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Abstract

Here I provide a model that gives some insights regarding questions about actual economic

behavior. I take as a source for stylized facts the experiments conducted by Marimon and

Sunder as reported in Econometrica, 1993, in which it is shown that people initially do not

behave according to the rational expectations assumption, but eventually learn to do so. I

propose a slight generalization of the adaptive learning model in order to explain, besides

the long run equilibrium observed, the stochastic-like time paths in the aggregate variables.

In fact, the introduction of heterogeneity in private experience accumulated over time in a

simple adaptive model with �xed decision rules is shown to be necessary and su�cient to

generate the complex kind of dynamics present in the experiments. In our version of the

Marcet{Sargent OLS model, people can not be using useful public information available, but

only private experience instead, when they do price forecasting. Otherwise, we would not

be able to explain the data with this model. This result sheds light on the experimental

results, in the sense of suggesting a stronger degree of bounded rationality in experimental

subjects. In addition, I provide examples within the proposed environment that improve upon

the explanatory power of existing adaptive learning models.

1 Introduction

Learning models in game theory and macroeconomics have been developed as an alternative to
models in which the decision makers are assumed to have, in some speci�c sense, too much knowl-
edge and rationality. Often, games and economic environments have complex settings. The actions
of the agents involved, in the de�ned equilibria, require considerable amounts of information about
those worlds in which agents act and interact. In addition, the solution concepts, or equilibria,
usually require high levels of computational ability by the decision makers, who are also assumed
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to be optimizers. Besides this, additional problems associated with traditional game theory and
general equilibriummodels involve the issues of multiplicity of equilibria and equilibrium selection.
Bayesian learning models, such as the one by Kalai and Lehrer ([7],[8],[9]) can be used to address
the problems of equilibrium selection and learning in models with fully rational agents. But the
same problems, together with the problems of excessive rationality, can be handled simultaneously
by some learning models with boundedly rational agents, like the ones surveyed by Sargent ([17]).
The last kind of models are more successful regarding experimental data.

The bulk of these analytical learning models have been developed with a focus mainly on
convergence issues. Little concern has been given, for example, to the economic meaning of the
speci�c limits or psychological insights regarding agents actual decisions. In the meanwhile, a body
of evidence has been gathered both on the lack of rationality by experimental subjects in speci�c,
static situations (for example in [10]), and also on learning in dynamic settings (as in [1], [14] and
[18], for example) both in games and general equilibrium settings. This evidence in actual learning
justi�es the study of convergence issues; nevertheless, little has been done to match with analytical
learning models stylized facts on transitional learning periods, as well as on the speci�c limits of
the converging processes. The scarce existing literature on that matching in general equilibrium
models focuses, as far as I know, on the use of learning models with representative agents.

One attempt at matching the learning evidence has been made by Marimon and Sunder (1993)
([14]). They conducted experiments in an environment without exogenous uncertainty in order
to observe how much the data reected the rational expectations hypothesis, and to address the
problem of multiplicity of equilibria and equilibrium selection in that environment. They followed
the research program established by Lucas ([11]), where it is conjectured that learning the rational
expectations equilibrium where the classical monetary policy recipe (to be explained below) works
will occur over time. Although they successfully address those problems, the kinds of models put
forward by them (learning models with agents using all public information: the Marcet{Sargent
adaptive model) do not capture all the features observed in the experimental data, such as the
erratic oscillations in aggregate variables. In fact, their main interest is in reporting the observation
that agents are not rational, but seem to learn to behave rationally and to choose the classical
rational expectations equilibrium as time goes on. The general objective of this paper is to develop
an appropriate model that allows us to better understand the complexity of the decision process
that generates the learning and erratic oscillations observed in the experiments and, at the same
time, model economic agents behavior that might be present in more general contexts.

The Genetic Algorithm (GA) has been used by Arifovic ([2]) with a similar purpose. Arifovic's
adaptation of the GA indeed reproduces the erratic oscillations and equilibrium selection that we
want to match, but it does so by assuming that the individuals in the experiment are like genes
that require crucially a kind of interaction with other individuals within a population (crossover,
election, mutation and reproduction, the typical operations of the GA) that is not present in the
experimental design under consideration. A proper use of the GA to explain the dynamics of
the experiment at hand would require the use of a GA within the mind of each individual, and
this would require extraordinary amounts of memory and computational ability, qualities that are
typically lacking in experimental subjects, as demonstrated in other contexts.

I present my model as an Adaptive Algorithm (AA) alternative that requires remarkable sim-
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plicity in the decision process that takes place in the minds of the individuals and still generates
the limits and kind of complex dynamics observed in the experimental data, without violating the
experimental design and without using the features of experimenting, error or chaotic models1. In
fact, when those individuals use a simple constant decision rule that takes into account past per-
sonal experience, we get a model that su�ciently delivers the features that a proper hypothetical
adaptation of the GA would produce. It is this intuitive way of modeling behavior that points
to an interesting new interpretation of the randomness present in the experimental data: further
bounded rationality.

The key feature that I introduce allows agents to acquire di�erent amounts of experience: They
might not participate in the economy in every period. The intuitive idea of this participationmodel
is based in a real{life (as well as experimental design) feature of goods markets which operate every
day: Some people go there every day, some every other day, some weekly, erratically, etc. But even
if people do not go every day to market, though, they can observe everyday market{clearing prices.
Now, although the size of the market remains roughly constant over time, each participating person
in that market uses idiosyncratic habits. So, even though the size of the market is constant, its
composition is not homogeneous in many possible ways. The diversity of experiences used by the
participating agents alone could potentially generate, even if they use time invariant decision rules,
complex dynamics. This might happen, for instance, if people cared more, in some sense, about
the information they get when they actually go to the market, than for the information they are
able to glean from the newspapers, say, even if that is not an entirely rational behavior from the
modeler's point of view.

I in fact show below that, after guaranteeing certain uniformity at the economy{wide level in
this framework, and under the assumption of simple adaptive rules, the only possibility for the
outcome of deterministic, smooth time paths in the aggregate variables in this type of economy
is that every participating agent uses only public information when he or she is making decisions.
As a corollary, I am able to infer that only when agents fail to use all the public information freely
available to them, their decision rules produce stochastic time paths in aggregate variables. It
follows that the reason representative agent adaptive learning models do not appropriately capture
the randomness observed in the experimental data is because they implicitly assume that agents
use all information available to them (or participate every day, which is very unlikely). So, if
agents use the proposed model, the experimental results show that they are not only not rational
in the sense of both ignoring the future and lacking deep computational ability. In our version of
the Marcet{Sargent model for example, people do not use revealing public information available
for free, but past private experience instead, regarded (erroneously) as more relevant for them,
when they make decisions that a�ect their future. This result sheds light for a possible additional
interpretation of the experimental data, in the sense of pointing to a further level of bounded
rationality in experimental subjects.

In order to complete the picture, I illustrate using simulations, that even with heterogeneous

1Other forms of heterogeneity, like the use of di�erent individual decision rules over time by the di�erent agents
due to experimenting, unintended errors, etc., will also produce the desired e�ects. What is most probably taking
place is the mixture of experimentation, on the one hand, and the use of private experience, on the other. This
paper isolates the last aspect of reality, which has an intuitive appeal, and has not been taken into consideration
before. Fixed rules that produce chaotic behavior are ruled out by the fact that the paths are not convergent.

3



participation, our version of the Marcet{Sargent model does not seem to be the most useful one
for calibration of the erratic paths observed in the data. The reason is because the underlying
deterministic process is shown not to be rich enough to produce the desired level of oscillations:
it is monotonically convergent after a few initial periods. This problem is solved by introducing
decision rules whose underlying deterministic paths might be monotonic or oscillatory, depending
on the learning rate chosen. An example within the class of adaptive models that uses the feature
of private experience use and also exhibits oscillatory paths when people are homogeneous, is the
proposed Direct Savings Estimation (DSE) model. In this model agents are not maximizers, but
approximate maximization, instead, in a myopic way. The rule agents use is simply to increase
(decrease) savings when the previous savings decision was too low (high) ex-post. Comparisons
between the simulations of the Marcet{Sargent model with heterogeneous agents, and the DSE
model, illustrate graphically the better potential of the former model for calibration purposes. At
the end of the paper, we point out the need of a more careful study, taking into account the actual
data and more experimentation2.

2 Experimental Evidence

Before going into the model, and for the sake of completeness, I will describe the design and results
of the experiments in Marimon-Sunder [14]. The authors design an experiment trying to replicate
the environment of the standard �at money Overlapping Generations (OLG) theoretical model.
They select a group of people that remain throughout the duration of a given experimental session.
In each period of the experiments, a subgroup is selected randomly from that group of people to
participate in the experimental activities for two consecutive periods, after which they return to
the original group to await a new chance to participate. Each individual in the population remains
for the whole duration of the experiment, in front of a computer terminal, receiving information
and entering own decisions. Direct communication among experimental subjects is not allowed.
Once a subgroup is selected in period t, each member is provided with an endowment w1 of tokens,
which will play the role of consumption goods. During their second period of activity, the members
of the subgroup will be provided with an endowment w2 of tokens, and, once their turn is over,
they will be rewarded, in dollars, by the quantity k(ln(c1t ) + �ln(c2t )), where k is a given constant,
and c1t and c2t are the numbers of tokens individuals retain, after transactions, at the �rst and
second periods of their activity, respectively. Although tokens cannot be transferred from period
to period (they are perishable goods), francs, the money in that economy, are transferable. The
market clearing price is set by a mechanism that asks young participants to submit hypothetical
token supplies at a number of prices. After these hypothetical supplies are made continuous by
interpolation (and subjects agree to supply at the corresponding intermediate points when the �nal
price is set) and aggregated, the equilibrium price results from intersecting that supply with the
demand of old consumers and the government. Every agent is informed of the prices that have
cleared the markets, beginning at the initial period, regardless of turns of participation.

2An unavoidable requirement for calibrationor estimation is the use of data on individualbehavior, unfortunately
not available from the experiments referred to.

4



The experimental results show that ination seems to converge or to stay around the low
ination stationary state (LSS) equilibrium. In particular, no non-stationary rational expectations
equilibrium path is observed. There is no convergence to the high ination stationary state (HSS)
either, contrary to the rational expectations OLG model prediction that this state is stable. The
�ndings are basically consistent for the 13 experimental economies. Together with the graphs of
the actual paths, they present the (non stationary) path that would occur in the OLG perfect
foresight model if the economy started at the initial actual ination, and also the path that the
economy would follow if the agents used recursive least squares as an adaptive rule following the
actual initial ination (the Marcet- Sargent path). These graphs show that people might be using
some adaptive behavioral rule, and that the recursive ordinary least squares model reects more
the long run tendencies of the actual paths, contrary to the perfect foresight model, even though
it does not reect the erratic ups and downs of those paths.

3 The Model

3.1 The Basic OLG Model

In presenting the benchmark model, an OLG model with �at money and without exogenous un-
certainty, our purpose is to make a self-contained presentation without going into all the details of
standard results. In each period, n agents come to participate in the economy during two consecu-
tive periods. When they enter, they interact with the n people that entered in the previous period.
It is common knowledge that people will receive w1 of the only good in the economy in their �rst
period of participation, and w2 of it in their second period. There is no production or storage
technology in the economy; in addition, the absence of credit markets makes �at money the only
asset in the economy capable of distributing goods inter temporally for any given individual.

In fact, the parameters of the economy will be set up in such a way as to make highly desirable
for an individual to save part of his endowment in the �rst period of participation. The only way
to do this in this economy will be to sell in exchange for money part of that endowment, at a
market �xed price. The agents who will want to buy those goods are the current old people, who
have money in their hands due to their own past savings decisions, and also the government, which
is assumed in the present model to issue the amount of money necessary to �nance, at the current
market price, a given real de�cit in that period. In the kind of equilibria to be de�ned, �at money
will generally have value (the prices of goods in terms of money will be �nite), and young agents
will be able to save, and then consume satisfactorily in their old age.

To complete the description of the kind of environment I want to start with, I will �x w1 and
w2 such that w2 � w1. In this paper the (common knowledge) ex-post preferences for individual i
of generation t are represented by the utility function ln(ci1t ) + �iln(ci2t+1), for i = 1; 2; : : : ; n; t =
1; 2; : : :, where �i 2 R+ is a discount factor, and ci1t ; c

i2
t represent consumption in the �rst and

second periods of participation, respectively. As it was said in Section 2, this is the reward that
in fact individuals will receive at the end of the second period, depending on what ci1t and ci2t+1

they decide and are able to hold. It is assumed that the government has to balance its budget
by �nancing each period a real de�cit per young agent in the economy of d through seignorage,
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emitting �at money to do that. In the �rst period, when t = 0, an amount h�1 of units of money
is given to each of the n initial old people.

To de�ne the weakest form of equilibrium, I will require only that agents satisfy their budget
constraints and that markets clear. I next present what is required in this model for this conditions
to hold. Let (pt)

1
t=0 be a given price process for the described economy in some equilibrium. That

is, pt represents the amount of �at money at which one unit of the good in the economy can be
traded in the market at period t; t = 1; 2; : : :. Then, the government's balanced budget of period
t implies that the increment in per-young agent money supply in the economy, ht � ht�1, equals
the per-young agent nominal de�cit in that period at those prices, ptd, or:

ht � ht�1 = ptd; (1)

equation which, for h�1 given, and for all t = 1; 2; : : : de�nes (ht)1t=1. In fact, the money that will
be o�ered to each young agent of generation t for the part of w1 that he will save amounts to ht�1,
which represents what each old agent has as his savings, plus ptd, the new money per young agent
that the government issues to �nance its per-young agent de�cit. De�ne the per-young agent's real
money supply at t as mt; then, from the previous equation, I have that, for t = 1; 2; : : :,

mt =
mt�1

�t
+ d; (2)

where �t, the rate of ination at t is de�ned by �t � pt=pt�1.
Let sit be the amount of real savings decided by young agent i of generation t (sit � w1 � cit,

so that consumption in the second period is cit+1 = w2 +
pts

i
t

pt+1
), and let st be the real savings

per capita (per-young, of course). The market clearing condition in the money market is then
mt = st, because st represents, as well, the real money demand per capita in the economy. Then
the following equation should, by de�nition, hold for i = 1; 2; : : :; n; t = 1; 2; : : ::

st =
1

n

nX
i=1

sit: (3)

3.2 Uncertainty Space and Information Structures

Even though there is no exogenous uncertainty so far in this set up, equilibrium variables like
(pt)1t=0 might well be stochastic processes, only by the fact that individuals might make arbitrary
decisions, which a�ect those variables. Those decisions might depend on heterogeneous or even
time varying rules and beliefs about future prices and other individuals actions. At this stage we
could let 
 be the set of fundamental uncertainty in our economy, ! 2 
 being interpreted as a
sequence of all ination rates and savings decisions in the economy (and everything that determines
them), from period 1 up to in�nity. Even without exogenous uncertainty, the absence of credit
markets makes knowledge of future prices impossible, in principle, for any given individual. In
fact, any individual can have di�erent priors on future prices or on the way other agents make
their decisions, generating in that way priors on those future prices.
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We now introduce the model of family participation. So far, we could have thought of the
economy as formed by a group of families, each of which had a member participating in every
period. I will assume that, more generally, there is a �xed population N of families in the economy,
but not all of them have its member participating every period. Only n families, out of the N
available, have a member being born and participating in the economy as young agents at each
period. In principle, a family can have two members in a given period participating in the economy,
one as young and one as old; but this might not happen, and so we need to assume N � n. At
the beginning of every period, n families are selected randomly by nature from the N available
ones, so that each family in the n selected ones has an o�spring that will participate as young in
that period3. 
 will then include, in addition to what was said above, the information of which n
families are selected each period.

Let (� ir)
1
r=1 be the stopping times process that governs family's i turns to have an o�spring, for

i = 1; 2; : : :; N . So, for example, for i and r given, � ir is the random variable that determines when
the r'th turn of a member of family i to participate occurs. One condition for these variables is,
then, that � ir � � im for all r;m = 1; 2 : : : such that r < m.

Let now (rit)
1
t=1 be the counting process that accumulates the number of turns of family i, so

that rit says the number of times that a member of family i has participated in the economy until
and including time t. Let us de�ne the following indicator function: for all A � 
,

1A(!) �

�
1 if ! 2 A
0 otherwise

For A =
�
!0 : � ir(!

0) � t
	
, if ! 2 
 is the true state of the world, and 1A(!) = 1, that means

that at t agent i has already had, or is currently having, her turn number r. We then have that

rit =
1X
r=1

1f�ir�tg

Our setup, including the stopping times and counting processes, is a general framework in
which we can put the experimental design of [14]. In particular, it is imposed that � ir < � ir+2,
for i = 1; 2; : : : ; N; r = 1; 2 : : : . This is so because if an agent participates at t, he can not
begin participating again at t+ 1, when he is already present as an old agent, or at t+ 2, because
he is not allowed to live two lives in a row. It is also required that agent's turns to participate
be independent over time and across agents. In the experiments, only each respective agent has
information about their own turns to play, their discount factors, and their individual decisions.
With this in place, I want to explore the use of private experience as a possible explanation of
the features in the experimental data not explained by the models with rules that use only public
information.

3An additional assumption, made in [14] for the experimental design is that families get assigned, when they
participate, a random discount factor �k in a set (�1; �2; :::; �n). In order to guarantee the existence of perfect
foresight equilibria, it is assumed that all the discount factors in this set are present in the ex-post utilities each
period. It turns out that the cases in which �k in randomly assigned produces the same kind of behavior in the
experiments as the cases where it is constant. We can then concentrate in the latter case, which is cleaner for our
analysis. In example 1 below this assumption is relaxed to include all experimental cases, and we illustrate the
consequences.
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Each family has some information on past events occurred on 
 : F i
t is the sigma algebra

that formalizes the information available to family i of generation t, for all families and every
t. Let (P 1

t ; : : : ; P
n
t )
1
t=1 be the probability measures or beliefs by each individual on 
. (They

might or might not be updated using Bayes rule.) Let now F � � <
W

i=1;2;:::;n
t=1;2;:::

F i
t >. Then�


; F ;
�
(F1

t ; P
1
t ); : : : ; (F

n
t ; P

n
t )
�1
t=1

�
is the space that summarizes the uncertainty, information

structure and agents' beliefs in our economy. We will assume that P is the probability distribution
on 
 that governs family participation, and that P i

t coincides with P in that dimension, for all
i = 1; 2; : : :; N; t = 1; 2; : : :.

Regarding information, we will say that f� ir � tg 2 F i
t for all r; t = 1; 2; : : :; i = 1; 2 : : : ; N .

The fact that, for a given time t, f� ir � tg 2 F i
t holds for every r means that at each period of time

t, family (or agent) i knows all the turns that it has had up to then; in other words, it knows at t
if its r'th turn has occurred or not, for every r. We will also say, more formally, that even if they
do not use it, families are able to observe all past prices and know when they have participated so
far at each date:

Assumption 1 (FST) For all i = 1; 2; : : :; n; t = 1; 2; : : : ,

F i
t = � < ris; �s; s = 1; 2; :::; t > :

Since this feature eliminates from the model all uncertainty that comes from (public) informa-
tion, we could regard

�

; F ;

�
(F1

t ; P
1
t ); : : : ; (F

n
t ; P

n
t )
�1
t=1

�
as a space of Subjective Uncertainty.

By this we mean that if there is a stochastic character of the equilibrium variables, it has to come
from individual subjective beliefs and/or actions.

Regarding preferences, I will always assume von Newman{Morgenstern utility functions for the
agents in the models presented, taking for granted that the actual experimental agents I want to
model e�ectively have those kind of utilities, although they might not act as maximizers. So I
will always assume that agent i of generation t, for i = 1; 2; : : : ; n; t = 1; 2; : : : has ex-ante utility
function of the form4

Ei;t

��
ln(w1 � sit) + �iln(w2 +

sit
�t+1

)

�
k F i

t

�
:

An economic environment, ", is a vector

" =
�
h�1; d; w1; w2; �

1; : : : ; �n;
�
(F1

t ; P
1
t ); : : : ; (F

n
t ; P

n
t )
�1
t=1

�
;

where w2 � w1; 0 < w1 < d, and, for i = 1; 2; : : : ; n; t = 1; 2; : : : ; �i 2 R+, and (F i
t ; P

i
t ) are

related to 
 as described above.
4In terms of consumption goods, this means that, for any i = 1;2; : : : ; n, t = 1;2; : : :, and 8!0 2 
,

Ei;t[ln(ci1t ) + �iln(ci2t+1)kF
i
t ](!

0) =

Z



�
ln
�
ci1t (!)

�
+ �iln

�
ci2t (!)

��
P i
t

�
d!kFi

t

�
(!0)

= ln
�
ci1t (!

0)
�
+ �i

Z



ln
�
ci2t (!)

�
P i
t

�
d!kFi

t

�
(!0);

where P i
t [ : kFi

t ](!
0) is the conditional probability distribution of ! given Fi

t , at !
0. ci1t is known at t, so it is

measurable with respect to Fi
t .
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3.3 Equilibrium Notions and Rational Behavior

With the participation setup in place aggregate savings at t is given by:

st =
1

n

X
i2f1;2;:::;Ng:

ri
t
=ri

t�1
+1

sit (4)

The weakest form of equilibria we could think of, then, in this framework, are processes5

(�t; st)1t=1 that satisfy, for all i = 1; 2; : : : ; n; t = 1; 2; : : :,

st =
st�1
�t

+ d; and (5)

0 � sit � w1: (6)

This de�nition has built in, as we wanted, budget constraint satisfaction by all agents, and also
money market clearing in every period. In fact, by equations (1){(4), equation (5) implies money
market clearing and government balanced budget. The �rst inequality in (6) guarantees the absence
of credit markets and also that the second period consumption (ci2t = w2+ sit=�t+1) is bigger than
zero. Similarly, the second inequality in (6) implies that the �rst period consumption of the same
agent (ci1t = w1�s

i
t) is positive. Notice that nothing is said about the way in which s

i
t is decided by

the participating agents. The next sequence of de�nitions will help us to put in contrast di�erent
assumptions in this regard, in our search for a reasonably good match between models and actual
behavior. Savings decisions by individuals in fact depend in some way, which we would like to
be able to identify, by some function f i for individual i of generation t, on beliefs, information
and own parameters. Equations (5) and (6) would imply, then, that the ination process (�t)

1
t=1

depends, ultimately, on these beliefs, information, own and also aggregate parameters.
Equilibria in which agents are maximizers would have to satisfy the �rst order condition for

maximization:

�
1

w1 � sit
+ Ei;t

��
�i

�t+1w2 + sit

�F i
t

�
= 0: (7)

for all i = 1; 2; : : : ; n; t = 1; 2; : : :.
An additional level of rationality would be present in an equilibrium if agents updated their

beliefs using Bayes rule, formally, if for all i = 1; 2; : : : ; n; t = 1; 2; : : : and A 2 F ; P i
t is a random

variable measurable with respect to � <
W
s�tF

i
s > and

P i
t (A)(!) = P i

0

�
A k� <

_
s�t

F i
s >

�
(!); 8! 2 
:

5This de�nition is made in terms of (�t)1t=1. To transform it into a de�nition in terms of (pt)1t=0, we need to
assume an initial p0. Now, since markets clear at time t = 0, m0 = s0; also m0 = h0=p0; h0 = h�1 + p0d,
where h�1 is the transfer of money that the government makes to each initial old person, and s0 = 1

n

Pn

i=1
si0,

so that h�1=p0 + d = 1
n

Pn

i=1
si0 . It follows that the initial condition is in fact h�1, because p0 is determined by

p0 =
h�1

(st�d)
:
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The most commonly held assumption on studied equilibria require an even stronger level of
rationality, the Rational Expectations assumption. A Rational Expectations Equilibrium (REE)
would require, in addition to the above, that for each i = 1; 2; : : : ; n; t = 1; 2; : : :,

Ei;t

��
�i

�t+1w2 + sit

� F i
t

�
=

�i

�t+1w2 + sit
: (8)

This requirement implies that agents assign probability one to the ination rate that will in fact
occur, so that they all have common, true beliefs. In fact, it is those beliefs what makes them act
in a way that will enable their beliefs to be ful�lled. If (�t; (s

i
t)
N
i=1; st)

1
t=1 is a REE, then, for all

i = 1; 2; : : :; n and t = 1; 2; : : :,

sit =
�iw1 � �t+1w2

1 + �i
; (9)

which follows from equations (7) and (8), by de�nition of a REE. It then follows from (3) that
st = �w1 � w2�t+1, where

� �
1

n

nX
i=1

�i

1 + �i
and  �

1

n

nX
i=1

1

1 + �i
(10)

From (5), we get that (�t)
1
t=1 then satis�es

�t+1 = (c+ 1) �
b

�t
; (11)

where b � �w1

w2
and c � b� d

w2
. The di�erence equation (11) for (�t)1t=1 in a REE is represented

in Figure 1.
Depending on the initial �t, there are uncountably many rational expectations equilibria that

satisfy (11), under suitable conditions. There are two rational expectations equilibria, LSS and
HSS, called steady state; or stationary, in which the elements of (�t)

1
n=1 are constant. Let one of

the constants be �L, and the other �H , with �L < �H6. The rest of rational expectations equilibria
are called non-stationary, and have the particularity that if for any of them �1 2 (�L;1); then
�t ! �H . This is why the equilibrium HSS is called stable. The equilibrium LSS, on the other
hand, is not only not stable in that sense, but also has the property that if, for any equilibrium
(�t)

1
n=1 , �1 6= �L, then �t 6= �L for all t = 1; 2; : : : .
An intriguing aspect of the rational expectations equilibria is that an increase in d, the per-

young agent real government de�cit, raises, on the one hand, �L, but lowers, on the other, �H ,
and vice-versa. (We can picture this by translating the graph in Figure 1 downwards when d
increases.) So that the prescribed classical policy of lowering money �nanced government de�cit
seeking reduction of the ination rate would \work" in the present setup only if the economy is in
the low ination equilibrium, which is the unstable one. On the other hand, that classical policy
of lowering the de�cit would in fact increase ination in the long run if the economy is in any other
equilibria, which are, in some lose sense, overwhelmingly more probable to occur. I put work in

6�L = 2 and �H = 3:5 in Figure 1.
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Figure 1: Graph of the Di�erence Equation Representing REE
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quotation marks because once d has been changed to d0 < d, say, the economy might not jump
right away to the new, lower LSS(d0). If the initial ination for the new REE is �L(d) 6= �L(d0),
the new process will converge to HSS(d0), and ination will rise, not go down, in the long run, as
can be imagined by looking at Figure 1. So that we hardly have a guarantee that the policy would
ever work, even if the economy is initially at a LSS.

It is because of econometric evidence regarding the relationship between government de�cit and
ination, that [11] suggested to look at di�erent kinds of equilibria, the ones in which the classical
policy really works, in order to �t the data. It was suggested there the kind of equilibria in which
agents use decision rules in such a way that, in the long run, they learned both, to behave rationally
(as if they had -right- beliefs about future ination rates, and they performed maximization of their
utility functions), and also to stay or be attracted to the rational expectations equilibrium in which
the classical policy works. It turns out that adaptive behavior produces such kind of equilibria,
and one example is the Least Squares model proposed by [12], and used in [14] to explain the
experimental data. This model has the same steady states as the REE model7, but the LSS is
(locally) stable in this case. So small perturbations in d will produce the desired e�ect on long run
ination. Although agents are not rational at any given period if the economy does not start at
LSS, people learn to be so as time goes on. The problem with such a model is that the implied
time paths of ination are very smooth and monotonic, unlike the ones in the experiments8.

7As we will see, in the Least Squares model used in [14], every agent makes the same price estimation and
behave as a maximizer. So instead of the actual ination rate �t+1 in equation (9) we have �et+1. Using (3) we get
st = �w1 � w2�et+1 . From (5) and assuming �et+1 = �et = �t+1 (in order to see if there are REE steady states),
we get the same characteristic equation that comes from (11).

8It is worthwhile to point out that a Bayesian kind of behavior could also produce a learning process that would
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We are led from our foregoing discussion to think that, as we have de�ned it, rationality
assumptions on agents behavior do not seem to explain observed behavior regarding the limit of a
learning process, as suggested in [11] and observed in experimental data. The alternative kind of
behavioral rules we are led now to explore, called Adaptive learning rules, imply that agents are
boundedly rational in the sense that they do not use the Bayesian rule to update their beliefs, even
though they can be, in some cases at least, maximizers. Now, the kind of adaptive rule proposed
in Marimon{Sunder to explain the data does not seem enough to explain other aspects present in
the decision making of actual experimental subjects, other than the long run tendency. For that
purpose I use more general versions of that kind of rule, as described below.

3.4 Adaptive Learning with Private Experience

The general kind of rules I am going to use in this paper as possible explanations of real behavior
are instances, as suggested above, of adaptive rules, mainly Robbins-Monro type of algorithm
(RMA). They are described in the following de�nition. Here �̂it is meant to represent the group of
parameters or the function, depending on the application, being estimated and learned about by
agent i, and f i is his decision rule. Finally, t and M will be meant to be the learning rate and
learning rule, respectively, used by agents in period t.

De�nition 1 Given the stopping times process (� ir)
1
r=1, i = 1; 2; : : :; N and an economic environ-

ment " =
�
h�1; d; w1; w2; �

1; : : : ; �n;
�
(F1

t ; P
1
t ); : : : ; (F

n
t ; P

n
t )
�1
t=1

�
, and given �̂i1; i = 1; 2; :::;N ,

the process (�t; (sit)
N
i=1; st)

1
t=1 is an Adaptive Equilibrium, AE("), if the following equations

hold for all i = 1; 2; : : :; N; t = 1; 2; : : ::

�̂it+1 = �̂it +M (� it ; �
t; �̂it) (12)

sit+1 = f i(�̂it+1) (13)

st+1 =
1

n

X
i2f1;2;:::;Ng:

ri
t+1

=ri
t
+1

sit+1 (14)

�t+1 =
st

st+1 � d
; (15)

where �t � (�1; �2; : : : ; �t), and functions M : R3 ! R, and f i : R ! [0; w1], for all i =
1; 2; : : : ; N .

result in convergence to a REE. In this regard, I want to point out that [7], [8] have a result, similar to that of
[4] that links Bayesian equilibria with rational expectations equilibria through Bayesian learning. Although the
adaptation of their result to our framework would be made for �nite and constant range for �t; t = 1;2; : : :, which
is an inadmissible restriction in our model, we conjecture that it applies, even when �t 2 R+ instead. In that case
people would learn both to be and to believe in some rational expectations equilibrium if they are maximizers, do
Bayesian updating, and also have \a grain of truth" in their initial beliefs. Now, the speci�c REE to which the
process would converge depends on initial conditions and initial beliefs. This means that Bayesian learning leads
agents to a REE, but not necessarily (and very improbably indeed, since this is but a single one among uncountably
many possibilities), to the classicalLSS("). Although Bayesian learning is useful in other contexts, in ours it doesn't
seem appropriate.
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As it will become clear in the examples, these kind of learning rules correspond to a certain
kind of myopic beliefs, and, in a lose sense, boundedly rational behavior by the agents. Notice
that even though a family might not be participating, it might still be estimating the savings it
would decide if it were participating. Also notice that I am focusing in the case where M and t
are common across agents, which means that all agents use the same learning algorithm. Finally,
f i are constant over time. These features of our alternative model are enough to produce what we
want.

In general, (�t; st)
1
t=1 in an AE is a stochastic vector process. Nevertheless, the following

result clari�es the exact conditions when it is not. Before that, I will clarify that, when I say

that
P

i2f1;2;:::;Ng:

ri
t+1

=ri
t
+1

f i(�̂it+1) depends only on
�
�̂it+1

�
i2f1;2;:::;Ng:

ri
t+1

=ri
t
+1

, I mean that there exist functions

(g1; g2; : : : ; gN ) such that 8! 2 
,

X
i2f1;2;:::;Ng:

ri
t+1

(!)=ri
t
(!)+1

f i(�̂it+1(!)) =
nX
j=1

gj(�̂
kj
t+1(!));

where (�̂k1t+1; �̂
k2
t+1; : : : ; �̂

kn
t+1) is some permutation of

�
�̂it+1

�
i2f1;2;:::;Ng:

ri
t+1

(!)=ri
t
+1

: This assumption might be

natural when there is a large population of participants and the distribution of decisions is time
invariant. Otherwise it is a very strong (and unnatural) assumption, but it turns out that it is
crucially implicit in the version of the OLS model in [14], and in every representative agent model.
When that assumption holds, we can then well de�ne the function G : Rn ! R+ as

G(�̂k1t+1; �̂
k2
t+1; : : : ; �̂

kn
t+1) �

nX
j=1

gj(�̂
kj
t+1):

Similarly, when I say that (� it+1; �̂
i
t; �t)!M (� it+1; �̂

i
t; �t) does not depend directly on � it+1, I mean

simply that M (� it+1; �̂
i
t; �t) = ~M(�̂it; �t), for a well de�ned function ~M .

Assumption 2 (EST) (� it+1; �̂
i
t; �t) ! M (� it+1; �̂

i
t; �t) does not depend directly on � it+1, for all

i 2 f1; 2; : : : ; Ng.

Assumption 3 (UNI) 1. �̂i1 = �̂j1, i; j = 1; 2; : : : ; N ,

2.
P

i2f1;2;:::;Ng:

ri
t+1

=ri
t
+1

f i(�̂it+1) depends only on
�
�̂it+1

�
i2f1;2;:::;Ng:

ri
t+1

=ri
t
+1

.

The following proposition will allow us to carefully separate the di�erent sources of randomness
in our model, so that we can study their meaning:

Proposition 1 Let (�t; (s
i
t)
N
i=1; st)

1
t=1 2 AE("). Then, for arbitrary non deterministic stopping

times (�r)
1
r=1; (�t; st)

1
t=2 is deterministic if and only if assumptions EST and UNI hold. Further-

more, under these conditions, �̂it = �̂jt ; i; j = 1; 2; : : :; N; t = 1; 2; : : :.
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Proof:
I will sketch here the only if part. Suppose that (st) is deterministic and assume conditions

UNI hold, but EST does not hold. Then, di�erent estimations �̂it+1 would result from di�erent
stopping times (di�erent experience). Since the aggregate st+1 depends on the (random) selection,
it will be random, a contradiction. This shows that we can not have deterministic (st) with private
experience use, even though �rst estimations are common and we have the aggregation uniformity
condition UNI 2. Now if only UNI 1. does not hold, the estimators �̂it+1 will, again, be di�erent,
and time varying, since previous estimators have been di�erent (in spite of using the same public
information available). Since the aggregate st+1 depends on the selection of families, it will be
random, a contradiction again. The case where UNI 2. alone is violated only matters if f i 6= fj

for at least a pair i; j, since otherwise it is trivial. Even though �̂it+1 = �̂jt+1, for all i; j, we have
that the aggregate st+1 depends on the group of families selected, which have di�erent decision
rules. st+1 is then random (with a �nite range in this case), a contradiction, Q:E:D:9

Proposition 1 is a negative result: it shows that extremely strong assumptions should be met
in order to eliminate randomness in the theoretical paths of the aggregate variables. In the same
lose sense expressed before for the probability of occurrence of LSS in a RRE, it is extremely
improbable that these conditions are met in any real world situation. Nevertheless, as we will see
below, these are precisely the assumptions implicitly made in the ubiquitous representative agent
learning models. In a positive way, we can interpret this result as saying that in an environment
with stochastic turns, if we impose the necessary uniformity on the players at the aggregate level,
the only feature that can produce stochastic paths for savings and ination rates in this economy,
is that agents do not use only public information in their decision rules10. This idea is made precise
in the following

Corollary 1 Let (�t; (s
i
t)
N
i=1; st)

1
t=1 2 AE("). Assume that, for arbitrary stochastic stopping times

(�r)1r=1, conditions 2 in proposition 1 hold. Then, if (� it ; �̂t; �t) ! M (� it ; �̂t; �t) 2 R depends
directly on � it for at least one i 2 f1; 2; : : :; Ng, in at least some period t 2 f1; 2; : : :g, (�t; st)1t=1 is
a (non-deterministic) stochastic vector process.

Notice that condition UNI in proposition 1 is satis�ed if the initial conditions are the same for all
the players, and they all have the same decision rule: f i = fj for all i; j = 1; 2; : : : ; N; t = 1; 2; : : :.
So that our stopping times framework does not rely in heterogeneity of the mechanisms the players
use to take decisions. Now, the opposite can happen: if agents use only public information on
their decision rules, and the uniformity at the aggregate level condition is not met, then savings
and ination in this economy will be stochastic processes. This time, randomness will depend in
heterogeneity of decision rules, reected at the aggregate level. This is the randomness that could
be eliminated automatically if we imposed some kind of constant distribution of many participants.
More formally,

9The rigorous, complete proof is available upon request.
10Strictly speaking, erratic oscillations are not ruled out by deterministic paths, for the path can be deterministic

but chaotic. Chaotic time paths in the perfect foresight case are ruled out by our utility functions. They are
ruled out as well in our examples of the adaptive case by our rules with homogeneous agents, to which the model
converges. Chaotic paths are ruled out by any algorithm that produces learning, of course.
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Corollary 2 Let (�t; (s
i
t)
N
i=1; st)

1
t=1 2 AE("). Assume that, for arbitrary stochastic stopping times

(�r)
1
r=1, condition EST in proposition 1 hold. Then, if at least for a pair i; j, i; j 2 f1; 2; : : : ; Ng

�̂i1 6= �̂j1, and/or X
i2f1;2;:::;Ng:

ri
t
=ri

t�1
+1

f i(�̂it+1)

depends on fi 2 f1; 2; : : :; Ng : rit = rit�1 + 1g for at least one period t 2 f1; 2; : : :g, (�t; st)
1
t=1 is a

(non-deterministic) stochastic vector process.

Of course, the process will have more randomness, talking in a lose sense, the more individuals
and/or time periods are involved in the conditions on corollaries 1 and 2, in general. Our discussion
puts us in a position to see why representative agent learning models, like the ones in [14] are not
appropriate to capture the speci�c feature of randomness involved in the experiments. If a single
learning algorithm is applied to explain the aggregate data, as in a representative agent model,
the group of assumptions UNI in proposition 1 are e�ectively guaranteed to be met. If, on top
of that, the representative agent uses only public information, like ination rates, in his learning
algorithm11, condition EST of proposition 1 is met. It follows that, other than the randomness
inherent in the initial period, the theoretical processes generated by the algorithm are deterministic,
and the paths of its elements are smooth (other that the chaotic case, which is not present in our
functional forms), as our simulations exemplify.

We can ask: is (�t; st)1t=1 deterministic if people use public information, even though the �̂i1's
are random?. We could think that the randomness of the initial conditions could determine a
stochastic path. This is in fact the case, except when people participate in every period, as we
will see next. The reason is because when people participate at di�erent times, they accumulate
di�erent experiences, and, since they use them in their decision, the initial randomness is translated
to following periods via the aggregation of time varying components. Since the time paths of
(�t; st)1t=1 in the experiments do not look deterministic, we are able to conjecture that if the
aggregation condition of the proposition is somehow guaranteed by the experimental design, agents
in fact use, at least in part, private information when they make decisions. But this can only hold
in the case when di�erent rates of accumulation of experience (allowed by the presence of random
participation times) are present among the agents. In fact, as a complement to proposition 1 we
have12:

Proposition 2 Let (�t; (s
i
t)
N
i=1; st)

1
t=1 2 AE("). Let �r(!) = r 8! 2 
; r = 1; 2; : : :. Then

(�t; st)1t=2 is deterministic.

This result means that the fact of people using private experience and di�erent (although
constant over time) learning rules does not, by itself, guarantee randomness in the time paths of

11The representative agent is an aggregate, and its components can have di�erent experiences, as in conditions
for corollary 1.
12The formal proof (available upon request) of this obvious fact, omitted here since it is only bookkeeping,

disentangles the stochastic character of the AE in a revealing way, highlighting from a di�erent perspective than
proposition 1, the same intuitive generalization of the homogeneous case involved in our model.
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aggregate variables. The time paths of those variables are in fact smooth, in spite of di�erent
(random) initial decisions, di�erent decision rules, and use of private experience. So this kind
of heterogeneity does not guarantee our objective, leading us to clearly appreciate the fact that
di�erent levels of experience accumulated (made possible by di�erent participation times in this
context) are essential to produce the desired erratic oscillations.

4 Examples

To illustrate our model, I will show some examples and simulations.

4.1 Example 1: OLS Learning

The �rst example of an adaptive equilibrium is the correspondence OLS, in which ination estima-
tion is made by Recursive Ordinary Least Squares, and agents behavior is based on the belief that
the estimation is certain to occur, for purposes of utility maximization. In fact, in an economy
" 2 �FST , let �e;it+1 be the estimated ination for t + 1 by agent i at time t, based on previous

values of �t, and let P i
t (�

e;i
t+1) = 1 for all P i

t in ". If we �x ! 2 
, we then have that

Ei;t

��
�i

�t+1w2 + sit

� F i
t

�
(!) =

�i

�e;it+1w2 + sit(!)
; (16)

since sit, is measurable with respect to F i
t .

If we assume that agents are maximizers, then the equilibria to be generated in this example will
be maximizing equilibria. Of course, since �e;it+1 6= �t+1 in this case, in general, P i

t (:) 6= P i
0(:kF

i
t),

so that those equilibria can not be Bayesian. Agents are not rational, in the sense that they do
not do Bayesian updating; in fact, families in future times will continue to act, in this example,
as if they believed blindly in these speci�c kind of predictions, even though all previous family
predictions might have been completely wrong. To satisfy (7) and (16), we need that,

sit =
�iw1 � �e;it+1w2

1 + �i
: (17)

�e;it+1 is calculated in the following way: pt+1 = �pt is believed to be true, and � is estimated by13

�̂i;t+1 = �̂i;t +
1

(t+ 1)
R̂�1t+1pt�1(pt � �̂i;tpt�1) (18)

R̂i;t+1 = R̂i;t +
1

(t+ 1)

�
(pt�1)

2 � R̂i;t

�
; (19)

13This Recursive OLS formula is useful because it does not use values of ps for s < t� 1, but is equivalent to the
OLS one

�̂i;t+1 =

Pt

s=1
psps�1Pt�1

s=0
(ps)2

:
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with �̂i;1 = R̂i;1 = 0; i = 1; 2; : : : ; N . Then, if pe;it � �̂tpt�1, ~p
e;i
t+1 = �̂tp

e;i
t and �e;it+1 � ~pe;it+1=p

e;i
t ,

we have, in fact, that
�e;it+1 = �̂t: (20)

Since at time t all the information on past prices is publicly available and �̂i;1 = R̂i;1 = 0; i =

1; 2; : : : ; N , we have that �̂i;t = �̂j;t � �̂t and R̂i;t = R̂j;t � R̂t; i 6= j; i; j = 1; 2; : : : ; n, so that

the value of �e;it+1, de�ned to be �et+1 and calculated by the above equations, is common across
agents with a turn to play at time t. As in the experimental design, assume now that when the
n families are selected, each of the elements of the vector (�1; �2; : : : ; �n) of discount factors is
assigned randomly to the di�erent families of the selected group (of size n) in question. It then
follows that the average savings at t, st is given by

st =
1

n

X
i2f1;2;:::;Ng:

ri
t
=ri

t�1
+1

sit

= �w1 � w2�
e
t+1; (21)

where � and  are as de�ned in equations (10). Using (4) it then follows that the equilibria we
seek will satisfy

�t =
�et � b

c� �et+1

(22)

for all t = 1; 2; : : :. For " as described, OLS(") is de�ned to be any process (�t; (sit)
N
i=1; st)

1
t=1

generated by equations (16){(22). We have then, that any process (�t; (sit)
N
i=1; st)

1
t=1 generated in

this example is an Adaptive Equilibrium, with �̂1 = 0,

�̂it+1 =
�
�̂i;t+1; R̂i;t+1

�
;

M (� it+1; �
t; �̂t) =

1

t

h
(R̂t+1)

�1pt�1(pt � pt�1�̂i;t);
�
(pt1)

2 � R̂i;t

�i
(23)

f i(�̂t+1) =
�iw1 � �̂w2

1 + �i
: (24)

Although f i is not common across agents, st depends only on (�̂t; Rt) through �et+1, by (20)
and (21), based on common public information. Similarly, �t depends on common public infor-
mation, by (22), and so, any resulting process (�t; st)1t=1 2 OLS(") generated in this example is
deterministic, since all conditions of Proposition 1 are satis�ed, were OLS(") means the set of all
such equilibrium paths given a speci�c economic environment. Any element in OLS(") depends
crucially on the initial conditions �1; s1; (si1)

N
i=1, because the rest of the (deterministic) path can

be easily generated by the formulas above. With this remarks in place, we state the following
result, directly adapted from [14] and [12], assuming the appropriate conditions for d;w1; w2; h�1
and (�1; �2; :::; �n):

Proposition 3 With P i
t as described above, any process (�t; st)

1
t=1 2 OLS(") converges to LSS(").

17



Figure 2: Panels A and B, respectively

0 5 10 15 20 25 30 35 40
1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

In
fla

tio
n

Periods

Method 5: Linear OLS, Public Information

0 5 10 15 20 25 30 35 40
1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

In
fla

tio
n

Periods

Method 5: Linear OLS, Private Experience

In other words, given any initial conditions (within a range), the process of ination rates
generated by agents that forecast those ination rates by way of recursive least squares using
all public information converges to the rational expectations equilibrium in which the classical
monetary policy works. Notice that without the constant vector of discount factors assumption,
there is no way that the process could converge to a constant; without that assumption, � and 
in (21) would be random, and the process (st) could only converge, at most, to a random vector
that depends directly on di�erent possible combinations of discount factors assigned, determined
by who gets to play by the stopping times processes. This is why that assumption, which is
the expression of part 2 of UNI for this example, is essential in the experimental design when
the discount factors are assigned randomly, in order to be able to replicate the conditions of the
benchmark OLG model without exogenous uncertainty. Notice also that the individual savings
processes might follow stochastic-like paths. From this we see that in general, the assumption that
we need, in order to preserve the model we want to emulate, is to insure that the aggregate savings
has a constant functional form relative to what individuals get to participate in the di�erent
periods. That assumption, at the same time of preserving the OLG benchmark model, allows
us to isolate the relevant assumption that generates random oscillations in our analytical model
and in the experiments, which is, then, the dependency or not of the decision rules upon public
information alone.

In Figure 2, panel A, I show the result of a simulation of the path of aggregate savings of a
OLS equilibrium. The environment is as described in Experiment 2 of [14]. As it can be seen, the
path converges to LSS and is very smooth and, after period 10, convergence is even monotonic.
Particulars about the simulations are given in the Appendix.
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If, alternatively, people used only the price information they experienced when they participated,
to forecast ination, we would have:

M (� it+1; �
t; �̂t) = 1[�i

ri
t
+1

=t+1]
1

rit

h
(R̂i;t+1)

�1p�i
t�1

(p�i
t
� �̂i;tp�i

t�1
);
�
(p�i

t�1
)2 � R̂i;t

�i

Notice that here �̂it (and sit) is constant over periods in which family i does not participate. Even
though the family is able to observe additional public information, it does not react to accommodate
its estimators about the future unless a new turn occurs, and when that happens, the estimator
takes into account only public information that occurred in previous turns. With this variation in
the example, as M depends on � it+1, we have erratic time paths.

In Figure 2, panel B, I simulate an economy with the same stopping times as in panel A of
the same �gure. Here we have the variation to example 1 in which agents also use OLS to project
prices, but use for that only the information on prices that occurred when they had turns to play
in the past. This is an unnatural assumption, because in the experiments (and in real life, one
could say) people have access to all history of ination rates. Nevertheless, the simulation shows
that if people really use OLS, and are maximizers, they have to use, at least in part, or some of
them, that kind of information, in order for the paths of aggregate ination to be erratic.

We then see that, although the characteristics of learning and equilibrium selection are captured
by the OLS model, the feature of using only public information by the agents renders it incapable of
reproducing the uncertainty, or erratic oscillations in the time paths typical of experimental data.
The assumption that agents use OLS and only the information that they experience produce, at
some extent, the desired erratic oscillations, as shown in panel B of Figure 2. But this assumption
is unnatural for the method they are using, though, since agents observe all past information on
prices. On the other hand, price forecasting is an intermediate (not so easy) step to do savings
decisions. In addition, the graph does not match very well the experimental data, as can be seen at
�rst glance. Below I present two more examples, in order of complexity required, in which agents
make directly savings decisions. They improve in intuitive appeal, because of simplicity in the
decision rules, and on e�ective similarity to the experimental time paths.

4.2 Example 2: Newton Approximation Algorithm

The second example of an adaptive equilibrium is the correspondence NAA, which stands for
Stochastic Newton Approximation Algorithm, in which agents, although they are not rational or
actual maximizers, try to estimate the rational savings choice that maximizes their utilities by way
of using the alluded algorithm, and also the exclusive use of their own private experience. Here,
when agent i has a turn to play at time t + 1, he tries to estimate not next period ination rate,
as in example 1, but rather the savings rate sit+1 such that

sit+1 2 argmax(~sit+1)
Ei;t+1

��
ln(w1 � ~sit+1) + �it+2ln

�
w2 +

~sit+1

�t+2

��
kF i

t+1

�
:
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To do so, he estimates sit+1, the root that makes

�
1

w1 � sit+1

+Ei;t+1

��
�it+2

�t+2w2 + sit+1

� F i
t+1

�
= 0

hold. A similar method was used by Woodford in [21]. Now, agent i's beliefs about �t+2 are
e�ectively that14

P i
t+1

�
�t+2 = ��i

ri
t

+1; �
i
t+2 = �i�i

ri
t

+1

�
= 1: (25)

As in example 1, these beliefs will, in general, turn out to be wrong again and again, so that
P i
t+1(:) 6= P i

0(:kF
i
t+1), and the equilibria to be generated here will not be Bayesian. Although this

example shares non{rationality with example 1, here, in addition, agents are assumed not to be
able to maximize their implied utility. In fact, when his turn arrives at time t+ 1, agent i tries to
estimate the sit+1 that makes

U1

�
sit+1; �(�ri

t

+1)

�
� �

1

w1 � sit+1

+

�i(�i
ri
t

+1)

�(�i
ri
t

+1)w2 + sit+1

= 0 (26)

hold. For this, he uses the Newton Approximation Algorithm

sit+1 = sit � rit

h
U11

�
sit; �(�ri

t

+1)

�i�1
U1

�
sit; �(�ri

t

+1)

�
;

which he gets to decide at time t + 1, where (t)1t=1 is as in RMA. E�ectively, we have, for each
i = 1; 2; : : :; N ,

sit+1 = sit � ri
t
1[�i

ri
t
+1

=t+1]

h
U11

�
sit; �(�ri

t
+1)

�i�1
2
64� 1

w1 � sit
+

�i
(�i
ri
t

+1)

�(�i
ri
t

+1)w2 + sit

3
75 (27)

There is an economic intuition involved in the application of the Newton algorithm. People want
to adjust in the right direction and amount savings decisions relative to their past experiences, given
their beliefs. Let us see what the algorithm advises if, in his last turn to play, agent i saved too much
relative to the actual ination that occurred in the second period of that turn. U1 is decreasing
in savings at zero, and so U1 is negative in that scenario; U11 is negative around the optimal s, in
fact always negative in our case, so that [U11]

�1U1 is positive, and then, �t[U11]
�1U1 is negative.

14In words, this means that at t+ 1, when family i is getting a turn to play (� i
ri
t+1

= t+ 1), it believes that next

period's ination, �t+2, will be the same as the ination that occurred during the following period to that when it
last had a turn to play. That last turn was � i

ri
t

, and the ination that a�ected its savings then was, accordingly,

��i
ri
t

+1. Similarly for the discount rate, in the case it is not constant. Here we are presenting directly the case where

agents use private experience as more relevant.
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The algorithm then advises the decision{maker to adjust downward the previous savings decision,
which was too high. �[U11]

�1U1 says how much to adjust, which is optimal in some approximation
sense, and t scales further that adjustment. The opposite happens if the previous savings decision
was too low.

Now we have that

st+1 =
1

n

X
i2f1;2;:::;Ng:

ri
t+1

=ri
t
+1

8><
>:s

i
t�rit

h
U11

�
sit; �(�ri

t

+1)

�i�1
2
64� 1

w1�sit
+

�i
(�i
ri
t

+1)

�(�i
ri
t

+1)w2+sit

3
75
9>=
>; : (28)

We want, again, the process generated to be an equilibrium, so that, from (5) we need that, for
t = 1; 2; : : :,

�t+1 =
st(!)

st+1 � d
: (29)

For each " with P i
t as above, de�ne NAA(") to be the set of processes �t; (sit)

N
i=1; st)

1
t=1 that

satisfy (26){(29). Then we have that with

�̂it+1 = sit+1;

f i(�̂it+1) = �̂it+1;

M (rit+1; �t; �̂
i
t) = 1[�i

ri
t
+1

=t+1]ri
t

h
U11

�
sit; �(�ri

t

+1)

�i�1
U1

�
sit; �(�ri

t

+1)

�
;

NAA(") 2 AE(").

In general, a process (�t; st)1t=1 2 NAA(") is stochastic because for any agent i �̂it+1 depends
on � it+1, by proposition 1, although the aggregation assumption is guaranteed for that process by
the fact that here f i = I, the identity function, and if we still impose that each discount factor
in (�1; �2; : : : ; �n) gets assigned to each family. In addition to obtaining what we wanted in this
example, erratic paths of the aggregate variables, and in spite of non-rational and non-maximizing
behavior by the agents in this economy, our simulations show convergence to the right (LSS) limit,
like in example 1.

In Figure 3, panels A and B, I simulate two examples of aggregate savings paths in NAA
equilibria. The turns of participation are the same (although the initial conditions are di�erent) as
in Figure 2, where OLS equilibria are simulated, and the environment is, again, as in experiment
2 of [14]. We can observe the erratic oscillations in Figure 3, panels A and B, and the convergence
to the LSS equilibrium, as in the experimental data. The di�erence between the two cases is the
learning rates, the gammas of formula (27), as indicated in the respective panels. That di�erence
suggests that the learning rates are actually a group of parameters to be considered to �t better
the data using calibration, as in the business cycles literature15.

15It is to notice that in this example and the next one, di�erently from the OLS one, di�erent initial savings
decisions alone could produce erratic time paths. But since simulations show in this case very fast convergence one
the one hand, and the experimental data evidences more persistence than that in erratic behavior, on the other,
we guess that more than di�erent initial conditions is needed in these examples in order to match the data, if
calibrations were to be done.
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Figure 3: Panels A and B. Learning Rates 2 and 1, respectively
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4.3 Example 3: Direct Savings Estimation

The purpose of this example, named Direct Savings Estimation (DSE), is to simplify the algebra
complications of example 2. Here, agents need much less algebraic abilities in order to make
decisions. As we will see in the simulations part, this simpli�cation will not impinge upon the
ability of the model to reproduce, very similarly to example 2, the features of the experimental
evidence. Here, with the same beliefs about ination rates as in example 2, agents also try to
estimate directly the savings rate that maximizes their utility. But in this example the estimation
is done in a much simpler way: savings are adjusted upward if the previous savings decision is
considered to be smaller than the one that would have maximized utility, and downward if the
opposite occurs. The algorithm would then be, at time t+ 1:

sit+1 = si�rt+1�1
+ 1[�i

ri
t
+1

=t+1]ri
t
(si;m�rt+1�1

� si�rt+1�1
); (30)

where si;m�rt+1�1
is the actual, ex post, maximizing savings of the previous participation. The rest is

as in example 216. The time paths are similar to those of example 2, as can be seen by comparing
Figure 4 with Figure 3, panel B.

16We could think that the agent might not be able to calculate now si;m
�rt+1�1

. He might, instead, �gure something

like: \the previous maximizing savings should have been about qit+1" where this number is a sort of unconscious
guess, not an explicit calculation, given the memories of the actual payo�. The modeler could think of many ways
to represent that guess. For example, in those circumstances, qit+1 could be equal to (1 + "it+1)s

i;m
�rt+1�1

, where

"it+1 2 [��i; �i], �i > 0 is a small, (non random) number. In this case, the algorithm would be like the one above,
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Figure 4:
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5 Final Remarks

For se sake of brevity and since it would take us away from the focus of the present paper, we
do not deal with the issue of convergence of the AE processes. Standard techniques may be used
to demonstrate that they converge to the (parametric) LSS limit. Chen and White ([5], [6]) have
extended the analysis of convergence issues of Robins-Monro type of algorithm, like the AE, to
the case of random (non-parametric) limits. In any case, our simulations provide examples of
convergence of some AE processes to the LSS limit.

The time paths in the last two examples show in the simulations more oscillations, as seems to
be the case in the experimental data, than the �rst one. Something that can be said, a priori, on the
possible performance of the di�erent versions of the models, has to do with looking at them after
isolating their heterogeneity e�ect. In fact, the e�ect that comes from di�erent participation times,
and the use of private experience, which translates into erratic time paths, tends to disappear as
time goes on. This is due to the ongoing learning process17 (Of course, since there is a parametric
limit, randomness also disappears together with heterogeneity.) Isolating the heterogeneity e�ect
has to do, then, with looking at the speci�c model with homogeneous agents, and observing how
the time paths behave in those cases. A rich model would show enough (deterministic) variability,
in order to be able to reproduce certain frequencies in the data. A poor model, in contrast, would

with the guess instead of the actual ex post maximizing savings decision. This way of puting things would allow
for the possibility of mixing the two causes of uncertainty (random guesses and random participation with private
experience) that are actually present.
17I take for granted, although I do not have the individual data to con�rm it, that individuals in the actual

experiments learn too, to make the same savings decision as the economy, as a whole, does.
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Figure 5: Panels A and B, respectively
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show only monotonic convergence.
The asymptotic properties of the di�erence equation that relate �t+1 and �t in the examples

remain to be analyzed. In the meantime, after observing many simulations, we can say that the DSE
and NAA models display richer behavior than the OLS one. This can be seen, for example, if we
compare panels A and B of Figure 5, where simulations of ination time paths of the homogeneous-
agents respective versions of those models are shown18. (The corresponding graph for the NAA
model is almost identical to the one for the DSE model.) While one after another simulation of
the (homogeneous version of the) OLS model exhibited a pattern similar to that of panel A of
Figure 5, basically all simulations of the DSE model with t = 1=t exhibited, on the contrary, an
oscillatory pattern. On the other hand, the DSE and NAA models with t = 1 8t behave in a
very similar way as the Linear OLS model, as can be seen, for the case of the DSE method, in
Figure 6, with the same parameters other than t. This shows that these last two models are able
to reproduce basically all the cases, if the proper learning rates are set in place.

The e�ects of the kind of heterogeneity to which I appeal here in order to explain transitional

18In fact, agents are not completely homogeneous here. They can be made homogeneous in the OLS case, but
not in the other ones. The reason is because in the DSE case, for example, people can not participate every period,
because in order for the newborns to take the payo� experience of their parents (which is used in these cases), they
need current price information, which is not yet available. In order to overcome this problem I put the same group
of people to participate every other period, for every model. This is the closest approximation to homogeneity we
can make for the SDE and NAA methods, and so, for comparability, I set the participation times to be odd{even in
the OLS model as well. It turns out that the time paths with odd{even participation have the same general shape
in this latter model as in the paths with completely homogeneous agents, anyway. This can be seen by comparing
panels A of Figure 5, and Figure 2, where the same ! is used, but really homogeneous agents (in the sense that
they use all the {common{ information) participate.
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Figure 6:

0 5 10 15 20 25 30 35 40
1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

In
fla

tio
n

Periods

Method 7: Direct Savings Estimation, Gamma(t)=1

dynamics might well disappear if the number of agents approaches in�nity and is distributed in
a suitable way. At the aggregate level, we can end up in this framework with a rational kind
of behavior of the whole economy even in transitional periods in which the individual agents
themselves are learning to behave rationally. (They would be learning to make the same decision
that, on average, all the agents together are making in every period!) It would be interesting to �nd
out whether that actually occurs in experiments where the number of subjects tends to be large.
For the case of �nite and relatively small number of experimental subjects, our model seems to
capture the main features observed in transitional periods, keeping assumptions on agent behavior
close to the experimental design.

It is the case that the erratic oscillations that result from the present framework can be obtained
in an equivalent form using some kind of idiosyncratic shocks around a homogeneous decision, or
simply by assuming that the rules f i depended on time and are stochastic. The interesting feature
of mymodel would be to explain in a simple and intuitively appealing way where those shocks could
come from other than from experimentation, and to illustrate how would we be able to handle a
variety of cases in order to compare with the data19. It is like the general equilibrium models used
to match aggregate data of the economy: in equilibrium, the resulting model is equivalent to a
(commonly linear) econometric model that could be set up ad hoc. The interest of such a model
would come from its parameters, and its interpretation, which comes from its underlying model
(preferences, technology, decision making variables, and so on).

19I also suggest a way of including in the model random guesses.
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6 Conclusion

The theoretical framework that I set up in order to interpret the experiments allows for an inter-
esting additional interpretation of the subjects's behavior, already known to be adaptive in general
terms, as shown in [14]. For one thing, randomness itself would be generated by the fact that the
experimental agents would care more about what they have personally witnessed in the past than
about what they are told (and they know is true), even though this information might be more
revealing about the future. This interpretation of the data points to a further level of bounded
rationality in experimental subjects more generally.

In particular, I have set up a framework for the OLG model without productivity or preference
shocks, in order to be able to consider and compare to experimental data the aggregate e�ects of
individual di�erences between the participating agents. The framework includes beliefs, informa-
tion sets and a model of time participation. AA{kind of models are justi�ed in this framework as
models that describe the experimental features of learning and equilibrium selection. It is shown
that if agents use simple (as opposed to mixed or experimenting) adaptive rules, representative
agent AA models �a la Marcet{Sargent are not appropriate to describe the uncertainty inherent
in economic experiments in which di�erent individuals participate. It is shown, furthermore, that
heterogeneity in learning rules is not su�cient in these kinds of models to deliver stochastic{like
time paths if agents participate at every period in the economy. More importantly, it is shown that
if agents have di�erent turns to participate and use simple adaptive rules, the only way for the
economy to show erratic oscillations over time is for agents not to use only public information to
form their estimations when they use their learning algorithms. The use of data experienced when
agents participate, even though reecting further lack of rationality, is shown to be essential to
produce the inherent uncertainty present in the data, under the assumption that agents themselves
do not experiment when making decisions.

In a positive light, these facts show that there is nothing inherently bad about the AA{kind of
models to reproduce experimental data and pinpoint, at the same time, correct modi�cations in
order to explain reality. Although the GA has been put forward in [2] to model, in an entirely dif-
ferent way, the experimental features of erratic oscillations and equilibrium selection, we highlight
that, as it is, that model requires a kind of individual interaction not present in the experimental
environments. Our version of the AAs adequately reproduces those experimental features, while
keeping the assumptions on agent behavior close to the experimental design. It is that reproduction
feature what gives strength to the further bounded rationality interpretation, shedding light for
modeling behavior on di�erent settings. The participation model itself reproduces an important
feature of real life, and might be of use in other contexts. To be sure, it might be useful in testing
for the utilization of private vs public information by subjects, as far as we are able to control for
experimentation.

Simulations of our examples of adaptive models are presented in order to show how the model
reproduces the experimental features of equilibrium selection and erratic oscillations. In addition,
the examples provided illustrate the kind of calibration exercise one could perform using the model,
by modifying optimally learning rates, initial conditions and participation times. In the �rst
example, agents are assumed to estimate the next period's price using OLS with past prices and
making savings decisions in order to maximize the utility that comes from believing the projected
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price. In simulations we compare the case in which agents use all publicly available prices in
their forecast, (the representative agent model, it turns out), with the one in which them use
only the experienced ones. As expected from the theory, the time paths in the �rst case are
smooth, while in the second are erratic, but converging to the right limit. In the second and third
examples, people do not maximize but adjust savings as if approximating maximization, while
having myopic beliefs about ination rates. These two last examples di�er only in the complexity
of the calculations needed to make a decision. The third example is particularly simple in this
regard, and reproduces basically the same kind of time paths in simulations as the second, in a
wide variety of circumstances.

We use simulations in order to illustrate that the last two examples have more richness than
the OLS model. The richness refers to the fact that heir underlying deterministic process is able to
show, alternatively, monotonic or persistent oscillatory behavior, depending on the learning rates
chosen. This contrasts with the OLS model, which shows only monotonic convergent paths after
a couple of initial oscillations.

Our conclusions call for experiments in order to perform a more careful test of the use of private
experience versus public information. A possible way to do this is to allow subjects only to use
some proposed rules (one �xed per individual), considered realistic from other studies, and set up
the random participation, as in the Marimon-Sunder experiments. Incidentally, even though the
analysis was done in an overlapping generations model, the analytical conclusions easily extend to
models with in�nitely lived agents and cash-in-advance constraints. An experimental design for
this case, though, remains to be carried out.

A Appendix: About the Simulations

In the simulations I will use the parameters of the experiment number 2 performed by Marimon
and Sunder (1993). As we know, they perform a total of 13 experiments, and in this case, the
number of participants is 12 people (N = 12), out of which 3 are chosen, at random, to participate
as young every period (n = 3), making sure nobody lives two lives in a row. The endowments of
chips are 7 when young, and 1 when old (W1 = 7; W2 = 1); the amount of money given to each
initial old is 3.722 (h0 = 3:722); the real de�cit per young is 1.25 every period (d = 1:25) and the
discount rate is 1 (� = 1). With these parameters, the LSS savings per capita and ination rate
under the REE assumptions are, respectively, sL =2.50 and �L =2. The corresponding values for
the HSS equilibrium are, respectively, sH =1.75 and �H =3.50. The values for these ination rates
can be seen intercepting the 45 degree line in Figure 1, where the typical Rational Expectations
�rst order di�erence equation in those variables is represented, for the above parameters.

The simulations were generated by a Matlab program that follows the indications outlined in
the formalizations presented in previous sections. In particular, versions of the OLS, NAA and DSE
examples are simulated. Participation times are dictated by an initial !, which is a 2n by T (the
total number of periods) matrix indicating in the i; j entry the individual in the set f1; 2; : : : ; Ng
who participates in period j: if i 2 f1; 2; : : : ; ng as an old, and if i 2 fn + 1; n + 2; : : : ; 2ng as
a young person. Young people are chosen every period, each individual with equal probability of
being chosen, among the N � 2n people that are not old in that period, and were not old in the
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previous one, in order to follow the experimental design. Once a program that determines the
stopping times and cumulative turn indexes is run, the economy develops, after random initial
savings decisions: At any given period, each selected agent uses the algorithm of the example
being simulated, when his or her time to participate arrives, incorporating the private or public
experience accumulated in their decision making, according to the assumption in place. Markets
then clear (government's current monetary de�cit plus old people's money supply equals young
people's money demand for savings), producing an equilibrium price. Next period, the newly
selected agents make their decisions, and the process repeats itself again and again, until the last
period, which nobody knows before hand.

After many simulations, we observe that our versions are less stable than versions with ho-
mogeneous agents, in the sense that there are initial conditions that guarantee convergence in
the models with homogeneous agents, but that generate divergent sequences in the models with
heterogeneous agents. This feature is a cost we have to pay in order to be able to reproduce a
much more complex and unstable world than the one explained by the previous models that show
convergence, but smooth time paths, or even the ones that use experimentation with controlled
errors. The divergins cases where very rare, though.

If one wanted to do calibration to the experimental data, learning rates, initial conditions
and participation times could be chosen optimally to �t the data, for a given method, and the
goodness of �t, if consistent through all the experiments, could be used to argue for one method
over the others as a model of actual behavior. This is illustrated in [16]. Unfortunately, individual
participation dates and individual initial conditions, which are fundamental for calibration in
models of heterogeneous agents like ours, were not available to us, in order to be able to perform
the exercise.
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