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Abstract

Over the past few years many proofs of calibration have been pre-

sented (Foster and Vohra (1991, 1997), Hart (1995), Fudenberg and

Levine (1995), Hart and Mas-Colell (1996)). Does the literature really

need one more? Probably not, but this algorithm for being calibrated

is particularly simple and doesn't require a matrix inversion. Further

the proof follows directly from Blackwell's approachability theorem.

For these reasons it might be useful in the class room.

�This work was done while I was visiting the Center for for Mathematical Studies

in Economics and Management Science, Northwestern University. Permanent a�liation:

Dept. of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA

19104. Email:foster@hellspark.wharton.upenn.edu.

Thanks to Sergiu Hart who provided the proof of the only result in the paper. The

algorithm is a modi�cation of the original algorithm in Foster and Vohra (1991).
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Suppose at time t a forecast, ft, is made which takes on the value of the

midpoint of each of the intervals [0; 1=m], [1=m; 2=m], : : :, [m�1

m
; 1], namely,

2i�1

2m
for i equals 1 to m. Let Ai

t the vector of indicators as to which forecast

is actually made:

Ai
t =

8<
:

1 if ft =
2i�1

2m

0 otherwise

Let Xt be the outcome at time t. We can now de�ne the empirical frequency

�it as:

�iT =

TX
t=1

XtA
i
t

TX
t=1

Ai
t

Hopefully, �iT lies in the interval [ i�1
m
; i

m
]. If so, the forecast is approximately

calibrated. If not, I will measure how far outside the interval it is by two

distances: d
i

t and eit (for de�cit and excess) which are de�ned as:

d
i

T =
1

T

TX
t=1

( i�1
m
�Xt)A

i
t = [ i�1

m
� �iT ]A

i

T

eiT =
1

T

TX
t=1

(Xt �
i

m
)Ai

t = [�iT �
i

m
]A

i

T

where A
i

T =
P
Ai

t=T . I will show that the following forecasting rule will drive

both of these distances to zero:

1. If there exist an i� such that ei
�

� 0 and d
i�

� 0, then forecast 2i��1

2m
.

2. Otherwise, �nd an i� such that d
i�

T > 0 and ei
��1

T < 0 then randomly

forecast either 2i��1

2m
or 2i�+1

2m
with probabilities:

P

�
fT+1 =

2i� � 1

2m

�
= 1� P

�
fT+1 =

2i� + 1

2m

�
=

d
i�

T

d
i�

T + ei
��1

T
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It is clear that an i� can be found in step 2, since i = 1 always under forecasts

and i = m always over-forecasts.

The L-1 calibration score:

C1;T �
mX
i=0

j�it �
2i+1

m
jA

i

T =
1

2m
+

mX
i=1

max(d
i

T ; e
i
T )

so showing that all the eiT and d
i

T converge to zero, implies that C1;T converges

to 1

2m
.

Theorem 1 (Foster and Vohra) For all � > 0, there exists a forecasting

method which is calibrated in the sense that C1;T < � if T is su�ciently large.

In particular the above algorithm will achieve this goal if m � 1

�
.

Consider this as a game between a statistician and nature. The statistician

picks the forecast ft and nature picks the data sequenceXt. The statisticians

goal is to force all of the ei and d
i
to be negative (or at least approach this

in the limit). Nature's goal is to keep the statistician from doing this. This

set up is a game of \approachability" which was studied by Blackwell. He

found a necessary and su�cient condition for a set to be approachable.

Theorem 2 (Blackwell 1956) Let Lij be a vector valued payo� taking val-

ues in Rn, where the statistician picks an i from I at round i and nature picks

a strategy j from J at time t. Let G be a convex subset of Rn. Let a 2 Rn

and let c 2 G be the closest point in G to the point a. Then G is approachable

by the statistician if for all such a, there exist a weight vector wi such that

for all j 2 J ,

(
X
i2I

wiLij � c)0(a� c) � 0: (1)

To prove Theorem 1, we need to translate the calibration game into a

Blackwell approachability game. The set of strategies for the statistician, I,
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is the set of the m di�erent forecasts. The set of strategies for nature, J , is

the set f0; 1g. De�ne

eiX = (X � i

m
)Ai

diX = ( i�1
m
�X)Ai

The vector loss is the vector of all the (di; ei)'s, in otherwords, it is a point

in R2m. The goal set G � R2m is G = fx 2 R2mj(8k)xk � 0g. Let

eiT = 1

T

PT
t=1 e

i
Xt

and d
i

T = 1

T

PT
t=1 d

i
Xt
. The (diX ; e

i
X)i will be our Lij in

the Blackwell game, and (d
i
; ei)i will be the point c. The closest point in G

to the current average a = (d
i
; ei)i2I is

c =
�
(d

i
)�; (ei)�

�
i2I

:

where we have de�ned the positive and negative parts as x+ = max(0; x)

and x� = min(0; x). The weight vector w is the vector of probability of

forecasting i=k.

Proof: (Hart 1996) Now to check equation (1). Writing it in terms of

di's and ei's equation (1) is:

mX
i=1

�
(widi � (d

i
)�)(d

i
� (d

i
)�) + (wiei � (ei)�)(ei � (ei)�)

�
� 0

from x� x� = x+ equation (1) is equivalent to

mX
i=1

�
(widi � (d

i
)�)(d

i
)+ + (wiei � (ei)�)(ei)+

�
� 0

Since, (x�)(x+) = 0, it is su�cient to show:

mX
i=1

wi(ei(ei)+ + di(d
i
)+) � 0:
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If step 1. of the algorithm is used the weight vector is just wi� = 1 if i�

is the forecast chosen and zero otherwise. So wi 6= 0 only when both (d
i
)+

and (ei)+ are zero, so the entire sum is zero.

If step 2. is used, the non-zero terms are wi� and wi��1. But, (ei
�

)+ is

zero and (d
i��1

)+ is zero. So, it is su�cient to show:

wi�di
�

(d
i�

)+ + wi��1ei
��1(ei

��1)+ � 0

But, di
�

= �ei
��1, so it is su�cient to show:

wi�(d
i�

)+ � wi��1(ei
��1)+ � 0

But, this follows (with equality) from the de�nition of our probabilities. 2
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