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Chapter 1

Negative Information Sharing

1.1 Introduction

R&D is the engine of technological progress and growth, and it has a significant role

in economics. However, there are many challenges in initiating and conducting R&D

activities. One particular example is the uncertainty. R&D activity may lead to either

a new product development or a complete failure. Moreover, it involves competition

among many agents such as firms, academics, research institutions. Under the presence

of uncertainty, competition may not be the best option for the development of a product.

Therefore, various forms of cooperation exist in R&D markets. In this paper, we intro-

duce a new form of cooperation through the sharing of negative outcomes. We consider

a negative outcome as one either not worth publishing from an academic standpoint, or

one not worth patenting from a corporate standpoint. We ask the following question:

What are the incentives to cooperate through sharing negative outcomes?

We consider the problem of product innovation via multiple research lines in a com-

petitive environment. R&D departments usually start working on various research lines
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at the same time, hoping at least one of them will lead to a successful outcome. How-

ever, most of these research lines usually end up without any meaningful results, which

we denote here as a negative outcome. Some competing firms may accumulate many

negative outcomes over time, however in the meantime others may decide to enter with-

out any outcome. It is possible that some of the negative outcomes are also obtained

by these newcomers. We call it duplication which is clearly a waste of resources. More-

over, this is an inefficiency from the society’s point of view. In order to overcome this

inefficiency, we propose to initiate a market for negative results where firms that own

negative outcomes will be the sellers, and firms that are willing to obtain these outcomes

will be the buyers. One interesting question is; what will the equilibrium price be?

There are many real-world applications that duplication has a negative impact. One

particular example is trial-and-error type of R&D. Firms engaging in this type of R&D

have to go through a protocol that can be described as follows; first identify all possible

solutions as candidates to a particular problem. Then start with the most likely candi-

date and analyze whether it addresses the problem. If yes, then stop. If no, then move

onto the second most likely candidate. Follow this process until finding out a solution

that works successfully. Pharmaceutical research fits into this category very well. Most

of the pharmaceutical companies use a trial-and-error type of R&D by identifying all

potential candidate substances that may cure a particular disease and carrying out mul-

tiple research lines until they find the right one. Assuming that firms of comparable size

have similar level of resources and knowledge base, firms working on the same research

idea will go through a similar research process and produce mostly the same negative

research outcomes over time. From an industry perspective, this means the resources

are wasted through duplication of the same effort. In fact, in 2013, The Pharmaceutical

Research and Manufacturers of America (PhRMA) released a statement on sharing clin-
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ical research data in order to avoid wasteful research and speed up the research process

in pharmaceutical research.1

Another example is from basic science, namely material science. Similar to the

pharmaceutical research, here firms/research institutes try different types of materials to

address a problem. During the process, they produce many negative outcomes, basically

materials that do not work for a solution, and these outcomes will be kept as private

information even though they are valuable to other firms working on the same project.

Moreover, any empirical academic research in basic science falls into this category as well.

A scientist may work on a data set that does not support any meaningful relationship

as solution to a particular problem. However, it is possible that the same data set

had already been used and resulted in a negative outcome by another scientist. This

duplication of efforts yielding the same negative outcomes is a serious problem in various

research fields, and firms and society can benefit from cooperation through sharing these

negative outcomes.

In this essay, I tried to investigate the conditions under which cooperation through

sharing negative outcomes is possible. I built a simple model where two firms are com-

peting to develop a new product in a R&D market. If only one of the firms obtains the

successful outcome and develops the product, then it will be the only firm in production

stage so that it monopolizes the product market. Simultaneous discovery is also possible

so that if it happens, then firms will share the product market evenly. In order to keep

the model simple, I do not specify a product market structure. However, I imposed

that single discovery leads to monopoly and simultaneous discovery leads to duopoly

in the product market. From the standard oligopoly theory, the industry profit under

1http://www.phrma.org/press-release/EFPIA-and-phrma-release-joint-principles-for-responsible-

clinical-trial-data-sharing-to-benefit-patients
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monopoly is greater than the industry profit under duopoly. Thus, in this model, the

profit of a monopolist firm is larger than the total profits of the firms under duopoly.2

Hence, this assumption makes single discovery more attractive and as a result it creates

an opportunity cost for sharing negative outcomes due to the decrease in the likeli-

hood of becoming the monopolist. On the other hand, the benefit of sharing negative

outcomes is the increase in the likelihood of a discovery.

I obtain strikingly different results depending on the ability of detecting the validity

of the shared outcomes. As a benchmark, first I investigate the case where firms are fully

able to verify the outcomes. If the firms have the same number of negative outcomes

(symmetric firms), then there is no need to have a monetary transaction, it is simply a

barter. In this case, if the success probability is sufficiently low, then firms will agree

to share negative outcomes. If one firm has more negative outcomes than the other

(asymmetric firms), then the extra amount of negative outcomes have potential value.

Again, if the success probability is sufficiently low, then there will be a range of prices

where firms will agree to share. However, if the firms are unable to verify negative

outcomes, then there is no way that firms will agree to share. Therefore, verifiability is

a necessary but not a sufficient condition for sharing negative outcomes.

The model does not allow imitation and product market is shut down, thus in the end,

this is an R&D race where winner takes the entire prize. In order to focus on uncertainty,

both spillovers between firms and learning from failures are not allowed. With these

restrictions, a static model becomes sufficient to explore the effect of uncertainty instead

of a dynamic model.

Moreover, the investment decision is fixed, so the firms do not take into account how

2Moreover, we can interpret this situation as the prize for the single winner is larger than the total

prize for two winners.

4



much they want to spend on R&D for any given value of the innovation. Thus, we can

rule out the possible effects of investment on sharing decision. For the sake of simplicity,

the model is based on one product and two firms. The underlying incentives would be

the same if we increased the number of firms and the number of products, and their

inclusion would only increase the amount of complexity.

Next section summarizes related literature. Section 3 presents the model and results.

Section 4 includes the concluding remarks.

1.2 Related Literature

There are several lines of research that this paper relates to. The main contribution

is to the literature on cooperation in R&D markets. Cooperation in R&D is analyzed

in various forms, and the most distinguished feature of the models using these forms

is how the research process is defined. Mainly, the literature is divided into two main

categories; cooperation in process innovation and cooperation in product innovation.

The very first form of cooperation in process innovation category is cost sharing models

where the research process is taken by firms jointly in order to reduce the production

cost of a particular good and each firm has right to use it in the production. The main

goal is to share the cost of research process and avoid double spending (duplication).

D’Aspremont and Jacquemin (1988) is a pioneering paper on this strand, focusing on

spillovers rather than uncertainty where firms could benefit from each other’s research

activity. Kamien et al. (1992) also analyzes cost sharing models, however their model

assumes no uncertainty and therefore their findings are not directly related to our results.

The second contribution is to the literature on information sharing in R&D. The

literature mainly focuses on positive information sharing. In the positive information

sharing models, the joint research process aims to produce a new or newer version of a
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particular good where each firm has the right to produce the new good. Marjit(1991)

and Combs(1992) both analyze the effect of uncertainty on the incentives to cooperate

by setting up simple models based on information sharing where there is no product

market, spillovers, imitation and learning. However, their results contradict with each

other. The cooperation occurs only when the success probability is sufficiently high

in Combs(1992), not when the success probability is sufficiently low. The intuition is

when the success probability is low, cooperation does not sufficiently pull the success

probability to a higher level so that there is no point to try to innovate cooperatively.

Even though their results are similar to this paper’s, they do not consider the possibility

of sharing negative outcomes. Kamien et al. (1992) focuses on both cost sharing and

information sharing in research joint ventures, but still it does not consider sharing

negative outcomes.

Silipo (2008) surveys the literature on cooperation in R&D, mainly focusing on the

effects of uncertainty and spillovers over cooperation decision. Uncertainty is the key

incentive to innovate. If the success probability of a product is low, firms may avoid the

research regardless of the product’s importance for the society (social welfare). Spillovers

is another key issue. If the cost of product development research is high and if the final

product can easily be imitated by another firm, then firms are unlikely to initiate a

research project to develop it. Therefore, the survey compares several models in the

literature and presents all the results in tables.3 One important remark is that the

incentives and the results in these models highly depend on how the research process

is defined. Thus, they obtain strikingly different results.4 Nevertheless, none of these

models consider the possibility of negative information sharing. Another important

distinction of these papers from this one is the verifiability of the outcomes. In all their

3See Table 1 (pg. 103) and Table 2 (pg. 105).
4See also Choi (1993), Amir et al. (2003), and Silipo and Weiss (2005).
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models, the outcomes are verifiable, whereas in this paper I show that verifiability is

critically important for cooperation.

There is only one closely related paper in the literature. Akcigit and Liu (2014)

discusses the possibility of sharing dead-end research paths among competing firms.

They argue that firms have a huge incentive to hide their dead-end findings so that their

competitors go through the same path and waste resources on a research that leads to

nowhere. However, this is clearly inefficient from the society’s point of view. Another

inefficiency is created by the nature of the research. Firms can never be sure about

the outcome when they start working on the research. In a competitive environment,

this may lead to early drop outs if an outcome is not received for a long time. Some

research projects may take longer to obtain an outcome and if all firms drop out early,

they may miss a potentially good outcome. By identifying these inefficiencies, this paper

proposes a solution where firms are given the right incentives so that they agree to share

their negative outcomes. With the right incentive scheme, wasteful duplicative research

is avoided and an outcome is obtained optimally. As a result, social welfare will be

increased and innovation pace will be accelerated. The important assumption for the

aforementioned mechanism to work is that the outcomes should be verifiable. In this

paper, we show that the mechanism will not work when this assumption is weakened or

completely dropped.

1.3 Model

The model is constructed as follows. There are 2 risk neutral firms. There are a finite

number of research lines. Only one will lead to a potentially successful outcome, the

rest will not. Those that are not successful are denoted as negative outcome. Each
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firm accumulates a certain number of negative outcomes over time.5 That means the

likelihood of obtaining the successful outcome is determined by the accumulated number

of negative outcomes. Let qi be the probability of obtaining successful outcome for firm

i.6 Clearly, 0 < qi < 1, for all i. Moreover, each firm knows the success probability of

the other firm.

The game is organized as a two stage game. In the first stage, firms need to decide

whether to share negative results or not. In the second stage, they pick a research line

randomly7. At the end of the second stage, if only one firm obtains a successful R&D

project, then it will be a monopolist in the production stage so that its payoff will be

denoted by πm and the other firm’s payoff would be 0. If both firms obtain the successful

outcome, then they will split the duopoly profit πd evenly.8 If both firms fail to obtain

the successful outcome, then the game will move on by randomly undertaking a research

line each period until the successful outcome is obtained. Since the number of research

lines is finite, at least one firm will obtain the successful outcome eventually. Clearly,

πm > πd.

The expected payoff of firm i at the beginning of the game is denoted as follows;

Vi(qi(0), qj(0)) = qi(0)(1− qj(0))πm + qi(0)qj(0)
πd

2

+ (1− qi(0))(1− qj(0))Vi(qi(1), qj(1))− c (1.1)

where qi(0) and qj(0) denote the success probabilities of firms i and j at the beginning

5Another interpretation is that firms are endowed with different numbers of negative outcomes.
6Observe that the success probability increases when the number of negative outcomes increase.
7Firms are not allowed to decide on how much investment they want to make. Thus, it is better to

call this situation as a fixed investment case.
8Here we shut down the product market and simply assigned valuations for different market struc-

tures (either monopoly or duopoly). It will be interesting to add the product market and see how it

affects the incentives in R&D market.
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of the game (first period), respectively and similarly qi(1) and qj(1) denote the success

probabilities of firms i and j at the beginning of the second period, respectively.9 The

first term on the right hand side of the above equation is the expected payoff from the

case where firm i obtains success but the other firm not, second term is the expected

payoff from both firms obtain success, the third term is the expected continuation payoff

from the case where both firms fail to obtain successful outcome and the game continues

until one obtains and the last term is the cost of undertaking a research line.

Before we proceed, we should remark that success probability of a firm or both

firms will eventually will be 1 at some period t and that means the only remaining

research line is successful implying that the game will end at period t + 1. Moreover,

the success probability qi(t+1) for firm i at the beginning of period t+2 is greater than

the success probability qi(t) at the beginning of period t + 1 since one more negative

outcome is obtained at period t + 1 and the game is moved on to the next period so

that success probability is increased. Hence, we can conclude that success probability is

increasing over time and eventually will be 1 at some point unless the successful outcome

is obtained.

Another important remark is about the structure of the game. One may ask how the

sharing takes place. In the end, this is an unusual situation and it is hard to determine

the credibility of the outcome that is brought to the table. The obvious questions are;

is it really an outcome that is obtained by working on the problem carefully or is it

fabricated by the firm to increase the revenue? More importantly it can be used as a

strategic device in order to misdirect the opponent. These questions all stem from the

fact that the verifiability of negative outcomes would be difficult in the real world.10 In

9More generally, qi(t) denotes the success probability of firm i at the beginning of the period t+ 1.
10As a consequence, it is very likely that the firms will have problems in assessing the value and

making a contractual agreement. In addition, a final agreement will even be more difficult if firms are
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order to understand the importance of the verifiability issue, we first consider the case

where the negative outcomes are perfectly verifiable. This will serve as a benchmark

and helps us to make a comparison with the situation where the negative outcomes are

not perfectly verifiable or unverifiable at all.

1.3.1 Benchmark Case: Verifiable negative outcomes

In this subsection, we assume that any outcome is perfectly verifiable. It means each

firm is able to determine whether an outcome is actually negative immediately without

incurring any cost. This may sound unrealistic since identification and reproduction

of an outcome may take some time and money. However, we would like to see how

hypothetical firms behave in this simple environment. We analyze this case in three

parts; first the case where both firms have equal number of negative outcomes (symmetry

between firms), and second, the case where one firm has no negative outcomes but the

other has (perfect asymmetry between firms), and finally, the case where both firms hold

negative outcomes but one has more than the other (asymmetry between firms).

Symmetry between firms

In this case, we assume that both firms hold the same number of negative outcomes.

That means each firm is equally likely to obtain the successful outcome at the beginning

of the game. Let qsi (0) be the probability of drawing a potentially successful research

line after sharing takes place for firm i.11 So,

qs1(0) = qs2(0) = qs(0)

uncertain about the success probabilities. This can be called uncertainty on uncertainty.
11In this case, sharing does not involve any monetary transaction, it is simply a barter between firms.
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If firms do not agree to share, then they immediately make a draw. Let qnsi (0) be the

probability of drawing potentially successful research line for firm i if there is no sharing.

So,

qns1 (0) = qns2 (0) = qns(0)

Since qsi (0) > qnsi (0), firms have a higher probability of choosing the potentially success-

ful line in sharing scheme than non-sharing scheme. Then, the expected payoff of firm

i under the sharing scheme is denoted as follows;

Vi(q
s(0), qs(0)) = qs(0)(1− qs(0))πm + qs(0)qs(0)

πd

2

+ (1− qs(0))(1− qs(0))Vi(q
s(1), qs(1))− c (1.2)

Similarly, the expected payoff of firm i under the non-sharing scheme is denoted as

follows;

Vi(q
ns(0), qns(0)) = qns(0)(1− qns(0))πm + qns(0)qns(0)

πd

2

+ (1− qns(0))(1− qns(0))Vi(q
ns(1), qns(1))− c (1.3)

Note that the only difference between equation (2) and equation (3) is the success

probabilities. Sharing will increase the success probability for both firms so that the

only benefit is lower expected cost of obtaining success. However, the cost of sharing

is the lower chance of being monopolist. Before we present our result that reflects

the tendency between cost and benefit of sharing negative outcomes, we provide an

example that illustrates how the success probabilities and continuation payoffs affect

firms’ decisions.

Example 1.1 There are four research lines, one is successful and the other three are

not. There are two firms endowed with one negative distinct outcome each. The game is

11



the same as described above. If firms decide not to share, then the success probabilities

are

qns1 (0) = qns2 (0) =
1

3

If they agree to share, then the new success probabilities are

qs1(0) = qs2(0) =
1

2

Clearly, sharing increases the success probability. If both firms fail to obtain the suc-

cessful outcome in both schemes, then the success probabilities in the next period will

be

qns1 (1) = qns2 (1) =
1

2

and

qs1(1) = qs2(1) = 1

Note that in the sharing scheme, firms reach the successful outcome at most in two peri-

ods whereas in the non-sharing scheme they reach at most in three periods. Given success

probabilities, we obtain firms expected payoffs in sharing and non-sharing schemes from

equations (2) and (3) as

V (
1

2
,
1

2
) =

1

4
πm +

1

4

πd

2
+

1

4
V (1, 1)− c (1.4)

and

V (
1

3
,
1

3
) =

2

9
πm +

1

9

πd

2
+

4

9
V (

1

2
,
1

2
)− c (1.5)

respectively. In equation (4), the continuation payoff V (1, 1) basically tells us that if the

game reaches to the next period, the success probability for both firms will be 1 implying

that both firms will obtain the successful outcome and share πd evenly, and incur the

cost c. Hence,

V (1, 1) =
πd

2
− c
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By rearranging the equations (4) and (5), we obtain the following condition that provides

when sharing is possible;

3

11
(πm − πd) ≤ c

From now on, we assume that the game also ends if neither firm obtains successful

outcome.12 Hence, there is no continuation payoff for the firms. Due to symmetry

between firms, the success probabilities are the same in non-sharing scheme as well as

sharing. Let’s denote qns as the success probability in non-sharing scheme and qs as the

success probability in sharing scheme. Moreover, the expected payoffs will be the same,

thus we modify the expected payoffs in equation (2) and (3) as follows;

V (qs, qs) = qs(1− qs)πm + qsqs
πd

2
− c (1.6)

and

V (qns, qns) = qns(1− qns)πm + qnsqns
πd

2
− c (1.7)

Given these expected payoffs, firms will agree to share whenever the expected payoff

from sharing scheme is greater than or equal to the expected payoff from non-sharing

scheme, i.e. V (qs, qs) ≥ V (qns, qns). Therefore, the following result shows when sharing

is possible.

Proposition 1.1 If qs+ qns ≤ πm

πm−(πd/2)
, then both firms will agree to share. Moreover,

if qns ≤ πd

2πm−πd
, then firms always agree to share regardless of the value of qs.

Proof. Suppose πm

πm−(πd/2)
≥ qs+qns. Then, by multiplying both sides with (πm− πd

2
),

we obtain

πm ≥ (qs + qns)(πm − πd

2
)

12By this assumption, there is uncertainty on obtaining successful outcome.
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Similarly, by multiplying both sides of above inequality with (qs − qns), we obtain

(qs − qns)πm ≥ (qs − qns)(qs + qns)(πm − πd

2
)

By rearranging the right hand side of above inequality, we obtain

(qs − qns)πm ≥ (qsqs − qnsqns)(πm − πd

2
)

By rearranging the terms of the above inequality as the ones with success probabilities

in sharing scheme are on the left hand side and the ones with success probabilities in

nonsharing scheme are on the right hand side, we obtain

(qs − qsqs)πm + qsqs
πd

2
≥ (qns − qnsqns)πm + qnsqns

πd

2

Further regrouping of the similar terms of the above inequality leads to

qs(1− qs)πm + qsqs
πd

2
− c ≥ qns(1− qns)πm + qnsqns

πd

2
− c

which is in fact the left hand side equals to V (qs, qs) and the right hand side equals to

V (qns, qns). Hence,

V (qs, qs) ≥ V (qns, qns)

Therefore, both firms will agree to share.

Now, suppose qns ≤ πd

2πm−πd
. Then, by adding qs to both sides, we obtain

qs + qns ≤ qs +
πd

2πm − πd

Since qs ≤ 1, then qs + πd

2πm−πd
≤ 1 + πd

2πm−πd
which leads to

qs + qns ≤ 1 +
πd

2πm − πd

By rearranging the terms on right hand side of the above inequality, we obtain

qs + qns ≤ 2πm

2πm − πd

14



Further rearrangement on the right hand side of above inequality leads to

qs + qns ≤ πm

πm − (πd/2)

Hence, from the first part of the proof we can conclude that firms will agree to share

regardless of the value of qs. �

This result reveals that if the initial success probability of firms is sufficiently low,

then they always prefer to share their negative outcomes. However, if the initial success

probability is high, then the new success probability from sharing must be under a

certain level, otherwise the cost of losing the chance of being monopolist will exceed the

gain from obtaining the successful outcome. Here the cost of undertaking a research line

is irrelevant since firms are restricted to undertake a research line whether they share

or not.

Perfect asymmetry between firms

We can think of this case as a scenario of a small start-up firm working on a research

project and accumulating negative outcomes over time, and an established firm never

worked on this project before but decides to work on it from now on.13 Let’s denote the

former firm as firm 1 and the latter as firm 2. Since firm 2 has no negative results, only

firm 1 may sell all its negative outcomes and receives a payment p. Let qsi (0) be the

probability of drawing a potentially successful research line after sharing takes place for

firm i. So,

qs1 = qs2 = qs

If firms do not agree to share, then they immediately make a draw. Let qnsi be the

probability of drawing potentially successful research line for firm i if there is no sharing.

13There are many real-world situations similar to this scenario. For instance, the acquisitions of small

startup firms by the established industry giants.
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So,

qns1 = qs1

Since qs1 = qns1 , then qs1 > qns2 . Thus, firm 1 has a higher probability of choosing the

potentially successful line than firm 2 implying that the expected payoff of firm 1 and 2

under the sharing scheme will be different, so they are denoted separately as follows;

V1(q
s, qs) = qs(1− qs)πm + qsqs

πd

2
+ p− c (1.8)

and

V2(q
s, qs) = qs(1− qs)πm + qsqs

πd

2
− p− c (1.9)

The only difference between equation (6) and (7) is the payment p which is a transfer

from firm 2 to firm 1. Similarly, the expected payoff of firm i under the non-sharing

scheme is denoted as follows;

Vi(q
ns
i , qnsj ) = qnsi (1− qnsj )πm + qnsi qnsj

πd

2
− c (1.10)

Given these expected payoffs, both firms will agree to share whenever Vi(q
s, qs) ≥

Vi(q
ns
i , qnsj ) for each firm i. Therefore, the following result tells us when sharing is

possible.

Proposition 1.2 If qs ≤ πm

2πm−πd
, then, for any p ∈ [qs(qs−qns2 )(πm− πd

2
), (qs−qns2 )((1−

qs)πm + qs πd

2
)], both firms will agree to share.

Proof. Suppose πm

2πm−πd
≥ qs. Then, by multiplying both sides with (2πm − πd), we

obtain

πm ≥ (2πm − πd)q
s

By regrouping all the terms on the left hand side, we obtain

(1− 2qs)πm + qsπd ≥ 0

16



By multiplying both sides of above inequality with (qs − qns2 ), we obtain

(1− 2qs)(qs − qns2 )πm + 2qs(qs − qns2 )
πd

2
≥ 0

By adding qs(qs − qns2 )πm − qs(qs − qns2 )πd

2
to both sides of above inequality, we obtain

(1− qs)(qs − qns2 )πm + qs(qs − qns2 )
πd

2
≥ qs(qs − qns2 )πm − qs(qs − qns2 )

πd

2
.

Hence, this inequality creates an interval for possible values of payment p. Thus, take

any p ∈ [qs(qs − qns2 )(πm − πd

2
), (qs − qns2 )((1− qs)πm + qs πd

2
)]. Then,

p ≥ qs(qs − qns2 )πm − qs(qs − qns2 )
πd

2

By adding qs(1− qs)πm + qsqs πd

2
− c to both sides of the above inequality, we obtain

qs(1− qs)πm + qsqs
πd

2
+ p− c ≥ qs(1− qns2 )πm + qsqns2

πd

2
− c

Since the left hand side of above inequality equals to V1(q
s, qs) and the right hand side

equals to V1(q
ns
1 , qns2 ), we obtain

V1(q
s, qs) ≥ V1(q

ns
1 , qns2 )

implying that firm 1 will agree to share. Similarly, since

(1− qs)(qs − qns2 )πm + qs(qs − qns2 )
πd

2
≥ p,

by adding (1− qs)qns2 πm + qsqns2
πd

2
− p− c to both sides of above inequality, we obtain

qs(1− qs)πm + qsqs
πd

2
− p− c ≥ (1− qs)qns2 πm + qsqns2

πd

2
− c.

Since the left hand side of above inequality equals to V2(q
s, qs) and the right hand side

equals to V2(q
ns
1 , qns2 ), we obtain

V2(q
s, qs) ≥ V2(q

ns
1 , qns2 )
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implying that firm 2 will agree to share. Therefore, both firms will agree to share. �

For the critical value q∗ = πm

2πm−πd
, there exists a unique price p∗ = πm

2

(
πm

2πm−πd
− qns2

)
such that both firms will agree to share. However, if the success probability qs is smaller

than the critical value q∗, then there will be a range of prices where sharing can take

place at any price in that range.14 We can interpret the result as follows: if the success

probability of firm 1 is sufficiently high, then firm 1’s willingness to share would be high

in order to cover the opportunity cost of being monopolist, and firm 2 is unwilling to

pay the price simply because the benefit of purchasing that information could not offset

the cost. Hence, there will be no sharing.

Asymmetry between firms

Now firm 2 is also endowed with negative outcomes. The setup of the game will be the

same, but the sharing procedure will be modified as follows:

Let qnsi denote the probability that a successful outcome is obtained by firm i if there

is no sharing. Assume that qns1 > qns2 and this information is available to both firms.

This means that firm 1 has more negative outcomes than firm 2. Since firm 1 has

more negative outcomes, firm 1 receives a payment p from firm 2 if sharing takes place.

Let qs be the probability of drawing a success after sharing takes place. Note that

this probability is not firm specific because by sharing both firms have all the available

negative outcomes.

The changes in probabilities are denoted as follows: ∆qi = qs − qnsi denotes the

change in probability of success for firm i if sharing takes place. ∆q1q2 = qsqs − qns1 qns2

denotes the change in probability if both firms obtain success. Now, the following result

tells us when sharing is possible.

14The price can be determined based on the bargaining power of firms.
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Proposition 1.3 Suppose ∆q1q2
∆q1+∆q2

≤ πm

2πm−πd
. Then, for any p ∈ [(∆q1q2 − ∆q1)πm −

∆q1q2
πd

2
, (∆q2 −∆q1q2)πm +∆q1q2

πd

2
], both firms will agree to share.

Proof. Suppose πm

2πm−πd
≥ ∆q1q2

∆q1+∆q2
. Then, by rearranging the inequality, we obtain

(∆q1 +∆q2)πm ≥ ∆q1q2(2πm − πd)

By adding ∆q1q2
πd

2
− (∆q1q2 +∆q1)πm to both sides of above inequality, we obtain

(∆q2 −∆q1q2)πm +∆q1q2
πd

2
≥ (∆q1q2 −∆q1)πm −∆q1q2

πd

2

implying that there is a range of values for payment p. Thus, take any p ∈ [(∆q1q2 −

∆q1)πm −∆q1q2
πd

2
, (∆q2 −∆q1q2)πm +∆q1q2

πd

2
]. Then,

p ≥ (∆q1q2 −∆q1)πm −∆q1q2
πd

2

By replacing ∆q1q2 with qsqs − qns1 qns2 and ∆q1 with qs − qns1 in the above inequality, we

obtain

p ≥ [qsqs − qns1 qns2 − (qs − qns1 )]πm − [qsqs − qns1 qns2 ]
πd

2

By rearranging the terms on the right hand side of the above inequality, we obtain

p ≥ [qns1 (1− qns2 )− qs(1− qs)]πm + [qns1 qns2 − qsqs]
πd

2

By adding qs(1− qs)πm + qsqs πd

2
− c to both sides of the above inequality, we obtain

qs(1− qs)πm + qsqs
πd

2
+ p− c ≥ qns1 (1− qns2 )πm + qns1 qns2

πd

2
− c

Since the left hand side of the above inequality equals to V1(q
s, qs) and the right hand

side equals to V1(q
ns
1 , qns2 ), we obtain

V1(q
s, qs) ≥ V1(q

ns
1 , qns2 )
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implying that firm1 will be better off by accepting the price p. Similarly, since

(∆q2 −∆q1q2)πm +∆q1q2
πd

2
≥ p,

by replacing ∆q1q2 with qsqs − qns1 qns2 and ∆q2 with qs − qns2 , we obtain

[(qs − qns2 )− (qsqs − qns1 qns2 )]πm + [qsqs − qns1 qns2 ]
πd

2
≥ p

By rearranging the terms on the left hand side of the above inequality, we obtain

[qs(1− qs)− (1− qns1 )qns2 ]πm + [qsqs − qns1 qns2 ]
πd

2
≥ p

By adding (1 − qns1 )qns2 πm + qns1 qns2
πd

2
− p − c to both sides of the above inequality and

rearranging them, we obtain

qs(1− qs)πm + qsqs
πd

2
− p− c ≥ (1− qns1 )qns2 πm + qns1 qns2

πd

2
− c

Since the left hand side of the above inequality equals to V2(q
s, qs) and the right hand

side equals to V2(q
ns
1 , qns2 ), we obtain

V2(q
s, qs) ≥ V2(q

ns
1 , qns2 )

implying that firm2 will be better off by accepting the price p. Therefore, both firms

want to share. �

Intuitively, this result tells us that sharing will only occur if the ratio of changes in

the joint success probability to the sum of changes in individual success probabilities is

below a certain threshold. Here, changes in joint success probability can be thought as a

cost and changes in individual success probabilities as a benefit. Thus, if the cost/benefit

ratio exceeds a certain threshold, sharing will not be beneficial to the firms.
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1.3.2 Unverifiable negative outcomes

In this case, we are going to use the same setup in an even simpler way. There are 3

research lines. Only one will lead to a potentially successful outcome. Suppose each

firm is endowed with one negative outcome and these negative outcomes are different

(symmetry between firms).

The game is organized as follows; in the first stage, firms need to decide whether

to share their negative outcomes or not. If they decide to share and the outcomes

are revealed truthfully, then exchange occurs and as a result the successful outcome is

obtained by both firms. However, they do not necessarily need to tell the truth. For

example, one firm may declare another research line as negative outcome instead of true

negative outcome in order to misdirect the opponent. If firms decide not to share, then

game moves on to the second stage. In the second stage, firms pick a research line

randomly. If any firm obtains the successful outcome, then the game ends. If no firm

obtains the successful outcome, then they will undertake the only remaining research

line which is of course the successful one. The cost of undertaking a research line is c.

At the end of the game, if only one firm obtains the successful outcome, then it will be

a monopolist in the production stage, so that its profit will be denoted by πm. If both

firms obtain the successful outcome, then they will split the duopoly profit, πd evenly.

Given the structure of the game, the following result shows us that sharing is im-

possible.

Proposition 1.4 It is never optimal for firms to share their negative results.

Proof. If firms decide not to share their negative outcomes, then with probability

1/4 firm i obtains the successful outcome but the other not so that the profit of firm i

is πm− c, with probability 1/4 both firms obtain the successful outcome, thus the profit
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of both firms is πd/2 − c, with probability 1/4 the other firm obtains the successful

outcome but not firm i so its profit is −c and finally with probability 1/4 both firms

could not obtain the successful outcome in first trial but in the second, thus the profits

are πd/2− 2c. Hence, the overall expected profit for each firm is

πm

4
+

πd

4
− 5c

4
(1.11)

If firms decide to share their negative outcomes, then they need to decide whether to

reveal it truthfully or to cheat. If both firms truthfully reveal their negative outcomes,

then both will learn all the negative outcomes so that they know the remaining research

line is successful. Hence, each firm’s profit is

πd

2
− c (1.12)

If one firm cheats and the other tells the truth, then with 1/2 probability cheating

firm can achieve to misdirect the opponent so that it will be the only one that obtains

successful outcome leading to the profit πm − c and truthful firm will get nothing so its

profit is −c, however with 1/2 probability cheating firm reveals the same research line

that the opponent has so that the opponent has a 50-50 chance of obtaining successful

outcome. Then, the expected profit for the cheating firm is 1/2(πm − c)+ 1/2(πd/2− c)

and the profit for the truthful firm is πd/4 − c. Hence, the overall expected profits for

firms when one cheats and the other tells the truth are

3πm

4
+

πd

8
− c (1.13)

and

πd

8
− c (1.14)

respectively. If both firms cheat, then they will randomize between the remaining two

research lines to reveal one as if it is the negative outcome. With probability 1/4 firm
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i reveals the research line that the opponent has and the opponent reveals the research

line that neither has, then firm i realizes that the revealed research line by the opponent

is successful, but opponent cannot benefit from sharing so it randomizes between the

remaining two research lines, so the expected profit of firm i is 1
2
(πm−c)+ 1

2
(πd

2
−c). With

probability 1/4 each firm reveals the research line that the other has so that sharing

does not bring any benefit. Therefore, the expected profit is the same as the case where

there is no sharing, so πm/4 + πd/4 − 5c/4. With probability 1/4 firm i reveals the

research line that neither has, but the opponent reveals the one that firm i has. Thus,

only opponent benefits from the sharing. The expected profit for firm i is πd/4 − c.

Finally, with probability 1/4 both firms reveal the research line that neither has. Thus,

both will figure out that it is the successful one so that profits are πd/2− c. Hence, the

overall expected profit for each firm when both cheats is

3πm

16
+

5πd

16
− 17c

16
(1.15)

It is easy to see that equation (13) is strictly greater than (12) and equation (15) is

strictly greater than (14). Thus, cheating strictly dominates truthful revelation for each

firm. Hence, if firms decide to share, they know that both cheated. However, if we

compare the profits from non-sharing (11) and sharing (15), we see that (11) is strictly

greater than (15) since πm > πd. Therefore, we can conclude that it is never optimal for

firms to share their negative outcomes. �

This result tells us that when firms are not able to verify the outcomes, there is no

incentive to share their negative results. The reason is each firm has an incentive to

misdirect the opponent so that it will be the only one who obtains successful outcome

while the opponent was researching at the wrong direction. Hence, this result shows

that verifiability is critically important on sharing negative outcomes.
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1.4 Conclusion

In this paper, we show that it is possible to create incentives for firms to share their

negative outcomes under some circumstances. The most important problem is the ver-

ifiability of negative outcomes. When there is no way to verify the negative outcomes,

firms have no incentive to share their negative outcomes. Thus, verifiability is necessary

but not sufficient for sharing negative outcomes. Once the verifiability issue is resolved,

then sharing negative outcomes depends on how far firms close to obtaining successful

outcome. If the gap between firms sufficiently low, then sharing will be possible. In

other words, the benefit of sharing negative outcomes exceeds the cost of lowering the

chance of being a monopolist.

One obvious question is why we do not see sharing negative outcomes in real-world.

There is a market for patents, i.e successful outcomes, but not for negative outcomes.

The reason might be that negative outcomes carry information on not only a particular

research but also a complete plan or strategy of a firm. Revealing this information may

yield to larger costs than expected.

The model that I present here is static in nature. Thus, it lacks of providing a

dynamic interaction between firms and investigating its consequences. For example,

it would be interesting to determine the timing of an agreement for sharing negative

outcomes. Nevertheless, it proposes a new type of cooperation in R&D markets which

hopefully implementable in near future. There are several challenges for its implementa-

tion. However, these challenges can be overcome by following certain policies. Moreover,

this paper contributes to the discussion of competition vs. cooperation in R&D markets.

Our findings suggest that in some circumstances, cooperation through sharing negative

outcomes is beneficial for firms as well as society.

It would be interesting to investigate the relative performance of cooperation through
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sharing negative outcomes with other types of cooperation. Therefore, it would be easier

to make policy recommendations. One interesting possible extension is adding spillovers

into the model. In the presence of positive externalities, it is not straightforward to

determine how incentives for cooperation would be affected.
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Chapter 2

Random (probabilistic) assignment

under generalized top-dominance

condition

2.1 Introduction

The allocation of goods and services is a great challenge in economics. A market mech-

anism where the monetary transactions are allowed solves this problem well. However,

without monetary transactions even a simple discrete resource allocation problem can

be a real challenge. A discrete resource allocation problem consists of four components;

a group of individuals, a group of distinct objects, individual preferences over these ob-

jects as strict orderings and most importantly a rule that matches each individual with

one and only one object by taking all individual preferences into account. Consider

the simplest discrete resource allocation problem; assigning two distinct objects to two

individuals. Suppose both individuals prefer the same object to the other. In this case,
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it is impossible to determine who is going to receive the most desirable object according

to these preferences? Without a priority structure, a fair outcome even for this simple

problem is impossible. Thus, lotteries are generally used to restore fairness for these

situations. In this simple case, a rule should allocate the same probability 1/2 to each

individual.

A random (probabilistic) assignment rule assigns probabilities of receiving each ob-

ject to individuals instead of actually matching the objects with individuals. To be able

to determine which random assignment rule to use, one should look for several desirable

properties that a random assignment rule must satisfy. Bogomolnaia and Moulin (2001)

shows that it is impossible to find a random assignment rule that satisfies ordinal effi-

ciency, no-envy and strategyproofness.1 We introduce a domain restriction to overcome

this impossibility result.

This impossibility result on discrete random allocation problem is interesting and

important for several reasons. In real life, people face with allocation problems very

frequently, one of them is cooperative housing. In the housing cooperation, individu-

als/members make equal contributions for the construction of houses and have same

rights over the selection of houses without a priority structure in place. There are sev-

eral methods (rules) used to solve the allocation problem in this kind of situations. The

most common one is assigning numbers to each individual with a lottery first. Then

the individual with the smallest number picks his/her top choice followed by the indi-

vidual with the second smallest number to pick his/her top choice from the remaining

houses and so on. This method is called random priority (also known as random se-

rial dictatorship) assignment. It satisfies ex-post efficiency which means that once a

priority order is determined, the resulting allocation is efficient. In other words, there

1We will describe these properties in detail later in this section.
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is no other allocation that makes someone better-off without making anyone worse-off.

Another method is to allocate objects first randomly by a lottery and then to apply the

Gale’s top trading cycle algorithm.2 Abdulkadiroglu and Sonmez (1998) show these two

methods are equivalent where they called the latter as Core from random endowments.

However, Bogomolnaia and Moulin (2001) introduce a new concept called ordinal ef-

ficiency. A random assignment is ordinally efficient if it is not stochastically dominated

by another random assignment with respect to individual preferences over objects.3 Bo-

gomolnaia and Moulin (2001) show that ordinal efficiency implies ex-post efficiency, and

random serial dictatorship (RSD) may fail to satisfy ordinal efficiency. Thus, they de-

fine a new random assignment rule, namely probabilistic serial rule (PS), which satisfies

ordinal efficiency. Under PS, the probabilities are determined as follows; each individ-

ual starts consuming his/her favorite object first. The speed of consumption is equal

for each individual. Once an object is exhausted, the amount consumed by an indi-

vidual will be his/her probability of receiving that object. If an object is completely

exhausted, individuals move on to the next best available object. This process goes on

until all the objects are consumed. Finally, the amounts consumed by all individuals

will represent the probability distribution of receiving each object (random allocation)

2Once each individual receives an object randomly, they point out the individual who is endowed

with their most preferred object. This will create a cycle where one individual points to the next one

and eventually the last individual points out the first individual. By allowing individuals to trade with

each other, this cycle can be eliminated. Eventually, all objects will be traded by applying the same

procedure for the remaining individuals and objects. This procedure of allocating objects is called top

trading cycle algorithm. See Sharply and Scarf (1974).
3A random assignment stochastically dominates another random assignment if it assigns a higher

probability of receiving one of the preferred objects among any number of objects to each individual

than the other random assignment.
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for each individual.4 Thus, by construction, PS satisfies ordinal efficiency since it is not

possible to increase the probabilities of receiving most preferred objects. The reason is

each individual is already incentivized to increase the probability of receiving their most

preferred objects in PS.

Hence, PS is superior to RSD in terms efficiency, while RSD is superior to PS in terms

of strategyproofness which requires individuals to report their preferences truthfully.

However, Bogomolnaia and Moulin (2001) state that there does not exist a random

assignment rule that satisfies ordinal efficiency, strategyproofness and equal treatment

of equals when the number of individuals and objects are greater than or equal to 4.5

This impossibility result attract our attention and we investigate if we can obtain

a positive result by imposing a domain restriction. In other words, is it possible to

find a random assignment rule that satisfies the desirable properties under a restricted

domain? The answer is positive when we impose the top-dominance condition which is

introduced by Alcalde and Barbera (1994). A domain satisfies top dominance condition

if it is not possible to find an object that is superior to any other two objects which

ordered differently in any pair of individual preferences. In other words, if top dominance

condition is satisfied over a domain, then there does not exist any two ordering in

this domain whose maximal (top) elements are the same. We know this condition is

quite restrictive, but yet fairly reasonable when we focus on allocation problems such

as cooperative housing assignment. If we go back to this problem, we see that top

dominance condition is reasonable since individuals set their preferences by considering

4This is called simultaneous eating algorithm by Bogomolnaia and Moulin (2001).
5Equal treatment of equals requires the random allocation of any two individuals to be the same

whenever they have the same preferences over objects. No-envy requires that no one prefers his/her

random allocation to another individual’s random allocation in a given random assignment. Note that

equal treatment of equals is weaker than no-envy condition.
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some features of houses. For example, in Japan people tends to prefer higher floors of

a building to lower floors because of the earthquakes. When the maximal object is top

floor, the rest of the preferences do not differ in individual preferences.

As a result, we show that under top dominance condition, PS satisfies strategyproof-

ness and the conflict between ordinal efficiency and strategyproofness disappears. How-

ever, the domain that satisfies top dominance condition is not a maximal domain over

which PS satisfies ordinal efficiency, strategyproofness and no-envy. We propose a richer

domain than the one that satisfies top-dominance condition, namely generalized top-

dominance condition. A domain satisfies generalized top-dominance condition if it is

partitioned into two distinct subdomains where either one satisfies top-dominance con-

dition while the other is empty or one satisfies top-dominance condition by adding an

individual preference from the other subdomain if both are nonempty. We conjecture

that a domain satisfying generalized top-dominance condition is the maximal domain

under which PS is strategyproof.

The importance and significance of these results are based on its implementability.

This paper is in an early stage on understanding the properties of these rules. Further

research is needed to understand robustness of the implementation of these rules.

The paper proceeds as follows. Section 2 summarizes the related literature. Section

3 presents the model. Section 4 states our results. Section 5 makes some concluding

remarks.

2.2 Related Literature

This paper contributes to the literature on discrete resource allocation problems, mainly

focusing on random (probabilistic) assignments. Hylland and Zeckhauser (1979) is the

first paper which considers the random allocation problem by using von Neumann-
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Morgenstern utilities. Later, Zhou (1990) provides an impossibility result in a similar

setting where individuals provide von Neumann-Morgenstern utilities over objects and

show that there is no random assignment rule that satisfies ex-ante efficiency, strate-

gyproofness and equal treatment of equals. However, the difficulty in obtaining cardinal

preferences makes comparison of interpersonal utility complicated. Thus, Bogomolnaia

and Moulin (2001) use ordinal preferences and define a random assignment rule, namely

probabilistic serial rule. They show that there is no random assignment rule that sat-

isfies ordinal efficiency, strategyproofness and equal treatment of equals when there are

at least four objects.

One strand of the literature moved on to the direction of searching the axiomatic

characterization of probabilistic serial rule. Kesten, Kurino, and Unver (2011) provide

two characterizations of probabilistic serial rule; i) PS is the only random assignment

rule that satisfies non-wastefulness and ordinal fairness, ii) PS is the only random assign-

ment rule that satisfies ordinal efficiency, ordinal envy-freeness, and upper invariance.

Hashimoto and Hirata (2011) provide a similar characterization of probabilistic serial

rule in a setting where null object always exist. Bogomolnaia and Heo (2012) introduce

a new weaker axiom called bounded invariance and provide a new characterization as

probabilistic serial rule is the only random assignment rule that satisfies ordinal effi-

ciency, strategyproofness and bounded invariance. Unlike these papers, our focus is on

the strategyproofness condition and we try to determine the domains where probabilistic

serial rule is strategyproof.

Kojima and Manea (2010) show that in sufficiently large markets, probabilistic serial

rule is strategyproof. That means any gain from misrepresenting preferences disappear

if the number of objects is sufficiently large. This partially solves the problem that we

are interested, yet impossibility remains for small number of objects.
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This paper is also related to the literature on domain restriction in resource allocation

problems. Alcalde and Barbera (1994) apply a domain restriction to matching problems

in order to obtain strategy-proof mechanisms. They introduce top-dominance condition

and show that under this condition, there exist strategy-proof and stable mechanisms

for matching problems, like marriage and college admissions.

A domain restriction to overcome an impossibility result is not always significant

and interesting unlike a maximal domain result. A maximal domain tells how far one

can expand the domain without falling into impossibility. Kojima (2007) presents two

maximal domain restrictions on two-sided matching markets such that manipulations

via capacities and pre-arranged matches are prevented. This paper follows a similar

path for a different impossibility result.

2.3 The Model

We consider a finite set of individuals N confronting a finite set of objects A with

the same cardinality, i.e., |N | = |A|. Let L(A) be the set of complete, transitive and

antisymmetric binary relations over A. Each individual i ∈ N has strict preferences

over the objects and denoted by Pi where Pi ∈ L(A).6 Let Ri be the weak counterpart

of Pi and Ii be the indifferent part of Pi
7. We write preference profile as a n-tuple

P = (P1, P2, ..., Pn) ∈ L(A)N .

An assignment is a one-to-one function ϕ from the set of individuals N to the set

of objects A. Since the number of individuals equals to the number of objects, ϕ is a

bijection. In words, everyone obtains one and only one object. Given this requirement,

6In other words, each individual is able to rank all objects in a strict manner.
7As usual, for any distinct objects x, y ∈ A, xPiy denotes ”x is strictly preferred to y”, xRiy denotes

”x is at least as good as y”, and xIiy denotes ”x is indifferent to y”.
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there are many ways of assigning individuals to objects. Let Φ denotes the set of all

assignments. When the number of individuals and objects are n, the total number of

all possible assignments is n!, i.e., |Φ| = n!. The reason is there are n possible objects

for the first individual, and after he/she obtains one, there are n− 1 possibility for the

second individual, and decreasing one by one there will be only one object left for the

last individual. When we multiply all these possibilities, we obtain the total number

of assignments which is n.(n − 1)....1 = n!. If the number of individuals and objects

increases, then the set of assignments increases much more rapidly.

There is a matrix representation for each assignment. Let T : Φ −→ Mn×n be a

transformation defined as follows; for any given assignment ϕ ∈ Φ, let T (ϕ) = (tϕij) be

a n × n matrix where row index i denotes individuals and column index j denotes the

objects. Clearly, the entries of matrix T only take values either 0 or 1. So, tϕij = 1 if

the individual i receives the object j under assignment ϕ, and tϕij = 0 otherwise. Most

importantly, each row and each column of T (ϕ) contains exactly one nonzero entry.8

The following example will demonstrate the matrix representation of an assignment.

Example 2.1 Let N = {1, 2, 3} and A = {a, b, c}. Take an assignment ϕ where object

a is assigned to individual 2, object b is assigned to individual 3, and object c is assigned

to individual 1. Then, the matrix representation of assignment ϕ is the following;

T (ϕ) =


0 0 1

1 0 0

0 1 0

 .

8In mathematics, these type matrices are called permutation matrices where each row and column

contains exactly one entry with 1 and others all 0s. We can think of each assignment as a permutation

of a given assignment. Thus, the matrix representation of each assignment will be the permutation

matrix of the initial assignment’s matrix representation.
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Here, rows denote the individuals and columns denote the objects. By looking at the

matrix, it is easy to see that individual 1 (first row) receives object c (third column),

individual 2 (second row) receives object a (first column), and individual 3 (third row)

receives object b (second column). Moreover, each row and each column contains exactly

one entry with 1.

An assignment is a deterministic way of assigning objects to individuals. However,

there are many circumstances under which it is not certain who is going to receive what.

In that case, we need to incorporate uncertainty to our framework. If the assignment is

chosen randomly among all assignments, then trying to determine the chances of getting

an object makes sense. This will lead us to define random assignments.9 A random

assignment is a probability distribution over all assignments. Basically, randomness is

obtained by assigning weights to all deterministic assignments where the weights denote

the likelihood of choosing that particular assignment. Since there are many ways of

choosing those weights, there are many random assignments. Let ∆(Φ) denotes the set

of all random assignments. So, more formally, σ ∈ ∆(Φ) is a random assignment if

σ =
∑n!

k=1 akϕ
k where

∑n!
k=1 ak = 1, ak ≥ 0, ϕk ∈ Φ, ∀k.

Hence, weights ak need to be nonnegative and add up to 1 in order to interpret

them as probabilities. Moreover, a weight needs to be assigned to all deterministic

assignments. Similar to deterministic assignments, a random assignment σ ∈ ∆(Φ) also

can be represented by a n× n matrix T (σ) = (tσij)i∈N,j∈A such that

tσij =
∑n!

k=1 akt
ϕk

ij where
∑n!

k=1 ak = 1, ak ≥ 0, ϕk ∈ Φ, ∀k.

Here, there are several remarks in order. First of all, for all individual i ∈ N , Ti(σ)

denotes the ith row of T (σ), and it will be the random allocation of individual i. By

9In the literature, it is also called probabilistic assignment.
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random allocation, we mean that a probability distribution over all objects in A. Second

of all, each row and each column of T (σ) adds up to 1, and it is denoted as weighted

sum of T (ϕk)10;

T (σ) =
n!∑
k=1

akT (ϕ
k)

The following example will demonstrate the matrix representation of a random as-

signment and show how it is written as a convex combination of deterministic assign-

ments.

Example 2.2 Let N = {1, 2, 3} and A = {a, b, c}. Take a random assignment σ where

object a is assigned to individual 1 with probability 1/3, to individual 2 with probability

1/2 and to individual 3 with probability 1/6; object b is assigned to individual 1 with

probability 1/3, to individual 2 with probability 1/6 and to individual 3 with probability

1/2; object c is assigned to individual 1 with probability 1/3, to individual 2 with prob-

ability 1/3 and to individual 3 with probability 1/3. Then, the matrix representation of

this random assignment σ is the following;

T (σ) =


1/3 1/3 1/3

1/2 1/6 1/3

1/6 1/2 1/3

 .

Here again, rows denote the individuals and columns denote the objects. By looking

at the matrix T (σ), it is easy to see that individual 1 is equally likely will obtain one

of the three objects, hence its random allocation is T1(σ) = (1/3, 1/3, 1/3) (first row).

Similarly, individual 2’s random allocation is T2(σ) = (1/2, 1/6, 1/3) (second row) and

10In mathematics, these type of matrices are called doubly stochastic (bistochastic) matrices where

all the entries (they are all nonnegative) in each row and column add up to 1. Every doubly stochastic

matrix can be written as a convex combination of permutation matrices due to well-known Birkhoff-von

Neumann theorem.
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individual 3’s random allocation is T3(σ) = (1/6, 1/2, 1/3) (third row). Moreover, each

row and each column entries add up to 1. However, it is not straightforward to determine

the weights of deterministic assignments that leads to the random assignment σ. There

are 6 deterministic assignments that are stated with their matrix representations below;

T (ϕ1) =


1 0 0

0 1 0

0 0 1

 , T (ϕ2) =


1 0 0

0 0 1

0 1 0

 , T (ϕ3) =


0 1 0

1 0 0

0 0 1

 ,

T (ϕ4) =


0 1 0

0 0 1

1 0 0

 , T (ϕ5) =


0 0 1

1 0 0

0 1 0

 , T (ϕ6) =


0 0 1

0 1 0

1 0 0

 .

Then, the weights are a1 = 1/6, a2 = 1/6, a3 = 1/6, a4 = 1/6, a5 = 1/3 and a6 = 0. It

is easy to check that
∑n!

k=1 akT (ϕ
k) is equal to T (σ).

Up to this point, we defined deterministic assignments and random assignments and

analyzed their relationship and representations. However, we have not specified how

a random assignment is obtained. The only information needed to determine random

assignments is individual preferences. Given any individual preferences over objects, we

need to systematically obtain random assignments. The following definition shows us

the formal way of carrying out this process.

A random assignment rule f is a mapping from the set of all preference profiles L(A)N

to the set of all random assignments ∆(Φ). So, for any preference profile P ∈ L(A)N ,

f(P ) is the random assignment that represents random allocations over objects with

respect to individual preferences in P . A trivial random assignment rule is constant

rule which assigns equal probability to receive each object for each individual no matter

what their preferences are. Say there are n individuals and n objects. For any preference
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profile P ∈ L(A)N over these n objects, constant rule fCR(P ) assigns the following

random allocations to the individuals;

T (fCR(P )) =


1/n ... 1/n

... ... ...

1/n ... 1/n


where the random allocation of each individual i is Ti(f

CR(P )) = (1/n, ..., 1/n). Con-

stant rule is immune to information since it does not take into account the individual

preferences in order to determine the random assignment. However, there are some ran-

dom assignment rules that use information efficiently and as a result preferred widely.

One such rule takes individual preferences first, and then determines a priority ordering

randomly to decide who is going to make a choice first, second and so on. By knowing

all the individual preferences, it is easy for each individual to determine the probabilities

of receiving each object. Intuitively, if the preferences are similar, then the probability

of receiving the better objects will be lower. If the preferences are diverse, then it is

very likely that many individual will receive their favorite objects.

More formally, let τ : {1, 2, ..., n} −→ N be a bijection that leads to an ordering of

individuals where τ(1) is the first, τ(2) is the second and so on. Let Σ denote the set

of such orderings. For any τ ∈ Σ and for any preference profile P ∈ L(A)N , priority

assignment PA(P, τ) is the corresponding assignment where τ(1) receives his top choice

according to his preferences in P , τ(2) receives his top choice among the remaining

objects and so on. The following definition states a random assignment rule in which

the priority assignment is used and determined randomly.

Definition 2.1 A random assignment rule f : L(A)N −→ ∆(Φ) is called random serial
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dictatorship11 (RSD) if

T (f(P )) =
1

n!

∑
τ∈Σ

T (PA(P, τ)),∀P ∈ L(A)N .

It is better to denote random serial dictatorship rule as fRSD. Basically, each priority

assignment may occur equally likely in RSD rule and the probabilities of receiving any

object may change depending on the individual preferences. The following example

shows how random serial dictatorship rule works.

Example 2.3 Let N = {1, 2, 3} and A = {a, b, c}. Take a preference profile P ∈ L(A)N

where individual 1’s preferences are aP1bP1c, individual 2’s preferences are bP2aP2c and

finally individual 3’s preferences are bP3cP3a. So the preference profile P is the following;

P1 P2 P3

a b b

b a c

c c a

There are 6 priority orderings. The first priority ordering is

(τ 1(1) = 1, τ 1(2) = 2, τ 1(3) = 3)

where first priority is given to individual 1, second priority to individual 2 and third pri-

ority to individual 3. In short, we denote it τ 1 = (1, 2, 3). Then, the other orderings are

τ 2 = (1, 3, 2), τ 3 = (2, 1, 3), τ 4 = (2, 3, 1), τ 5 = (3, 1, 2), and τ 6 = (3, 2, 1). According to

these priority ordering τ k’s, priority assignment PA(P, τ) will generate 6 deterministic

11The name indicates that once a priority is determined, the first individual can be seen as a dictator

since he can obtain whatever object he wants. Moreover, this a serial dictatorship in the sense that

after first individual second individual can be seen as a dictator, then the third individual and so on.

In the literature, random serial dictatorship rule is also known as random priority assignment rule.
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assignments. Their matrix representations are

T (PA(P, τ 1)) =


1 0 0

0 1 0

0 0 1

 , T (PA(P, τ 2)) =


1 0 0

0 0 1

0 1 0

 , T (PA(P, τ 3)) =


1 0 0

0 1 0

0 0 1

 ,

T (PA(P, τ 4)) =


1 0 0

0 1 0

0 0 1

 , T (PA(P, τ 5)) =


1 0 0

0 0 1

0 1 0

 , T (PA(P, τ 6)) =


0 0 1

1 0 0

0 1 0

 .

Since the priority ordering is determined randomly, any of these assignments has an

equal chance of being realized which is 1/6. Then the random assignment rule fRSD will

take the convex combination of these matrices by multiplying each of them with 1/6 and

generate the following matrix representation of random assignment fRSD(P );

T (fRSD(P )) =


5/6 0 1/6

1/6 1/2 1/3

0 1/2 1/2

 .

The first desirable property on random assignment rules is the efficiency. Given

individual preferences, can a random assignment rule generate efficient random assign-

ments? Here the problem is how to define efficiency concept over random assignments.

Standard efficiency definition requires that an allocation is efficient if there is no other

allocation that makes someone better-off without making anyone worse-off. We could

define ex-ante efficiency if we were able to know the cardinal preferences of individuals.

By calculating expected utilities, we could compare random allocations for each individ-

ual. However, we are only informed about ordinal preferences. Thus, instead of ex-ante

efficiency, we can only use ex-post efficiency. For any preference profile P ∈ L(A)N , a

random assignment f(P ) ∈ ∆(Φ) is ex-post efficient if it can be written as a convex
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combination of priority assignments;

T (f(P )) =
∑

τ∈Σ aτT (PA(P, τ)) where
∑

τ∈Σ aτ = 1, aτ ≥ 0, ∀τ ∈ Σ.

Given individual preferences, the random assignment rule will generate a random as-

signment and each realization of this random assignment has to be efficient in the sense

that no one could be better-off without making anyone worse-off. Since the priority

assignment will generate an efficient outcome where everybody chooses successively the

best option from the available objects, then there is no way to make someone better-off

without making anyone worse-off. Thus, a random assignment rule f is ex-post efficient

if for any preference profile P ∈ L(A)N , random assignment f(P ) ∈ ∆(Φ) is ex-post

efficient. By definition, random assignment rule fRSD is ex-post efficient.

Ex-post efficiency does not tell anything about the relationship of two random alloca-

tions. However, individuals can in fact make comparisons of random allocations without

using expected utility theory. For each individual, we define stochastic dominance (sd)

relation over random allocations with respect to two different random assignment as

follows; for any given preference profile P ∈ L(A)N and given two distinct random

assignments σ, σ′ ∈ ∆(Φ),

Ti(σ)sd(Pi)Ti(σ
′) ⇐⇒ {

j∑
k=1

tσik ≥
j∑

k=1

tσ
′

ik ,∀j = 1, ..., n},∀i ∈ N

where k denotes top k preferred objects according to individual i’s preferences Pi. In

words, if a random allocation assigns higher probabilities to receiving one of the most

preferred objects than another random allocation, then the former is preferred to the lat-

ter allocation. Thus, for any given preference profile P ∈ L(A)N , a random assignment

σ ∈ ∆(Φ) stochastically dominates another random assignment σ′ ∈ ∆(Φ) if

Ti(σ)sd(Pi)Ti(σ
′),∀i ∈ N
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Given the definition of stochastic domination relation, it is easy to define a new

efficiency concept. A random assignment σ ∈ ∆(Φ) is ordinally efficient if it is not

stochastically dominated by any other random assignment. Similarly, a random as-

signment rule f is ordinally efficient if for any preference profile P ∈ L(A)N , random

assignment f(P ) is ordinally efficient.

Unfortunately, random serial dictatorship rule is not ordinally efficient. The following

example is taken from Bogomolnaia and Moulin (2001) that shows how RSD fails to

satisfy ordinal efficiency.12

Example 2.4 Let N = {1, 2, 3, 4} be the set of individuals and A = {a, b, c, d} be the

set of objects. Take the preference profile P as

P1 P2 P3 P4

a a b b

b b a a

c c d d

d d c c

The matrix representation of random assignment fRSD(P ) as follows;

T (fRSD(P )) =



5/12 1/12 5/12 1/12

5/12 1/12 5/12 1/12

1/12 5/12 1/12 5/12

1/12 5/12 1/12 5/12


.

12When the number of objects are 2 and 3, ex-post efficiency coincides with ordinal efficiency.
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Now, consider the following matrix representation of the random assignment σ;

T (σ) =



1/2 0 1/2 0

1/2 0 1/2 0

0 1/2 0 1/2

0 1/2 0 1/2


.

Here, every individual will prefer the random allocations from σ to the random alloca-

tions from fRSD(P ). Thus, σ stochastically dominates fRSD(P ) implying that RSD is

not ordinally efficient.

In the seminal work of Bogomolnaia and Moulin (2001), a new random assignment

rule is introduced. This new rule follows an algorithm, called simultaneous eating algo-

rithm, which described as follows; each agent starts consuming his/her most preferred

object (suppose as if the object is divisible) with equal speed ωi(t). Once an object is

consumed, they moved to their second preferred object if it is not consumed at all. This

process will continue until all the objects are consumed.

Definition 2.2 A random assignment rule f : L(A)N −→ ∆(Φ) is called probabilistic

serial rule (PS) if for any preference profile P ∈ L(A)N ,

ωi(t) = 1,∀i ∈ N, ∀t ∈ [0, 1].

The following example shows how PS works.

Example 2.5 Take the preference profile P in Example 3;

P1 P2 P3

a b b

b a c

c c a
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According to eating algorithm, individual 1 starts consuming object a and others start

consuming their favorite object b. At time t = 1/2, object b is completely exhausted, but

half of object a is remaining (the probability shares from b is p1b = 0, p2b = 1/2 and p3b =

1/2). Starting from this point, individual 2 consumes a and individual 3 consumes c. At

time t=3/4, object a is completely exhausted (observe that it only takes 1/4 time to finish

the remaining of a). So, the probability shares from object a is p1a = 1/2 + 1/4 = 3/4,

p2a = 1/4 and p3a = 0. At this point, 1/4 of c is consumed. Since it is the only object

left, all individuals consume it from this point on. Finally at time t = 1, c is completely

exhausted since it takes only 1/4 time to finish the 3/4 of c. So, the probability shares

from object c is p1c = 1/4, p2c = 1/4 and p3c = 1/4 + 1/4 = 1/2. Hence, the matrix

representation of resulting random assignment from probabilistic serial rule is

T (fPS(P )) =


3/4 0 1/4

1/4 1/2 1/4

0 1/2 1/2

 .

Observe that outcome of PS and RSD are different.

There are two other desirable properties that a random assignment rule should sat-

isfy. The first one is about fairness. A random assignment rule should assign random

allocations in a way that no one envies somebody else’s random allocation. More for-

mally, a random assignment rule f : L(A)N −→ ∆(Φ) is envy free (no-envy) if for any

preference profile P ∈ L(A)N ,

∀i, j ∈ N, Ti(f(P ))sd(Pi)Tj(f(P )).

Each individual’s random allocation stochastically dominates any other individual’s ran-

dom allocation for any given preference profile. There is also a weaker version of this

condition. A random assignment rule f : L(A)N −→ ∆(Φ) satisfies equal treatment of
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equals if for any preference profile P ∈ L(A)N ,

∀i, j ∈ N,Pi = Pj =⇒ Ti(f(P )) = Tj(f(P )).

This condition requires that a random assignment rule has to assign the same random

allocation to the individuals whenever their individual preferences are the same in any

given preference profile.

The last desirable property is about the strategic aspect of a random assignment

rule. It may be possible for some individual to report their preferences untruthfully. In

order to prevent this type of situations, a random assignment should satisfy the following

condition. A random assignment rule f : L(A)N −→ ∆(Φ) is strategyproof if

∀i ∈ N, ∀P, P ′ ∈ L(A)N , Ti(f(P ))sd(Pi)Ti(f(P−i, P
′
i )).

This condition requires that no individual can increase the likelihood of receiving his/her

favorite objects by misrepresenting his/her preferences. In the next section, we will

analyze the consequences of these properties when they imposed on a random assignment

rule.

2.4 The Results

Without any domain restriction, it is easy to see that random serial dictatorship (RSD)

and probabilistic serial rule (PS) coincides when the number of individuals and objects

are 2. Hence, we can conclude that random assignment rule PS is strategyproof. Thus,

from now on we only consider cases where the number of individuals is greater than

equal to 3, i.e., |N | ≥ 3. Moreover, when the domain is extremely restricted, i.e |D| =

2, random assignment rule PS is again strategyproof no matter what the number of

individuals and objects are.
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The intuition behind this result is the following; since there are at least two in-

dividuals with the same preferences, it is impossible to gain probability increase on

favorite objects by reporting the other preference available. There is not much variety

in individual preferences to create a possibility of gaming the rule.

Proposition 2.1 Let |N | = |A| = n where n ≥ 3. Take any D ⊆ L(A) with |D| = 2.

Then, random assignment rule PS is strategyproof over DN .

Thus, from now on we consider only domains that contain at least three orderings.

However, if there is enough diversification in the domain, we already showed that three

ordering is sufficient, then random assignment rule PS may fail to satisfy strategyproof-

ness. Here is an example that shows this claim.

Example 2.6 Let N = {1, 2, 3} and A = {a, b, c}. Take the domain

D =


a b b

b , a , c

c c a


Even though this domain is restricted (there are only three orderings out of possible six

orderings), it is possible to misrepresent the preferences and increase the probability of

getting better objects. To see this, take the preference profile P as

P1 P2 P3

a b b

b a c

c c a

So, individual 1’s preferences are aP1bP1c, individual 2’s preferences are bP2aP2c and

finally individual 3’s preferences are bP3cP3a. Then the matrix representation of random
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assignment rule fPS for this preference profile P is

T (fPS(P )) =


3/4 0 1/4

1/4 1/2 1/4

0 1/2 1/2

 .

Hence, the random allocation for individual 1 is T1(f
PS(P )) = (3/4, 0, 1/4). However,

individual 1 can obtain a better random allocation by misrepresenting his preferences. If

he misrepresents his preferences as bP ′
1aP

′
1c, then the new preference profile P ′ would be

P ′
1 P2 P3

b b b

a a c

c c a

and the associated matrix representation of random assignment rule fPS outcome would

be

T (fPS(P ′)) =


1/2 1/3 1/6

1/2 1/3 1/6

0 1/3 2/3

 .

Hence, the new random allocation for individual 1 is T1(f
PS(P ′)) = (1/2, 1/3, 1/6). The

probability of getting object a or b for individual 1 in P is 2/3; however, in the new pref-

erence profile P ′ it is 5/6. Therefore, random assignment fPS(P ) cannot stochastically

dominates random assignment fPS(P ′) implying that random assignment rule fPS is

not strategyproof over DN .

At this point, a natural question arises; under what domain restriction, the random

assignment rule PS is strategyproof? Alcalde and Barbera (1994) proposed a domain

restriction, namely top-dominance, in two-sided matching markets which leads to the
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existence of strategyproof and stable matching rules. Here is the definition of top-

dominance condition;

Definition 2.3 A domain D ⊆ L(A) with |D| ≥ 3 satisfies top-dominance condition if

∀P, P ′ ∈ D, ∀x, y ∈ A such that xPy and yP ′x, then there is no z ∈ A such that zPx

and zP ′y.

In words, it is impossible to find two orderings which agree on the top object. Thus,

every ordering must have different object on top in a top-dominated domain. This

domain is quite restricted yet random assignment rule PS is strategyproof.

The reason why PS is strategyproof under top-dominance condition follows from the

fact that top-dominance rule does not allow two different individual preferences with the

same top object. Hence, this narrows down the domain in a way that it makes impossible

to gain any probability increase over favorite objects by misreporting preferences.

The proof shows case-by-case the impossibility of any gain from misrepresenting

preferences. Given any preference profile, either all individual have the same preferences

or two has the same, one different or all different. If they are all different, then each

individual obtains their top object for sure, so there is no need to misreport preferences.

If they are all the same, then in order to have a gain from misrepresenting the individual

has to forgone consuming his/her favorite object to increase the probability of receiving

second best object. However, the other two agents start consuming the second best

object (it is their second best too) immediately after they finish the best object so that

there will not be sufficient probability increase. The same logic applies to the last case,

yet it requires more technical work.

Proposition 2.2 Let N be the set of individuals and A be the set of objects with |N | =

|A| = n ≥ 3. Let domain D ⊆ L(A) with |D| ≥ 3 satisfies top-dominance condition.
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Then, random assignment rule fPS : DN −→ ∆(Φ) is strategyproof.

Proof. Let N be the set of individuals and A be the set of objects with |N | = |A| =

n. Take any domain D ⊆ L(A) with |D| ≥ 3 which satisfies top-dominance condition.

Take any preference profile P ∈ DN . We want to show that for all individual i ∈ N and

for all individual preferences P ′
i ∈ D with P ′

i ̸= Pi,

Ti(f
PS(P )) sd(Pi) Ti(f

PS(P ′
i , P−i)).

Take any individual i ∈ N , and label it as i = 1. Then label his individual preferences

as

a1P1a2P1a3.

Take any individual preference P ′
i ∈ D. Denote the random allocations of individ-

ual 1 under the random assignment rule fPS as T1(f
PS(P )) = (p1a1 , p1a2 , p1a3) and

T1(f
PS(P ′

1, P−1)) = (p′1a1 , p
′
1a2

, p′1a3) when the preference profiles are P and P ′ = (P ′
1, P−1),

respectively. Let argmax(Pi) is the maximal (most preferred) object at individual pref-

erence Pi.

Case1: Suppose argmax(Pi) ̸= argmax(Pj), for all distinct i, j ∈ {1, 2, 3}. Then,

p1a1 = 1 since everyone would consume its maximal object completely, implying that no

other random allocation stochastically dominates the random allocation T1(f
PS(P )) =

(1, 0, 0), so we are done.

Case2: Suppose argmax(Pi) = a1, for all individual i ∈ {1, 2, 3}. So, all individual

preferences are the same since top-dominance condition does not allow any two different

individual preferences with the same maximal object. Thus, for any other individual

preferences P ′
1 ∈ D, argmax(P ′

1) ̸= a1. Suppose there exist a individual preference P ′
1 in

domain D such that argmax(P ′
1) = a2. Otherwise, with an individual preference where
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any other object is maximal, it is never optimal to create an increase in the probability

of obtaining a better object other than a1 while decreasing the probability of receiving

a1.

Thus, with individual 1’s preferences P ′
1, the probability of receiving a1 is p′1a1 = 0

and the probability of receiving a2 is

p′1a2 =
1

n− 1
+

n− 2

n(n− 1)
=

2

n

where the first term is the share that individual 1 obtained from a2 when all other

individuals were consuming a1 (they exhausted a1 at time 1
n−1

) and the second term is

the share that individual 1 obtained from a2 when all individuals were consuming the

leftover amount n−2
n−1

of a2. On the other hand, in preference profile P , all individual

preferences are the same. As a result, each individual has equal share from each object.

Hence, the probability of receiving any object is p1a1 = ... = p1an = 1
n
. Then,

p1a1 =
1

n
> 0 = p′1a1

and

p1a1 + p1a2 =
2

n
≥ 2

n
= p′1a1 + p′1a2

implying that there is no gain from misrepresenting preferences for individual 1 in terms

of an increase in the probability of receiving second best object. Similarly, it is straight-

forward to see that if we continue to compare probabilities of receiving third best, fourth

best and so on, we will obtain that there will be no gain from misrepresenting prefer-

ences. Hence, ∑k
s=1 p1as ≥

∑k
s=1 p

′
1as , ∀k ∈ {3, ..., n}

implying that no other random allocation stochastically dominates the random alloca-

tion T1(f
PS(P )).
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Case3: Suppose case1 and case2 do not hold. Then,

Claim1: p1a1 > p′1a1 .

Proof: Suppose not. So, p1a1 ≤ p′1a1 . Let t(a1) be the time at which a1 exhausted, and

n(a1, t) is the number of individuals who eat object a1 at time t. At preference profile

P , individual 1 is eating a1 during the whole interval [0, t(a1)), so the probability of

receiving object a1 is p1a1 = t(a1). At preference profile (P
′
1, P−1), individual 1 is eating

object a1 on a subset of interval [0, t′(a1)). Hence, t(a1) ≤ t′(a1) since p1a1 ≤ p′1a1 .

Since it is shown by Bogomolnaia and Moulin(2001) that N(a1, t) ⊆ N ′(a1, t) for

t ∈ [0, t(a1)), and combining with∫ t(a1)

0

n(a1, t)dt =

∫ t′(a1)

0

n′(a1, t)dt = 1,

and n(a1, t), n
′(a1, t) are nondecreasing in t, then t(a1) = t′(a1). Hence, p1a1 = p′1a1 .

However, this implies that individual 1 is eating a1 during the whole interval [0, t′(a1))

at preference profile (P ′
i , P−i), establishing that argmax(P ′

1) = a1. Since P ′
i ̸= Pi, then

there exists i, j ̸= 1 such that aiP1aj and ajP
′
1ai. Hence this leads to a contradiction

due to the violation of top-dominance condition. Therefore, p1a1 > p′1a1 .

Claim2: p1a1 + p1a2 ≥ p′1a1 + p′1a2 .

Proof: Suppose not. Then,

p1a1 + p1a2 < p′1a1 + p′1a2 .

Since p1a1 > p′1a1 from claim1, then d = p1a1 − p′1a1 > 0 and p1a2 + d < p′1a2 . Then,

following the same steps from claim1, we obtain

p1a1 + p1a2 ≥ p′1a1 + p′1a1 .

Similarly, if we continue to compare probabilities of receiving third best, fourth best

and so on, we will obtain that there will be no gain from misrepresenting preferences.
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Hence, ∑k
s=1 p1as ≥

∑k
s=1 p

′
1as , ∀k ∈ {3, ..., n}.

Therefore, random allocation of individual 1 under fPS(P ) stochastically dominates any

other random allocation under fPS(P ′
1, P−1), i.e.,

T1(f
PS(P )) sd(P1) T1(f

PS(P ′
1, P−1)),

implying that PS is strategyproof. �

Then this positive result leads us to overcome the impossibility theorem stated in

Bogomolnaia and Moulin(2001).

Corollary 2.1 Let D ⊆ L(A)N satisfies top-dominance condition. Then, random as-

signment rule PS is ordinally efficient, strategyproof and satisfies no-envy.

However, we observe that a domain that satisfies top-dominance condition is not

maximal meaning that it is possible to find a larger domain that contains a domain

which satisfies top-dominance condition and PS will be strategyproof over that larger

domain. The following example illustrates this fact.

Example 2.7 Let N = {1, 2, 3} and A = {a, b, c}. Take the domain

D =


a b c

b , c , b

c a a


This domain satisfies top-dominance condition, hence PS is strategyproof over DN . If

we add another ordering, it fails to satisfy top-dominance condition. Take the domain

D′ =


a b c a

b , c , b , c

c a a b


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So, D ⊂ D′. Moreover, PS is strategyproof over D′N .

This example shows us that top-dominance condition is not sufficient for strate-

gyproofness. Thus, we extend this result by showing that it is possible to find a domain

richer than the domain that satisfies top-dominance condition. The solution we propose

is the generalization of top-dominance condition, and definition is given as follows;

Definition 2.4 A domain D ⊆ L(A)N with |D| ≥ 3 satisfies generalized top-dominance

condition if it is partitioned into two distinct subdomains D1 and D2 with satisfying one

of the following cases;

• if D1 = ∅, then D2 satisfies top-dominance condition.

• if D1 ̸= ∅ and D2 ̸= ∅, then ∀Pi ∈ D1, D2∪{Pi} satisfies top-dominance condition.

We conjecture that a domain satisfying generalized top-dominance condition will be

the maximal domain over which random assignment rule PS is strategyproof.

Conjecture 2.1 The maximal domain that random assignment rule PS is ordinally

efficient, strategyproof and satisfies no-envy is the domain D ⊆ L(A)N that satisfies

generalized top-dominance condition.

2.5 Conclusion

In this paper, we deal with the problem of discrete resource allocation where there is

equal number of individuals and objects, and the task is to assign each individual one

and only one object. Monetary transfers are not allowed and there is no priority struc-

ture among individuals. In order to restore fairness, it is better to use lotteries, yet

individual preferences over objects need not to be the same.13 Thus, by taking into ac-

13A lottery works well when all the individuals have the same preferences over objects.
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count individual preferences, one has to define assignment rules that assign these objects

to individuals in a systematic ways. They are called random (probabilistic) assignment

rules. A random assignment rule should satisfy certain desirable properties. First of all,

it should allocate probabilities of receiving objects efficiently such that there is not any

other random assignment that makes someone better-off without making anyone worse-

off (ordinal efficiency). Second of all, it should not create any envy between individuals

such that no one should prefer any other random allocation (no-envy). Finally, individ-

uals should not try to gain advantage by misreporting their preferences so that every

one reveals his/her preferences truthfully (strategyproofness). However, Bogomolnaia

and Moulin (2001) states that there is no random assignment rule that satisfies all these

three properties. We provide a domain restriction to overcome the impossibility result

stated above. In fact, under a domain which satisfies top-dominance condition rather

than full domain, probabilistic serial rule will be strategyproof so that it will overcome

the impossibility.14

There are some weaknesses in implementation of probabilistic serial rule. It is quite

complicated to tell individuals how their preferences are used and PS generates an

outcome. On the other hand, random serial dictatorship is easy to implement and as

a result it is widely used in real world. Another weakness is on the top-dominance

condition. Alcalde and Barbera (1994) provides many example where top-dominance is

used or can be used, however, they are vague and does not reflect the importance of the

condition. Thus, we tried to generalize the top-dominance condition in a way that it

may be the maximal domain where PS is strategyproof.

Kojima and Manea (2010) show that in a sufficiently large market PS is approxi-

mately strategyproof. That means when the number of individuals and objects are large,

14PS already satisfies ordinal efficiency and no-envy under full domain.
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trying to gain some advantage from misrepresenting preferences will be redundant. It

would be interesting to know if a group of individuals coordinate their preferences and

then misrepresent them accordingly. In that case, the domain restriction that we in-

troduced here may prevent that kind of behavior. In this paper, we did not allow

indifferences among objects in individual preferences. It will be interesting to analyze

consequences of allowing indifferences in individual preferences. We leave this as a future

work.
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Chapter 3

Social Choice without the Pareto

Principle under Weak

Independence1

3.1 Introduction

In a society, some decisions are taken collectively as a group rather than individually.

In collective decision making, the obvious starting point is how to aggregate a group of

individuals’ preferences over a set of alternatives/objects/issues to decide what the group

will choose to do. If every single individual’s preference is important in the group decision

making process, then there has to be a systematic way of making a choice/preference

for the society. An aggregation rule provides a systematic way by taking individual

preferences as inputs and produces a social preference/choice as the output. Then,

the important question is; would it be always possible to find an aggregation rule that

1This is the extended version of Coban, C. and Sanver, M.R. (2014) ”Social Choice without the

Pareto Principle under Weak Independence”, Social Choice and Welfare 43: 953-961.
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satisfies certain desirable properties?

Arrow tried to answer this question in his seminal work Social Choice and Individ-

ual Values2 by imposing the following desirable properties on the aggregation rule; an

aggregation rule should produce a social outcome for all logically possible combinations

of individual preferences (full domain), an aggregation rule should produce a ranking

between any two alternatives and rank all the alternatives at least as a weak order (col-

lective rationality), an aggregation rule should rank one alternative on top of another

whenever all individuals strictly prefer the former to the latter (Pareto condition), an

aggregation rule should rank two alternatives only by considering their individual rank-

ings (independence of irrelevant alternatives) and finally an aggregation rule should not

give the decision making power to a single individual (nondictatoriality). As a conclu-

sion, he shows that it is impossible to find an aggregation rule that satisfies all of these

properties when there are at least three alternatives.

This impossibility result attracted many scholars to search for aggregation rules that

might satisfy somewhat weaker versions of those desired properties. The independence

of irrelevant alternatives (IIA) condition is blamed on leading to the impossibility and

many studies have been presented various weakenings of IIA in the context of Arro-

vian framework. This paper takes one of those weakenings, namely weak IIA3, and

characterizes the class of social welfare functions4 (SWFs) that satisfies this condition.

Preference aggregation problem is very important in many social situations, such as

voting. In a voting situation, there is a certain number of candidates and voters. In an

2I am referring to the second edition. In the first edition, he uses slightly different conditions instead

of some conditions mentioned above.
3Weak IIA requires that the social ordering of any two alternatives cannot be reversed in any two

distinct preference profiles where the individual orderings of that pair of alternatives are the same in

both profiles.
4A social welfare function is an aggregation rule which satisfies collective rationality.
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ideal situation, voters have full information about all candidates and also know how to

evaluate them. From an individual decision making perspective, the obvious question

is how voters rank candidates. It is also interesting to look at what makes a voter rank

one candidate over another and to understand how voters form their preferences. In this

paper, our focus is on collective decision making instead of individual decision making.

In collective decision making, there are many voting methods that are being used. As

an example in plurality rule, which is the one of the most common methods to select

political leaders in US and around the world, each voter votes for one candidate, and

the candidate with the highest number of votes wins. However, this rule is problematic

that it only takes into account each individual’s top candidate rather than taking full

individual preferences over candidates. A better social outcome might be achieved by

taking each individual’s preferences over all candidates. Thus, it is important to compare

aggregation rules in terms of whether they satisfy certain properties or not.

Another interesting group decision making problem is the committee decisions. Sup-

pose there is a committee that has a certain number of individuals, and it needs to decide

whom to hire as a university president among three candidates. One way to make a

social decision is to tell committee members to rank each pair of candidates and to

choose the winner by making pairwise comparisons. Using an aggregation rule like this

may end up choosing candidate 1 over candidate 2 and candidate 2 over candidate 3

and finally candidate 3 over candidate 1 which violates the collective rationality re-

quirement.5 In response to this, one might suggest to ask committee members assign

numbers to candidates as 2 for the most preferred, 1 for the second most and 0 for the

least preferred. Then, the aggregation rule sums up the numbers for each candidate

and ranks the candidate with the highest number first, second highest second so on.6

5In the literature, this is known as Condorcet paradox.
6In the literature, this is known as Borda rule.
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However, this aggregation rule violates IIA in the sense that the social ranking of any

two alternatives depends on the individual rankings of all other alternatives. These two

examples show us that there is a tension between collective rationality (transitivity of

social preferences) and IIA.7

In this paper, we consider the preference aggregation problem in a society with a

certain number of individuals and at least three alternatives over which each individual

has strict preferences.8 We are mainly interested in social welfare functions that satisfy

weak IIA condition. We try to overcome the conflict between collective rationality

(transitivity of social preferences) and IIA by using weak IIA. Given a social welfare

function that satisfies weak IIA, we show that it can be written as an IIA aggregation rule

whose cycles are converted to indifference classes. Conversely, for any IIA aggregation

rule, we apply a transformation by removing cycles and the end result will be a weakly

IIA SWF. Hence, we obtain a fairly large class of SWFs. In fact, by weakening Pareto

condition to weak Pareto9, we obtain a similar result.

One might argue the significance of our result by claiming that weak IIA SWFs will

produce many social indifferences among alternatives. However, compared to dictato-

riality, it provides an improvement. We did not have an attempt to overcome Arrow’s

Impossibility by simultaneously weakening both IIA and Pareto condition. Our main in-

terest is the role of IIA on the impossibility result and the consequences of weakening IIA

condition. The end result was valuable in the sense that we obtain a full characterization

7An aggregation rule based on pairwise comparison will satisfy IIA but fail to satisfy collective

rationality. On the other hand, an aggregation rule based on scoring will satisfy collective rationality

but not IIA.
8We did not allow individuals to be indifferent among alternatives in order to keep the analysis

simple.
9Weak Pareto requires that a social ranking of any two alternatives cannot be reversed whenever all

individuals strictly prefer one over the other.
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of a class of SWFs. An important concern over this application is the implementation

of weak IIA SWFs. It is possible to use such aggregation rules if a milder independence

is needed in a situation where the social decision over any two alternatives should not

be affected by the presence of other alternatives. However, it is important to note that

weak IIA does not provide much independence from other alternatives since it takes the

presence of other alternatives into account.

The paper is organized as follows; section 2 summarizes the related literature. Sec-

tion 3 presents the basic notions. Section 4 states our results. Section 5 makes some

concluding remarks.

3.2 Related Literature

This paper contributes to the literature on preference aggregation in Arrovian frame-

work. To overcome Arrow’s impossibility result, weaker versions of Arrow’s original

conditions are introduced. Our paper is closely related to weakening of one of these con-

ditions, namely IIA. However, the Arrovian impossibility is remarkably robust against

weakenings of IIA.10 For example, letting k stand for the number of alternatives that

the society confronts, Blau (1971) proposes the concept of m-ary independence for any

integer between 2 and k. A SWF is m-ary independent if the social ranking of any set of

alternatives with cardinality m depends only on individuals’ preferences over that set.

Clearly, when m = 2, m-ary independence coincides with IIA. Moreover, every SWF

trivially satisfies m-ary independence when m = k. It is also straightforward to see

that m-ary independence implies n-ary independence when m < n. Nevertheless, Blau

10In fact, it is robust against weakenings of other conditions as well: Wilson (1972) shows that the

Arrovian impossibility essentially prevails when the Pareto condition is not used. Ozdemir and Sanver

(2007) identify several restricted domains which exhibit the Arrovian impossibility.
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(1971) shows that m-ary independence implies n-ary independence when n < m < k as

well. Thus, weakening IIA by imposing independence over sets with cardinality more

than two does not allow to escape the Arrovian impossibility, unless independence is im-

posed over the whole set of alternatives - a condition which is satisfied by the definition

of a SWF.

Campbell and Kelly (2000a, 2007) further weaken m-ary independence by requir-

ing that the social preference over a pair of alternatives depends only on individuals’

preferences over some proper subset of the set of available alternatives. This condition,

which they call independence of some alternatives (ISA) is considerably weak. As a

result, non-dictatorial SWF that satisfies Pareto principle and ISA -such as the “gateau

rules” identified by Campbell and Kelly (2000a)- do exist. On the other hand, “gateau

rules” fail neutrality and as Campbell and Kelly (2007) later show, an extremely weaker

version of ISA disallows both anonymity and neutrality within the Arrovian framework.

Denicolo (1998) identifies a condition called relational independent decisiveness (RID).

He shows that although IIA implies RID, the Arrovian impossibility prevails when IIA

is replaced by RID. These papers introduce and analyze other types of weakenings of

IIA rather than the weakening that we applied and therefore they are indirectly related

with our paper.

Campbell (1976) proposes a weakening of IIA which requires that the social decision

between a pair of alternatives cannot be reversed at two distinct preference profiles that

admit the same individual preferences over that pair. We refer to this condition as weak

IIA.11 Baigent (1987) shows that every Paretian and weak IIA SWF must be dictatorial

in a sense which is close to the Arrovian meaning of the concept - hence a version of

11See Campbell (1976) for a discussion of the computational advantages of weak IIA. Note that when

social indifference is not allowed, IIA and weak IIA are equivalent.
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the Arrovian impossibility.12 None of these two papers tried to characterize the class of

weak IIA SWFs.

In brief, the literature which explores the effects of weakening IIA on the Arrovian

impossibility presents results of a negative nature. We revisit the literature in order to

contribute by a positive result. Under the weakening proposed by Campbell (1976) and

Baigent (1987), we characterize the class of weak IIA SWFs and show that this is a fairly

large class which is not restricted to SWFs where the decision power is concentrated on

one given individual. In fact, this class contains SWFs that are both anonymous and

neutral.

This paper also contributes to the literature on simultaneous weakenings of two or

more original Arrow conditions. In fact, the positive result that we obtained prevails

when a weak version of the Pareto condition is imposed. Nevertheless, a recent paper

Cato (2014) shows that possibility is limited in the sense that if Pareto condition is

replaced by (strict) non-imposition instead of weak Pareto, the result will be dictatori-

ality.

Moreover, our result is a contrast to the results of Wilson (1972) and Barberà (2003)

who show that the Pareto condition has little impact on the Arrovian impossibility

which is essentially a tension between IIA and the range restriction imposed over SWFs.

Moreover, we establish that there is no tension between weak IIA and the transitivity

of the social outcome.

12Baigent (1987) claims this impossibility in an environment with at least three alternatives. Nev-

ertheless, Campbell and Kelly (2000b) show the existence of Paretian and weak IIA SWF when there

are precisely three alternatives. They also show that the impossibility announced by Baigent (1987)

prevails when there are at least four alternatives and even under restricted domains.
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3.3 Basic Notions

We consider a finite set of individuals N with #N ≥ 2, confronting a finite set of alter-

natives A with #A ≥ 3. An aggregation rule is a mapping υ : L(A)N → C(A) where

L(A) is the set of complete, transitive and antisymmetric binary relations over A while

C(A) is the set of complete binary relations over A. We interpret Pi ∈ L(A) as the pref-

erence of individual i ∈ N over alternatives in A.13 That means each individual is able

to compare all available alternatives in A and order them from best to worst according

to his/her preferences. This ordering is strict in the sense that there are no indifferences

among any alternatives. We write P = (P1, ..., P#N) ∈ L(A)N for a preference profile

and υ(P ) ∈ C(A) reflects the social preference obtained by the aggregation of P through

υ. For all possible combination of individual preferences, aggregation rule υ generates a

complete social preference. That means any two alternative is socially comparable for

any given preference profile P under υ. Note that υ(P ) need not be transitive implying

that an alternative, say x, is socially preferred to another alternative, say y, and y is

also socially preferred to another distinct alternative, say z, but z is socially preferred

to x which is a cycle.14 Moreover, as υ(P ) need not be antisymmetric, we write υ∗(P )

for its strict counterpart.15

Before we proceed any further, we can summarize the preference aggregation prob-

lem as a tuple (N,A, (Pi)i∈N , υ) where there is a finite set of individuals N , a finite set

of alternatives A, individual preferences Pi as strict orderings over all alternatives in A

13As usual, for any distinct x, y ∈ A, we interpret xPiy as x being preferred to y in view of i.
14More formally, if there are more than three alternatives, say x1, ..., xk, where x1 is preferred to x2

and x2 is preferred to x3 and so on till xk−1 is preferred to xk and in addition xk is preferred to x1,

then this creates a cycle of preferences not an ordering. Imposing transitivity on preferences prevents

this type of problems.
15So for any distinct x, y ∈ A, we have x υ∗(P ) y whenever x υ(P ) y and not y υ(P ) x.
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and finally an aggregation rule υ that takes whole individual preferences in a prefer-

ence profile P as inputs and produces a complete social preference as the output. The

aggregation problem is static since individual set and alternative set are fixed, and pref-

erences are taken as given. From this point on, we impose some ”desirable” conditions

on aggregation rule υ and analyze the consequences.

An aggregation rule υ is independent of irrelevant alternatives (IIA) iff given any

distinct alternatives x, y ∈ A and any preference profiles P, P ′ ∈ L(A)N with xPiy ⇐⇒

xP ′
iy for all individual i ∈ N , we have x υ(P ) y ⇐⇒ x υ(P ′) y. In words, the social

ranking between any two alternatives only depends on the individual rankings of those

particular alternatives. Thus, all the other alternatives are irrelevant on determining

the social ranking between these two alternatives.16 Given its restrictive nature, this

condition is the most controversial among other conditions in Arrovian framework. We

discuss and provide evidence on this claim further in the text. We write Φ for the set

of aggregation rules which satisfy IIA.

For any distinct alternatives x, y ∈ A, the set of complete and transitive preferences

over {x, y} are {
x

y
,
y

x
, xy}17, and the set of complete, transitive and antisymmetric

preferences over {x, y} are {
x

y
,
y

x
}. An elementary aggregation rule is a mapping

υ{x,y} : {
x

y
,
y

x
}N → {

x

y
,
y

x
, xy} where {

x

y
,
y

x
}N is the domain of preference

profiles over {x, y}. Thus, for each pair of alternatives, one can define an elementary

16Moreover, IIA is also known as binary independence in the literature. The reason is independence

notion is defined over pairs.

17We interpret
x

y
as x being preferred to y;

y

x
as y being preferred to x; and xy as indifference

between x and y.
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aggregation rule which maps individual preferences over that pair onto complete and

transitive social preferences over that specified pair.18 Any family {υ{x,y}} of elementary

aggregation rules indexed over all possible distinct pairs x, y ∈ A induces an aggregation

rule υ as follows: For each preference profile P ∈ L(A)N and each distinct alternatives

x, y ∈ A, let x υ(P ) y ⇐⇒ υ{x,y}(P
{x,y}) ∈ {

x

y
, xy} where P {x,y} ∈ {

x

y
,
y

x
}N is the

restriction of preference profile P ∈ L(A)N over {x, y}.19 In words, the social preference

between two alternatives x, y under the aggregation rule υ will be the same as the social

preference between the same alternatives under the elementary aggregation rule υ{x,y}.

Note that υ = {υ{x,y}} is IIA. Moreover, any IIA aggregation rule υ can be expressed in

terms of a family {υ{x,y}} of elementary aggregation rules.20 The intuition behind this

result is that IIA requires considering individual preferences only on a particular pair

while deciding on a social preference on that pair which implies that an IIA aggregation

rule is at the end a combination of elementary aggregation rules over all pairs.

We need elementary aggregation rules in the characterization of weakly IIA Social

welfare functions. A Social Welfare Function (SWF) is an aggregation rule whose range

is restricted to CT (A) where CT (A) is the set of complete and transitive binary relations

over A. It is easy to see that a social welfare is more demanding than an aggregation rule

since it requires an ordering of the social preferences.21 In fact, requiring transitivity of

social preferences will be crucial when we impose other desirable conditions. We will

define the rest of the conditions for social welfare functions.

18Note that all preferences over two alternatives are always transitive.

19So for any i ∈ N , we have P
{x,y}
i =

x

y
⇐⇒ xPiy.

20This claim is first stated by Gibbard (1968).
21Completeness and transitivity of social preferences together are called collective rationality or full

rationality in the literature.
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A SWF α : L(A)N → CT (A) is Paretian iff given any distinct alternatives x, y ∈ A

and any preference profile P ∈ L(A)N with xPiy for all individual i ∈ N , we have x

α∗(P ) y. In words, if everyone in the society prefers one alternative over the other, then

society must have the same preference. This is the most obvious and straightforward

Arrovian condition. No one will argue that Pareto condition is undesirable or restrictive.

Even though it seems a milder condition, along with IIA it is quite restrictive.

A SWF α : L(A)N → CT (A) is dictatorial iff there exists an individual i ∈ N

such that xPiy implies x α∗(P ) y for all preference profile P ∈ L(A)N and for all

distinct alternatives x, y ∈ A. This condition requires that the decision power must not

be held by a single individual. The reason is everyone’s preferences should be taken

into account in the aggregation process. Similar to Pareto condition, nondictatoriality

condition seems less demanding. However, the Arrovian impossibility, as we consider,

states that a SWF α : L(A)N → CT (A) is Paretian and IIA if and only if α is dictatorial.

In other words, it is impossible to obtain a SWF that satisfies IIA, Pareto condition and

nondictatoriality.

In order to have a better understanding what leads to impossibility, one of the

Arrovian conditions either dropped or replaced with a weaker version in the literature.

Soon, it is realized that the real problem is the tension between transitivity of social

preferences and IIA. IIA forces a group of individuals being decisive over a pair of

alternatives.22 By IIA, once a group is decisive over a pair of alternatives, then the

same group is decisive over all pairs. However, this will create cycles in social preferences

along with Pareto principle. Hence, the group shrinks to a single individual which will

be the dictator. Given Arrovian impossibility is remarkably robust against weakenings

22A group of individual is decisive over a pair of alternatives if the social preference over that pair

is the same as the individuals’ preferences in that group whenever they all have the same preferences

over that pair.
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of Arrovian conditions, what would happen if two or more conditions are simultaneously

weakened? The next section seeks an answer to this question.

3.4 Results

Baigent (1987) proves a version of the Arrovian impossibility where IIA and dictatoriality

are replaced by their following weaker versions: A SWF α is weak IIA iff given any

distinct alternatives x, y ∈ A and any distinct preference profiles P, P ′ ∈ L(A)N with

xPiy ⇐⇒ xP ′
iy for all individual i ∈ N , we have x α∗(P ) y ⇒ x α(P ′) y. Weak

IIA is less demanding than IIA in the sense that it allows social indifference among

two alternatives in one profile whenever one alternative is strictly socially preferred to

another in the other profile where the individual rankings of these two alternatives are

the same in both profiles. Note that weak IIA and IIA coincide when indifferences are

ruled out from the social preference. However, in terms of informational requirement,

weak IIA is open to use relative orderings of a pair in individual preferences on deciding

their social ranking whereas IIA does not take into account those orderings at all. In

that sense, one might argue how the social decision on a pair of alternatives independent

from other alternatives and those alternatives are relevant or irrelevant.

A SWF α is weakly dictatorial iff there exist an individual i ∈ N such that xPiy

implies x α(P ) y for all preference profile P ∈ L(A)N and for all distinct alternatives

x, y ∈ A. In words, this condition requires that there is an individual whose prefer-

ences over any two alternatives cannot be reversed as a social ranking over those two

alternatives. Still the dictator has decision power on social ranking over all alternatives.

When IIA is replaced with weak IIA and dictatoriality is replaced with weak dic-

tatoriality (simultaneous weakening of two conditions), Baigent (1987) establishes that

every Paretian and weak IIA SWF is a weak dictatorship. Nevertheless, we remark
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that, unlike the original version of the Arrovian impossibility, the converse statement of

Baigent (1987) is not true: Although every weak dictatorship is weak IIA, there exists

weak dictatorships that are not Paretian.23 Following this remark, we allow ourselves to

state a slight generalization of this theorem of Baigent (1987), corrected by Campbell

and Kelly (2000b)24:

Theorem 3.1 Let #A ≥ 4. Within the family of Paretian SWFs, a SWF α : L(A)N →

CT (A) is weak IIA iff α is weakly dictatorial.

We are interested in obtaining a characterization of all weak IIA SWFs. However,

this results only provides a characterization of weak IIA SWFs within the family of

Paretian SWFs. Thus, first we explore the effect of being confined to the class of

Paretian SWFs.

The strict counterpart of a complete binary relation S over all alternatives in A is

denoted as S∗. Let ρ : C(A) −→ 2CT (A) stand for the correspondence which transforms

each complete binary relation S over A into a collection of complete and transitive

binary relations over A such that ρ(S) = {R ∈ CT (A) : xSy =⇒ xRy ∀x, y ∈ A}.25

Basically, the transformation ρ generates all complete and transitive binary relations

that contains complete binary relation S, not just the transitive closure of S which is

the intersection of all the complete and transitive binary relations in ρ(S). Moving from

complete binary relations to complete and transitive binary relations is necessary since

we deal with social welfare functions which require the transitivity of social preferences.

In order to have a clearer understanding of how exactly the transformation ρ is

23For example the SWF α where x α(P ) y for all distinct alternatives x, y ∈ A and for all preference

profile P ∈ L(A)N is a weak dictatorship but not Paretian.
24See Footnote 3.
25Note that the transformation is from a complete binary relation to a set of complete and transitive

binary relations.
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carried out, we recall that every complete binary relation S over A induces an ordered

list of “cycles”.26 A nonempty subset Y ⊆ A is a cycle (with respect to S ∈ C(A)) iff

Y can be written as Y = {y1, ..., y#Y } such that yiSyi+1 for all i ∈ {1, ...,#Y − 1} and

y#Y Sy1. The top-cycle of a nonempty subset X ⊆ A with respect to S ∈ C(A) is a

cycle K(X,S) ⊆ X such that yS∗x for all y ∈ K(X,S) and for all x ∈ X\K(X,S).27

In words, any alternative in the top-cycle is strictly preferred to alternatives that are

not in the top-cycle. That implies one can rank (order) cycles over alternative set from

top to bottom. So, let A1 = K(A, S) and recursively define Ai = K(A\
i−1
∪
k=1

Ak, S) for all

i ≥ 2. Given the finiteness of A, there exists an integer k such that Ak+1 = ∅. So every

complete binary relation S over A induces a unique ordered partition (A1, A2, ....., Ak) of

A. It follows from the definition of the top-cycle that whenever i < j, we have xS∗y for

all x ∈ Ai and for all y ∈ Aj. The following example shows how cycles are constructed

and ordered according to given definitions.

Example 3.1 Let N = {1, 2, 3, 4} be the set of individuals and A = {a, b, c, d, e, f} be

the set of alternatives. Consider the following preference profile P which contains four

individual preferences over six alternatives:

26We use the definition of ”cycle” as stated by Peris and Subiza (1999).
27The top-cycle, introduced by Good (1971) and Schwartz (1972), has been explored in details.

Moreover, Peris and Subiza (1999) extend this concept to weak tournaments. In their setting, as

K(X,S) is a cycle, there does not exist Y ⊂ K(X,S) with yS∗x for all y ∈ Y and for all x ∈ K(X,S)\Y .
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P1 P2 P3 P4

a f c c

b b a a

c e d b

d a e e

e d b d

f c f f

Suppose the aggregation rule υ is the pairwise majority rule and applied to the profile

P . Then, we obtain a complete binary relation υ(P ). Three individuals (1,3,4) prefer

a to b against one individual (2) who prefers b to a, thus a υ∗(P ) b. Two individuals

(1 and 2) prefer b to c but the other two individuals (3 and 4) prefer c to b which is a

tie, so b υ(P ) c and c υ(P ) b. Similarly, two individuals (1 and 2) prefer a to c but the

other two individuals (3 and 4) prefer c to a which is again a tie, so a υ(P ) c and c

υ(P ) a. Hence, a υ∗(P ) b υ(P ) c υ(P ) a is a cycle and x υ∗(P ) y, for all x ∈ {a, b, c},

for all y ∈ {d, e, f}. Hence, {a, b, c} is the top-cycle of the alternative set A and denoted

by A1. Recursively, among the remaining alternatives, d υ(P ) e υ(P ) d is the top-cycle

with x υ∗(P ) f , for all x ∈ {d, e}. Thus, A2 = {d, e}. There is only one remaining

alternative, namely f , therefore A3 = {f}. Finally, no alternatives left, thus A4 = ∅.

The following figure shows the ranking of cycles;

υ(P )

a

bc

d e

f

Figure 1: Ranking of the cycles

A1

A2

A3
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So, it is straightforward to observe that an alternative is strictly preferred to another

alternative whenever it is located in a higher cycle. However, it is interesting to know

what would happen to the comparison between alternatives in the same cycle when the

transformation is carried out. The following lemma provides an answer to this question.

It basically states that all the alternatives will be indifferent in any given cycle when

the transformation is applied. The intuition behind the result is simple; cycles create

intransitivity and the only way to restore transitivity is to eliminate cycles by creating

indifferences among alternatives in each cycle. Since cycles are already ordered, then

transitivity is obtained.

The proof of the lemma uses the fact that not allowing indifferences among the

alternatives in a cycle in the transformation process will lead to a contradiction by

violating transitivity.

Lemma 3.1 Take any complete binary relation S ∈ C(A) which induces the ordered

partition (A1, A2, ....., Ak). Given any Ai and any distinct alternatives x, y ∈ Ai, we

have xRy and yRx for all R ∈ ρ(S).28

Proof. Take any complete binary relation S ∈ C(A) which induces the ordered par-

tition (A1, A2, ....., Ak). Take any cycle Ai, any alternatives x, y ∈ Ai and any complete

and transitive binary relation R ∈ ρ(S). If there is only one alternative in Ai, then

x and y coincide, hence xRy and yRx holds by the completeness of R. If there are

two alternatives in Ai, then xSy and ySx since Ai is a cycle, which implies xRy and

yRx since R ∈ ρ(S). We complete the proof by considering the case where there are

more than three alternatives in Ai. Let Ai = {x1, x2, ....., xk}. Suppose, without loss

of generality, x1Rx2 and not x2Rx1. This implies x1S
∗x2 since R ∈ ρ(S). Moreover,

since Ai is a cycle, there exists another alternative x ∈ Ai such that x2Sx. Let, without

28The properties of top-cycles has been well discussed in the literature (See Deb (1977)).
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loss of generality, x = x3, so x2Sx3. Thus x2Rx3 holds by definition of ρ which implies

x1Rx3 and not x3Rx1 by the transitivity of R. Again by definition of ρ, we have x1S
∗x3.

Since Ai is a cycle, there exists j ∈ {4, ....., k − 1} such that x3Sxj. Suppose, without

loss of generality, j = 4. So x3Sx4, hence x3Rx4, implying x1Rx4 and not x4Rx1, which

in turn implies x1S
∗x4. So, iteratively, for all i ∈ {4, ...., k− 1}, we have xiSxi+1, which

implies xiRxi+1 and moreover x1Rxi+1 and not xi+1Rx1. Hence, x1S
∗xi+1. But since Ai

is a cycle, we have xkSx1. So xkRx1 holds by definition of ρ. As we also have xiRxi+1,

for all i ∈ {1, ..., k−1}, x2Rx1 holds by transitivity of R, which leads to a contradiction.

Therefore, xRy and yRx for all x, y ∈ Ai, for all R ∈ ρ(S). �

Thus for any complete binary relation S ∈ C(A) which induces the ordered partition

(A1, A2, ....., Ak) and any complete and transitive binary relation R ∈ CT (A), we have

R ∈ ρ(S) if and only if for any alternatives x, y ∈ A (i) x, y ∈ Ai for some Ai implies

xRy and yRx and (ii) x ∈ Ai and y ∈ Aj for some Ai, Aj with i < j implies xRy.29

The following example will be helpful to understand how the transformation is carried

out.

Example 3.2 Let N = {1, 2, 3, 4} be the set of individuals and A = {a, b, c, d, e, f} be

the set of alternatives. Consider the following preference profile P that we already used

in Example 1:

29As a remark, these results can also be obtained by using graph theory. Any complete binary relation

S over A is a directed graph (digraph) G(S) defined as follows; the elements of A becomes the vertices

of digraph G(S) and the edges are determined by S. (xSy means that there is an edge from x to y and

another one from y to x.) Then, the ordered partitions of the transitive closure of the complete relation

S are the strong components of the digraph G(S). Hence, it is already well known as an elementary

result that the set of these strong components are linearly ordered and the maximal strong component

is equivalent to the notion of top-cycle.(See Bang-Jensen and Gutin (2007))
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P1 P2 P3 P4

a f c c

b b a a

c e d b

d a e e

e d b d

f c f f

Similarly, suppose the aggregation rule υ is the pairwise majority rule and applied to

the profile P . Then, from Example 1 we obtain the cycles as A1 = {a, b, c}, A2 = {d, e},

and A3 = {f}. Given these ordered partitions, cycles, we can obtain the following

complete and transitive binary relations by applying the transformation ρ;

R1 R2 R3 R4

abc abc abcde abcdef

de def f

f

Here, xyz means x, y and z are all indifferent. In the process of creating transitive

binary relations from complete binary relations, all the alternatives in the same cycle

must be indifferent from Lemma 1 and all the alternatives in lower cycles can be moved

upward to higher cycles which results in more indifferences. For instance, R2 is obtained

by moving cycle A3 to the cycle A2. In fact, the extreme point is the indifference of all

alternatives which is denoted by R4.

We now proceed towards characterizing the family of weak IIA SWFs. Take any

aggregation rule υ ∈ Φ. By composing υ with the transformation ρ, we get a social

welfare correspondence ρ ◦ υ: L(A)N −→ 2CT (A) which assigns to each preference profile

P ∈ L(A)N a non-empty subset ρ(υ(P )) of CT (A). Possibly there are more than

one complete and transitive binary relation in ρ(υ(P )). Clearly, every singleton-valued
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selection of ρ ◦ υ is a SWF.30 We define a set containing all single-valued selection of

ρ ◦ υ.31 Let Συ = {α : L(A)N → CT (A) | α is a singleton-valued selection of ρ ◦ υ }.

As a next step, we define the set as the union of the sets that contains all aggregation

rules transformed under ρ. So, we write Σ = ∪υ∈ΦΣ
υ. Interestingly, the class of quasi

IIA SWFs coincides with the set Σ.

The intuition behind the result is the following; imposing IIA to any aggregation

rule will create cycles. One way to remove cycles and restore transitivity is to set

up indifferences among alternatives in the same cycle whenever there are any. The

immediate consequence of this process is to loose IIA but gain a weaker version of IIA,

namely weak IIA. In fact, the following result shows that this is the only way to obtain

weak IIA social welfare functions.

The only if part of the proof requires a construction of an elementary aggregation

rule since we need to show the existence of an aggregation rule that coincides with the

given SWF after the transformation ρ is applied. Once we construct the elementary

aggregation rule, it is straightforward to see that the family of these elementary aggre-

gation rules constitutes the desirable aggregation rule. Hence, its transformation under

ρ will coincide with the given SWF. The if part shows that a social welfare function

which is obtained by removing the cycles of an IIA aggregation rule has to satisfy weak

IIA. The reason is while creating transitivity by removing cycles, the process does not

reverse any strict preferences among alternatives, it only change some of them to in-

differences. As a result, this will violate IIA but not weak IIA. The proof creates a

contradiction in the outcome of an elementary aggregation rule if we suppose that the

social welfare function does not satisfy weak IIA.

30We say that α : L(A)N → CT (A) is a singleton-valued selection of ρ ◦ υ iff α(P ) ∈ ρ ◦ υ(P )

∀P ∈ L(A)N .
31In other words, all SWFs produced from aggregation rule υ under the transformation of ρ.
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Theorem 3.2 A SWF α : L(A)N → CT (A) is weak IIA iff α ∈ Σ.

Proof. To establish the “only if” part, let α : L(A)N → CT (A) be a weak IIA

SWF. For any distinct alternatives x, y ∈ A, we define an elementary aggregation rule

υ{x,y} : {
x

y
,
y

x
}N → {

x

y
,
y

x
, xy} as follows:

For any preference profile r ∈ {
x

y
,
y

x
}N ,

υ{x,y}(r) =



x

y
if x α∗(P ) y for some P ∈ L(A)N with P {x,y} = r

y

x
if y α∗(P ) x for some P ∈ L(A)N with P {x,y} = r

xy if x α(P ) y and y α(P ) x for all P ∈ L(A)N with P {x,y} = r

Since α is weak IIA, υ{x,y} is well-defined. Thus, we can define an aggregation rule υ as

υ = {υ{x,y}} ∈ Φ. We now show α(P ) ∈ ρ(υ(P )) for all preference profile P ∈ L(A)N .

Take any preference profile P ∈ L(A)N and any distinct alternatives x, y ∈ A. First

let x υ∗(P ) y. So υ{x,y}(P
{x,y}) =

x

y
. By definition of υ{x,y}, we have x α∗(Q) y for

some Q ∈ L(A)N with Q{x,y} = P {x,y} which implies x α(P ) y since α is weak IIA. If

y υ∗(P ) x, then one can similarly obtain y α(P ) x. Now, let x υ(P ) y and y υ(P ) x.

So, υ{x,y}(P
{x,y}) = xy which, by definition of υ{x,y}, implies x α(Q) y and y α(Q) x for

all preference profiles Q ∈ L(A)N with Q{x,y} = P {x,y}, hence x α(P ) y and y α(P ) x.

Thus, x υ(P ) y =⇒ x α(P ) y for all alternatives x, y ∈ A, establishing α(P ) ∈ ρ(υ(P )).

To establish the “if” part, take any SWF α ∈ Σ. So there exists an aggregation rule

υ ∈ Φ such that α(P ) ∈ ρ(υ(P )) for all preference profiles P ∈ L(A)N . Suppose α is
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not weak IIA. So, there exist two alternatives x, y ∈ A and there exist two preference

profiles P,Q ∈ L(A)N with P {x,y} = Q{x,y} such that x α∗(P ) y and y α∗(Q) x. By the

definition of ρ we have x υ∗(P ) y and y υ∗(Q) x which implies υ{x,y}(P
{x,y}) =

x

y
and

υ{x,y}(Q
{x,y}) =

y

x
, giving a contradiction since P {x,y} = Q{x,y}, thus showing that α is

weak IIA. �

The immediate implication of Theorems 1 and 2 together is that removing the Pareto

condition has a dramatic impact, since the class Σ of weak IIA SWFs is fairly large

and allows those where the decision power is not necessarily concentrated on a single

individual. This positive result prevails even when the following weak Pareto condition

is imposed: A SWF α is weakly Paretian iff given any distinct alternatives x, y ∈ A

and any preference profile P ∈ L(A)N with xPiy for all individual i ∈ N , we have x

α(P ) y. In words, weak Pareto requires that social ranking of two alternatives cannot

be reversed as opposed to individual rankings of those alternatives when all individuals

have the same ranking. Similarly, an aggregation rule υ ∈ Φ is weakly Paretian iff

for any distinct alternatives x, y ∈ A and any preference profile r ∈ {
x

y
,
y

x
}N with

ri =
x

y
for all individual i ∈ N , we have υ{x,y}(r) ∈ {

x

y
, xy}. Let Φ∗ stand for the

set of weak Paretian and IIA aggregation rules and Σ∗ = ∪υ∈Φ∗Συ similar to the set Σ

where the only difference is in aggregation rules.

The following result is a straightforward extension of the main result. Moreover,

instead of requiring aggregation rule to be Paretian, weak Pareto will be sufficient to

obtain weak Paretian and weak IIA social welfare functions. Weak Pareto principle is

easily carried out from aggregation rule to social welfare function and vice versa.
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The proof is very similar to the proof of Theorem 2. The only if part uses the

same elementary aggregation rule that we constructed in the only if part of the proof

of Theorem 2. The only addition is to show that SWF is weak Paretian. Given a weak

Paretian aggregation rule, it is straightforward to prove the same condition has to satisfy

by the SWF as well. Again, ”if” part of the proof is the same as the ”if” part of the

proof of Theorem 2 except showing that SWF is weak Paretian.

Theorem 3.3 A SWF α : L(A)N → CT (A) is weak Paretian and weak IIA iff α ∈ Σ∗.

Proof. To show the “only if” part, take any SWF α : L(A)N → CT (A) which is weak

Paretian and weak IIA. For any distinct alternatives x, y ∈ A, we define the same ele-

mentary aggregation rule υ{x,y} : {
x

y
,
y

x
}N → {

x

y
,
y

x
, xy} that we used in Theorem

3.2. Since α is weak IIA, υ{x,y} is well-defined. Thus, the family of these elementary func-

tions induces an IIA aggregation rule υ where υ = {υ{x,y}} ∈ Φ. Suppose, υ is not weak

Paretian. So, there exist two alternatives x, y ∈ A and there exists a preference profile

P ∈ L(A)N with xPiy for all i ∈ N such that y υ∗(P ) x, implying υ{x,y}(P
{x,y}) =

y

x
.

By definition of υ{x,y}, we have y α∗(Q) x for some Q ∈ L(A)N with Q{x,y} = P {x,y},

contradicting that α is weak Paretian, which establishes υ = {υ{x,y}} ∈ Φ∗. Therefore,

following the ”only if” part of Theorem 3.2 we obtain α(P ) ∈ ρ(υ(P )) for all preference

profiles P ∈ L(A)N .

To show the “if” part, take any SWF α ∈ Σ∗. So there exists a weak Paretian and IIA

aggregation rule υ ∈ Φ∗ such that α(P ) ∈ ρ(υ(P )) for all preference profiles P ∈ L(A)N .

Take any distinct alternatives x, y ∈ A and any preference profile P ∈ L(A)N with xPiy

for all individual i ∈ N . By the weak Pareto condition of υ, we have υ{x,y}(P
{x,y}) ∈
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{
x

y
, xy}, hence x υ(P ) y, which implies x α(P ) y by the definition of transformation ρ.

Thus, SWF α is weak Paretian. The “if”part of Theorem 2 establishes that α is weak

IIA, completing the proof. �

We close the section by giving an example covered by Theorem 2 and Theorem 3.

In fact, at any preference profile P ∈ L(A)N , for any aggregation rule υ ∈ Φ, take the

transitive closure of the social preference υ() as the selection of ρ ◦ υ32.

Example 3.3 Let N = {1, 2, 3, 4} be the set of individuals and let A = {a, b, c, d} be the

set of alternatives. Let υ be the pairwise majority rule. Consider the following preference

profile P which contains four individual orderings of four alternatives:

P1 P2 P3 P4

a a b d

b b a c

c c c b

d d d a

Since υ is the pairwise majority rule, a υ(P ) b and b υ(P ) a, and x υ∗(P ) y, for all

alternatives x ∈ {a, b}, for all alternatives y ∈ {c, d}, and c υ∗(P ) d. Thus, the ordered

partitions, cycles, are obtained as A1 = {a, b}, A2 = {c}, A3 = {d}, and A4 = ∅. Then,

if we take the transitive closure of the social preference υ() as the selection of ρ ◦ υ, we

obtain a SWF α which satisfies weak IIA by Theorem 2. For this particular preference

profile P , the social outcome is

32By “taking the transitive closure”, we mean to replace cycles with indifference classes. Formally

speaking, writing (A1, A2, ....., Ak) for the ordered partition induced by υ(P ) ∈ Θ at P ∈ L(A)N , take

α(P ) ∈ ρ(υ(P )) where x α∗(P ) y for all alternatives x ∈ Ai and for all alternatives y ∈ Aj with i < j.

One can see Sen (1986) for a general discussion of the “closure methods”.
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α(P )

a, b

c

d

Moreover, it is easy to see that under this SWF α, no individual has veto power.33

3.5 Conclusion

Within the scope of the preference aggregation problem, we contribute to the under-

standing of the well-known tension between requiring the pairwise independence of the

aggregation rule and the transitivity of the social preference. As Wilson (1972) shows,

a SWF α : L(A)N → CT (A) is non-imposed34 and IIA if and only if α is dictatorial

or antidictatorial35 or null36. Thus, aside from these, any aggregation rule which is IIA

allows non-transitive social outcomes. In case these outcomes are rendered transitive

according to one of the prescriptions made by ρ, we attain a SWF which fails IIA but

satisfies weak IIA. In fact, as Theorem 3.2 states, the class of weak IIA SWFs coincides

with those which can be attained through a selection made out of the social welfare cor-

respondence obtained by the composition of an aggregation rule that is IIA with ρ. This

33Bordes (1976) and Baigent and Klamler (2004) considers this particular rule for other reasons.

However, none of them provide a full characterization of it.
34α : L(A)N → CT (A) is non-imposed iff ∀x, y ∈ A ∃P ∈ L(A)N with x α(P ) y. In words, every

alternative is socially preferred to any other alternative in at least one profile of individual preferences.
35α is anti-dictatorial iff ∃i ∈ N such that xPiy =⇒ y α∗(P ) x ∀P ∈ L(A)N , ∀x, y ∈ A. This is the

reversed version of dictatoriality where there is an individual whose individual preferences between any

two alternatives is exactly the opposite of the social preference no matter what the other individual

preferences are.
36α : L(A)N → CT (A) is null iff x α(P ) y ∀x, y ∈ A and ∀P ∈ L(A)N . In words, every alternative

is socially indifferent no matter what the individual preferences are.
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can be interpreted as a positive result, since the class of weak IIA SWFs is fairly rich

and not restricted to those where the decision power is concentrated on one individual.

In fact, this class contains SWFs that are both anonymous and neutral.37 Moreover,

as Theorem 3.3 states, this positive result prevails when a weaker version of the Pareto

condition is imposed. Thus, we can conclude that the transitivity of the social outcome

can be achieved at a cost of reducing IIA to weak IIA and compromising of the strength

of the Pareto condition.

This paper does not attempt to overcome the Arrovian impossibility. Even though

by simultaneously weakening IIA and Pareto condition we obtain a fairly large class

of SWFs, it is not obvious to determine how large this class is and any of these SWF

can be implementable. Moreover, there is a weakness on the weaker versions of IIA

and Pareto condition. Weak IIA uses all the available information meaning that the

other alternatives are not irrelevant on determining the social ranking between any

two alternatives. In that sense, independence notion becomes ambiguous. Similarly,

weak Pareto condition allows social indifference among two alternatives even when all

individuals strictly prefer one alternative over another. The justification for this type

of social preference is lacking. We need a better understanding of these weaker versions

and more work is required on this direction.

Another way of looking at the problem is to conceive it as determining the possible

“stretchings” of the null rule (which is well-known to be IIA) without violating weak

IIA. So it is worth exploring “how far” weak IIA SWFs are from the null rule. This

exploration requires to ask for the minimization of the imposed social indifference. The

answer is straightforward for a given aggregation rule υ ∈ Φ: Taking the transitive

37As a matter of fact, the SWF in Example 2 of Campbell and Kelly (2000b), which shows the failure

of Theorem 3.1 for #A = 3, belongs to this class.
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closure of the social preference is the selection of ρ ◦ υ which minimizes the imposed

social indifference. Nevertheless, the choice of the (non-dictatorial) υ that minimizes

the imposed social indifference remains as an interesting open question.38 In addition

to this, allowing indifferences in individual preferences is worth to investigate and we

leave it as a further work.

38We conjecture, by relying on Dasgupta and Maskin (2008), that this will be the pairwise majority

rule.
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