x0
̂dx .
Imitating our earlier derivation, we form:

x�t+j � xt+j = �A
j�1
0 Dxt

Notice the linear scaling in � . The new consumption process can be expressed as:

c�t+j = c0t+j + �ScA
j�1
0 Dxt:

From our subgradient inequality (39),

W �(xt) �W 0(xt)

�
�

1X
j=1

St;j(M
c
t+jScA

j�1
0 Dxt):

Again we can show that this subgradient is actually a gradient by driving � to zero.
Therefore, our target derivative is given by:

1X
j=1

St;j(M
c
t+jScA

j�1
0 Dxt)

which is the (time t util) price of an in�nitely-lived security with dividend fScA
j�1
0 Dxtg .

Thus, f
̂dg solves a Sylvester equation.
Using our two expansions, the compensation measure is:

�t = �
x0t
dxt + �d

x0t
̂dxt
;

which we index by t to accommodate the change in vantage point as time passes.

Table 5

Local Mean-Risk Trade-o�

�b � : 0 -.0001 -.0002 -.0003

18 0.0312 0.0480 0.0801 0.1527
24 0.0112 0.0543 0.1303 0.2970
30 0.0068 0.0769 0.1997 0.4682
36 0.0049 0.1021 0.2720 0.6432
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7. Intertemporal Mean-Risk tradeo�s 35

Table 6

Global Mean-Risk Trade-o�

�b � : 0 -.0001 -.0002 -.0003

18 0.0151 0.0221 0.0321 0.0449
24 0.0056 0.0250 0.0510 0.0840
30 0.0034 0.0353 0.0777 0.1315
36 0.0024 0.0468 0.1057 0.1803

In Table 5, we report our (local) intertemporal measures of risk aversion. The e�ect of
increasing (in absolute value) � has a stronger e�ect on the mean-risk trade-o� than on
the market price of risk (compare Table 5 to Table 3a). Increases in �b also have a slightly
greater impact for the trade-o� calculation.25

We next verify the local nature of these computations by considering the following
experiment. Let � = �1, which sets to zero the shock variance for the endowment process.
By extrapolating the local measures reported in Table 5, the entries in this table should
convey what fraction of the endowment the consumer would be willing to forego to achieve
this reduction in volatility. Such an inquiry relates to Lucas's quanti�cation of the welfare
costs to 
uctuations, except that we are using a permanent income model that permits
investment (see also Obstfeld, 1994 and Tallarini, 1996). From this vantage point, the
numbers in Table 5 look to be enormous, particularly for the larger (in absolute value)
speci�cations of � . However, that extrapolation of our local measure turns out to be
misleading. To see this, in Table 6 we report global numbers for the � = �1 experiment
that hold �xed the permanent income decision rule for the two competing speci�cations
of the endowment process. The global mean-risk tradeo�s are much smaller by a factor
ranging from two to four. Nevertheless, the tradeo�s remain quite large, except when �

is close to zero.26

25 Increasing the market price of risk by enlarging �b has the virtue of further reducing the probability
of satiation. This would appear to increase the intertemporal substitutability of consumption. However,
recall that �b does not appear in the permanent income decision rule. Thus, by design we have not
changed the consumption{savings behavior of the consumer as we change �b . On the other hand, some
perverse implications `o� the equilibrium path' can occur for large values of �b .
26 The global numbers would be enhanced a little if we reoptimize when setting the endowment shock to
zero. The solution to linear-quadratic problem is unappealing in this context because with less uncertainty,
capital ceases to be an attractive way to transform goods from one period to the next. In light of this,
it seems crucial to reoptimize subject to a nonnegativity constraint on capital. Our imposition of the
suboptimal `permanent income' consumption rule diminishes the impact of this nonnegativity constraint
while possibly misstating the global tradeo�.
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36 Robust Permanent Income and Pricing

8. Conclusions

Robert E. Lucas, Jr. (1975) warned us about theorists bearing free parameters. Having
heard Lucas, we devoted this paper to scrutinizing some of the implications for prices and
quantities of a single additional parameter designed to quantify a preference for a particular
type of robustness. By exploiting the connection between this type of robustness and
the risk-sensitivity speci�cation of Jacobson (1973) and Whittle (1990), we have shown
how to decentralize dynamic, stochastic general equilibrium models with a risk sensitive
representative consumer. Formulas for consumption, investment, and the risk-free interest
rate are identical with ones coming from plain permanent income models. We presented
formulas for the market price of risk, then applied them to account for the market price
of risk observed in U.S. data.

Like Brock and LeBaron (1996), Brock and Hommes (1994), Cochrane (1989), Marcet
and Sargent (1989), and Krusell and Smith (1996), we can regard the consumer{investors in
our economy as making `mistakes', but as managing them di�erently than do those in these
authors' models.27 Our agents are very sophisticated in how they accommodate possible
mistakes: they base decisions on worse-case scenarios, following Gilboa and Schmeidler
(1989) and Epstein and Wang (1994).

In constrast to Cochrane (1989) and and Krusell and Smith (1996), for our permanent
income economy, the quantity allocations are observationally equivalent to those in an
economy in which no `mistakes' are contemplated. This situation stems partly from the
econometrician's ignorance of the subjective discount factor. Like Epstein andWang (1994)
and Melino and Epstein (1995), we focus on how aversion to mistakes transmits into
security market prices. We �nd that a conditional mean `mistake' of x% of the conditional
standard deviation increases the market price of risk by approximately x=100.

An ironic feature of our estimation procedure is that we ignore the possibility of our
own misspeci�cation errors while estimating a model whose agents' decisions are driven
by their speci�cation errors. A prime motivation for robust decision theory is to relax the
literal interpretation of the control problem, and to regard the posited dynamic, stochastic
constraints as approximations to a more complicated environment. It might be useful to
put the agents and the econometrician on a more equal footing, by admitting speci�cation
errors into the econometric investigation.

We have concentrated on a robust interpretation of the permanent income model of

27 Cochrane's and Krusell and Smith's agents use decision rules that are perturbed by small amounts in
arbitrary directions from optimal ones. Marcet and Sargent's agents correctly solve dynamic programming
problems, but subject to subtly misspeci�ed constraints: they use estimated transition laws (usually of
the correct functional forms) which they mistakenly take as non-random and time-invariant. See Brock
and LeBaron (1996), especially their footnote 2, for a lucid explanation of a class of models that mix
`adaptation' { to induce local instability near rational expectations equilibria { with enough `rationality'
to promote global attraction toward the vicinity of rational expectations. Brock and LeBaron and Brock
and Hommes balance the tension between adaptation and rationality to mimic some interesting return
and volume dynamics.
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consumption. The permanent income model seemed a natural starting point for exploring
the consequences of robust decision theory, partly because of its simplicity. Recent work by
Carroll (1992) has emphasized a departure from the permanent income model induced by
precautionary savings, low discount factors, and big utility costs to zero consumption.28

As we have emphasized, our reinterpretation of the permanent income model also relies
on smaller discount factors and precautionary savings. It does not, however, permit us to
explore the rami�cations of big utility costs to zero consumption, which is central to the
work of Carroll (1992) and others. Recently, James (1992, 1995) and Campi and James
(1995) demonstrate the connection between risk sensitivity and robustness using small
noise expansions for control problems with nonquadratic criteria and nonlinear, stochastic
evolution equations. These expansion methods provide a justi�cation in terms of robust-
ness for using risk sensitive control for a much richer class of decision problems. Recursive
counterparts of these expansions will open the way to studying discounted, nonlinear ro-
bust control and its rami�cations for consumption and savings.

We can be accused of taking the representative agent paradigm too seriously. We use
the representative agent as a convenient starting point to understand the workings of
risk sensitivity and robustness in decentralized economies. In other setups we know how
heterogeneity of preferences and incomplete risk sharing a�ect investment behavior and
the market price of risk. In our model (and Epstein and Wang's), agents agree on the
amount and location of the Knightian uncertainty. Thus, models like ours can contribute
an additional dimension upon which heterogeneity alters equilibrium quantities and prices.

Appendix A: Subgradient Inequality

This derives the subgradient inequality used for equilibrium pricing. Let Ue denote the
original nonpositive random utility index, U any other nonpositive random utility index
and J a sigma algebra of events. We will show that

R(U) �R(Ue) � E[V e(U � Ue) j J ]=E(V e
j J) (47)

where

R(U) � (2=�) logfE[exp(�U=2) j J ]

V e
� exp(�Ue=2) :

(48)

We assume that E[exp(�Ue=2) j J ] and hence R(Ue) is �nite with probability one. De�ne
h � U � Ue , and let � be any real number in (0,1). Interpret � as determining the

28 See Leland (1968) and Miller (1974) for important early contributions to the literature on precautionary
saving.
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magnitude of a perturbation in direction h. In other words, the perturbation away from
Ue under consideration is �h .

By the convexity of the exponential function:

exp[�(Ue + h�)=2]� exp(�Ue=2) � �h(�=2)V e: (49)

This inequality remains true when computing expectations conditioned on J , although
either side may be in�nite:

Efexp[�(Ue + h�)=2] j Jg �Efexp(�Ue=2) j Jg � �(�=2)E(V eh j J): (50)

Divide each side of (50) by E(V e
j J) :

Efexp[�(Ue + h�)=2] j Jg=Efexp(�Ue=2) j Jg � 1 �

�(�=2)E(V eh j J)=E(V e
j J):

(51)

Since 0 < � < 1; (Ue + h�) is a convex combination of Ue and U with weights (1 � �)
and � respectively. By the conditional version of the H�older Inequality,

Efexp[�(Ue + h�)=2] j Jg = Ef[exp(�Ue=2)]1��[exp(�U=2)]� j Jg

� fE[exp(�Ue=2) j J ]g1��fE[exp(�U=2) j J ]g� :
(52)

Combining (51) and (52) and dividing by � , we have that

(1=�)fE[exp(�U=2) j J ]=E(V e
j J)g� � 1 �

(�=2)E(V eh j J)=E(V e
j J)

(53)

To complete the derivation, we use the familiar approximation result for logarithms:

lim
�!0

(�� � 1)=� = log(�) (54)

where the limit is from above. (This limit can be veri�ed by applying L'Hospital's Rule
or by using the series expansion for exp[� log(�)]). Taking limits of the left side of (53) as
� declines to zero yields

logfE[exp(�U=2) j J ]g � log[E(V e
j J)] � (�=2)E(V eh j J)=E(V e

j J) (55)

The desired inequality (47) is obtained by multiplying both sides of (55) by the negative
number (2=�) and reversing the inequality.
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Appendix B: Computing Prices for State-Contingent Utility

In this appendix we provide a characterization of the operator Tt used in pricing state-
contingent utility. The characterization relies on a restriction that the utility index Ue

t+1

be quadratic in a normally distributed state vector xt+1 . For notational convenience, we
will suppress superscripts and subscripts.

Suppose that a utility index is quadratic in a normally distributed random vector x 2
Rn :

U = x0
x + � (56)

where 
 is a negative semide�nite matrix and � � 0. In addition, suppose that

x = �+ Cw (57)

where w is normally distributed random vector with mean zero and covariance matrix I .
Recall that Tt can be interpreted as a conditional expectation with a change of proba-
bility measure. In terms of the notation just developed, the new probability measure is
constructed using V=EV as a Radon-Nikodym derivative where

V = exp(�U=2) / exp(�w0C 0
Cw=2 + �w0C 0
�): (58)

We can compute expectations with respect to the transformed measure as follows. Let �
be any bounded, Borel measurable function mapping Rm

! R . Then

E[V �]=EV /

Z
�(w) exp(�w0C 0
Cw=2 + �w0C 0
�) exp(�w0w=2)dw: (59)

Note that

�w0C 0
Cw=2 + �w0C 0
�� w0w=2 = �w0(I � �C 0
C)w=2+

w0(I � �C 0
C)(I � �C 0
C)�1�C 0
�:
(60)

Consequently, the operator on the left side of (59) can be evaluated by integrating � with
respect to a normal density with mean vector:

~� � (I � �C 0
C)�1�C 0
� (61)

and covariance matrix

~� � (I � �C 0
C)�1: (62)

The corresponding mean vector and covariance matrix for x are � + C ~� and C ~�C 0 ,
respectively. The Tt operator will only be well de�ned so long as �C 0
C < I .
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Appendix C

Computing the Conditional Variance of the Stochastic Discount Factor

From Eq. (45), we know that mt+1;t , the intertemporal marginal rate of substitution
between time t and time t+ 1 can be written as:

mt+1;t =
�[exp(�Ue

t+1=2)�
0
M

c
t+1]

Efexp(�Ue
t+1=2) j Jtg�

0M
c
t

(63)

or as:

mt+1;t =
�fexp[�(x0t+1
xt+1 + �)=2]�0Mcxt+1g

exp[�(x0t
̂xt + �̂)=2]�0Mcxt
(64)

where 
̂ and �̂ are given by (5). By applying the results of Appendix B we can compute
the mean of mt+1;t , conditional on information available at time t . The result can be
written as

E(mt+1;1jJt) = �(�0McÂxt)=(�
0Mcxt) (65)

Our present goal is to compute the conditional second moment of mt+1;t as a means for
computing its conditional variance. We will accomplish this by manipulating m2

t+1;t so
that we can transform the probability measure as in Appendix B but with a di�erent
function V . We have

m2
t+1;t =

�2

(�0Mcxt)2
exp[�(x0t+1
xt+1 + �)]

exp[�(x0t
̂xt + �̂)]
(�0Mcxt+1)

2: (66)

ultiply the numerator and denominator by the time t conditional mean of the exponential
term in the numerator, Efexp[�(x0t+1
xt+1 + �)] j Jtg . This gives us

m2
t+1;t =

�2Efexp[�(x0t+1
xt+1 + �)] j Jt)g

(�0Mcxt)2 exp[�(x0t
̂xt + �̂)]

exp[�(x0t+1
xt+1 + �)] (�0Mcxt+1)2

Efexp[�(x0t+1
xt+1 + �)] j Jtg
: (67)

This conditional expectation can be computed by using a formula found in Jacobson (1973),
only substituting 2� for � :

Efexp[�(x0t+1
xt+1 + �)] j Jtg = [det(I � 2�C 0
C)]�1=2 exp[�(x0t ~
xt + �)]

= exp[�(x0t ~
xt + ~�)];
(68)

where ~
 � A0[
 + 2�
C(I � 2�C 0
C)�1C 0
]A and ~� � �
1
2� log det(I � 2�C 0
C) + � .

So we get that

Efexp[�(x0t+1
xt+1 + �)] j Jtg

exp[�(x0t
̂xt + �̂)]
= expf�[x0t(~
� 
̂)xt + ~�� �̂]g: (69)
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This gives us

m2
t+1;t =

�2

(�0Mcxt)2
expf�[x0t(~
 � 
̂)xt + ~�� �̂]g

~Vt+1(�0Mcxt+1)2

Ef ~Vt+1jJtg
; (70)

where ~Vt+1 = exp[(�(x0t+1
xt+1 + �)] . So

E(m2
t+1;t j Jt) =

�2

(�0Mcxt)2
fexpf�[x0t(~
� 
̂)xt + ~�� �̂]g ~Tt[(�

0Mcxt+1)
2]: (71)

where ~Tt is the transformed conditional expectation operator for a 2� economy. We can
evaluate the ~Tt term in the above expression using results from Appendix B:

~Tt[(�
0Mcxt+1)

2] = x0t
~A0M 0

c��
0Mc

~Axt + trace(�0Mc
~C ~C 0M 0

c�); (72)

where
~A � [I + 2�C(I � 2�C 0
C)�1C 0
]A (73)

and
~C ~C 0 � C(I � 2�C 0
C)�1C 0: (74)

Finally, we know that the conditional variance of mt+1;t is given by its conditional second
moment minus the square of its conditional mean.
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