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Abstract

We consider two person bargaining games with interdependent preferences, with and without bi-
lateral incomplete information. We show that, both in the ultimatum game and in the two-stage
“alternating-offers game, our equilibrium predictions are fully consistent with all robust experi-
’mental regularities which falsify the standard game theoretic model: occurrence of disagreements,
disadvantageous counteroffers, and outcomes that come close to the equal split of the pie. In the
context of infinite horizon bargaining, the implications of the model pertaining to fair outcomes is
even stronger. In particular, the Coase property in our case generates “almost” 50-50 splits of the
pie, almost immediately. The present approach thus provides a positive theory for the frequently
encountered phenomenon of the 50-50 division of the gains from trade. We also show that the po-
tential interdependence of preferences entails the emergence of “near-fair” divisions in bargaining

settlements.
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1 Introduction

Fair divisions of gains from trade are commonly observed in daily life. They occur even in the case
of bargaining among two asymmetrically placed individuals one of whom holds a clear strategic
advantage over another. A striking example of this phenomenon is provided by Giith, Schmittberger
and Schwarze (1982) who studied experimentally the two-player ultimatum game, in which one
player, A, proposes a division of some fixed monetary amount, and his opponent, B, either accepts
or rejects. Giith et al. (1982) found that the average proposal by subjects.in the role of player A
was in the neighborhood of (70%,30%). Moreover, about 20 percent of proposals were rejected.

They interpreted this evidence as follows:

. subjects often rely on whai they consider a fair or justified result. Furthermore,
the ultimatum aspect cannot be completely exploited, since subjects do not hesitate to

punish if their opponents ask for “too much.” [Giith et al. (1982), p. 389]

What is paradoxical about all this is that the unique subgame perfect equilibrium of this game
has player A claiming the entire surplus for himself and player B agreeing to this. The findings of
Giith et al. (1982) thus casts serious doubts on the ability of game-theoretic predictions to match
observed behavior. .

The anomalies encountered in the ultimatum bargaining experiments have motivated a large
number of experimental and game-theoretical studies. (See Camerer and Thaler (1995) and Roth
(1995) for excellent surveys of the related experimental literature.) Particularly related to our
present inquiry are the important papers of Ochs and Roth (1989) and Bolton (1991), who ran
large experimental sessions-in which discount factors and subjects’ experience were varied along
with other structural parameters. Among others, these two studies uncovered three major robust
empirical regularities in alterﬁating—offers bargaining games. First, proposed divisions tend to move
away from equilibrium divisions toward the 50-50 division; the actual outcomes are “more fair”
than the usual prediction. Second, rejections, which should never be observed on the equilibrium
path, occur in significant numbers. Third, more often than not, subjects who reject an offer make
a disadvantageous counteroffer, that is, after rejecting a proposal that would leave them with =
dollars, they propose a new division that spares them less than z dollars.! Again, all of these
observations are in sharp contrast with the standard game-theoretic predictions.

One way of interpreting these findings is to argue that pure expected profit maximization cannot

be the only criterion guiding the choices of the players in bargaining games. For instance, among

14Gome plausible, but flawed” explanations of these regularities, based on sub jects’ confusion or lack of experience,

or even accidental designers’ influence, were considered and convincingly ruled out by Bolton (1991).



others, Ochs and Roth suggested that a notion of “fairness” may be influencing the subjects behav-
ior: more precisely, “fairness” leads players to reject “insultingly low” offers, and the anticipation of
this leads to proposing interior divisions.2 In a complementary study, Bolton (1991) has proposed
the idea that “fairness” may guide a subject’s behavior only when he is getting less surplus than
his opponent. To account for rejections, and disadvantageous counteroffers, Bolton also considered
a simple model in which players have incomplete information about their opponents’ preferences,
and engage in a myopic learning algorithm about the distribution of their opponents’ preferences.3
In this paper we argue that fair divisions of gains from trade need not be due to the innate
“fairness” of the individuals, but rather that fair outcomes might result as a consequence of the
spiteful nature of the bargainers. More specifically, we examine the implications of the possibility
i _that each player’s utility depends not only on her absolute level of earnings, but also on her relative
share of the total surplus. In the resulting bargaining model, each player’s private ‘type’ is referred
to as “independent” if and only if his utility depends exclusively on her absolute earnings, and
“(negatively) interdependent” otherwise. The latter kind of preferences relates to the time-honored
relative income hypothesis, and is thus much studied in various branches of economic literature (see
Frank (1987), Ok and Kogkesen (1997), and references cited therein). In the context of bargaining,
on the other hand, a negatively interdependent individual may be thought of as a competitive player
who does not wish to “lose the game” unless he is sufficiently compensated for it. Such preference
structures are particularly appealing in the present context, for, as we shall demonstrate in the

sequel, they square nicely with the presence of the “fear of punishment/rejection” a bargainer may

have. As the above quotatlon from Giith et al (1982) states, and as many other expenmentalw "

of “fear of rejection” to the bargaining models. One major objective of the present paper is to show

that this can be accomplished-by means of negatively interdependent preferences.?

2The idea that the players are simply trying to be “fair,” did not really pass the ‘dictator game’ test satisfactorily.
In this game, one subject single-handedly decides how to divide a given surplus between himself and another subject.
In the related experiments, the deciding subject has most often claimed the entire surplus for himself and the
distribution of divisions has appeared to be bimodal with the higher mode being on the extreme division (Forsythe,

Horowitz, Savin and Sefton, 1994). We shall comment on the relation of our work to the dictator game in Section 7.

3This model is, however, built on restrictive assumptions. For instance, Bolton assumes that the true distribution
of players’ types is such that the game has a unique equilibrium, in which the initial offer is always accepted. We

shall subsequently elaborate on the relation between our work and Bolton (1991).

4 Alternative models that perturb the individual utility functions are considered by Rabin (1993), Daughety (1994),
Kirschteiger (1994), Andreoni and Miller (1996), and Levine (1997). Several other psychological-economic approaches

that provide alternatives to the standard expected profit maximization paradigm are outlined in Rabin (1998).



Among the empirical regularities noted above, we are foremost interested in the one that pertains
to the unexpectedly fair divisions of the pie. Apart from the experiments, the real life transactions
that frequently result in the 50-50 split motivates our interest in this phenomenon. There is, of
course, a literature that studies the emergence of the equal division as a focal point, but few
studies examined the conditions under which the 50-50 split is actually an equilibrium outcome of
a bargaining game played among rational individuals.® In this paper, we aim to show that very
egalitarian outcomes can indeed be sustained in bargaining equilibrium, provided that bargainers
have possibly interdependent preferences that leads to a “fear of rejection” on the part of the players.
When one models the bargaining environment in such a way that the level of competitiveness
(interdependence) of the players are their private information, it also becomes possible to “explain”

__the occurrence of disagreements and disadvantageous counteroffers.
~ It is worth noting at the outset that the present paper does not intend to suggest that negatively
interdependent preferences could be used to explain the data from a large variety of experiments.
We focus exclusively on bargaining experiments, and thus our approach contrasts with that of
Andreoni and Miller (1996) and Levine (1997). Neither would we like to argue that our findings
in any sense falsify the possibility that individuals interact with each other under at least a partial
guidance of altruism. There are numerous experiments (notably, not of bargaining type) the results
of which are better explained by altruism than spitefulness. By no means, we regard the present
study as providing evidence for the simplistic statement that “people are spiteful.”® Instead, we
argue that negatively interdependent preferences allow one to extend the usual bargaining model in
~ - a'way to incorporate the pot_ent-ial competitiveness/aggressiveness of the bargainers., ';Ig‘__,;t;_l;‘g?gpnteg.ct_ )
.T;.v.w.«.-;:ofb'argaining, such preferences make good intuitive sense, and they producer-qtmlitati-vepredi&iéﬁs
that match the data well. What is more, they lead to interesting theoretical results in the context
of the usual infinite horizon-bargaining models. Our main message is simply that it is possible

to substantiate the theory of bargaining by modeling the bargainers as possibly interdependent

5Most papers that examine the origin of fair outcomes in bargaining games are evolutionary in nature. Young
(1993), for instance, studies an evolutionary model of the Nash demand game played between two populations who
learn adaptively. Young shows that the equal split can be the unique stable division depending on the nature of the
expected utility function. (See Ellingsen, 1997, for a similar analysis.) Bolton (1997), on the other hand, provides an
alternative bargaining game at leasf one (limit) evolutionarily stable equilibrium of which results in the equal split.

(A modification of the model ensures the uniqueness of this equilibrium.)

6 After all, it is not clear why an individual cannot act altruistically in, say, a public good problem that involve many
potential contributors, while she behaves aggressively in a two-person face-to-face bargaining situation. Admittedly,

however, endogeneity of preferences is a complicated (but very interesting) issue about which we have little to say at

present.



agents, at least insofar as the predictions regarding the egalitarian divisions of gains from trade are
concerned.

The paper is organized as follows. In Section 2 we specify the assumptions on the players’
preferences and the bargaining environment, and briefly comment on the significance of the inter-
dependence assumption both for bargaining theory and for other areas of economic analysis. In
Section 3, we show that the ultimatum game in which players’ preferences may be interdependent
has a unique equilibrium, in which the proposed division can be rejected, and is always between
the equilibrium with independent preferences and the 50-50 division.

In Section 4, we analyze two-stage alternating offer bargaining games, and prove the existence of
perfect Bayesian equilibria in which both rejections and disadvantageous counteroffers are possible.

__This result provides a rational explanation for the occurretce of disadvantageous counteroffers, say,

.in the experiments of Ochs and Roth (1989). We also prove that disadvantageous counteroffers
cannot occur in a model in which the monetary surplus remains constant across time periods, and
the players’ utility is discounted through time. We therefore claim that disadvantageous counterof-
fers can only be observed in the experiments in which, for practical reasons, it is the size of the pie
that is discounted.

In Section 5, we focus on the implications of (possibly) interdependent preferences in bargaining,
by examining certain scenarios with infinite horizon. It turns out that an interesting case in which
players have interdependent preferences is essentially identical to the “gap case” of the much studied
buyer-seller bargaining model, with risk neutral players Therefore, all the results known in that

.. context apply immediately.to.ours. .In partlcular the fameus “Coase conJecture ”--established by~

-Gul, .Sonnenschein and Wilson (1986), implies the. following in the pseseﬁt setting: as the frequency
“of offers increases arbitrarily, even the smallest doubt in the mind of the player who makes all the
offers about his opponent’s degree of interdependence being relatively high, induces him to propose
a division relatively close to the 50-50 split, almost immediately. We believe that this result is but
an important step towards providing a rational theory of equal division.

Finally, in Section 6, we adopt a mechanism design approach, and examine the conditions under
which the potential interdependence of preferences would enforce the emergence of fair outcomes

in bargaining settlements. The paper concludes with a brief discussion of directions for future

research.



- her share of the pie—r;; but also-abou

2 The Bargaining Environment and Interdependent Preferences

We consider a bargaining environment in which two players try to agree on how to divide a pie of
size 2m, where m > 1. In case of disagreement, each player receives ¢ € (0,m).” Thus, the size of
the pie, net of the bargainers’ holdings, is 2m — 2e. Equivalently, we can assume that the players
have an initial level of wealth € and are bargaining over a pie of size 2m — 2¢, which is wasted if
disagreement occurs. Without loss of generality, we let € = 1, so that the set of all feasible divisions
of the pie is

X ={(za,z8) > (1,1) : z4 + zp < 2m},

while the set of all efficient divisions is given by

e Y ={(z4,z8) € X : x4 + 2B = 2m}.

In this paper, we examine the consequences of the possibility that the bargainers’ welfare depend
not only on the absolute gains that they may achieve through bargaining, but also on the relative
sizes of the slices of the pie that they get. More precisely, we assume that the utility function of
each player ¢ = A, B on X, denoted u;, is of the following form: v

ui(za,zB) = V; (wz,?) (fl)

where V; is a continuous and strictly increasing function on R2, and Z = (z4 + z5) /2. Thus, we

model the preferences as (possibly) being negatively interdependent: player i cares not only about

BT € éQfﬁpai‘és “with"the avérage Tevel of ea.rmngs z.8

e

s JOF sampherty, we normalize-¥- smmhememnt“butéome Hives z6r'd Utility to each player:

Vi(1,1) =
A natural index for the degree to which player 7 is interdependent is the minimum share of

the pie that she must be given in order for her to be at least as well off as she would be at the

disagreement outcome. That is, the reservation amount, r;, which is uniquely determined by the

equation®

Vi (r,-, %) =0, (2)

"We require £ > 0 in order to avoid the indeterminate form 0/0.

8This particular utility representation of interdependent preferences is axiomatically characterized by Ok and

Kockesen (1997).

9Since m > 1, we have
Vi (1-%) <Vi(1,1) = 0 < Vi (m, 1).

Therefore, by strict monotonicity and continuity of V;, there exists a unique r; € (1, m) such that (2) is satisfied.



indicates how interdependent player ¢ really is. We say that individuals A and B are equally
interdependent (or, equally competitive) if r4 = rp.

The presence of negative interdependence is the main feature that distinguishes this paper from
the existing literature on bargaining. We contend that negative interdependence is a meaningful
postulate, the significance of which extends well beyond bargaining theory. Indeed, there is a
voluminous literature examining the reasons behind and the consequences of Duesenberry’s relative
income hypothesis which holds that economic agents care not only about their absolute level of
earnings, but also about how their earnings compare with those of others. There is now abundant
empirical and experimental evidence in support of this hypothesis; see Frank (1987a), Clark and
Oswald (1996), and references cited therein.

.. In bargaining situations, the possibility that players may have interdependent preferences can
~also account for the fear of rejection that a bargainer may have in case she makes an offer that
favors herself disproportionately. It is not unreasonable to think of a bargainer A who does not
propose an allocation that spares the entire pie to herself as reasoning along the following lines:
“If I offer an allocation that would leave B with a very small share of the pie, she may get upset
and reject my offer. My share of the pie should then be still higher than hers, but not so large as
to offend her.” If we assume that the preferences of B are as in (1), it is easy to see that the gist
of this reasoning will influence A’s behavior when it is her turn to make a proposal. Introducing
interdependent preferences into bargaining models may then be thought of as modeling (in reduced-
form) the notion of “fear of rejection,” which commands considerable experimental support (Bolton
and Zwick, 1990). -« . . e

There are ;Q;llxyfewwsiiudies}iihét investigate how-the main insights-of-the-theory of bargaining

would be affected by the presence of interdependent preferences. These studies, most notably Bolton
(1991) and Kirschteiger (1996), focus only on specific formulations of interdependent preferences,
which are tailored to the experimental bargaining games that they analyze.’® Therefore, while
these authors demonstrate nicely that the idea of interdependent preferences passes important
preliminary tests in explaining experimental evidence, it is still not clear at this point what general
insight can be gained by introducing such preferences into bargaining theory. As noted earlier, the
aim of this paper is to make use of the general utility specification given in (1), agd argue that

the possibility of interdependent preferences can explain commonly observed regularities such as

10For instance, the preferences considered by Bolton (1991) are not well-defined in an infinite horizon bargaining
model (with discounting) where the size of the pie remains unchanged through time. On the other hand, while the
model of “envious preferences” of Kirchsteiger (1996) is more general (for it allows the discounting of utilities) and

is closer to our model in spirit, it does not allow for bargaining games with incomplete information.



the occurrence of disagreements, disadvantageous counteroffers, and the outcomes that come very

close to the equal split of the pie.
We proceed by reviewing some other rudiments of bargaining theory. The bargaining problem

(in the sense of Nash) associated with the abstract setting specified above is (i, d) where the utility

U={(va(va2),vs (25,2)) : ze x}

and the disagreement point d is (0,0). The bargaining set of the problem (i, d), denoted B(l{), is

possibility set I{ is

defined as the set of all Pareto optimal and individually rational utility allocations in ¢/, that is,

BU) = {(VA (zA‘%A) Vs (xB%B)) >(0,0):z € Y} :

"It is important to note tha.ti the bargaining set of a situation with interdependent preferences
"is smaller than that of a usual bargaining situation with independent preferences. As Figure 1
illustrates, this is due to the individual rationality constraint.

For future reference, we note that I/ is compact and has nonempty interior in R?'__'_. Given only
the assumptions on V that we have made so far (namely, continuity and monotonicity), it is not
possible to say more on the structure of &f and B(U). In particular, I need not be convex (even
when both u4 and up are concave in their first argument). If each u; is a concave function, howevér,

then U is convex. Moreover, it can be shown that U/ is, in general, not “too non-convex”, in the

sense that B({) is always a connected set.

B e T

“§ “'Phe Ultimatum Game
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In this section we study the classic ultimatum game, with interdependent preferences. The rules of
the game are simple: player A proposes an allocation z € Y, and player B either accepts or rejects
A’s offer. If player B accepts, the proposed allocation is realized. Otherwise, both players receive
the disagreement outcome (1,1).

Before proceeding, we should note that the ultimatum game has played a central role in the re-
cent experimental work on bargaining. This is largely due to the fact that the standard equilibrium
prediction, based on the assumption that bargainers are money-maximizers, differs substantially
from experimental findings. Indeed, if the players care only about their own earnings, the unique
subgame perfect equilibrium of the game dictates that player A should claim the whole pie (net of
what player B is guaranteed by design). However, in experiments it is consistently observed that
subjects in the role of player A tend to propose divisions of the pie that spare their opponents

significantly more than the feasible minimum. Moreover, second-movers (i.e., subjects in the role



of player B) tend to reject offers which provide them with relatively small shares of the pie, even
though these offers would leave them with strictly more than the minimum possible.!! In other
words, in experiments one typically observes that the players either disagree, or agree on a division
of the pie which is “more fair” than what the theory predicts. The analysis in this section will
show that these are precisely the predictions of game theory if one admits the possibility that the

preferences of player B may exhibit some degree of interdependenbe.

3.1 Ultimatum Bargaining with Complete Information

In this subsection we assume that both player’s utility functions are common knowledge. Part of
this assumption is actually unnecessary, however: the discussion below only assumes that player A
-knows her opponent’s utility function.
> Let us begin by noting that there is a unique offer in the set Y which leaves player B indifferent
between accepting and rejecting. Recalling (2), we observe that this offer is (2m—rp,rp), where rg
is the reservation amount of player B. In any subgame perfect equilibrium then, player B accepts
(rejects) any proposal z € Y with g > (<) rp; and player A proposes (2m — rp,rp), because
m > rpg implies that
Va (2m ~rg, 3"%) > Va(1,1) =0

by strict monotonicity of V4. Thus, we have:

Proposition 1. The unique subgame perfect equilibrium outcome of the ultimatum bargaining game

~ described above is: Player A offers (2m —rpg,rp) and player B accepts, . A e e

ARG T T

Proposition 1 shows that if player A knows his opponent’s utility function, he cannot receive as
large a share as 2m — 1 when-player B has interdependent preferences. This is because A knows
that B strictly prefers the disagreement allocation to the allocation (2m — 1,1). Consequently,
the presence of interdependent preferences induces deviations towards the “equal split” in the
ultimatum game with complete information. The intuition is simply that, knowing that B has
interdependent preferences, A fears rejection. As also noted by Bolton (1991) and Kirchsteiger
(1994), the interdependent preferences could thus be thought of as an indirect way of modeling the

presence of “fear of rejection” on the part of the first-movers.

' As noted in the introduction, these regularities we first noted by Guth, Schmittberger and Schwarze (1982).
Camerer and Thaler (1995) and Roth (1995) provide detailed surveys of the related experimental literature.



3.2 Ultimatum Bargaining with Incomplete Information

In the ultimatum game with independent preferences, the assumption of complete information is
innocuous, since the equilibrium does not depend on the specifics of the players’ utility functions
(as long as they are increasing in one’s own income). With interdependent preferences, however, the
complete information postulate is less readily acceptable. It is more realistic to assume instead that
each player is unsure about the his opponent’s degree of interdependence.12 Thus, in this subsection
we reformulate the ultimatum game with interdependent preferences as a game of incomplete
information.

Take any ©; > 0, and assume that [0,8i] is the type space of each player i = A, B. We express

the utility function of player i, u; : X x [0,0i] - R, as |

] w (24,25 | 6) = Vi (2,2 | 6)), 3)

where Vi(1,1 | 6;) is normalized to zero for each 6; € [0,6;]. All functions V;(,- | 6;) for 8; € (0,6;]
are continuous and strictly increasing in both arguments, while V;(-,- | 0) is assumed to be strictly
increasing in its first argument, and independent of the second argument. Thus, type 6; = 0
corresponds to the type with independent preferences. .

Recall that (2) defines player i’s unique reservation amount for a given utility function V;. Of
course, different types 6; have different reservation amounts. The equation V; (r;,r;/m | 6;) = 0
defines a function 7; : [0, 6;] — R, which specifies the reservation amount for each type 6; € [0,0;].
Clearly, 7; (0) = 1, since V(l 1/m | 0) = Vi(1,1 | 0) = 0. Moreoverr,'wr_,-(f_,-) € (1,m) for any
0;€(0,0, since e R et e ’

r; (0)

(1R 1) < U010 3 (00, 202 10) <001 100 < i 1,

In what follows we wish to think of higher types as more competitive players. Therefore, we
invoke the following assumptlon that associates higher types 6; with higher levels of reservation

amounts;

Assumption [A]: r; is strictly increasing on [0,0;], i = A, B.

12 As rightly stated by Bolton (1991, p. 1112), “... the marginal rate of substitution between absolute and relative
money most likely varies by individual, making utility functions private information.” A similar point was made also
by Kennan and Wilson (1993), p. 93, who argue that the most bargaining experiments in the literature “can be
interpreted, in effect, as involving bargaining with private information, as evidently most players did not know the

preferences of the opposing bargainer.”



This assumption relates the magnitude of each player’s type to her level of interdependence in a
natural way: if type 6; of player i prefers the disagreement outcome (1,1) to an outcome z =
(z4,zB), then any type 8} > 6; strictly prefers (1,1) to z.

We assume that 8 is privately known by player B. It will become clear shortly that the equilib-
rium in the ultimatum game does not depend on whether player A’s type is private information or
not. Player A’s beliefs about fp are represented by a continuous cumulative distribution function
F:[0,6g] — [0,1].12

To determine the subgame perfect equilibria of the ultimatum game, we define the function 75
as

Tp(zB) = r5z' (zg) forall zp € [l,rp CIP

i
--This function specifies a critical level of interdependence 75 (zB) below which player B accepts

~and above which he rejects any given offer (2m — zp,zp). Indeed, by [A], 05 S 75 (zp) implies

’ m > ’ m )

Consequently, in any subgame perfect equilibrium, player A of type 64 chooses zg € [1,m) in ordgr
to maximize the following objective function:

2m—:v3
m

VA (Zm — g, I 0A) F(TB (xB)) . (4)

We thus obtain the following result.

Proposition 2. Under the assumption [A], any perfect Ba; uilibrium outcome of the

ultimatum bargaining game with interdependent preferences has the 1o Jwing structure: Player A
proposes a division (2m —z5(84),zp(64)) where z5(04) € [1,m) mazimizes the expression in (4).
Player B accepts if her true type 6p is strictly lower than the critical threshold T8(zB(64)), and

rejects if Tg(zp(64)) < 6p.

Proposition 2 establishes that the two major “puzzling” regularities observed in ultimatum bar-
gaining experiments, namely interior offers and rejections, are fully consistent with game theoretic
equilibrium behavior. Once one accepts the idea that the competitive nature of bargainers plays a
role in ultimatum experiments, it is realistic to assume that the exact degree of a player’s interde-

pendence is her private information. In this case, Proposition 2 shows that, for generic probability

13Continuity of F does not really play a significant role here. It is easy to modify the following analysis to account

for discrete distributions.

10



distributions representing player A’s beliefs about his opponent’s preferences, all equilibrium offers
must indeed be “more fair” than (2m — 1,1), but less fair than (m,m), and rejections occur with

positive probability.

4 Two-Period Bargaining

In this section we investigate the two-period alternating-offer bargaining game where players have
interdependent preferences, as defined in Subsection 2.1. The game is played in two periods. In
the first period, player A proposes an allocation in Y which player B either accepts or rejects. In
the former case, player A’s proposal is realized, while in the latter case the game advances to the
second period, in which the players switch roles: player B proposes an allocation (za,zB), and
player A either accepts or rejects, with rejection resulting in disagreement.

The standard Stahl (1972) model posits that, if B’s proposal is accepted in the second period,
player i = A, B achieves a utility level of §;u; (za4,zB), where §; € (0,1) is player i’s discount
factor. However, this particular representation of the players’ time preferences makes it difficult
to understand the implications of our results for the bargaining experiments. This is because, in
experiments, it is rather the size of the pie that is discounted as the game moves from one period to
the next. Thus, the utility of player ¢ at the allocation (z4,zB) in period 2 is u;(64z 4,6 BZB) (cf.
Bolton, 1991). As we shall see in Subsection 4.2, it is this particular feature of the experimental
design that generates disadvantageous counteroffers in the presence of interdependent preferences

and incomplete information.

Before turmng to-the. experlments however, we shall ﬁrst brleﬁy comment on how interde-..

“pétidencé of preferences alters the subgame perfect equlhbnum strategies in the standard Stahl

bargaining model with complete information. While this model is not applicable to the two-period
bargaining experiments, it is useful in identifying the basic interplay between the roles of the dis-
count factors and the reservation amounts of the individuals. It also paves the way towards the
analysis of the Rubinstein bargaining model presented in the next section. In Subsection 4.2, we
shall turn our attention to bargaining experiments, and relate the implications of the present model
(with incomplete information and alternating offers) to the findings of Ochs and Roth (1989) and
Bolton (1991). '

4.1 Alternating-Offer Bargaining with Complete Information

Throughout this subsection, we assume that, in case player B’s proposal (z4,zp) is realized in the

second period, the utility of player i is biui(z4,zp). Of course, if player A rejects B’s offer, the

11

i
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game ends in disagreement.

Just as in the standard case (in which players are assumed to have independent preferences) the
unique subgame perfect equilibrium of the game is obtained by backward induction in a straight-
forward manner: if the second period is reached, B proposes the allocation (ra,2m —r4) where
T4 € (1,m) is A’s reservation amount, and A accepts. Therefore, player A in the first period
proposes the allocation that leaves player B indifferent between accepting and rejecting: that is,

she proposes (2m — zp (6B) , 25 (6B)) , where zp (65) is uniquely determined by

Vs <x3 (68) ﬂ’i—g—f’)) = 65V (Zm —rA,?m—n:ﬂ> . (5)

The structure of the equilibrium strategies readily from this equation: player A proposes (2m —
-zp(68), B(6p)) in the first period, and accepts in the second period a division like (€4,2m —€&y)
~if and only if £4 > r4; player B accepts the allocation (2m — £p, ¢ p) in the first period if and only

if g > zp (6p), and proposes (r4,2m —r4) in the second period.

Owing to the continuity and strict monotonicity of Vg, the function zg : (0,1) — (rg,2m — r4)
is well-defined and strictly increasing. Thus, the introduction of interdependence does not modify
the basic insights of the standard two-period alternating offer bargaining game: the equilibrium
payoff of player B increases as her degree of patience increases, and/or the amount of time elapsing
between the first and second period decreases. As §p becomes arbitrarily close to zero, say because
the second period is pushed far into the future, the two-stage game collapses into the ultimatum
game that we have analyzed in the previous section. Thus player B is better off in the two-stage
game, relative to the ultimatum game, for any positive value of his discount.factor.. At the other
extreme, for 6p close to one, the two-stage game is essentially equivalent to the ultimatum game
in which player B proposes the division (r4,2m — r4) and player A accepts.

Clearly, the 50-50 division(m,m) is obtained in equilibrium if and only if 5 = :1:1_91 (m); thus,
in the two-stage game, player A enjoys a first-mover advantage if and only if her discount factor
exceeds the critical value :1:1*31 (m) . Yet, given its generality, the present model has little to say about
the magnitude of :cgl (m) . Whether there is a first-mover advantage or not depends both on how
patient B is and how competitive both players are. It turns out, however, that if the utility function
of player B is (strictly) concave, then the critical value satisfies 3! (m) > (>) 1/2, provided that
the players are equally interdependent, that is, when r4 = rp. Therefore, if Vg is concave and
ép € [0,1/2), a first-mover advantage obtains even when the players are equally competitive.l4

(This observation parallels Proposition 2 of Bolton, 1991.)

"The condition §p < 1/2 is sufficient but not necessary for the presence of a first-mover advantage when u; is
concave. For instance, if u;(z) = \/z; + 1/zi/Z for all z € X, we have m > z(6g) for all 65 < 0.513.
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We summarize the above discussion in the following

Proposition 3. The unique subgame perfect equilibrium outcome of the two-period alternating-
offer bargaining game described above has the following structure: player A proposes (2m—zp (65),
zp(6B)) in the first period, where zg (65) is defined by (5), and player B accepts. Moreover, we
have:

(a) 8 < €g(6B) < 2m —r4 for all §p € (0, 1);

(b) the function &g (6B) is a continuous and strictly increasing;

(c) if r4 >rp and Vp is concave, then £ (6B) <m for all 65 € [0, 1/2).

Propoéition 3 does not say much about the fairness of the equilibrium divisions, that is, about
--their closeness tci) the 50-50 split (m,m). Given the generality of the utility functions we consider
~here and the effect of the discount factor, which increases the bargaining power of player B, it

is difficult to see if the presence of interdependent preferences causes a deviation towards the
50-50 division in general.’® The following, example, however, illustrates clearly that this would
be precisely the prediction of our model, had we confined our attention to a linear preference

specification. We shall in fact make extensive use of this specification in Section 5.

Ezample. Let 6 € [0,1) and assume that

wi(za,5) =V(:z:,-,%) =(1-6)z + o% ~1

for all (z4,z8) € X, i = A, B. Note.that the.tw
0: - The reservation amount of each individual, s a fiinction of 8, is found via (2)

- r(€)=<1—0+%)_1.

Hence, by using (5) and Proposmon 3, we determine that in equilibrium player A offers (2m -

zp (68;0) , x5 (6B;)) where

rs-aze equally- mterdependent and V(l 1)

Vet

zp (6p;0) =7(0) [26p (1-6) (m—1) + 1] forall 6,65 €[0,1). (6)

(Notice that by choosing 8 = 0, we obtain the equilibrium share of player B in the standard case
in which all players are independent.) There are two things that are interesting about (6). First,
it shows that z5(1/2;6) = m for all 6 € [0,1). Thus, a first-mover advantage exists in this game if
and only if 6p < 1/2; the bound found in Proposition 3(c) turns out to be tight in this example,

'¥Once again, this question is meaningful only when players are equally competitive, i.e., rq4 = rg.

13

T



owing to the fact that V is an affine function. Second, (6) shows that the more interdependent

players are, the more fair the equilibrium outcomes will be. To see this, observe that

Ozp (68;0)
06
Thus, if 6p < (>) 1/2, there is first (second)-mover advantage and the equilibrium share of the

(1 - —) (1-26p) 7'(0)2 0 whenever 65<1/2.

second (first)-mover is strictly increasing in 6.

4.2 Alternating-Offer Bargaining with Incomplete Information

Arguably, the most paradoxical regularity emerging from the experimental data is that “a substan-
tial percentage of rejected offers were followed by disadvantageous counterproposals” (Ochs and
Roth, 1988, p. 376). Neither Stahl’s original model with independent preferences nor our variation
- w1th interdependent preferences outlined in the previous subsection, with or without incomplete
mformatlon can reconcile this evidence with equilibrium behavior. The reason is that a necessary

condition for B to reject A’s initial offer in equilibrium is
B
up(z4,zB) = Va(zp, ) < 68VE(ys, %B) =0pup(ya,ys), (M)

where (y4,y5) € Y is B’s second period equilibrium offer. But since sequential rationality ensures
Yp 2 7B, i-e. up(ya,yp) > 0, the monotonicity of Vg and (7) jointly imply that yg > x5 for é,ll
ép € [0,1]. .

This argument, however, depends crucially on the assumption that individuals’ utilities are
discounted through periods. But in the experiments it is the size of the pie that is discounted when
the game movesfrggngng_gggm nexf..while the entire game lasts only a short “amount of
time; hence we can reasonably assume that the stbjects incur no cost due tomthepassageof real
time: that is, if the game ends in agreement at the second stage, and the pie shrinks from size k to
size 6k, the utility of each player i = A, B is u; (z4,0ik — z4) instead of 6;u; (Ta,k—x4).

ThlS difference between the standard theoretical model and the game played in the experiments,
while inessential under the assumption that the players preferences are known to be independent,
is crucial for the presence of disadvantageous counteroffers in equilibrium once player A admits
the possibility that his opponent may have interdependent preferences. To see why, consider the
following model which captures the essential features of the games played in the experiments, while
conforming to our assumptions on the players’ preferences. First, player A proposes an allocation
in Y, and player B either accepts, thus ending the game, or rejects. If B rejects, the game enters a

second stage, in which the net piel® shrinks from 2m — 2 to § (2m - 2), and B proposes a division

'®Recall that each player must receive at least one unit. Hence the surplus on which the players bargain is effectively
2m — 2.
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in the set
Y(6) = {(ya>y) = (1,1) : ya +yp = 2+ 6(2m — 2)},

where 6 € (0, 1] stands for the common rate at which the pie is discounted.

We assume that the player i is either of type 0 or of type ©; > 0, i = A,B and, as in
Subsection 3.2, the utility functions satisfy (3). Type O has independent preferences, hence her
reservation amount is r; (0) = 1, while type ©; has (strictly) interdependent preferences, hence
her reservation amount r;(0;) is strictly higher than 1. If the game ends in the first stage, with
agreement on division (x4,zp) € Y, the utility of player 7 is Vi(zi, zi/m | 6;). If the game enters the
second stage, and B proposes (y4,y5) € Y (6), the utility of player i would be V(yi, mﬁ‘ﬁTﬁ |6;)
if A accepts, and zero otherwise. Finally, the beliefs of player i about player j are represented by

-7; € [0,1], with ; = Prob[§; = ©;]; that is, m4 is the probability that B assigns to the event that
A is interdependent, and similarly for 7 5.

Of course, if m4 = mp = 0, then the model collapses into a complete information bargaining
game with independent preferences. It is readily verified that, in the unique subgame perfect equi-
librium of this game, player A proposes (1+(1-8@Em-2),1+6 (2m — 2)) in the first period,
and player B accepts. Following Bolton (1991), we shall refer to this allocation as the pecuniary
equilibrium from now on.

When w4, 75 > 0, the model carries the basic features of a signaling game, thus admitting great
many perfect Bayesian equilibria, the full characterization of which falls beyond our present scope.

Our aim in this subsection is simply to show that all the experimental regularities, and in particular

the occurrence of disadyaqta.geou§ counteroffers, are consistent with equilibrium behavior, ~
. Befor
tageous counteroffers may arise in equilibrium. Consider Figure 2 in which the bargaining sets

R R i s E

> stating ;hg%rmal results, .we. provide -a heuristte argument that shows how disadvan-

Y and Y/(6) are plotted with some indifference curves for both players. The independent type of
each player does not care about his opponent’s share of the surplus: hence A’s indifference curves
are vertical if §4 = 0, and B'’s curves are horizontal if 6p = 0. The indifference curves of the
interdependent type of each player instead are upward sloping, since their utility decreases if their
opponent’s share increases. For instance, type ©4 of player A is indifferent between receiving the
disagreement outcome (1,1) and the allocation y. Similarly, type ©p of B is indifferent between
the allocations y and 21.

Now consider an allocation like z in Figure 2, and suppose that both types of A offer z in the first

17 The analysis of the model and the results reported below would remain true with inessential modifications, if we
allowed for different discount rates and more than two types. We invoke these two assumptions here only to simplify

the exposition.
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period. If B is pessimistic enough, i.e., 74 is high enough, then, in any perfect Bayesian equilibrium,
he will propose the division y € Y (6) in the second stage, whatever his level of interdependence,
and both types of A would accept. Therefore, it will be optimal for type 0 of B to accept the
proposal z.

But is it optimal for type 65 of B to accept this offer when 74 is high? The answer is no, for
if B rejects z and offers y in the second period, she is certain that both types of A will accept her
offer. Since type ©p of B strictly prefers y to = (y is on a higher indifference curve than is x), type
O©p will indeed reject A’s offer z, and counteroffer y in the second stage. But notice that y is a
disadvantageous counteroffer for B; that is zg > yp!

The above argument suggests that disadvantageous counteroffers should not be considered para-

_doxical when we allow for potendially interdependent preferences. The main result of this section

Js stated next.

Proposition 4. There ezist 74,75 € (0,1) such that, for all § € (0,1), the two-period alternating-
offer bargaining game described above admits q continuum many pure strategy perfect Bayesian
equilibria that have the following features:

(i) both types of A make the same initial offer; )

(%) type 0 of B accepts while type Op of B rejects and makes a disadvantageous counteroffer
in the second period, which both types of A accept;

(i1i) there exists & € [0,1) such that A’s initial offer deviates from the pecuniary equilibrium in
the direction of 50-50 division for all § > §;

SR R

e wm{(10) Wwe have

S R

et

}i_rfi a:’(6,‘0) = {(r4(B4),2m —714(84))} forallge {0,604} x {0, OB},

where z(8,0) C X denotes the set of all equilibrium allocations at state 6.

Proposition 4 is interesting in that it shows that the bargaining model at hand is capable of
predicting the rejection of first-period offers that are followed by disadvantageous counteroffers
in equilibrium.18 Moreover, this result shows that one should not be surprised to see opening
offers in the experiments that deviate towards the 50-50 division when 6§ is sufficiently high. Of
course, not all equilibria possess these properties; there are many other equilibria of the game than
those mentioned in Proposition 4. The point is that when we model the bargaining experiments

by using interdependent preferences with the degree of interdependence of players being private

'®As for belief-based refinement properties of these equilibria, we should note that they satisfy the intuitive criterion
of Cho and Kreps (1987).

16



information, what seems like paradoxical plays become perfectly reasonable equilibrium behavior.
In a qualitative sense, then, we would like to argue that the present model fits the data fairly well.1?

In passing, we note that the outcome-fairness properties of the equilibria mentioned in propo-
sition 4 are in line with the main thesis of the paper. Since the presence of discounting again
shadows the potential of making comparisons with the pecuniary equilibrium, we choose to make
this comparison for large é. In this case, all equilibria in Proposition 4 envisage a deviation of both
the opening offers and the equilibrium allocations towards the 50-50 division. This follows from
part (iv) of the proposition and the fact that the pecuniary equilibrium converges to (1,2m — 1) as

§— 1.

-5 Infinite Horizon Bargaining Models

-

The findings of the previous sections suggest that enriching the bargaining games with the potential
presence of interdependent preferences can be useful. However, while these findings allow us to
compare the predictions of the proposed models with those of the experiments, they do not apply
to more realistic bargaining scenarios, with a potentially infinite time duration. It is important to
study infinite horizon bargaining games because in many situations that involve substantial gains
from trade, it would be unrealistic to postulate that bargainers could credibly commit themselves
not to trade just because a certain amount of time has elapsed. This is in fact the main reason
why an extensive part of the bargaining theory is devoted to infinite horizon games.
Consequently, in this section we study a number of infinite horizon bargaining models with
interdependent preferences. We begln with the classmal Rubinstein model and then consider
) bargalmng games with incomplete information. Our aim is again to understand the implications of
(possibly) interdependent preferences with regard to the fairness (i-e. closeness to the 50-50 split)
of the equilibrium outcomes. We wish to show that the insight of our earlier findings remain valid
in infinite horizon models as well: admitting the possibility of interdependent preferences generates
results that are consistent with the high frequency of “fair divisions” commonly observed in daily
life. In fact, we shall observe that in some cases even the slightest possibility of interdependence is

enough to guarantee such predictions.

19 Another oft-quoted regularity observed in the related experiments is the considerable effect that the discount
factor of A has on the equilibrium outcome. It is easy to see that this phenomenon would be completely accounted for
in our model, had we allowed for different discount rates for players. This is again primarily due to the discounting

of the pie as opposed to utilities.
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5.1 The Rubinstein Bargaining Game

In Rubinstein’s model, player A (player B) proposes an allocation in Y in period 1 (period 2,
resp.), and at every odd (even, resp.) period, until one of the offers is accepted. If no offer is ever
accepted, then the outcome of the game is the disagreement outcome, i.e. (1,1).Ifa proposalz € Y
is accepted in period ¢, the utility of player i is 5t‘1u,-(a:A,a:B), where § € (0,1) is the discount
rate.?0 Both players obtain zero utility in the case of disagreement.

Throughout this section, we shall adopt the following simple one-parameter, specification of the
utility function u;: |
e e +"‘;B)/2 1, i=A,B, | 8)

“where (z4,z5) € X and 0 < 6; < 1. There are two important advantages of this specification. First,

ui (24,28 | 0:) = (1-6;) z; + 6

“it guarantees the existence of a unique subgame perfect equilibrium of the game at hand.?! Second,
its simplicity allows us to perform a meaningful comparative statics analysis. This is important,
since our main objective here is to compare the equilibrium outcomes of Rubinstein’s bargaining
model, with and without interdependént preferences.

The equilibrium is of course invariant under linear transformations of the individual utility
function u;. Therefore, we may assume that the utility function of individual i of type 6; is given
by

vi (24,28 | 6:;) =7 (6;) ui (xa,z5 | 6:),

where

Team

r(6:) = (1= 6; ¥ 6,/m)

is the reservation amount of individual 4 of type 6;. It follows from (8) that

Vi (T4,Zp | 6;) = zi —r(6;)  for all (za,zB) €Y.

This shows that, given (8), the present model is essentially identical to the standard buyer-seller
bargaining model. Indeed, if we think of player A as the owner of an indivisible object with
value 7 (64), and of player B as the potential ‘buyer’ with value 2m — r (6B), we can interpret

any division (z4,2m — z4) in our model as a ‘sale’ at price 4. Consequently, we may readily

*0 Again we assume that the players have the same discount factor for simplicity. Modifying the analysis in the case
of distinct discount factors is straightforward.

*'In the general case where u; is defined as in (1), the equilibrium need not be unique since the bargaining set I/
can then be non-convex (cf. Binmore, 1987, and Herrero, 1989). However, note that the existence of equilibrium is

guaranteed even at this level of generality since B(l/) is a connected set.
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apply the standard analysis of the Rubinstein bargaining game, and conclude that, for any fixed
6: € [0,1), the subgame perfect equilibrium of the game is unique and is of the following form:
player A always proposes x (64,05,6) € Y and accepts any proposal in which she is offered at
least yp (04,08, 6) ; player B always proposes y (64,05, 6) €Y and accepts any proposal in which
she is offered at least zp (64,05,6), where §va (z(64,05,6) | 64) = va (¥(64,68,6) | 04) and
6vp (y(64,98,6) | 08) = vp (z(04,05,6) | 68). By solving these two equations, we find that the

following allocation is reached in equilibrium with no delay:
©(04,05,0) = (r(6a) + g (3m = r (04) =~ (80)), 7(0) + —— (2ma 7 (0.) - r@s)).-

That is, in equilibrium, each player receives her Rubinstein share of the net pie2m—r(64)—r(0B),
--in aiidition to her reservation amount r(6;). Clearly, by setting 64 = 65 = 0, we recover the
- ~equilibrium allocation of the standard Rubinstein game with linear individual utiIity functions.

This result shows that the essential feature of this model, common to both the buyer-seller
and our interpretation, is that the players are trying to share a ‘pie’ whose size varies with their
characteristics, i.e. their ‘types’. In our context, the players’ types have to do with their degree of
interdependence: the more interdependent any player is, the smaller the pie is. Therefore, while
the players’ discount factor § still determines the size of the first mover advantage, the equilibrium
division also depends on both players’ interdependence levels. In particular, as the discount factor §
approaches 1, (i.e., as the interval between offers approaches zero) the equilibrium division converges
to

(Flm=r@)-r@s), Sm=r () @)

The structure of the equlhbrmm allocation :c(HA,GB, 8) also shows that the notion of “being
more interdependent” can be mterpreted as “being less eager to agree” to any given division z in Y,
hence as having a smaller marginal rate of substitution between money and time.?? Consequently,
the degree of interdependence of a bargainer plays a similar role here to the one played by the
discount factor in the standard model. When the bargainers are equally interdependent, however,
the extent of the first-mover advantage is smaller here than it is in the standard Rubinstein model.
Indeed, it is easily checked that z4 (6,9, 6) is strictly decreasing in 6 on [0,1) so that the model
predicts in this case a more equal division of the pie than the usual for any § € (0,1). Thus,

**The marginal rate of substitution between money and time for player i is here found as

D:(8' vi(x(04,98,96) | 6:))
D.,(6* 'vi(z(04,08,6) | 6:))

which is strictly increasing in 6; for any & € (0,1). That is, the higher 6, the flatter the indifference curve of player i

= [.'l:,' bt 1‘(9")] Iné

in the (¢, z;) space which means that time is less important for player i.
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the more interdependent players are, the more fair the equilibrium outcomes will be. When the

individuals are extremely competitive, therefore, one is likely to observe very fair outcomes:
gin} z(6,6,6) = (m,m) for all § € (0,1).
The following proposition summarizes these findings.

Proposition 5. In the unique subgame perfect equilibrium of the Rubinstein bargaining game
described above, player A offers z(04,0B,06) in the first period and player B accepts. If 84 = 0p,
then, for any & € (0,1),

(a) there is a first-mover advantage;

(b) z(04,08,6) is closer to the 50-50 division than the standard equilibrium allocation z(0,0, 6);

(c) the more interdependent players are, the closer the equilibrium is to the 50-50 division.

The equilibrium division z (64,85,6) has the property that, for any 6§ € (0,1), each player’s
equilibrium share increases with his degree of interdependence. Therefore, in games with incomplete
information, a player with a low degree of interdependence can only benefit from his opponent
assigning positive probability to the event of facing a highly interdependent type. In some cases,

small degrees of uncertainty may in fact generate substantial gains. This issue is explored next.

5.2 Infinite Horizon Bargaining Games with Incomplete Information

In this section, we shall study the following concession game player A, whose type 64 is common

only accept or reject. Player A’s beliefs about B’s type are represented by a distribution function
F:[0,86p] — [0,1], where 0 < ©p < 1. We assume that F is common knowledge, and posit the
following technical condition: ™

Assumption [T]: liminf 1-F(0) > 0.

6—6p B—0

This assumption is a weak regularity condition that requires the slope of F to be bounded away
from zero near © 5. For instance, if F' is left-differentiable at © B and F! (©p) > 0, or if F has a mass
point on Op, then it satisfies [T]. Intuitively speaking, all [T] says is that player A assigns strictly
positive probability to the event that player B is arbitrarily close to being the most interdependent

type possible.
Given assumption [T}, it can be shown that a perfect Bayesian equilibrium of the game at hand

exists. In fact, under this assumption, one equilibrium may differ from another only with respect

to the first-period proposal of player A; the equilibrium is generically unique. What is more, as

20
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the time interval between offers gets very small (i.e., as the offers take place very quickly), all

equilibrium first-period offers converge to a unique allocation:

Proposition 6. Assume [T], consider any perfect Bayesian equilibrium of the concession game
defined above, and denote the corresponding equilibrium sequence of offers made by player A (con-

ditional on the discount rate and the type space of B) by {z(6,05)}2, € Y™°. We have:
}in} :171(5, ©g)=02m —r (©B),r (©B)).

Proposition 6 says that if player A assigns positive probability, however small, to the event that

B is maximally interdependent, then, as the interval between offers becomes small, his strategy

becomes close to the strategy that he would use were he ceftain that B’s reservation amount is

Jnear 7(6©p): that is, his first offer becomes close to allocation that will be accepted even by the
maximally interdependent type, and the probability that the game ends immediately converges to
one. In particular, if player A thinks that B may be the most competitive type who is almost
indifferent between 50-50 division and the disagreement outcome (ie., if ©p is close to 1), then the
equilibrium outcome is (almost) the 50-50 split, no matter how unlikely A may think this evenf
really is:

lim hm z' (6,0p) = (m, m).

Bp—16—1
Very fair outcomes may thus be rational, after all.
Proposition 6 is essentially a corollary of a well-known result in bargaining theory. Indeed,

the concession game described above i is isomorphic to the single-sale bar,galmngamodel with one-

: sided incomplete information. The hmlt -result stated in Proposition 6-is “éssentially identical to

the famous Coase conjecture which states that the seller’ s expected gain from trade tends to its
lowest possible value when the frequency of price offers becomes arbitrarily large. Moreover, since
here it is common knowledge that mutually beneficial agreements exist, ie., 7(04) +r(0B) < 2m
for all 64 € [0, 1], our model corresponds to the so-called “gap” case of the single-sale model (see
Fudenberg and Tirole, 1991, Chapter 10). Consequently, the related results of Fudenberg, Levine
and Tirole (1985) and Gul, Sonnenschein and Wilson (1986) that establish the validity of the Coase
conjecture in the gap case of the single-sale model almost immediately entail our Proposition 6.23
(The details of this claim are found in the appendix.)

In passing, we note that extending the present model to allow for two-sided offers and/or

two-sided incomplete information introduces a vast multiplicity of equilibria. For instance, in

?3We owe the generic uniqueness of the equilibrium again to Fudenberg, Levine and Tirole (1985) and Gul, Son-
nenschein and Wilson (1986).
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any alternating offers game with incomplete information, many allocations can be sustained as
equilibrium outcomes, simply by making each player’s beliefs concentrated on the independent
type of his opponent off the equilibrium path. (Under these beliefs, the only constraint acting on
the equilibrium strategies is the sequential rationality on the equilibrium path.) Nevertheless, by
suitably refining the sequential equilibria, one may identify those equilibria that have the property
that A’s initial offer converges to (2m — 7(©B),7(Op)) as § — 1. Indeed, both in the alternating
offers game with one-sided private information (Gul and Sonnenschein, 1988), and in the concession
game with two-sided private information (Cho, 1990), all equilibria that satisfy certain monotonicity

and stationarity properties exhibit the Coase property.

6 A Mechanism Design Approach

~

In this section, we depart from the “positive” analysis of bargaining among interdependent players
and adopt a normative approach. This is of interest, because in many instances of real-world
bargaining, negotiations are brought to an end by a settlement that is guided by a third party. The
main question we ask then is this: if an arbitrator realizes that players may possess interdependent
preferences, in which manner should she resolve the pie division problem? More specifically, we
wish to see if there is any reason to suspect that the potential interdependence of preferences would
enforce the emergence of egalitarian outcomes in bargaining settlements. To address this issue, we
adopt a mechanism design approach.

Let J; denote the set of all utility functions on X that can be written as in (1) for some
A, B. Take any 7; C J;,.and .interpret

" 'T; as the set of all preferences that the arbitrator conceives as admissible for individual #; that is,

continuous and strictly increasing V; with Vi(1,1) =0

7; is the type space of player i. The product 7 = T4 x Tp then corresponds to the set of all states
of nature.

A social choice function is any function that assigns to a state of nature a particular division
of the pie. Formally, we define a social choice function (SCF) on T as any function f:T Y.
Thus, f(us,up) stands for the (efficient) division of the pie that the arbitrator would choose, had
she known that the true utility (type) of player i was ;.24 As is.usual, we say that f is individually

rational, if f does not allocate to any type a share that is strictly below its reservation amount,

“Alternatively, we may define a SCF on 7 as mapping a type profile (uz, up) to a 3-tuple (z,t) € Y x Z,, where
(z,t) denotes the allocation awarded to players at period ¢. In this case, our definition of a SCF would postulate

implicitly the property of ex post efficiency.
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ie., if

ui(f(ua,up)) >0 for all u; € T, i=A,B.
Needless to say, individual rationality is a participation constraint that needs to be satisfied by any
reasonable settlement.

We now ask if it is possible here to implement a SCF in dominant strategies.?> While it is
well-known that this is in general impossible (the Gibbard-Satterthwaite theorem), it is easily seen
that the restricted domain we consider here admits individually rational SCFs that are dominant
strategy implementable. For instance, the social choice function that assigns to any type profile
the equal split of the pie is individually rational and dominant strategy implementable. Our next

result provides a characterization of all such SCFs.

JProposition 7. A SCF f on T is individually rational and dominant strategy implementable if,

and only if,

sup r(ugq), sup r(uB)) for all (ug,ug) €T,
A€ETY up€Tp

flua,up) > (

U
r(u;) is defined through the equation ui(r(ui),2m — r(w;)) =0, i = A, B.

Proposition 7 shows that if the domain of a SCF includes highly interdependent preferences,
then that SCF must choose highly egalitarian outcomes at all states of nature. The following

corollary of Proposition 7 will drive this point home.

Corollary 8. A SCF f on Jy x Jg is individually rational and dominant strategy implementable

pt2

. ,i‘f, and only i‘f’ . b i <; s 2 il s
f(ua,up) = (m,m) for all (uy,up) € T.

This result tells us that if the class of all interdependent preferences considered by the arbitrator
is sufficiently rich, then the only possible SCF is the one that assigns the 50-50 division regardless
of the state of nature.26 This observation provides a rigorous normative rationale for the equal-split
solution the applications of which arise abundantly in daily life. For instance, consider a parent
who has to divide the last slice of the pie among two siblings. It would not be unreasonable to

expect that the parent will divide the pie equally (to the best of her abilities) to avoid any possible

A mechanism is any list ({Z4,ZB},h) where Z; is an arbitrary message space and h : Z4 x Zg — Y is an
arbitrary outcome function. Such a mechanism is said to implement the SCF f on 7 in dominant strategies iff the
2-person normal form game ({Z;,u; o h}i=a,p) has a dominant strategy equilibrium 2(u4,us) € Z4 x Zp such that
h(z(ua,uB)) = f(ua,us), for all (va,us) €T.

**One certainly does not need the type space of player i to consist of all members of J: for this result to hold. If,

for instance, 7; contains all of the affine utility functions considered in Section 5, then the result goes through.
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conflict between the siblings that may arise due to envious feelings. Corollary 8 suggests a rigorous

foundation precisely for this decision rule.

7 Concluding Comments

Admitting the possibility of interdependent preferences may not be the only way in which one
can modify standard bargaining models in order to obtain predictions that are consistent with
experimental evidence. To the best of our knowledge, however, the combination of interdepen-
dent preferences and private information yields the first model to date capable of accommodating
the observed experimental regularities that are in direct conflict with the predictions of standard
bargaining theory. The model has the additional merit of providing a rationa] theory of fair out-
tcomes. Moreover, the idea of interdependent preferences, which is already in use in other areas
of economics, seems particularly appropriate in bilateral bargaining contexts. Indeed, it is hardly
unreasonable to think that competitive feelings may arise and influence the players’ choices in such
contexts. A
Yet, after all is said and done, one may still wonder whether or not the fair outcomes are
simply the consequences of the inherent “fairness” (rather than interdependence) of individuals.
We contend that the answer is no. As there is a significant difference between the experimental
data collected in the case of ultimatum and the dictator games (while the mode is the 50-50 split
in the former, most first-movers spare the entire pie to themselves in the later), we believe that the
“fear of punishment” is a qmntessentxal feature of bargaining, and cannot be sidestepped solely on
the basis of altruistic muotives. ThlS reasomng, 1n turn prov1des support for modeling bargalners’
" as interdependent agents
However, it is possible to turn this argument on its head. Since more than half of the indi-
viduals make interior divisions in the dictator game (with several 50-50 splits), one may argue
that, if anything, such experiments refute the interdependence hypothesis. We believe that this is
a fallacious argument pfecisely because there is no second-mover in the dictator game; this game
does not really correspond to a bargaining environment. As noted earlier, we view interdependent
preferences as a means to model the competitive nature of the bargainers that may well surface
in face-to-face bargaining situafions in which each party may hurt the other; note well, we do not

argue that individuals are invariably spiteful. Consequently, the right experimental test of the

27Put differently, it seems to us that people act interdependently (aggressively) with respect to only a certain set
of people - their social reference group - which depends on the nature of strategic interaction. While the endogenous
formation of social reference groups remains as a largely unexplored issue, it is intuitively clear that in a bilateral

bargaining setting (as opposed to a social choice situation such as the dictator game), both parties would unavoidably
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interdependence hypothesis (as opposed to the universal fairness hypothesis) must be conducted in
a bargaining setting. Whether such tests will eventually falsify the theory we advance here is, in
turn, a question that should be addressed in future experimental work.

There are several other directions for future research. First, it will be interesting to design
experiments to identify the predictive limitations of the finite horizon bargaining models examined
here. Second, the infinite horizon model with nonlinear interdependent utility functions remains
to be investigated. This case is difficult since, unlike the model of Section 5.2, it is not necessarily
isomorphic to the standard buyer-seller bargaining model. In addition, the way in which the
interdependent agents’ attitudes towards risk influence the bargaining outcomes needs to be further
explored. Finally, the analysis of multilateral bargaining with possibly interdependent preferences

_is left for future research.

-

be in each others reference set. Thus, we speculate, there is nothing wrong with modeling an otherwise altruistic

individual as being negatively interdependent in a two-person bargaining environment.
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Appendix

Proof of Proposition 3. (a) Define rB € (1,m) by Vg(rg,rg/m) = VB(1,1) = 0. Since Vg is

strictly increasing, zp (6p) is determined by (5), and 2m —r4 > m > rg, we have

zp (6 T
VB (va (68), '%3—0 > 6pVp ("'B,EB> =0,
hence zp (6p) > rp for all 65 € (0,1).
(b) This follows immediately from (5).
(c) Since Vp is concave, 74 > rp, and Va(rg,rg/m) = 0, we have

2m—-rA
m

1 T 1
VB(m, 1) > §VB(’I’A, EA) + §V3 <2m — T4,

v

1 TB 1 2m —1ry
5 VB(rB, m) +3Vb (2m — T4, T)

= -l-VB <2m — T4,

2m—-rA
D) .

By (5) and monotonicity of Vj, therefore, we have
1/2 [
VB(m,1) > Vp (:173(1/2), ﬁ;#) >Vpg (:BB (6m), #) ,

hence m > zp (6g) for all 0 < 65 < 1/2.

S R

Proof of Proposition 4. Let k denote the size d‘of fhe pie net" of the bargainers holdings, that
is, set k = 2m — 2. Since V is strictly increasing and continuous, (3) and V (1,1 | ©,4) = 0 imply

that there exists a unique & €-(0,1) such that
ug (14 (1 - a) 6k, 1+ abk | ©4) = 0.

Clearly, « is the maximum share for B that both types of A will accept. Throughout this proof we

shall let
Ya,y8) = (1 + (1 — a)ék, 1+ abk).

We define next the functions w : {0,085} — (0,1) and @ : {0,085} — (0,1) by
up(1+ (1 -w(0p))k,1+w(6B) k| 85) = up (ya,ys | 05) (9)

and
up(1+(1 —G)(@B))k,l-i-tf)(gg)k |6B) =up (1,14 6k | 0B), (10)
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respectively. One can think of w (6p) as the minimum share for B that type 6p will accept in stage
1, provided that B has sufficiently pessimistic beliefs about A’s type (i.e. m4 is high enough). In

contrast, @(fp) is the minimum share for B that type p will accept in stage 1, provided that B
is sufficiently optimistic about A’s type.

Claim 1. a6 =w(0) <w(Op) and § =& (0) < w(Bg).

Proof of Claim 1. Since up(-,- | 0) is independent of its first argument, (9) readily yields
w(0) = aé. But then, by (3) and (9),

FA+wO)8) | 93).

V(l +“’(GB)’“’;15(1 +w(Op) k) | 93) =V (”“’(O)k’W(vln—T

Sincem > 1+6(m~1)forallm >1and § € (0, 1), by strict monotonicity of V, we must then have
“w(6B) > w(0). The second part of the claim is proved similarly. ||

Claim 2. There exists an w* € (w(0), min{w(© B),@(0)}) such that
ua(1+ (1 —w*)k,1+w*k [©4) >0.
Proof of Claim 2. Since 1 - ab > (1 — @) and w(0) = ad, by definition of a, we have

uA(l+ (1 - w(0))k, 1+ w(0)k | B4) = uA(1+ (1 - ab)k,1 + abk | O4)
> ug(l+(1-a)ék,1+ adk | ©4)
= 0.

So, since min{w(©p),(0)} > w(0) by Claum 1, the result follows by continuity. ||

Take any wg € (w(0),w*), where w* is asfound i Ci’aam 2. 'We propose the followmg assessment
as a candidate for a pure strategy perfect Bayesian equilibrium.

Strategy of A: Both types of A offer

(za,zB) = 1+(Q -~ wp)k, 1 +wok) €Y

in stage 1. In case of rejection, each type of A responds optimally to B’s offer in stage 2, that
is, type 0 accepts any feasible offer z € Y (6), while type ©4 accepts z = (24,2B) € Y (6) if
24 214(04) and rejects if 24 <74 (B4).

Strategy of B: If A offers (1+ (1 — w)k,1+ wk) in stage 1, then type 0 of B

accepts, fw=wg, orifwp£w > @(0),
rejects and proposes (1,1+ 6k), if wg# w < w(0);
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and type ©p of B

rejects and proposes (y4,ys), ifw=uwy
accepts, if wp # w > &(Op)
rejects and proposes (1,1 + 6k), if wy # w < &(Op).

Beliefs: After any off-equilibrium offer 2 # (z A,ZB) , the beliefs of both types of B are degenerate
on 84 = 0.2 On the equilibrium path, i.e., after A offers (z4,z8) , Bayes’ rule applies, hence B still

believes that 64 = ©4 with probability 7 4.

In what follows we shall show that there exist 7 4,7 € (0,1) such that the above assessment is

a perfect. Bayesian equilibrium. It is readily verified that this will complete the proof of Proposition

4. In pirticular, notice that the above assessment specifies a disadvantageous counteroffer for B on
~ its equilibrium path since a§ = w(0) < wy.

To establish sequential rationality, take any w4 € (0,1) such that

up (yA7yB l 03)
. 11
93(?{1(%3} up (1,1+ 6k | 6B) 4y

A > 1 —

Given the strategy of player A in the second stage, the decision problem of type 65 of B in the

second stage is

(1-7ma)ug(1+(1 —7)6k, 1 + v5k | fg), ifvye (e, 1]
Max

7€[en]] up (yAa YB l 03) ’ if T =

The}efore, (11) ensures that the optimal offer of both types of B is (ya,yB) € Y(6) in the second

sté,ge. - e e

¢ TS

Sequential mtioﬁalz'ty }or B: Since ad = w(0) < wp, we have
ug(1+(1 —‘a)ék, 1+abk|0) <up (14 (1 —wo)k,1 + wek | 0).
Thus, accepting A’s offer is optimal for type 0 of B. On the other hand, by (9) and since wg < w(Op),
up (Y4,y8) = up (1+ (1 —w(Op)) k, 1 +w(Op)k | ©5) > up (1 + (1 — wo) k,1 +wok | ©p)

so that it is optimal for type ©5 of B to reject A’s offer and to counteroffer (y4,yB) in the second
stage.
It is also clear that B’s strategy is sequentially rational for both types 65 € {0,035} after any

off-equilibrium offer z 3£ (za,zB), since the beliefs about A’s type become degenerate on 64 = 0.

28This degenerate specification of beliefs is not necessary, but convenient. All we need to require here is that B'’s

off equilibrium beliefs be sufficiently optimistic.
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Sequential rationality for A: We need to show that offering (z4,zp) = (1 + (1 —wo) k,1 + wok)
in stage 1 is optimal for both types of A. Suppose A proposes (1 + (1 — w')k,1 + w'k) where
wo # ' € [0,1]. Then, given the belief structure, if o' < @(0) the offer is rejected and A is offered
(1,1 + 6k) in stage 2. Thus, both types of A earn zero utility in this case. But, since wy < w*, by
Claim 2 above we have u4 (z4,z5 | 84) > 0 for any 04 € {0,804} ; moreover u4 (y4,yp | 64) > 0 for
any 04 € {0,064} . Thus both types of A obtain strictly positive expected utility on the equilibrium
path.

Suppose now that o' € [©(0),&(Op)). In this case type 0 of player B accepts A’s offer, while
type ©p rejects and counteroffers (1,1 + 6k) in the second stage; hence A’s expected utility from
offering o’ € [#(0),&(0p)) is (1 — 7p) ua (1 + (1 —w)k,1+uw'k | 64). Since wp < w* < &(0) < w'

..and u4 (y4,yB | 04) > 0, we have (1 — ) uA(TA,Zp | 04) +Tpug (ya,yB | 84) > (1 —7B)

A1+ (1-o) k1 +uw'k|6,)

for any 04 € {0,064} . Hence, given the belief structure, offering (1 + (1 —w’) k,1 +w'k) is not a
profitable deviation for either type of A4 in this case.
Finally, assume that o' > &(63). In this case both types of B accept A’s offer. Therefore, to

complete the proof we need to show that
(1-7p) ua(za,zB | 04) + B ua (Ya,uB | 04) > ua I+(1-w)k1+k| 04) (12)
holds for any 64 € {0,04}. Since ' > wy, we again have
us (T4,28 | 0,4) > ug 1+@a- ')k 1 +w'k |64).

Thus if (1 - a)6 >1—u', then uy (yA,yB |64) > ugy (1 +(1-w)k,14+w'k|8,4) and (12) must
hold for all 64 € {0,064} .22 Assume then that (1 — @) < 1 -, so that ug (ya,ys|0) <
ug (14 (1 -w')k,14+w'k|0); and there are two possibilities to consider: (i) ua (ya,y5 | ©4) <
ua (1+ (1 —w)k,1+w'k|6,4); and (ii) otherwise. In case (i), (12) is established for all 64 by
choosing any mg € (0,1) such that

ug(Ta,zp | 04) — ua(l+ (1 - w(Op))k,1 +@(Op)k | 64)
g < min
84€{0,64} uA(za, B | 04) — ua(ya,ys | 04)

since ' > &(6p). In case (ii), on the other hand, proof is completed upon choosing any mg € (0,1)

such that
uA(z4,28 | 0) —ua(l+ (1 - &(Op))k,1 +>(Op)k | 0)

uA(Z4,%5 | 0) — ua(ya,yp | 0)

g <

**Therefore, for high 6 we do not have to put any restriction on the beliefs of A. In particular, for such §, we may

let 74 = 7p.
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Proof of Proposition 6. Let 7(6) = (1-6+6/m)~! and b(6) = 2m—r(6) for all 6 € [0,Op).
Define
vA(z | 04) =7(04)ua(z | 64) and wp(z| 0p) = b(0p)up(z | 5)
for all z € X. It follows from (8) that

va(z | 04) =74 ~7(04) and vp(z|0p)=b0p)—zp forallzeY.

Let b = b(©p) > m and b = b(0) = 2m — 1 > b. Define next the distribution function P : [b,5] —

[0,1] as
P=1-(Fob™). i

_ P is the distribution function of the random variable b(-):
P(b) = Prob (b(f) <b) =1-F(b~'(b)), b<b<b.

The equilibrium outcomes of our model are, therefore, equivalent to those of the standard single-
sale model in which the seller with the known cost (f4) makes (all) offers to the buyer whose
valuation b is distributed on the interval [b,b] according to the c.d.f, P (cf. Fudenberg and Tirole,
1991, Chapter 10). Moreover, since ©p < 1, this bargaining model corresponds to the gap case:
for all 64 € [0, 1],
7(04) <m < 2m —r(fp) =b.

Consequently, if we can show that P~! is Lipschitz continuou‘s at 0, we may then apply Theorem
5 3(and Remark 6.2) of Gul et al. (1986) to complete the proof. To see this, we use assumption (T)
to find a 6" € (0,05) and Ko > 0 such that 1 — F(8) > Ko(©p — 6) for all § € [6*,©8). Since r is

easily checked to be convex, we thus have
1~ F(0) > Ko(6p — 0) = K17'(65)(05 — 6) > K1(r(€8) —1(d)), 6* <0< Op,
where K; = Ko/ (© B); Therefore,
1 F(b~(b(9))) > K1(b(6) - b(Op)), 6* <6 <Op

that is,
P(b) > Ki(b—b), b<b<bd*

where b* = b(6*). Since P(b) = 0, we have ¢ > K, (P~1(q) — P=1(0)) for all g € (0, P(b*)]. Letting
q* = P(b*) and K = 1/Kj, therefore, we find

|P710) - P(q)| < Kq, 0<gq<q,
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that is, P! is Lipschitz continuous at 0.

Proof of Proposition 7. Suppose that f on 7 is individually rational and implementable in
dominant strategies. By the revelation principle, there must then exist a direct mechanism that

truthfully implements f. This implies that we must have
ui(f(ua,uB)) > wi(f(uf,u_;)) for all u;,ul € T; and u_; € T

for any‘i = A, B. By (1), therefore,
- : fi(uA,uB) - () . ft(u:’ u—i)
Vi (e, B8 v (g, Bl -0)

for all u;,u; € T; and u_; € 7_;. Thus, by monotonicity of V;,
T fi(ua,up) > fi(uf,u_;) for all u;,u} € 7; and u_; € 7_;.

Notice that f; must then be independent of its i-th component, that is, f;(v,u_;) = fi(w,u_;) for
any v,w € 7; and any u_; € 7_;. Consequently, we may write fi(ua,uB) = @;(u;) for all (us, up) €
T for some function ¢; : 7_; — Y. But by individual rationality, we must have @;(u—s) > r(u;) so
that fi(ua,up) = ¢;(u_;) > SUpy,e7; T(wi) for all (ug,up) € T, which completes the proof of the
“only if” part. The validity of the “if” part of the proposition is self-evident.

Proof of Corollary 8. Suppose that f is individually rational and implementable in dominant
strategies. Let V; = {u; : X = R : w(z) = (1 - 6)z; + 0z;/T—1,0< 6 < 1}, i = A, B. Applying

Proposition 7, we have.

. R e Tt gy e e R _1
fi(ua,up) > sup m(ug) > sup r(u;) = lim (1 -0+ i) =m
ui €J; ui€V; 6—1 m

for all (ug,up) € J4 x Jp. The converse claim is readily verified.
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