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Abstract

In a recent paper Bagwell (1995) pointed out that only the Cournot outcome,

but not the Stackelberg outcome, can be supported by a pure Nash equilib-

rium when actions of the Stackelberg leader are observed with the slightest

error. The Stackelberg outcome, however, remains close to the outcome

of a mixed equilibrium. We compare the predictions in various classes of

evolutionary and learning processes in this game. Only the continuous best

response dynamic uniquely selects the Stackelberg outcome under noise. All

other dynamics analyzed allow for the Cournot equilibrium to be selected.

In typical cases Cournot is the unique long run outcome even for vanishing

noise in the signal.

JEL� classi�cation numbers: C72, C73.

Key words: imperfectly observable commitment, evolution, imitation, learn-

ing, equilibrium selection.



1 Introduction

In a recent paper Bagwell (1995) pointed out that a ��rst mover advantage�

in games depends crucially on the fact that the action taken by the �rst

mover is perfectly observable. In fact, he showed that if the action is ob-

served with the slightest bit of error, no commitment is achieved.1 Bagwell

used the example of Stackelberg competition in which the leader can either

choose the quantity (L) of a Stackelberg leader or the Cournot quantity

(C). He shows that if the quantity choice is observed with some error (i.e.

if there is a small probability that the follower observes C when the leader,

in fact, chose L), then the only equilibrium in pure strategies is the Cournot

equilibrium.2

As noted by Bagwell (1995) there are � additionally to the Cournot

equilibrium � two mixed equilibria, one of which is �close� to the Stack-

elberg outcome in the sense that it converges to the Stackelberg outcome

as the noise vanishes. By using a modi�cation of Harsanyi and Selten�s

(1988) equilibrium selection theory Van Damme and Hurkens (1994) argue

that this �noisy Stackelberg equilibrium� should be selected. However, the

Cournot equilibrium is a strict equilibrium and therefore has many desirable

properties.

Given the controversy over which equilibrium should be selected the pur-

pose of this paper is to compare the predictions made by three classes of

evolutionary dynamics for this game. First, we consider a general class of

smooth continuous time dynamics that include payo¤ monotone and payo¤

positive but not best response dynamics. Through the introduction of noise

the Cournot equilibrium becomes asymptotically stable. On �rst sight this

might not be surprising as the Cournot equilibrium is the unique strict equi-

librium in the game with noise. However, the payo¤ di¤erence to the second

best strategy vanishes as the noise goes to zero. Nevertheless, the basin of

1Adolph (1996) shows that commitment is restored if additionally to the noise in signal

transition players make mistakes in the execution of their strategies.
2This results has been generalized in several directions, see Van Damme and Hurkens

(1994) and Güth, Kirchsteiger and Ritzberger (1995).
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attraction of the Cournot equilibrium stays large when noise becomes small.

Whether or not the Stackelberg equilibrium has similar properties depends

on the speci�cations of the dynamic, under the standard replicator dynamic

it does not.

Next, we consider general �nite population dynamics. Here, Cournot is

selected if the population is large enough. For small populations the method

is inconclusive. Finally, we consider the continuous best response dynamic.

This dynamic is the only one which selects unambiguously the Stackelberg

outcome, with or without noise.

Thus, we �nd at least partial support for Bagwell�s result. The Cournot

equilibrium should not be ignored as a prediction under noise, often it is

even the unique prediction. Only the strong and somewhat unrealistic in-

formational assumptions underlying the best response dynamic in in�nite

populations preserve the Stackelberg prediction.

2 Bagwell�s example

Consider the game in extensive form shown in Figure 1.3

Now suppose as in Bagwell�s (1995) paper that player II can observe

player I�s choice only with some error. To be precise, we assume that with

probability 1 ¡ " player II observes the action of player I correctly. With

probability " < 1=2 he receives the wrong signal. This game of imperfect

information yields the following normal form ¡.

FF FC CF CC

L 2; 1 2¡ 2"; 1¡ " 2"; " 0; 0

C 3; 0 1 + 2"; 1¡ " 3¡ 2"; " 1; 1

3The payo¤s of this game do not match exactly those of Bagwell (1995). In particular,

in the usual duopoly setting player II would receive a higher payo¤ from F when I plays

C rather than L. We can simplify this without loss of generality since all that matters is

that II prefers to play F following L and C following C. The best reply structures of both

games are equivalent.
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II

Figure 1:

Player II, the column player, has four pure strategies. E.g. FC stands

for II�s strategy of playing F in response to signal L and C in response

to signal C. Let Si denote player i�s set of pure strategies and ¢(Si) its

mixed extension. Elements of ¢(Si) are denoted by p and q with ei =

(0; 0; :::; 1; 0:::0) being the special case of a pure strategy. We will frequently

write A (B) for the payo¤ matrix of player I (II).

It is immediate that the Stackelberg strategies (L;FC), which are the

unique subgame perfect equilibrium in the game of perfect information, are

not an equilibrium in the game with noisy signals. The unique equilibrium

in pure strategies is the Cournot equilibrium (C;CC). Note, that this equi-

librium is strict. In addition, there are two mixed equilibria,

(~p; ~q) :=

½
(1¡ "; ") ;

µ
1¡ 4"

2¡ 4"
;

1

2¡ 4"
; 0; 0

¶¾

and

(p̂; q̂) :=

½
("; 1¡ ") ;

µ
0;

1

2¡ 4"
; 0;

1¡ 4"

2¡ 4"

¶¾
:

We call (~p; ~q) the �noisy Stackelberg equilibrium� since it converges to the

Stackelberg outcome as "! 0.
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3 Evolutionary dynamics

Evolutionary dynamics are a useful technique for testing the stability of a

given Nash equilibrium. In the following this analysis will be undertaken

using three di¤erent approaches.

3.1 Weakly payo¤ monotone dynamics

In this section we consider an in�nite population in which individuals are

continuously updating their actions. We search for states that are robust

against rare mutations. Formally, we characterize asymptotically stable

states. However, even if a state is asymptotically stable, we would consider

it less plausible if its basin of attraction vanishes for "! 0.

Changes in the population proportions are assumed to follow a selection

dynamic (as de�ned by Samuelson and Zhang, 1992). This is a continuous

time dynamic on ¢(S1)£¢(S2)

_pi = fi (p; q) ; i 2 S1

_qj = gj (p; q) ; j 2 S2

with

1. fi; gj : ¢ (S1)£¢(S2)! R Lipschitz continuous,4

2.
P

ei2S1
fi (p; q) =

P
ej2S2

gj (p; q) = 0; and

3. pi = 0 implies fi (p; q) ¸ 0; qj = 0 implies gj (p; q) ¸ 0 for any i 2 S1

and j 2 S2:

The �rst condition guarantees that there is a unique solution. Moreover,

it puts a bound on how much the gradient may change when the state (p; q)

changes slightly. The other two conditions ensure that the dynamic stays

in ¢(S1) £ ¢(S2) : Notice that the best response dynamic (Section 3.3)

4
Fi is Lipschitz continuous if there exists mFi

> 0 such that Fi (p; q) ¡ Fi (p
0

; q
0) ·

mFi
k(p; q)¡ (p0; q0)k for all (p; q) ; (p0; q0) 2 ¢(S1) £¢(S2) :
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does not �t in this class since the gradient may change abruptly when there

are small changes in the state (Lipschitz continuity fails). However, any

dynamic that is based on individuals reacting to �nite samples will belong

to this class.

De�nition 1 We call a selection dynamic weakly payo¤ monotone in a

given game if the following four conditions hold:

1. limpk!0
fk(p;q)

pk
exists in R[f§1g

2. eiAq ¸ ejAq for all j with strict inequality for some r such that pr > 0

implies
fi(p;q)

pi
> 0:

3. ekAq · ejAq for all j with strict inequality for some r such that pr > 0

implies
fk(p;q)

pk
< 0:

4. The above properties also apply to _qj and
_qj

qj
in their appropriate

formulation.

We allow for in�nite growth rates, which makes a scenario feasible where

some individuals have enough knowledge of the game to stop playing some

of their strategies (e.g., because they are strictly dominated). Instead of

putting restrictions on growth rates of each strategy, we demand in condi-

tions (2) and (3) that the growth rate of a best/worst response to the present

state increases/decreases strictly if not all actions present achieve the same

expected payo¤.

The above de�nition generalizes several commonly used evolutionary dy-

namics. In particular, it covers the classes of payo¤ monotone (also known as

compatible) and payo¤ positive dynamics (see Weibull, 1995, Chapt. 5, for

de�nitions). Payo¤ monotonicity requires that growth rates of strategies are

ranked according to their payo¤. Payo¤ positivity requires that strategies

earning above (below) average have positive (negative) growth rates.

In the following we present two examples of weakly payo¤ monotone

dynamics (they are in fact aggregate monotone according to Samuelson and
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Zhang, 1992). The standard continuous replicator dynamic (Taylor, 1979)

for a bimatrix game with payo¤ matrices (A;B) is de�ned as

_pi = pi(eiAq ¡ pAq)

_qj = qj(pBej ¡ pBq):

Many individual learning models are approximated by this dynamic (e.g.,

Gale et al., 1995; Schlag, 1996).

A slightly modi�ed version used mostly in biological applications, called

the adjusted continuous replicator dynamic (Maynard Smith, 1982) is given

by

_pi = pi
(eiAq ¡ pAq)

pAq
,

_qj = qj
(pBej ¡ pBq)

pBq
.

A state is called (Lyapunov) stable if trajectories starting su¢ciently

close stay arbitrarily close. A state is called attracting if there exists a

neighborhood of this state such that trajectories starting in this neighbor-

hood eventually converge to the state. The basin of attraction of an at-

tracting state is the set of all states such that trajectories starting in such

a state lead to the attracting state. Asymptotic stability means both stable

and attracting. Sometimes the concept of asymptotic stability is too strin-

gent and we need the following weaker concept. A closed set of rest points

is called interior asymptotically stable if trajectories starting in the interior

su¢ciently close to the set stay arbitrarily close to the set and eventually

converge to the set. This concept generalizes asymptotic stability to sets of

rest points and additionally restricts attention to trajectories starting in the

interior.5

For the game ¡ without noise (" = 0) and the standard continuous

replicator dynamic Cressman and Schlag (1996) show that (1) the Stack-

elberg equilibrium is contained in the unique interior asymptotically stable

5For formal de�nitions see Weibull (1995) and Cressman and Schlag (1996).
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set
©
(eL; (1¡ ¸) eFC + ¸eFF ) : 0 · ¸ · 1

2

ª
, which is the set of Nash equilib-

ria that yield the Stackelberg outcome, and (2) the Cournot equilibrium is

(Lyapunov) stable but not asymptotically stable. The following proposition

generalizes this result to our class of weakly payo¤ monotone dynamics.

Proposition 1 For any weakly payo¤ monotone dynamic, when informa-

tion is perfect (i.e., there is no noise) then the Cournot equilibrium is stable

and the Stackelberg equilibrium is contained in the unique interior asymp-

totically stable set.

Proof. Let G be an interior asymptotically stable set. FC is a weakly dom-

inant strategy for player II, hence _qFC > 0 in any interior state. Continuity

of gFC implies that G must contain a state in which qFC = 1: Moreover,

since _pL ¸ 0 holds when qFC is su¢ciently large, the Stackelberg equilibrium

(L;FC) must be contained in G.

By de�nition, an interior asymptotically stable set is a closed set of rest

points. This set must be connected by the stability requirement. Conse-

quently, G ½ f(eL; (1¡ ¸) eFC + ¸eFF ) : 0 · ¸ · 1g :

If an element of G is not a Nash equilibrium then trajectories lead ini-

tially away from G (use the same trick as when proving �stability implies

Nash�, see e.g., Weibull, 1995, Proposition 4.8). Consequently G is a set of

Nash equilibria. In the following we will show that G is equal to the Nash

equilibrium component containing the Stackelberg equilibrium, i.e.,

G =

½
(eL; (1¡ ¸) eFC + ¸eFF ) : 0 · ¸ ·

1

2

¾
:

If pL = 1 and qCC + qCF > 0; then _qFF > 0 and _qFC > 0 and hence

_qCC+ _qCF < 0. Consider ¿ > 0 but su¢ciently small such that _qCC+ _qCF · 0

when pC < 3¿: Since FC is a weakly dominant strategy for player II, conti-

nuity implies there exists ¹ > 0 such that ¿ < pL < 1¡¿ implies _qFC > ¹: If

qFF = qFC =
1
2
then eLAq = eCAq and continuity of fL (p; ¢) implies _pL = 0:

Consequently, there exists 0 < º < ¿ such that _pL > ¡¹ and hence _pL +

_qFC > 0 when pL > ¿ and 1
2
¡º < qFC < 1

2
+º: Let ® > 0 be such that _pL > 0
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when qFC > 1
2
+º and qCC+qCF < ®. Consequently, trajectories starting in©

(p; q) : qFC > 1
2
¡ º; pC < ¿ + 2º; qFC ¡ pC > 1

2
¡ º ¡ ¿; qCC + qCF < ®

ª
stay

in this set. Moreover, _qFC ¸ 0 implies that trajectories converge to G: Since

¿ was arbitrary as long as it was su¢ciently small it follows that G is an

interior asymptotically stable set.

Consider now the Cournot equilibrium (eC ; eCC). eLAeCC < eCAeCC

together with (3) implies limpL!0
fL(p;eCC)

pL
< 0. Continuity implies there

exists N > 0 such that _pL · ¡NpL in a neighborhood U of (eC ; eCC).

eCBeCC ¸ eCBej for all j implies _qCC = 0: Lipschitz continuity implies

there exists M > 0 such that _qCC ¸ ¡MpL in a neighborhood U 0 ½ U of

(eC ; eCC). W.l.o.g. let U 0 = f(p; q) :MpC +NqCC > ¯g for some 0 < ¯ <

M +N chosen su¢ciently large. Consequently, M _pC +N _qCC = ¡M _pL +

N _qCC ¸ 0 in U 0 which implies that MpC + NqCC is a local Lyapunov

function, trajectories starting in U 0 stay in U 0 and hence (eC ; eCC) is stable.

Notice that we did not need Lipschitz continuity to prove the stability

of the Stackelberg equilibrium.

Now we will investigate dynamic stability for constant noise and as noise

varies. Comparing dynamic stability under di¤erent degrees of noise requires

that we specify how the dynamic changes as the underlying payo¤s in the

game change (now A = A (") and B = B (")). Hence we must add some

conditions on the dynamic, conditions that hold for all " < "0 for some

"0 > 0:

1. fi and gj are Lipschitz continuous with constants mfi and mgj inde-

pendent of ";

2. (monotonicity) Consider a small change in ": Then fi (p; q) weakly

increases if eiA (") ek weakly increases and erA (") ek weakly decreases

for all r 6= i and all k. Similarly, gj (p; q) weakly increases if esB (") ej

weakly increases and esB (") ev weakly decreases for all v 6= j and all

s.
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Notice that _pi need not be continuous in the underlying payo¤s as this

would be too strong a condition in many cases.6

When signals are received with noise the picture changes drastically. The

Cournot equilibrium can be selected by any generalized payo¤ monotone

dynamic, whereas robustness of the Stackelberg equilibrium depends on the

exact speci�cation of the dynamic. For the most common representative in

the class of payo¤ monotone dynamics, the standard replicator dynamic, the

stability properties of the Stackelberg equilibrium are inferior to that of the

Cournot equilibrium.

Proposition 2 Consider the game with noise. For any generalized payo¤

monotone dynamic the Cournot equilibrium (C;CC) is asymptotically stable.

Furthermore, the basin of attraction of (C;CC) does not vanish as " ! 0.

The only other candidate for an asymptotically stable state is the Stackelberg

equilibrium (~p; ~q) ; under the standard replicator dynamic (~p; ~q) is stable but

not asymptotically stable; under the adjusted replicator dynamic (~p; ~q) is

asymptotically stable.

Remark 1 Notice that we do not make any claim about interior asymp-

totically stable sets when there is noise. In this game all Nash equilibria

are singletons, hence an interior asymptotically stable set corresponds to an

asymptotically stable state (see arguments used in the proof of Proposition

1).

Proof. First we show that (C;CC) is asymptotically stable with non van-

ishing basin of attraction. Consider a slightly modi�ed game ¡0 with the

same payo¤ matrix as ¡ under " = 0 except that the payo¤s of CF are eval-

uated at " = 1
4
; i.e., eLAeCF =

1
2
, eCAeCF =

5
2
and pBeCF =

1
4
: Retracing

the steps in the proof of Proposition 1 it follows that there exists a neighbor-

hood U 0 of (C;CC) where MpC +NqCC is a local Lyapunov function (i.e.,

6E.g., assume that player I has two actions 1 and 2; action 1 (2) yielding 0 (x) with

certainty. Here it does not seem reasonable that a learning dynamic must be continuous

at x = 0:
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M _pC +N _qCC ¸ 0) in ¡0 for appropriate constants M;N > 0: Comparing ¡0

to ¡(") with " < 1
4
we see that our monotonicity condition implies that both

_pC and _qCC increase. Consequently, MpC +NqCC is also a local Lyapunov

function in U 0 for ¡ and any " < 1
4
: Especially, U 0 was constructed such that

_pC ¸ NpL which means that pC ! 1 as t!1: For given " and su¢ciently

large pC it follows that _qCC > 0 when 0 < qCC < 1 and hence trajectories

starting in U 0 (which is independent of ") converge to (C;CC).

Each asymptotically stable state is a Nash equilibrium (a trivial gen-

eralization of Friedman, 1991 to our class of generalized payo¤ monotone

dynamics). The best reply structure close to (p̂; q̂) resembles that of a coor-

dination game where (p̂; q̂) is the unstable interior mixed equilibrium. This

will make (p̂; q̂) unstable. Consider G =

n
(p; q) : pC > 1¡ "; qCC > 1¡4"

2¡4"

o
;

then (p̂; q̂) is an accumulation point of G: Starting in G; C is the unique

best response for player I and CC is the unique best response for player II

which implies that _pC > 0 and _qCC > 0. Especially trajectories starting in

G converge to (C;CC) which means that (p̂; q̂) is not stable, especially it is

not asymptotically stable.

Consider now the Stackelberg equilibrium (~p; ~q) . The support of (~p; ~q)

is contained in ¢ fL;Cg£¢ fFF;FCg. On this face, ¡ resembles matching

pennies. Consider the standard continuous replicator dynamic. Trajecto-

ries cycle on this face (see, e.g. Weibull, 1995). Especially, this means that

(~p; ~q) is not asymptotically stable. However, restricting the dynamic to this

face (~p; ~q) is stable. Moreover, since BR(~p; ~q) = ¢fL;Cg £ ¢fFF; FCg

it follows that (~p; ~q) is also stable in the entire space (this follows from

centre manifold theory, Wiggins, 1990, see Cressman and Schlag, 1996,

for an explanation of its application and for some examples). In the ad-

justed continuous replicator dynamic, (~p; ~q) is asymptotically stable on the

face ¢ fL;Cg £¢ fFF;FCg (see again Weibull, 1995). Now the fact that

BR(~p; ~q) = ¢fL;Cg £¢fFF;FCg makes (~p; ~q) asymptotically stable.
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3.2 Discrete selection dynamics

A large part of the recent literature on evolution and learning assumes a

setting with discrete time and a �nite number N of players. Most dynamics

either are a version of a myopic best reply process (see e.g. Kandori, Mailath

and Rob, 1993, and Young, 1993) or some sort of imitation process (e.g.

Schlag, 1996). Here we consider a class of dynamics which is general enough

to encompass both kinds of dynamics.

The dynamics we consider result from the compositionM(S) of a selec-

tion process S and a mutation process M. The discrete selection process

(which should not be confused with the continuous selection dynamics de-

�ned in the previous section) is represented by a �nite Markov chain with

the following two properties. Most evolutionary processes are characterized

by an element of inertia. We model this by assuming that each period with

a �xed and independent probability µ > 0 an individual must stick to his

old strategy. Furthermore, we assume that S is payo¤ sensitive, a property

which is de�ned next.

Let p and q denote the frequency distribution of strategies in population

one and two, respectively.

De�nition 2 A discrete selection dynamic S is called payo¤ sensitive if

(a) prob(pt+1
i

> pti) > 0) 9k 6= i with pk > 0 and eiAq ¸ ekAq:

(b) If 9i with pi > 0 and eiAq ¸ ekAq; 8k with pk > 0 and strict inequality

for some k; then 9j with ejAq ¸ eiAq s.t. prob(pt+1
j > ptj) > 0:

(c) Equivalent conditions hold for q:

Condition (a) states that the frequency of a strategy can only be in-

creased if there is another strategy present which performs weakly worse.

Condition (b) states that unless all current strategies perform equally, either

a currently best strategy or some other strategy, which does at least as well,

increases in frequency with positive probability. Condition (b) demands

11



in particular that the process does not come to a halt unless all present

strategies perform equally.

The de�nition allows for dynamics in which new superior strategies enter

the system (e.g. best responses) and for dynamics in which only strategies

can be chosen that are already represented in the population (as in imitation

processes). It covers weakly monotone dynamics (Samuelson, 1994), and

therefore best response and �Darwinian� dynamics (Kandori, Mailath and

Rob, 1993). But it also covers some imitation dynamics, in which strategies

which currently perform better in round�robin matchings are imitated, e.g.,

the proportional imitation rule and �imitate if better� (Schlag, 1996).7

The mutation processM results from assuming that in each round, with

an independent probability Á > 0, an agent randomizes uniformly over all

of his strategies. The process is therefore ergodic.8

In the game without error (" = 0) the results with respect to the discrete

best response dynamics are inconclusive. Since neither of the pure equilibria

is strict, the results depend too much on the details of the dynamics to make

a general assessment.9

With noise the picture changes. (C;CC) is now a strict equilibrium and

the remaining equilibria are mixed. Stochastic dynamics do not in general

converge to mixed strategy equilibria in asymmetric games (see Oechssler,

1994, for some of the problems involved). Depending on the exact speci�-

cation of the process a mixed equilibrium may even fail to be a restpoint of

the selection dynamics. Hence, it is not surprising that the discrete payo¤

responsive dynamics select the strict equilibrium (C;CC) in ¡ if the popu-

lation size is large enough.10

7The latter interpretation requires that the population is large enough such that average

payo¤s can be approximated by expected payo¤s.
8For a good introduction to the graph�theoretic methods used in this section see Vega�

Redondo (1996). They were originally introduced by Freidlin and Wentzell (1984).
9E.g. it depends on whether players who already play a best reply may switch to other

strategies.
10Note, however, that the result is more ambiguous than that of the last section as for

a given population size there always exists an " small enough such that no result of this

12



Proposition 3 Let " be given. If " > 0 and the population size N is larger

than 1=", then the limit distribution of the dynamic M(S) for Á ! 0 puts

probability one on the equilibrium (C;CC):

Proof. Note �rst that the support of the limit distribution of M(S) for

Á! 0 is a union of absorbing sets of S (see e.g. Samuelson, 1994, Theorem

1). A set of states Q is absorbing with respect to S if S cannot cause the

process to leave Q and any state in Q is reached within �nite time from any

other state.

Due to condition (b) of De�nition 2 a singleton set can be absorbing only

if all strategies present in a population earn the same payo¤. Candidates

for absorbing states are therefore all equilibria and all monomorphic states,

that is, states in which all players of a population use the same strategy.

Given the best reply structure of ¡; inertia and condition (b) imply that

from any non�absorbing state there exists a sequence of transitions, each

occurring with positive probability, leading to some monomorphic state.

Hence, each absorbing set contains either an equilibrium or a monomorphic

state.

For N > 1=" it takes at least two mutations to leave the basin of attrac-

tion of (C;CC), that is, the set of states from which S returns to (C;CC)

with probability one. This follows because with only one mutation we have

that 8j 2 S2

eCA

·
N ¡ 1

N
eCC +

1

N
ej

¸
> eLA

·
N ¡ 1

N
eCC +

1

N
ej

¸

and 8j 2 S2; j 6= CC

eCCA

·
N ¡ 1

N
eC +

1

N
eL

¸
> ejA

·
N ¡ 1

N
eC +

1

N
eL

¸
:

Hence, by condition (a) the process must return to (C;CC) after one muta-

tion.

Using the terminology of Nöldeke and Samuelson (1993) the collection

of absorbing sets can be partitioned into (mutation connected) components.

kind can be obtained which holds for the entire class of payo¤ sensitive dynamics.
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A component is called locally stable if it takes more than one mutation to

reach any other component. Given that it takes at least 2mutations to leave

the basin of attraction of f(C;CC)g, this component is locally stable. We

claim that the remaining components are not locally stable as one mutation

is su¢cient to reach some other component.

Consider �rst the monomorphic states. If monomorphic states belong

to absorbing sets, then (C;FF), (C;FC), (L;FF), (L;FC) and (C;CF )

belong to the same component as they form a cycle in the sense of Nöldeke

and Samuelson (1993). Starting in (C;CF) suppose there is one mutation

to CC. By condition (a) the process can move only to states in which pCC is

increased. Therefore, the process converges to (C;CC) and the component

is not locally stable: Likewise, (C;CC) can be reached from (L;CC) ; and

(C;CF ) can be reached from (L;CF ). Consequently, (C;CC) is the unique

monomorphic state contained in a locally stable component.

Next, consider (p̂; q̂). One mutation to CC puts the process in the

basin of attraction of (C;CC): Finally, the best reply structure on the face

¢fFF;FCg £¢fC;Lg are the same as in a Matching Pennies game. Due

to the inertia assumption, with positive probability the dynamics spiral out-

wards and reach the set f(p; q) : pL < " and pFF + pFC = 1g : From there

by condition (a) CC will increase with positive probability. Hence, (C;CC)

can be reached from (~p; ~q) with one mutation. Consequently, f(C;CC)g is

the unique locally stable component.

By Proposition 1 of Nöldeke and Samuelson (1993) a state can appear in

the support of the limit distribution only if it belongs to a locally stable com-

ponent. Since f(C;CC)g is the unique locally stable component and a limit

distribution exists, (C;CC) has probability one in the limit distribution.

The result in this proposition was obtained by considering � for �xed

observational noise " � the limit behavior of the dynamics when the proba-

bility of �mutations� Á vanishes. It is also interesting to consider the reverse

order of limits: What happens if we �rst let the probability of observational

errors " go to zero and then consider the dynamics as Á converges to zero?
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The answer is simple as for vanishing " the Stackelberg equilibrium is the

unique strict equilibrium for all �xed Á > 0 and will therefore be selected

by the process. Which order of limits is more plausible depends on whether

one thinks that trembles in the execution of strategies or in their perception

are more likely to occur.11

3.3 Continuous best response dynamic

The continuous best response dynamic (Matsui, 1992, Hofbauer, 1995) is

de�ned as

_p = MBR(q)¡ p

_q = MBR(p)¡ q

where MBR(x) is a (possibly discontinuous) selection from the (mixed)

best response correspondence to the pro�le x. The interpretation is that at

any instant of time a small fraction of each (in�nite) population is allowed

to adjust its strategy and chooses a best reply against the current pro�le.

While each player chooses a pure strategy, mixtures are possible since dif-

ferent players may choose di¤erent pure strategy best responses.12 Note

that players when adjusting their strategies are assumed to know the exact

distribution of strategies in the other population. This cannot be justi�ed

if players sample only a �nite number of players. Thus, the informational

requirements underlying the continuous best response dynamic are quite

strong.

When signals are observed without error, FC is the unique best reply

for player II in any interior state. Given a su¢ciently large proportion of

player II individuals choosing FC, any player I individual will choose L.

Consequently, we have the following result.

Remark 2 Without noise, any trajectory starting in the interior will con-

verge to the Stackelberg outcome.

11See Adolph (1996) for a similar argument.
12See Hofbauer (1995) for the close relationship between the continuous best reply

process and �ctitious play.
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Next, we will show that this unambiguous prediction of the Stackelberg

outcome under the continuous best response dynamic will carry over to the

case of noisy signals.

Proposition 4 For 0 < " < 1=2 there are two asymptotically stable states,

(C;CC) and (~p; ~q). While the basin of attraction of (C;CC) vanishes as

"! 0, the basin of (~p; ~q) converges to ¢(S1)£¢(S2).

Proof. (C;CC) is a strict equilibrium and hence asymptotically stable.

We will show that trajectories starting in

M (") = f(p; q) 2¢(S1)£¢(S2) j p2 < minf1¡ "; 1¡ ¾ + ¾q2gg ;

where ¾ :=
"(2¡4")

1¡4"
, converge to (~p; ~q). This will complete the proof since for

"! 0; M (") converges to ¢(S1)£¢(S2):

Consider a state (p; q) 2M("). Since p2 < 1¡ ", CC is not a best reply.

Note that CF is strictly dominated for all " < 1=2 and is therefore never a

best reply. Thus, for all (p; q) 2M("), FC or FF are best replies for player

II.

We claim trajectories starting in M (") stay in M ("). Initial states in

which L is a best reply for player I are no problem since then _p1 > 0 and

M(") cannot be left.

Consider next initial states (p; q) in which C is a best reply for player I,

which implies that

q2 · q̂2 =
1

2¡ 4"
:

Suppose �rst that FC is a best reply for player II, i.e. p2 ¸ ". The best

response dynamics are always pointed in the direction of the best replies, in

this case, (C; FC): Thus, we have to show that

(1¡ ¸)(p; q) + ¸(C;FC) 2M(");

8¸ < 1
2¡4"

1¡q2(2¡4")

(1¡q2)
, i.e. for all ¸ such that the convex combination remains

in the region where (C;FC) are best replies. In particular, it must hold that

(1¡ ¸)p2 + ¸ · (1¡ ¸)(1¡ ¾ + ¾q2) + ¸;
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which is satis�ed by construction of M(").13

Finally, consider the case that FF is a best reply for player II at (p; q);

which implies that p2 · ": In this case _p2 > 0 but as long as p2 · ", M(")

cannot be left, which proves the claim.

Since only FC or FF can be best replies for player II in M("), all tra-

jectories starting in M(") have limit points in the face H := ¢fL;Cg £

¢fFC;FFg. Trajectories starting in H stay in H. On H; ¡ is a rescaled

version of �matching pennies�. By Theorem 7 in Hofbauer (1995) the contin-

uous best response dynamic on H converges to the unique Nash equilibrium

(~p; ~q) of this restricted game.

What remains to show is that trajectories approaching H behave like

trajectories starting on H . This can be done by de�ning an appropriate

distance function of the trajectory on H to (~p; ~q) that decreases strictly over

time for trajectories onH. Consequently, this distance also decreases strictly

for trajectories that are su¢ciently close to H . This can be used to show

that trajectories starting in the interior converge to the noisy Stackelberg

equilibrium (~p; ~q):14

Finally, (p̂; q̂) is not stable since there are arbitrarily close points to it

that belong to M ("), which means that there are trajectories that start

close to it and converge to (~p; ~q):
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