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Abstract

We explain the main features of the results of the ultimatum bar-
gaining experiments of Roth et al. (1991) by a model in the style of
Harsanyi (1973), in which players are uncertain about the utilities of
their opponents. We investigate a model that introduces social consid-
erations into the model with utility uncertainty. As a simple measure
of social utility (Edgeworth (1881)) we add (subtract) a portion of
the opponent’s earnings to each player’s monetary income, i. e. each
player’s modified utility is a linear combination of the player’s own and
her opponent’s monetary earnings. We find that, on the aggregate,
players have negative regard for their opponents’ monetary earnings in
these experiments. Finally, we provide evidence that both responders
and proposers have negative regard for each others’ monetary earnings
which suggests that proposers are neither sophisticated maximizers of
their own monetary income given the rejection rates of responders nor
altruists that have positive regard for the monetary earnings of their
opponents.

JEL Classification Numbers: Al13, C19, C44, C72, C92, D63, D64






1 Introduction

The ultimatum bargaining game is a frequently studied game in experimental
economics. In this game there are two players: a proposer and a responder.
The proposer proposes how to divide a sum of money with a second bargainer.
The responder has the choice of either accepting or rejecting the proposed
division of the sum of money (the pie). If the responder accepts the proposed
division, then the division is as proposed by the proposer. If the responder
rejects the proposed division, each player earns nothing and the game ends.

The above version of the ultimatum bargaining game has a continuum
of Nash equilibria but a unique subgame perfect equilibrium. All the Nash
equilibria that are not subgame perfect involve threats by the responder that
she would not want to carry out if she were called upon to move. In the
unique subgame perfect equilibrium the proposer receives the whole pie and
the responder receives nothing. To see this, notice that subgame perfection
implies that the responder will accept any strictly positive offer. But under
subgame perfection, offering a strictly positive amount to the responder can-
not be part of a Nash equilibrium since the proposer can increase her payoft
by undercutting her own offer. A best response of the responder to the pro-
poser’s offer of nothing is to accept, since she is indifferent between accepting
and rejecting. Therefore we have a unique subgame perfect equilibrium with
the first bargainer getting all of the pie for herself.

If the pie is not perfectly divisible, the story is similar. Suppose offers
can only be made in units no smaller than a token. We now have two sub-
game perfect equilibria. One subgame perfect equilibrium is characterized
in the previous paragraph. In the other subgame perfect equilibrium, the
proposer offers a token to the responder (and keeps the rest for herself) and
the responder accepts (again subgame perfection), but would reject a lower
offer. As the smallest unit that offers can be made in goes to zero, these two
subgame perfect equilibria become identical. Again (almost) all the pie goes
to the proposer.

The subgame perfect equilibrium prediction gives all the bargaining power
to the proposer. This bargaining power comes from the deletion of weakly
dominated strategies of the responder. Let us suppose that the responder
has some beliefs about the part of the pie that will be offered to her. She
can best respond to these beliefs by only accepting an offer that gives her
at least that part of the pie. But this strategy is weakly dominated by any



strategy where she accepts a smaller part of the pie. Therefore, she would be
no worse off by using a strategy where she accepts anything that is offered
to her.

The large body of experimental evidence on ultimatum games shows a
very different picture. For excellent surveys of this literature see Binmore
et al. (1985), Thaler (1988), Camerer and Thaler (1995), Guth and Tietz
(1990), and Roth (1995). Proposers tend to offer positive amounts of money
almost always averaging more than 40% of the total which is very far away
from the prediction of offers of negligible amounts. Also, responders tend to
reject offers less times as the percentage of the pie offered goes up, instead of
never rejecting strictly positive offers. Rejecting positive offers is “irrational”
when players prefer more money to less, and so the observed frequency of
rejections is evidence against the joint hypothesis that players are rational
and that they only care about their own payoffs. Given the experimental
evidence on rationality (e.g. Crawford (1997)) in related settings, it seems
unlikely that these deviations from the subgame perfect equilibrium are due
mainly to subjects’ failure to understand the game or the incentives the
experiment creates. It seems that responders assign payoffs to outcomes
that do not simply correspond to their own monetary payoffs. Moreover,
proposers seem to know this given that they offer positive amounts of money
with very few exceptions.

Changes of the basic design (for example, labeling proposers and respon-
ders as sellers and buyers, or having players go through a contest prior to
the play of the game to determine proposers and responders) still produce
experimental data that do not resemble the subgame perfect equilibrium pre-
diction. In these experiments the distribution of offers and the conditional
distribution of acceptances tend to first order stochastically dominate the cor-
responding distributions from the basic design. Moreover, the value of the
pie appears to influence the conditional distribution of rejections in terms of
the percentage of the pie only to a very small extent (Hoffman, McCabe, and
Smith (1996)).

There are several explanations in the literature for these phenomena. Ear-
lier studies emphasize the special nature of these experiments. For example,
in an early study of the ultimatum game, Guth et al. ((1982), p. 384) at-
tributed these phenomena to the fact that “subjects often rely on what they
consider a fair or justified result. Furthermore, the ultimatum aspect can-
not completely be exploited since subjects do not hesitate to punish if their
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opponent asks for ‘too much’.”

Recent studies of the ultimatum games and attempts to reconcile the
data from the ultimatum game experiments with standard game theory are
numerous. Roth et al. (1991) ran the ultimatum games in four different
countries with similar results as those characterized above but they also find
that behavior in the ultimatum game is to some extent substantially dif-
ferent in different countries. Bolton (1991) makes the utility functions of
bargainers explicitly dependent on a relative comparison of monetary pay-
offs, i. e. the ratio of monetary payoffs, which has the effect of forcing a
more even split of the pie. Rabin (1993) proposes a game-theoretic solu-
tion concept, called “fairness equilibrium” by deriving a psychological game
(Geanakoplos et al. (1989)) from the game at hand. It incorporates explicitly
the notion that players want to sacrifice their own payoff to punish unfair
behavior. Rabin (1993) provides a theoretical framework for incorporating
fairness into games. Roth and Erev (1995) use simulations of reinforcement
learning models to track intermediate term behavior in the ultimatum game
experiments starting from random and estimated initial conditions. The sim-
ulations show that intermediate term behavior stays away from the subgame
perfect equilibrium and is very sensitive to initial conditions. Gale, Binmore,
and Samuelson (1995) analyze ultimatum games using replicator dynamics.
Their simulations show that if the noise introduced in the replicator dynam-
ics is larger for responders than for proposers then only a small amount of
noise is sufficient to lead the dynamics to non-subgame perfect equilibria.
The resulting behavior is similar to the behavior observed in the ultimatum
game experiments. Levine (1996) examines an altruism model. Using the
ultimatum game and centipede game experiments he obtains a distribution
of altruism and tries to explain behavior in the earlier rounds of the centipede
game and public good experiments. Fudenberg and Levine (1997) compute
losses of players from not maximizing the payoffs specified by the experi-
mental design for different experimental games and find that these losses are
larger for the ultimatum game experiments than other experimental games
like the centipede games and the best shot games. McKelvey and Palfrey
(1996) refine equilibria in simplified versions of the ultimatum game using
the concept of quantal response equilibrium.

Most of these studies do not provide a detailed statistical analysis of the
data or a maximum likelihood estimation of the proposed model. Some of
themn rely for the most part on simulations with specific parameter values
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(Roth and Erev (1995), Gale, Binmore and Samuelson (1995)) or on descrip-
tive statistics (Roth et al. (1991)).

We propose the following payoff uncertainty model based on the one used
in the context of the centipede games by Zauner (1996). Each player has a
payoff function which represents her Von Neumann-Morgenstern utility for
each of the possible outcomes in the game. However, players do not have
precise knowledge of the other players’ payoff functions. Although players
observe their opponents’ monetary payoffs, they do not observe the corre-
sponding Von Neumann-Morgenstern utilities. The same is true about the
experimenter’s knowledge of the utility functions of players. Although in
most experiments there is no uncertainty regarding monetary payoffs (which
are common knowledge among subjects and experimenter), each player only
has exact knowledge of her own utility function but is uncertain about her
opponents’ utility functions.! A possible interpretation is that players face
strategic uncertainty about their opponents in the form of, for example, un-
certainty about the rationality of players, about strategy choices of oppo-
nents, etc. We follow Harsanyi (1973) p. 1 - 2: “Classical game theory
assumnes that in any game I every player has precise knowledge of the payoft
function of every other player (as well as of his own). But it is more realistic
to assume that — even if each player does have exact knowledge of his own
payoff function — he can have at best only somewhat inexact information
about the other player’s payoff functions ...The payoff function of every
player is subject to random disturbances ..., due to small stochastic fluc-
tuations in his subjective and objective conditions (e.g. in his mood, taste,
resources, social situation, etc.).”

These random disturbances are modeled as a random perturbation that is
added to each player’s monetary earnings. After discretizing the ultimatum
bargaining game, each player’s monetary payoffs are independently perturbed
across nodes with normal noise; each player is told her own payoffs in the
game, but not the payoffs of the other player. When players play the game,
they know their own payoffs but they may be uncertain about the preferences
of the other player. We then examine the equilibrium of the perturbed game
assuming that either the statistical law governing the responder’s perturba-
tions is common knowledge or that the proposer has correct beliefs regarding

1Henceforth we will use the terms utility and payoff as having the same meaning, and
we will refer to dollar amounts as monetary payoffs or monetary earnings.



the behavior of the responder.

This approach is similar to the one used in Zauner (1996) in the con-
text of the centipede game experiments, with one important difference. The
structure of the ultimatum game is different from the structure of the cen-
tipede game. In the ultimatum game, each player is called upon to move
only once. In the centipede game it is possible for a player to move twice
along some paths of play. Therefore the question arises whether the actions
of a player at different information sets are coordinated or not. There are
therefore different ways to analyze the centipede game. One way is to ana-
lyze the game in the usual way where each player is able to coordinate her
actions and therefore is able to commit to a whole strategy profile upfront.
Given the experimental design (players did not commit to complete strat-
egy profiles), Zauner (1996) applies an “agent” analysis for the centipede
games. In an “agent” approach players are not able to coordinate their own
behavior at later decision nodes. To implement an “agent” approach, each
information set is manned by a different agent. Each agent has the same.
perturbed payoffs as the player to which this agent belongs. In other words,
agents only observe the disturbances corresponding to their current behavior
strategy payoffs and not all the disturbances of all payoffs of the player to
which this agent belongs. In effect, players are unable to predict their own
behavior at later decision nodes. In the ultimatum game this difference be-
tween an “agent” approach and the usual approach is immaterial since each
player moves only once in the game and therefore both approaches coincide.
This means that at the beginning of the game the proposer (responder) ob-
serves all the disturbances 'corﬁresponding to her own payoffs, but not the
disturbances corresponding to the responder’s (proposer’s) payoff.

The noise structure is unbiased in the sense that is has zero mean, thus
systematic deviations from the subgame perfect equilibrium are explained by
a non-systematic change of the payoffs of the underlying ultimatum game.
This is in contrast to the usual incomplete information games (for example
Kreps et al. (1982), McKelvey and Palfrey (1992)) where non-Nash behavior
is explained by a systematic change in payoffs. For other models that use an
unbiased noise structure see McKelvey and Palfrey (1995a), (1995b), (1996).

Using data from the ultimatum experiments in the US by Roth, Pras-
nikar, Okuno-Fujiwara, and Zamir (1991) we estimate the variance of the
payoff uncertainty of players that fits the data best by maximum likelihood
techniques. We find that the estimation results are qualitatively similar to
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Roth et al.’s results. The estimated probabilities of rejected offers are in-
versely related to the size of the offer. The estimation results also imply that
offers below $2 are very rare, even though in the subgame perfect equilibrium
only offers of $0 or $1 would be made.

As noted above, the data from the ultimatum bargaining experiments are
in direct conflict with the joint hypothesis that players are rational and only
care about their own monetary payoffs. Players frequently choose $0 over
strictly positive dollar amounts. In some cases such choices are made 80%
of the time. Such rejection rates cannot be explained by a non-systematic
change in the payoffs since even large noise (with zero mean) can only give
random behavior (i. e. rejection rates of at most 50 %).

A model with social considerations provides a better description of the
features of the data. We use a social utility model where players’ payofis are a
linear combination of the player’s own and her opponents’ monetary earnings
augmented by payoff uncertainty. Models where players’ payoffs are a convez
combination of the player’s own and her opponents’ monetary earnings are
usually called altruism models. Such simple models with altruism and/or
social utility have appeared in the literature, first in Edgeworth (1881) and
more recently in Ledyard (1995), Levine (1996), Anderson et al. (1996),
and Camerer (1997). The difference between our model and those used in
the bargaining literature is that social utility is added to a random utility
model.? As in Bolton (1991) and Rabin (1993), the social utility part of our
model introduces social considerations in the utility functions. Our concept of
social utility is very simple, and easier to implement than the fairness concept
proposed by Rabin (1993). Rabin’s model uses player’s beliefs to derive a
psychological equilibrium. Given the experimental design of the ultimatum
bargaining experiments, the experimenter does not know the beliefs of players
and/or has difficulties to elicit these beliefs. Compared to Bolton (1991),
where a more even split increases the utility of players, our model leaves
it open a priori whether a more even split of the pie increases or decreases
the utility of players. Compared to Levine (1996), our model allows a full
maximum likelihood estimation. This is one advantage of introducing full
support noise (random utility) into the model.

We use three nested models, estimate the social utility parameter and/or

2Anderson et al. (1996) analyze public good games using a model with altruism and a
logit error structure.



the variance of the payoff uncertainty for these models, test hypotheses, and
show that the estimated probabilities display the characteristics of Roth et
al.’s results. We find that both responders and proposers have negative regard
for their opponents’ monetary earnings, which is in contrast to the usual claim
that proposers maximize their expected monetary payoff given responders’
behavior or that proposers are altruists since they offer positive amounts
of money to the proposers. The level of payoff uncertainty is substantially
smaller in the social ultility model than in the payoff uncertainty model.

In the rest of the paper, we start by describing the experiment of Roth
et al. (1991), as well as its results. In section 3, we describe the models
and show the computation of an equilibrium and the likelihood function. In
section 4, we provide the estimation results, and we conclude in section 5.

2 Experimental Data of Roth et al. (1991)

Since the ultimatum game has been tested experimentally several times there
exists a reasonable number of data sets that one could use. We decided to
use the data of the bargaining experiments of Roth et al. (1991) because
of the careful experimental design and also because of the large number
of observations contained in the data set. Other data sets of ultimatum
bargaining experiments display very similar characteristics than the data set
of Roth et al.

In this experiment players were first assigned a role: proposeré Or respon-

ders. Then they played the-game in their respective roles for 10 rounds,€ach™ =

time with a different, anonymous, and randomly selected opponent. Sub-
jects were paid according to their monetary payoffs in one randomly selected
round. Although different runs were conducted in different countries (Israel,
Japan, U.S. and Yugoslavia), we only use the data of the U.S. runs since,
as the results of Roth et al. (1991) show, cultural factors play an important
role in these experimental data. The experiments run in the U.S. used two
different treatments, one with a pie of $10, and the other with a pie of $30.
We restrict our attention to the treatment with a $10 pie. The experiment
consisted of three sessions (one with 8 players in each role, one with 9, and
another one with 10) with this treatment, which produced 270 observations.
Since the possible offers by the proposer had to be multiples of 5 cents we
have two subgame perfect Nash equilibria which were described in the pre-



vious section. Although the experimental setting provided room to observe
201 different offers (corresponding to multiples of 5 cents), most of them were
concentrated on integer dollar values (i.e., $1, $2, etc.). Of the 270 observa-
tions, only 75 were not integer dollar values. This characteristic of the data
led us to group the observed offers in 11 categories corresponding to integer
dollar amounts, a procedure also used by Roth and Erev (1995).2 Therefore
we discretize the ultimatum game and assume in our analysis that offers can-
not be made in units smaller than $1. To be exact, we grouped all the offers
between $X — $0.49 and $X + $0.50, where X = 0,1,...,10 and considered
them to be offers of X (with the obvious change for the largest and smallest
possible offer), which leads to the game tree in Figure 1. Table I, Table II and
Table III summarize the data of this experiment.* Table I gives the observed
distribution of offers of the proposer to the responder. Table II gives the
observed conditional frequencies (of the responder) of accepting particular
offers. Table III displays the frequencies of the endnodes of the discretized
version of the game.

In the data there are several things worth mentioning. First, offers are
mainly concentrated around $4 and $5 which means that the pie is shared
approximately equally. As we can see in Table I, we observe offers implied
by the subgame perfect equilibrium of the (discretized) game (i. e. offers of
$0 or $1) in only 0.7% and 1.9% of cases.

Second, Table II shows that the frequency of rejected offers is inversely
related to the size of the offer, i. e. low offers are rejected more frequently
than high offers, contrary to the prediction of subgame perfection where any
strictly positive offer should not be rejected.

Third, Table III shows that the endnodes with the hlghest frequency are
the nodes (Offer $5, Accept) in 37.41% and (Offer $4, Accept) in 28.52% of
cases. One can observe behavior consistent with subgame perfect equilibrium
outcomes of the discretized game (Offer $0, Accept), (Offer $1, Accept) in
only 0.37% of cases.

3Roth and Erev (1995) only use 9 categories, since they exclude from their analysis
offers of $0 and $10.
“We pooled the data of all 10 rounds.
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Table I: Distribution of Offers

Offers | Observations | Frequency (%)
$0 2 0.7
$1 ) 1.9
$2 12 44
$3 24 8.9
$4 109 40.4
$5 110 40.7
$6 ) 1.9
$7 2 0.7
$8 0 0.0
$9 0 0.0
$ 10 1 0.4

Table 1I: Implied (Conditional) “Acceptance” Frequencies

Offers | Acceptances | Rejections | Freq. of Acceptance (%)
$0 0 2. 0.0
$1 1 4 20.0
$2 3 9 25.0
$3 6 18 25.0
$4 77 32 70.6
$5 101 9 91.8
$6 3 2 60.0
$7 2 0 100.0
$8 - - —
$9 - - —
$10 1 0 100.0
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Table III: Frequencies of Endnodes

Offer | Acc./Rej. | Frequency | Rel. Frequency (%)
$0 Accept 0 0.0
$0 Reject 2 0.74
$1 Accept 1 0.37
$1 Reject 4 1.48
$2 Accept 3 1.11
$2 Reject 9 3.33
$3 Accept 6 2.22
$3 Reject 18 6.67
$4 Accept 7 28.52
$4 Reject 32 11.85
$5 Accept 101 37.41
$5 Reject 9 3.33
$6 Accept 3 1.11
$6 Reject 2 0.74
$7 Accept 2 0.74
$7 Reject 0 0.00
$8 Accept 0 0.00
$8 Reject 0 0.00
$9 Accept 0 0.00
$9 Reject 0 0.00
$ 10 | Accept 1 0.37
$ 10 Reject 0 0.00
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3 Utility Uncertainty

In this section we look at utility uncertainty alone. Later, we will add social
considerations into the utility function and use several nested models to test
hypotheses regarding the results of the ultimatum bargaining experiments.
First, we discretize the original ultimatum game. Offers can only be made
in whole dollars. The strategies for the proposer are therefore to offer $.X,
X =0,1,2,...,10, to the responder and demand $10 — X for herself. The
responder can accept or reject the offer. If the responder accepts the offer,
the proposer receives $10 — X and the responder $X. If the responder rejects
the offer both earn $0.

As outlined above, we now introduce utility uncertainty in the discretized
ultimatum game. This approach was already used successfully in Zauner
(1996) to analyze the centipede game experiments. To this end, each player
i’s, 1 = p,r,° monetary payoffs are independently perturbed across endnodes
k, k = 1,2,...,22, with additive noise e(i'k)e; each player is told her own
utilities in the game, but not the utilities of the other player. Then we
examine the equilibrium consequent upon assuming that either the statistical
law governing the perturbations is common knowledge or that the beliefs
of the proposer about the behavior of the responder are correct. When
the players play the game, they know their own utilities but they may be
uncertain about the preferences of the other player.

We sketch the computation of an equilibrium for the discretized and per-
turbed game. We assume throughout the paper that the random variables
¢(i.x) are distributed according to normal distributions with mean zero and
variance o2 and that they are independent across nodes and across players.
The game tree of the perturbed game is given in Figure 2. Zauner (1993)
proves the existence of equilibrium in such incomplete information games in
extensive form.

First, we compute the acceptance and rejection probabilities for the re-
sponder. If the proposer offers $0 to the responder, we can compute the
acceptance probability, which is the probability that the perturbed utility
for accepting the offer is greater than the perturbed utility for rejecting
the offer, as Pr{0 + €1y > 0 + €2} = 1/2. Similarly, if the proposer

5The letters p, r stand for proposer and for responder, respectively.
6We count endnodes from top to bottom in Figure 1
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offers $§1 to the responder, we can compute the acceptance probability as
Pr{l + €3 > 0+¢€(q}. Similar computations apply to all the other accep-
tance probabilities of the responder.

After the computation of the acceptance probabilities, gx, 1. e. accepting
an offer of $X, (X =0,1,...,10), we can compute the probabilities of offer-
ing $X. Offering $X to the responder’ leads to a (random) utility for the
proposer that has a normal distribution with mean (10 — X')gx and variance
[¢% + (1 — gx)?*]o®. We denote the normally distributed random variable cor-
responding to an offer of $X to the responder by N(10-x), the corresponding
distribution function by Fi;0-x), and the corresponding density function by
fuio-x)- Therefore, the probability of offering, for example, $0, pyo, is given
by

[ ]

Pr{Nio > max{Ng, Ns, ..., No}} = / Fy(z)Fy(z) - - - Fo(x) fro(z)dz. (1)
Similar expressions can be derived for the other offers. This approach gives
an equilibrium in the perturbed game.

From the acceptance probabilities and the probabilities of offers it is pos-
sible to compute the probability

s(o?) = (51(02), ooy 822(0?))

of observing each of the possible outcomes, (offer $0, accept), (offer $0, re-
ject), (offer $1, accept), (offer $1, reject), .... The entries in the vector

s(o?) = (s1(c?),..., s22(0?))

are the expected frequencies of the different endnodes. Therefore, s,(c?) =
P1o(0?)go(0?), s2(0?%) = pro(0?)(1 — go(c?)), etc. is the likelihood of observing
a particular vector n = (ny,...,n2;) of outcomes given (¢?). The likelihood
function is thus given by

22

L(c*) = [](se(a®))™, (2)

k=1

"The probability of offering $X is denoted by P(10-X)-
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Table IV: Payoff Uncertainty: Estimated Distribution of Offers

Offer | Prob. of Offer | Data | Model
$0 pl0 0.007 | 0.0986
$1 p9 0.019 | 0.1474
$2 p8 0.044 | 0.1801
$3 p7 0.089 | 0.1801
$4 pb 0.404 | 0.1609
$5 PS5 0.407 | 0.1086
56 pd 0.019 | 0.0681
$7 p3 0.007 | 0.0374
$8 p2 0.000 { 0.0181
$9 pl 0.000 | 0.0077
$ 10 p0 0.004 | 0.0029

and the log-likelihood function by

LY =Y In sx(0?). (3)

Standard maximum likelihood methods can now be used to estimate the the
variance (0?) of the model that fits the data best. o

The estimation gives the following results. The log-likelihood is max-
imized at o2 = 7.12036 with a maximized value of the log-likelihood of
—710.0250. Table IV shows the estimated distribution of offers. The of-
fers are mostly concentrated between $0 and $5. The offers drop off sharply
for offers over $6. The offers with the highest estimated frequency are offers
of $2. $3, and $4 dollars. The offers implied by the subgame perfect equi-
librium(a) receive relatively small mass. These estimation results roughly
resemble the data of the experiments. Figure 3 shows the estimated distri-
bution of offers and the empirical frequency of offers.

Table V displays the estimated conditional probabilities of acceptance.
The estimated acceptance rates increase with the size of offers. In other
words, estimated rejection rates are inversely related to the size of the offer.
The estimated acceptance rates show that low offers are more frequently
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Table V: Payoff Uncertainty: Estimated Conditional “Acceptance” Proba-
bilities

Offer | Prob. of Acceptance | Data | Model
$0 q0 0.000 | 0.5000
$1 ql 0.200 | 0.6045
$2 q2 0.250 | 0.7019
$3 q3 0.250 | 0.7867
$4 q4 0.706 | 0.8554
$5 qd 0.918 | 0.9074
$6 g6 0.600 | 0.9441
$7 q7 1.000 | 0.9682
$8 q8 — 10.9830
$9 q9 — 10.9915
$ 10 ql0 1.000 | 0.9960

rejected than high offers. Subgame perfection on the other hand implies that
any positive offer should be accepted. The estimated probabilities again have
the qualitative features of the data. However, the estimated acceptance rates
start off much higher than the corresponding acceptance rates of the data.
This is no surprise. If the proposer offers $0, then the responder is indifferent
between accepting and rejecting and since the perturbations for accepting and
rejecting are the same this implies a fifty-fifty split between accepting and
rejecting. For higher offers (i. e. offers of §1, §2, ...) the acceptance rate has
to be higher than 50% given that we use symmetric distributions concentrated
around the unperturbed payoffs of each endnode of the ultimatum game.
Figure 4 shows the estimated probabilities of acceptance and the empirical
frequencies of acceptance.

Table VI displays the estimated frequencies of the endnodes of the ul-
timatum game. The estimated probabilities roughly display the features of
the data. The estimated probabilities of endnodes that correspond to ac-
cepted offers increase (offers of $0 to $3 ) and then fall (offers of $4 to $10).
The estimated probabilities of endnodes that correspond to rejected offers
display a similar behavior. The outcomes that correspond to the subgame
perfect equilibria receive only little mass [0.0493 vs. 0.000 (data) for (offer
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$0, accept) and 0.0891 vs. 0.0037 (data) for (offer $1, accept)].

This random utility model which explains the deviations from the sub-
game perfect equilibria by a non-systematic change of the payoff of players
does reasonably well since it reproduces the patterns found in the data. Fig-
ure 5 (Figure 6) displays the estimated probabilities of endnodes correspond-
ing to acceptances (rejections) and the empirical frequencies of endnodes.

A major reason why the fit of this model is not better is the underestima-
tion of the rejection probabilites of the responder. The responder that rejects
an offer of, for example, $1 values a monetary payoff of $0 more than $1. In
our model this translates to the player putting a higher value on (30 + ¢)
than on (81 + €). Since we add the same unbiased noise (i.e. the noise has
expected value zero) to the payoffs corresponding to acceptance and rejection
of an offer, no offer can have a higher rejection rate than 50%. Note that the
rejection rates (implied by the data) for low offers are 100%, 80%, and 75%.
In the next section we will change players’ utility function by adding social
considerations to the utility.

4 Social Utility

We now introduce social utility into the previous model. We use a model
where a plaver’s utility is a linear combination of the player’s own and her
opponent’s monetary earnings augmented by utility uncertainty. We call the
fraction of the opponent’s monetary payoff that is added or subtracted to a
plaver’s monetary payoff, the social utility parameter (cf. Camerer (1997)). -

In order to incorporate social utility into the model above, we assume
that the (modified) utility of each bargainer is a linear combination of the
monetary payoff of the proposer u, and the monetary payoff of the responder
u,. The (modified) payoff v; of player 7 is therefore

v; = u; + ay; , (4)
where a € R and 7 # j. The social utility parameter a can be interpreted
as follows: a = 0 corresponds to a selfish player, a > 0 corresponds to an
altruistic player and a < 0 corresponds to a player who has negative regard
for her opponent’s monetary payoff.®

8This specification of the utility function is similar to the specification in Levine (1996).
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Table VI: Payoff Uncertainty: Estimated Frequencies of Endnodes

Offer | Acc./Rej. | Data | Model
$0 Accept | 0.0000 | 0.0493
$0 Reject | 0.0074 | 0.0493
$1 Accept | 0.0037 | 0.0891
$1 Reject | 0.0148 | 0.0583
$2 Accept | 0.0111 | 0.1265
$2 Reject | 0.0333 | 0.0537
$3 Accept | 0.0222 | 0.1417
$3 Reject | 0.0667 | 0.0384
$4 Accept | 0.2852 | 0.1291
$4 Reject | 0.1185 | 0.0218
$5 Accept | 0.3741 | 0.0985
$5 Reject | 0.0333 | 0.0101
$6 Accept | 0.0111 | 0.0642
$6 Reject | 0.0074 | 0.0038
$7 Accept | 0.0074 | 0.0362
$7 Reject | 0.0000 | 0.0012
$8 Accept | 0.0000 | 0.0178 |
$8 Reject | 0.0000 | 0.0003
$9 Accept | 0.0000 { 0.0077
$9 Reject | 0.0000 | 0.0001
$10 | Accept |0.0037 | 0.0029
$10 | Reject | 0.0000 { 0.0000

18



First, we assume that there is a common parameter value a for all mem-
bers in the subject pool. This assumption is reasonable if we believe that the
social utility parameter does not vary within the population and that it does
not depend on the role a player (proposer or responder) plays. We estimate
its value for the population from the data of the experiment. Second, we
investigate whether the value of the social utility parameter depends on the
role players are assigned to. We denote the social utility parameter of the
proposer (responder) by a, (a,).

We take the discretized ultimatum bargaining game with the modified
payoffs according to equation (4) and perturb each player’s modified payoft
with independent normal noise across endnodes and across players. The
modified and perturbed payoff of player ¢ at endnode k is given by

V(i k) = Ui k) T QUGE) T EGE) (5)

where €(; x) are independent normal random variables with mean 0 and vari-
ance o2

If we perturb all payoffs of the discretized ultimatum game by adding
independent normal noise to each player’s monetary earnings at each endnode
and then take a linear combination of the player’s own and her opponent’s
perturbed payoffs at that endnode as in equation (4), the resulting perturbed
and modified utility of player : at endnode £ is

V(i k) = Ui k) F €k T a(Ugh) T EGR) - (6)

where €. x) are independent normal random variables with mean 0 and vari-
ance o?. This expression can be rewritten as
1 P

V(ik) = Ui k) + QUGG k) T+ NG k) (7)

where 7, x) are independent normal random variables with mean 0 and vari-
ance 02(1 + a?). The specifications in equations (5) and (7) are equivalent
since we can derive of in equation (7) from ¢? in equation (5), and vice versa.
Thus, if we perturb the modified payoffs or perturb the monetary payoffs and
then modify the perturbed payoffs, we will obtain the same model, as long
as the utility perturbations enter in an additive way.

The computation of the equilibrium for this model and the derivation of
the likelihood functions is similar to the outline above (with extra parameters
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a or a, and a,). We assume that either there is common knowledge about
the responder’s social utility and variance parameter as well as the statistical
law governing the responder’s utility perturbations or that the proposer has
correct beliefs about the behavior of the responder. We estimate the variance
o? and the value of the social utility parameter a for the first model and then
the variance ¢ and the social utility parameters a, and a, for the second
model.?

Table VII, Table VIII, Table IX, and Table X give the estimation results
for the model of the last section, the social utility models, and the restricted
model. Table VII displays the estimated parameter values and the maxi-
mized log-likelihood values of the payoff uncertainty model (column 2), the
model with a common social utility parameter (column 3), the model where
the social utility parameter value is allowed to differ between proposers and
responders (column 4), and the restricted model (column 5).

The estimated value of the social utility parameter a is —0.542 (column
3 of Table VII). We can now test wether the social utility parameter is sig-
nificantly different from zero. We can reject the null hypothesis that a is
equal to 0 (i.e. that subjects are selfish), since twice the difference of the
maximized values of the log-likelihood functions between the common social
utility (column 3 of Table VII) and the payoff uncertainty model (column 2
of Table VII) which is distributed according to a chi-square with 1 degree
of freedom, is 375.014, giving a p-value of less than 1.5 x 1078.- Subjects
have therefore negative regard for their opponents’ monetary earnings. The
estimated value of o? is 1.58256 and is lower than in the payoff uncertainty
model. Figure 7 shows the estimated and empirical distribution of offers of .
the common social utility mode]. Figure 8 displays the estimated and empir-
ical distribution of acceptances and Figure 9 (Figure 10) shows the estimated
and empirical distribution of endnodes that correspond to acceptances (re-
jections).

By comparing the estimated distribution of offers to the empirical distri-
bution (Table VIII or Figure 7) we can see that the common social utility
model fits the data well. The empirical frequency of the offers increases from
an offer of 80 to an offer of $5 and then falls sharply. Similarly, the estimated

$We do not provide the estimation resuits for the model where, in addition, the vari-
ance varies between proposers, ¢, and responders, o, since, as will be evident from the
estimation results below, the results are mainly driven by the social utility parameter.
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Table VII: Payoff Uncertainty and Social Utility Models: Estimation Results

Model Uncertainty | Common SU | Differing SU | Restricted
Log-Likeli. (L) | -710.0250 -522.5181 516.6061 | -557.9424
Var. o2 7.12036 1.58256 1.72397 2.5664
SU—Prop. (d,) — -0.542 -0.441 0.0
SU—Resp. (d,) — -0.542 -0.538 -0.336

Table VIII: Social Utility Models: Estimated Distribution of Offers

Offer | Prob. of Offer | Data | Common SU | Differing SU | Restricted
$0 pl0 0.007 0.0156 0.0109 0.0011
$1 p9 0.019 0.0183 0.0131 0.0035
$2 p8 0.044 0.0353 0.0271 0.0237
$3 p7 0.089 0.1504 0.1233 0.1516
$ 4 pb 0.404 0.4529 0.4187 0.3195
$5 po 0.407 0.2735 0.3150 0.2794
$6 p4 0.019 0.0507 0.0824 0.1473
$ 7 p3 0.007 0.0032 0.0090 0.0548
$8 p2 0.000 0.0001 0.0004 0.0153
$9 pl 0.000 0.0000 0.0000 | 0.0032
$ 10 p0 0.004 0.0000 0.0000 0.0005

probabilities of offers increase up to an offer of $4 and then decline. The com-
mon social utility model underestimates offers of $5 and overestimates offers
of $4. But the estimated probabilities mirror the sharp drop-off of offers of
over $6. Overall, the social utility model gets the main characteristics of the
empirical distribution of the offers right, although underestimating offers of
$5.

A comparison between the empirical acceptance rates and the estimated
acceptance rates (Table IX or Figure 8) reveals that the common social utility
model exhibits the qualitative features of the data. The estimated probabil-
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ities of acceptance increase up to offers of $8 as do the data.!® Offers over
$6 are (essentially) accepted. The acceptance rates for smaller offers are un-
derestimated. The social utility model fits the empirical distribution over
endnodes well, as Table X, Figure 9, and Figure 10 show.

Most of the literature appears to agree that while the behavior of respon-
ders provides evidence against standard (rational) decision theory, proposers
seem to be maximizing their expected monetary payoffs given the behavior
of responders (see Roth et al. (1991) and Camerer and Thaler (1995)).1! We
will provide some evidence that even the behavior of proposers cannot be
reduced to maximization of the proposers’ own monetary income given the
rejection rates of responders.

Since our estimates suggest that on the aggregate proposers and respon-
ders have negative regard for their opponents’ monetary earnings we estimate
the value of the social utility parameter separately for proposers (a,) and re-
sponders (a,). The estimation results of this model, the differing social utility
model, are given in Table VII, column 4. We can reject the null hypothe-
sis that a, is equal to a,, i. e. that proposers and responders have the
same value of the social utility parameter, since twice the difference of the
maximized values of the log-likelihood functions between the differing social
utility (column 4 of Table VII) and the common social utility model (column
3 of Table VII}, which is distributed according to a chi-square with 1 degree
of freedom, is 11.824 and the corresponding p-value is less than 6 x 107%.
Proposers appear to have less negative regard for their opponents’ monetary
earnings than responders.

We can test whether proposers make their decision based on the objective
of maximizing their expected monetary payoffs or not. We impose the re-
striction that the proposers are selfish (a, = 0) on this model and re-estimate
it. The estimation result is shown in Table VII, last column (Restricted). We
can reject the null hypothesis that a, = 0, i. e. that proposers are selfish,
since twice the difference of the maximized log-likelihood values (distributed

100ffers of $6 are the exception.

'Roth et al. (1991) note that the modal offer in the last round seems to equal the
value that would maximize proposers’ expected monetary payoffs, where this is estimated
from the empirical conditional distribution of rejections of all 10 rounds, thereby assuming
stationarity in responders’ behavior. This does not provide a full description of all offers
of proposers in the last round, nor of all offers made during the 10 rounds.
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Table IX: Social Utility Models: Estimated Conditional “Acceptance” Prob-
abilities

Offer | Prob. of Accept. | Data | Common SU | Differing SU | Restricted
$0 q0 0.000 0.0012 0.0019 0.0690
$1 ql 0.200 0.0146 0.0193 0.1858
$2 q2 0.250 0.0946 0.1073 0.3807
$3 q3 0.250 0.3277 0.3340 0.6126
$4 q4 0.706 0.6629 0.6612 0.8094
$5 o) 0.918 0.9010 0.8933 0.9286
$6 q6 0.600 0.9844 0.9809 0.9800
$7 q7 1.000 0.9987 0.9981 0.9959
$8 q8 — 0.9999 0.9999 0.9994
$9 q9 — 1.0000 1.0000 1.0000
$ 10 ql0 1.000 1.0000 1.0000 1.0000

as a chi-square with 1 degree of freedom) is 82.673, which has a corresponding
p-value of less than 1071°.

The differing social utility model reproduces the characteristics of the
data as does the common social utility model. In addition, it predicts that-
the endnode (Offer $5, Accept) has the highest frequency. We summarize
the estimation results of the model with differing social utility for proposers
and responders in several figures. Figures 11 - 14 display the estimated
and empirical distributions of offers, acceptances, endnodes corresponding to
acceptances, and endnodes corresponding to rejections, respectively.

5 Conclusions

We use three nested models to test hypotheses regarding the results of the
ultimatum bargaining experiment of Roth et al. (1991). The simplest model
is a model & la Harsanyi (1973), in which players are uncertain about the
utilities of their opponents. In this model the payoffs of each player are per-
turbed randomly in a non-systematic fashion. The estimation results show
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Table X: Social Utility: Estimated Frequencies of Endnodes

Offer | Acc./Rej. | Data | Common SU | Differing SU | Restricted
$0 Accept | 0.0000 0.0000 0.0000 0.0001
$0 Reject | 0.0074 0.0156 0.0109 0.0010
$1 Accept | 0.0037 0.0003 0.0003 0.0007
$1 Reject | 0.0148 0.0180 0.0129 0.0029
$2 Accept | 0.0111 0.0033 0.0029 0.0090
$2 Reject | 0.0333 0.0320 0.0242 0.0147
$3 Accept | 0.0222 0.0493 0.0419 0.0928
$3 Reject | 0.0667 0.1011 0.0814 0.0587
$ 4 Accept | 0.2852 0.3003 0.2769 0.2586
$4 Reject | 0.1185 0.1527 0.1419 0.0609
$5 Accept | 0.3741 0.2464 0.2814 0.2595
$5 Reject | 0.0333 0.0271 0.0336 0.0200
$6 Accept | 0.0111 0.0499 0.0808 0.1444
$6 Reject | 0.0074 0.0008 0.0016 0.0029
$7 Accept | 0.0074 0.0032 0.0090 0.0546
$7 Reject [0.0000 | _ 0.0000 0.0000 0.0002
$8 Accept | 0.0000 0.0001 0.0004 0.0153
$8 Reject | 0.0000 0.0000 0.0000 0.0000
$9 Accept | 0.0000 0.0000 0.0000 0.0000
$9 Reject | 0.0000 0.0000 0.0000 0.0000
$ 10 Accept | 0.0037 0.0000 0.0000 0.0000
$10 Reject | 0.0000 0.0000 0.0000 0.0000
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that this model can explain the qualitative features of the data of the ulti-
matum bargaining experiment but it is unable to predict the high rejection
rates (of up to 80%) of the data. Rejections are equivalent to subjects choos-
ing 80 over strictly positive dollar amounts. Even extremely high (unbiased)
uncertainty about opponent’s preferences can only lead to rejection rates of
at most 50 %. We therefore amend the model with social considerations and
introduce a measure of social utility into each player’s utility function (Edge-
worth (1881)). We look at a model where the opponent’s monetary payoff
enters each player’s utility. We find, on the aggregate, a significant amount
of “negative social utility” or negative regard for the opponent’s payoff in
these experiments. Finally, we provide evidence that both responders and
proposers have negative regard for their opponents’ monetary earnings. This
is therefore evidence against the view that proposers are either altruists, since
they offer considerable amounts of money, or selfish, which they would be if
they made offers that maximized their expected monetary earnings given the
rejection rates of responders.
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Figure 2: Game Tree of the Perturbed Ultimatum Game
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