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Abstract

This paper presents experimental results from an analysis of two similar games, the repeated

ultimatum game and the repeated best{shot game. The experiment examines whether the

amount and content of information given to players a�ects the evolution of play in the two

games. In one experimental treatment, subjects in both games observe not only their own

actions and payo�s, but also those of one randomly chosen pair of players in the just{completed

round of play. In the other treatment, subjects in both games observe only their own actions and

payo�s. We present evidence suggesting that observation of other players' actions and payo�s

may a�ect the evolution of play relative to the case of no observation.
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1 Introduction

There is now a large experimental literature that examines learning behavior in repeated non{

cooperative games. The kind of learning behavior that has been examined in these experiments

has been mainly limited to cases where individuals learn on the basis of their own past experience. A

more general analysis of learning behavior would consider whether providing players with additional

information a�ects the evolution of play over time. In particular, one might ask whether changes in

the content and quantity of information available to players a�ects the rate at which they learn to

play equilibrium strategies. This paper takes a �rst step toward addressing these kinds of questions.

We examine the e�ect of additional information on learning in an experiment involving two

similar games, the repeated \ultimatum game" and the repeated \best{shot game." An experi-

mental comparison of these two games was previously conducted by Prasnikar and Roth (1992).

Our experiment consists of two treatments. In the �rst treatment, subjects are informed of only

their own actions and payo�s. This treatment is similar to one found in the Prasnikar and Roth

(1992) study as well as in many other experimental implementations of repeated non{cooperative

games. The second treatment is more novel. In this treatment, subjects are informed of their own

actions and payo�s as well as the actions and payo�s of one randomly chosen pair of players in

the just{completed round of play. We use these two treatments to examine whether observation of

other players' actions and payo�s a�ects the evolution of play relative to the (standard) case where

observation of others is not possible.

From a game{theoretic perspective, allowing for observation of how another pair of players play

the game is a step in the direction of satisfying the \mutual knowledge of the strategy choices"

condition, which, given that players play rationally according to the payo� structure of the game,

is su�cient to ensure that players play according to the equilibrium predictions of game theory

(Aumann and Brandenburger (1995)). Thus, one might suppose that when players are allowed to

observe the actions and payo�s of others, they will learn more quickly to play in accordance with

the game's equilibrium predictions relative to the case where players do not get to observe the

actions and payo�s of others.

The notion that individuals may learn by observing others is one that economists have only

recently begun to recognize.1 Anthropologists, however, have long noted that in many cultures,

1See for example, Banerjee (1992), Banerjee and Fudenberg (1995), Bikhchandani, Hirshleifer and Welch (1992),
Conlisk (1980), Ellison and Fudenberg (1993, 1995), Jackson and Kalai (1995) and Vives (1996) among others.
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observation is the primary method through which individuals learn. Reichard (1938), for example,

has observed that in many languages \the word for `teach' is the same as the word for `show,' and

the synonymity is literal."2 Among behavioral psychologists, the hypothesis that individuals learn

through observation of others is also well established. Bandura and Walters (1963), summarizing

a large body of experimental research, conclude that there are three main e�ects of observation

on learning behavior. First, the observer may learn through observation to play new strategies

that were previously unknown. Second, the observer may learn through observation to become less

phobic about playing certain inhibitory strategies. Third, observation of others may facilitate the

play of strategies the observer already knows, but has a low probability of playing.

In this study, we focus on this third e�ect of observation. We imagine that when players observe

strategies resulting in high payo�s, they are more likely to adopt the observed strategy in subsequent

rounds of play. We develop an adaptive learning algorithm based on one proposed by Roth and

Erev (1995) that incorporates our assumption about how players use the additional information

they receive about other players. We use this algorithm to simulate how play might evolve in our

experimental treatments with and without observation. The simulations suggest that the e�ect of

observation on learning behavior is di�erent in the two games. In the ultimatum game, players

who observe the actions and payo�s of other players tend to move further away from the subgame

perfect equilibrium prediction over time, relative to players who do not observe the actions and

payo�s of others. In the best{shot game, players who observe the actions and payo�s of others tend

to move closer toward the subgame perfect equilibrium prediction over time relative to players who

do not observe the actions and payo�s of others.

The predictions of our adaptive learning model are tested in an experiment with human subjects.

We �nd that in the ultimatum game, players who observe the actions and payo�s of other players

do indeed tend to move further away from the subgame perfect equilibrium relative to players who

do not observe the actions and payo�s of others. By contrast, in the best{shot game, players who

observe the actions and payo�s of other players are only slightly, though not signi�cantly, closer to

the subgame perfect equilibrium prediction relative to players who do not observe the actions and

payo�s of others. Thus our results concerning the e�ect of observation on learning are mixed and

appear to be dependent upon the game played.

2Reichard (1938) p. 47, as quoted in Bandura and Walters (1963).
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2 The Games

The �rst game we consider is the ultimatum bargaining game in which two players attempt to

divide $10. Player 1 moves �rst by proposing to keep a nonnegative integer amount $y < $10 for

herself, leaving Player 2 the residual amount $10�y.3 Player 2 must then decide whether to accept

or reject Player 1's o�er. If Player 2 accepts Player 1's o�er, Player 2 receives the proposed o�er

of $10� y, while Player 1 receives $y. If Player 2 rejects Player 1's o�er, both players receive zero.

While this game has many Nash equilibria, the unique subgame perfect equilibrium is for Player 1

to demand $9 and for Player 2 to accept this demand, thereby earning $1.

The second game we consider is the \best{shot" public good game of Harrison and Hirshleifer

(1989). Player 1 moves �rst by choosing an integer investment amount i1 2 [0; 9].4 Player 2 observes

the investment amount chosen by Player 1, and then also chooses an integer investment amount

i2 2 [0; 9]. The project level (the amount of the public good actually furnished) is Q = max(i1; i2).

Once the project level is determined, each player k receives payo� Q(41�Q)=20� 1:65� ik.
5 Note

that Player 2's best response to a zero investment by Player 1 is an investment of 4, and Player

2's best response to a nonzero investment by Player 1 is an investment of 0. There are two Nash

equilibrium outcomes: a subgame perfect equilibrium outcome in which Player 1 chooses to invest

0 and Player 2 chooses to invest 4, and a non{subgame perfect equilibrium outcome in which Player

1 chooses to invest 4 and Player 2 chooses to invest 0.

3Note that these rules di�er from the rules of other ultimatum game experiments in two respects. First, Player
1 proposals must be in discrete, even{dollar amounts. Second, Player 1s are not allowed to demand the entire $10
prize. We restrict Player 1s to making even{dollar demands as a means of narrowing the strategy space and making
it comparable to the discrete strategy space of the best{ shot game; the same restricted strategy space was used
in our simulations. We do not allow Player 1's to demand the entire $10 prize to ensure that the subgame perfect
equilibrium is unique.

4In Harrison and Hirshleifer (1989), and Prasnikar and Roth (1992) the integer interval for investment choices was
[0; 21]. We chose a shorter investment interval to make the Player 1 strategy space as similar as possible to that in
our treatment of the ultimatum game and to reduce the likelihood of negative payo�s in the stage game. In both
the Harrison{Hirshleifer payo� tables and those we used, investment amounts above 8 are very likely to result in
negative payo�s. Since both Harrison{Hirshleifer and Prasnikar{Roth report few, if any, investment choices above 8,
we conjectured that removing some of these choices would not signi�cantly alter the play of this game.

5These parameters di�er somewhat from those used by Harrison and Hirshleifer (1989); for given investment levels,
payo�s are roughly twice what they would be in Harrison and Hirshleifer. We chose these numbers so that equilibrium
payo�s in the ultimatum game and best{shot game are of approximately the same magnitude. The numbers we use
preserve both the Nash equilibria and the best{response correspondence of Harrison and Hirshleifer.
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2.1 Previous Experimental Results

In a number of controlled laboratory experiments of the ultimatum game, the subgame perfect

equilibrium prediction has been soundly rejected.6 A typical �nding is that Player 1s propose

to split the money prize nearly equally and that Player 2s accept this proposal. Player 1s who

propose to keep the bulk of the money prize for themselves �nd that their proposals are often

rejected by Player 2s, even though Player 2s always receive a higher monetary payo� by accepting

any positive o�er from Player 1s. One explanation for the inconsistency of the experimental results

with the theory is that players begin play with a prior disposition to play fairly; given some

experience and/or additional information they might learn to play the subgame perfect outcome.

This explanation, while appealing, is not completely satisfying; it does not o�er much guidance

as to what kind of experience or knowledge players must acquire or how long it will take players

to become experienced or knowledgeable enough to play the subgame perfect equilibrium strategy.

Harrison and McCabe (1992), for example, have noted that experimental tests of the ultimatum

game ignore the theoretical assumption that players have \common knowledge" of the beliefs,

motives and strategies of all other players. However, their implementation of the common knowledge

assumption comes at the cost of substantially altering the experimental design. Evidence from other

experiments suggests that greater or more varied experience in playing the ultimatum game does

not greatly a�ect players' tendencies to deviate from the subgame perfect equilibrium (see, e.g.

G�uth, Schmittberger, and Schwarz (1982), Bolton (1991), or Roth et al. (1991)).

In contrast, the Harrison and Hirshleifer (1989) best{shot game experiment yielded results that

were largely consistent with the subgame perfect outcome (cf. Harrison and Hirshleifer's experiment

SQ{3). Prasnikar and Roth (1992) repeated the Harrison{Hirshleifer best{shot game experiment,

but gave players \full information" about each other's payo� functions, in contrast to Harrison and

Hirshleifer, who did not explicitly tell subjects that they shared the same payo� function. Prasnikar

and Roth found that this change in available information did not signi�cantly a�ect the outcome

of the game; players with full information also chose actions that were very close to the subgame

perfect equilibrium prediction.

Prasnikar and Roth concluded that the di�erence in outcomes between the best{shot and ul-

timatum games could be attributed to di�erences in o�{the{equilibrium{path incentives. They

6See Roth (1995) or G�uth and Tietz (1990) for surveys.
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observed that Player 1s in the ultimatum game do better in terms of expected payo� (given the

observed distribution of Player 2 responses to particular Player 1 actions) by deviating further from

the subgame perfect equilibrium. In contrast, in the best{shot game, Player 1s do worse in terms

of expected payo� by deviating further from the subgame perfect equilibrium. Hence, convergence

to equilibrium is much more likely in the best{shot game than in the ultimatum game, regardless

of whether players in the best{shot game have full information about payo�s.

3 Observation of Others

With the exception of the study by Harrison and McCabe (1992), the experimental studies that

we have discussed all envision that players learn using only their own past history of play. We now

consider the possibility that players can observe the actions and payo�s of another pair of players.

In particular, we want to consider versions of the ultimatum and best{shot games where, after

seeing their own actions and payo�s, each matched pair of players is able to observe the actions

and payo�s of one randomly chosen pair of players in the just{completed round of play. We refer to

these versions of the ultimatum and best{shot games as versions with observation. Games in which

players observe only their own history of play will be referred to as versions without observation.

The restriction on observation to a single pair of players is intended to minimize the potential

for strategic actions aimed at reputation{building. In particular, Player 2s in both games may seek

to form \tough" reputations as a means of obtaining more favorable treatment from Player 1s, who

move �rst. In the ultimatum game, Player 2s build reputations by rejecting proposals that give

them low payo�s. In the best{shot game, Player 2s build reputations by responding to low Player

1 investment amounts with low investment amounts of their own. Reputation{building in both

games is a consequence of the repeated nature of the games and of the information that players

receive. While reputation{building is possible in both treatments, it may be more prevalent in

sessions with observation since in these sessions, Player 2s know that their actions can be observed

by two Player 1s rather than only one.

We begin our inquiry into the e�ect of observation on learning behavior by conducting simu-

lations using a version of Roth and Erev's (1995) reinforcement learning model in versions of the

ultimatum and best{shot games with and without observation. The learning algorithm was modi-

�ed so that it was capable of processing information on observed actions and payo�s as well as on
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player's own actions and payo�s. We use the simulation results from this model to formulate some

hypotheses that we later test in our experiment. We chose to use the Roth{Erev model because it

has been successful in tracking the qualitative features of the behavior of subjects in experimental

versions of the ultimatum and best{shot games without observation (Roth and Erev (1995)) as

well as for other games (Erev and Roth (1996), Feltovich (1996)), and also because it is the only

learning model that has thus far been used for tracking behavior in these two games.

3.1 The Learning Model

The learning model can be described as follows. In round t, player i has a propensity qij(t) � 0

to play her jth pure strategy. The probability that she plays the jth pure strategy in round t � 1,

pij(t), is determined by these propensities:

pij(t) =
qij(t)P
n

j=1 qij(t)
:

In every round t, each player is randomly matched with a player of the opposite type and chooses

a strategy according to his or her probabilities. When observation of other players is allowed, each

pair of players is randomly matched with another pair of players, with all pairings being equally

likely. The strategies of a player and her opponent determine their payo�s, and these payo�s are

used to update the players' propensities for round t + 1. When there is observation, players also

update their propensities to play the strategies of the players they have observed.

Suppose in round t, the ith Player 1 plays strategy j resulting in payo� !i(t) and observes that

the i0th Player 1 plays strategy j0 resulting in payo� !i0(t). Her propensities are updated as follows:

qij(t+ 1) = qij(t) + !i(t) and qij0(t+ 1) = qij0(t) + �!i0(t);

where � � 0 is the weight placed on observed payo�s. Thus Player 1s treat observed outcomes

similarly to own outcomes, but give them � times as much weight. This is meant to capture the

idea that �rsthand experience usually takes precedence over secondhand experience. There is no

updating of propensities to play strategies that were neither chosen nor observed in round t. Initial

(t = 0) propensities are assumed to be exogenously given.

In modeling how Player 2s update their propensities, we must make assumptions as to how

strategies are inferred from observed actions. When a Player 2 observes the action a2 of another

Player 2, he also observes the action a1 of the Player 1 matched to that Player 2. Thus, each Player
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2 knows the set of strategies that could possibly have been played by the observed Player 2, given

the observed action pro�le a = (a1; a2). Let fj
0

1
; j0

2
; :::; j0

n
g be the set of possible strategies given a.

We assume that

Pr(j0

m
ja) =

pij0m(t)P
n

�=1 pij0�(t)
:

This inference technique is consistent with Bayes' rule combined with the assumption that simulated

Player 2s act as though they all have the same mixed strategy.

Now suppose that in round t the ith Player 2 plays strategy j resulting in payo� !i(t) and

observes that the action pro�le a results in the payo� !i0(t). His propensities are updated as

follows:

qij(t+ 1) = qij(t) + !i(t) and qij0(t + 1) = qij0(t) + �!i0(t) Pr(j
0ja)

for all j0 that are possible given a.

Setting � = 0 gives us the learning model for the no{observation case, which is the one originally

proposed by Roth and Erev (1995).

3.2 Application to the Ultimatum and Best{Shot Games

For our ultimatum game simulations, we use the set f0; ::: ; 9g of possible demands as the pure

strategy set for Player 1s. Theoretically, the Player 2 strategy set in the ultimatum game is the

set of all functions mapping the set of demands into the set of responses fAccept; Rejectg, but

we follow Roth and Erev (1995) in limiting the Player 2 strategy set to \threshold" strategies

of the form: \accept demands of j or less, and reject demands of more than j," for some integer

j 2 f0; ::: ; 9g. The subgame perfect equilibrium is (9; 9). Given an observed outcome of (j; Accept),

the set of possible Player 2 strategies is fkj k � jg, and given an observed outcome of (j; Reject),

the set of possible Player 2 strategies is fkj k < jg.

For our best{shot game simulations, we use the set of investment levels f0; ::: ; 4g as the pure

strategy set for Player 1s. In our experiment with human subjects we allow Player 1s to choose

investment amounts greater than 4. However, we noted that in both the Prasnikar{Roth and

Harrison{Hirshleifer best{shot experiments, players very rarely chose investment amounts greater

than 4. Because the Player 2 strategy set is large, even after we reduce the number of Player 1

strategies to just 5, we reduce the number of Player 2 strategies by restricting investment choices

to the set f0; ::: ; 4g and by further restricting Player 2 strategies so that a pure strategy is
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characterized by how it responds to a Player 1 investment of 0 and how it responds to Player 1

investment amounts that are greater than 0. This results in Player 2s having 25 available pure

strategies of the form \Respond to 0 with k1 and to 1, 2, 3, or 4 with k2." Given an observed

outcome of (0; m), the set of Player 2 strategies is f(m; k)j k 2f0,... ,4gg, and given an observed

outcome of (j; m) for j � 1, the set of Player 2 strategies is f(k; m)j k 2f0,... ,4gg.

3.3 Simulation Results

We conducted 400 simulations, 100 each of the ultimatum game with and without observation and

100 each of the best{shot game with and without observation. Each simulation was run for 200

rounds and corresponds to an experimental session involving 6 Player 1s and 6 Player 2s. We

estimated initial propensities from observed actions in previous experiments: we used the �rst{

round play reported in Prasnikar and Roth's (1992) best{shot game with complete information for

all of our best{shot simulations and we used the �rst{round play reported in Roth et al.'s (1991)

(Pittsburgh) ultimatum game for all of our ultimatum game simulations. We set � = 0:5 in all of

our simulations involving observation.

Figure 1 shows mean Player 1 demands in the two ultimatum cells (top panel) and mean Player

1 investment amounts in the two best{shot cells (bottom panel), in both cases averaged over all

100 simulations. We see that observation has opposite e�ects in the two games. In the ultimatum

game, mean Player 1 demands are further from the subgame perfect equilibrium with observation

than without observation, while in the best{shot game, mean Player 1 investment amounts are

closer to the subgame perfect equilibrium with observation than without observation. Moreover,

the di�erences in play between the observation and no{observation treatments persist over many

rounds, particularly in the ultimatum game.7

The di�erence that we observe between the e�ect of observation in the ultimatum game simu-

lations and in the best{shot game simulations is due to di�erences in incentive structures o� the

equilibrium path. Recall that Prasnikar and Roth (1992) found that for \typical" distributions of

Player 2 responses in ultimatum game experiments, o�{the{equilibrium{path payo�s are such that

7Our simulation results are robust to changes in the value of our imitation parameter, �, which we set equal to :5.
We can think of our simulation results for games without observation as corresponding to a choice of � = 0. In some
further simulations (not reported above) we considered 10 additional values of �; 0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8, 0.9,
1.0, and 1.5. We found that in the ultimatum game, as � increases, mean demands move away from the subgame
perfect equilibrium more quickly. Similarly, for the best{shot game, as � increases, mean Player 1 investments move
closer to the subgame perfect equilibrium more quickly. Thus we conclude that our simulation predictions are robust
to changes in the value of �, the imitation parameter.
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Figure 1: Simulation Predictions
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Player 1s earn higher payo�s by deviating further from subgame perfect play, while in best{shot

game experiments, o�{ the{equilibrium{path payo�s are such that Player 1s earn higher payo�s

by playing more in line with subgame perfect play. Since we initialized the learning algorithm

using \typical" Player 2 play, the o�{the{equilibrium{path incentive structure is maintained in our

simulations, and thus deviations from subgame perfect play result in higher payo�s (and more re-

inforcement) in the ultimatum game than subgame perfect play, while they result in lower payo�s

(and less reinforcement) in the best{shot game than subgame perfect play. In ultimatum game

simulations with observation, deviations from subgame perfect play are rewarded not only for the

player who deviated, but also for the observing player. Thus, the probability and extent of devi-

ation from subgame perfect play become higher even more quickly when we allow for observation

of others. In best{shot game simulations with observation, deviations from subgame perfect play

are punished not only for the player who deviated, but also for the observing player. Thus, the

probability and extent of deviation from subgame perfect play become lower even more quickly

when we allow for observation of others.
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3.4 Hypotheses

Based on our simulations, we hypothesize that allowing observation of the actions and payo�s of

another pair of players will have opposite e�ects on behavior over time in the ultimatum and best-

-shot games. We focus on the behavior of Player 1s, as their strategies are readily observable from

their actions. We hypothesize that: (1) Player 1 demands in the ultimatum game with observation

will be further from subgame perfect equilibrium demands (i.e., lower) than Player 1 demands in

the ultimatum game without observation; (2) Player 1 investment amounts in the best{shot game

with observation will be closer to subgame perfect equilibrium investment amounts (i.e., lower)

than Player 1 investment amounts in the best{shot game without observation.

Our �rst hypothesis runs counter to the claim that deviations from subgame perfect equilibrium

behavior are due to players' lack of information. Here we predict that giving players in the ultima-

tum game more information|a step in the direction of satisfying the mutual knowledge assumption

discussed in the introduction|actually increases the degree of deviation from the subgame perfect

equilibrium prediction! On the other hand, our second hypothesis reects the common (game{

theoretic) wisdom that giving players more information in the best{shot game leads to play closer

to the subgame perfect equilibrium prediction.

4 Experimental Design

We used a 2 � 2 experimental design. The two treatment variables were 1) the game played,

ultimatum or best{shot, and 2) observation or no observation. We ran three sessions of each of

the four experimental cells. Subjects were recruited from the undergraduate population at the

University of Pittsburgh. Copies of the instructions used in the experiment are available from the

authors upon request.

At the beginning of an experimental session, subjects were randomly assigned the role of Player

1 or Player 2; roles remained unchanged for the duration of the session. In each round of a game,

each player was randomly and anonymously paired with a player of the opposite type. After

players were paired, Player 1s made and veri�ed their moves. Player 2s observed the moves of

their opponents and then made and veri�ed their moves. Then all players were shown their own

moves, their opponents' moves, their own payo�s, and their opponents' payo�s. In cells without

observation, the next round would begin after all players had pressed a key to continue. In cells

10



Observe Number of Observe Number of
Session Game Others? Subjects Session Game Others? Subjects

1 Ultimatum Yes 16 7 Ultimatum Yes 10
2 Best{Shot No 8 8 Ultimatum No 6
3 Best{Shot Yes 12 9 Best{Shot No 14
4 Ultimatum No 12 10 Ultimatum Yes 14
5 Best{Shot No 12 11 Ultimatum No 14
6 Best{Shot Yes 12 12 Best{Shot Yes 18

Table 1: Experimental Session Information

with observation, after all players had pressed the key, each pair of players was shown the actions

and payo�s of another pair of players, where the observed pairs were assigned as described in

section 3.1. After observing these actions and payo�s, players were prompted to press a key to

continue. When all players had pressed this key, the next round of play began.

Sessions consisted of 40 rounds of the ultimatum game, or 30 rounds of the best{shot game.

(Best{shot games proceeded more slowly.) Subjects were not told how many rounds would be

played, but they did know that the session would not exceed 90 minutes. Following the last round,

one round was randomly chosen by the computer program, and subjects were paid their earnings

in that round in addition to a $10.00 participation fee. Average total earnings for subjects were

roughly $14.00 in the ultimatum game cells and $12.00 in the best{shot game cells.

5 Experimental Results

5.1 Ultimatum Game Results|Player 1 Behavior

Figure 2 shows mean demands of all Player 1s in the ultimatum cells over 5{round intervals. Mean

demands in the �rst 5 rounds are about $6.00 in both cells.8 In the no{observation sessions, mean

demands increase by about 30 cents from the �rst 5 to the second 5 rounds and then remain

relatively constant while in the observation sessions, mean demands decrease steadily over time to

just over $5.25 in the last 5 rounds. The mean demands illustrated in Figure 2 are also reported

in the second and third columns of Table 2. The last two columns of this table report 1{sided

robust rank{order test statistics (denoted by �U) and p{values for di�erences in the distributions

of demands between the observation and no{observation sessions for each group of 5 rounds and

8This mean is similar to mean initial demands found in many ultimatum game experiments; see e.g. Roth (1995).

11



Figure 2: Ultimatum Game|Mean Player 1 Demands
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for all 40 rounds.9 Looking at the tests, we see that with the exception of the �rst and fourth

5{round periods, we can reject the null hypothesis of no di�erence between the observation and

no{observation sessions in favor of the alternative that Player 1 demands are lower in the observation

sessions. Thus we �nd support for our hypothesis regarding the e�ect of observation on behavior

in the ultimatum game.

We further �nd that we cannot reject the null hypothesis of no change over time in mean

demands in the no{observation cell, but we can reject this same null hypothesis for mean demands

in the observation cell, in favor of the alternative hypothesis that mean demands do change over

time (Page test for ordered alternatives, p � .01).

In addition to examining di�erences between treatments using pooled session{level data, we

also made use of the individual{level data consisting of the unpooled individual observations on

Player 1 demands in all sessions. Using this individual level data from all sessions, we estimated

9We use the robust rank{order test instead of the more commonly used Mann{Whitney test because the Mann{
Whitney test assumes that the samples come from distributions with identical second (dispersion) and higher{order
moments, whereas the robust rank{order test makes no such assumption. See Siegel and Castellan (1988). Because
the session{level data consist of only six observations for each test, we must use the small{sample distribution of
�U rather than the normal approximation. We are thus constrained to using only two signi�cance levels|.10 and
.05|rather than the near{continuum available for the normal approximation (see Fligner and Policello (1981)). Of
course, more session level data would help to alleviate this problem. Our session{level tests can therefore be viewed
as rather severe tests for di�erences between treatments.
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Mean Demand| Mean Demand| p{value

Rounds Observation Sessions No{Observation Sessions �U (if p � :10)

1{5 5.85 6.09 -0.39 {
6{10 5.85 6.46 -1 .05
11-15 5.68 6.34 -2.35 .10
16{20 5.66 6.32 -1.13 {
21{25 5.62 6.54 -4.46 .10
26{30 5.60 6.26 -2.35 .10
31{35 5.39 6.40 -1 .05
36{40 5.27 6.36 -1 .05

All 5.62 6.35 -2.35 .10

Table 2: Ultimatum Game|Player 1 Demands

an OLS regression model for Player 1 demands.10 The estimated equation is:

Player 1 Demand = 6.7624 -0.52354 (Obs. Dummy) +0.00375 Round
(0.0801) (0.1100) (0.0030)
-0.0194 (Round � Obs. Dummy) +

P
4

i=1 Session Dummy
i

(0.0040)

and the adjusted R2 was 0.2567. The Observation dummy is 1 in sessions with observation and 0

otherwise. Round is the current round number in the session (1{40). The Round � Observation

Dummy variable is just the product of the round variable and the observation dummy; this variable

is intended to capture time{varying e�ects of allowing for observation of other players. Finally, we

included session dummies to control for possible di�erences across sessions; to save space we have

suppressed the coe�cient estimates on these session dummies. One can see from the standard

errors on the coe�cient estimates (given in parentheses) that with the exception of the coe�cient

on Round, all of the coe�cient estimates in the above regression model are signi�cantly di�erent

from zero at the .01 level. We conclude that there is support for the notion that observation of

others a�ects the evolution of Player 1 demands.

10We acknowledge that our use of econometric methods to analyze individual{level data may not be completely
valid due to the lack of independence among the individual data; within a particular session, the play of di�erent
individuals in a particular round cannot be regarded as consisting of independent observations because the individuals
may have interacted with one another before, or may have interacted with the same other players in previous rounds.
This problem is further exacerbated in our observation cells. The lack of independence greatly increases the likelihood
of Type I error in our hypothesis tests. Thus, our econometric results must be viewed with some caution. We note,
however, that in all cases, our regression results using individual{level data serve only to con�rm (and do not detract
from) the �ndings of our nonparametric tests based on session{level data which do consist of independent observations.
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Finally, we examine the e�ect that observation has on disaggregated Player 1 behavior. Recall

that in our simulations, we assumed that players updated their propensities for playing observed

actions as well as own actions based on the payo�s they received and the payo�s they observed. We

now examine whether Player 1s in the experimental sessions used the extra information given them

in the observation cell, and if so, how they used it. To assess the e�ect of observation on individual

play, we categorize our sample of Player 1s according to their own outcomes and then examine

whether their next{round actions vary with the outcomes they observed in the previous round.

In particular, we focus on Player 1 actions in rounds following own outcomes of (1) an accepted

50{50 split, (2) an accepted 60{40 split, and (3) a rejected 60{40 split. These outcomes account for

approximately 87% of all outcomes in all rounds of the ultimatum sessions with observation. For

each own outcome, we then examine the extent to which Player 1 actions in the following round are

correlated with observed outcomes. We consider observed outcomes of (a) an accepted 60{40 split,

and (b) a rejected 60{40 split. Table 3a reports, for each possible pairing of these own and observed

outcomes, the relative frequency of Player 1s who chose to demand 60% or more of the prize in the

next round of play. We see that Player 1s whose demand of 60% was accepted in the current round

are substantially more likely to demand 60% or more of the prize in the next round after observing

an accepted 60- -40 split than after observing a rejected 60{40 split in the current round. That

is, Player 1s appear to be taking the observed information into account when choosing actions in

later periods. One may wonder whether the apparent correlation between observed outcomes and

future actions in Table 3a is due to the additional information players receive, or to some other

phenomenon. We sought to determine whether the correlations were spurious by examining similar

relative frequencies for the ultimatum game sessions without observation. We randomly assigned

all Player 1s in each round of each session without observation to another Player 1 in the same round

of the same session. We used the same assignment algorithm that we used in our experimental

sessions with observation. We then treated the assigned Player 1s as if they were \observed" Player

1s. In Table 3b, we report the mean and standard error of the probabilities (corresponding to those

in Table 3a) that we obtained from repeating this exercise 100 times. If the correlations observed in

Table 3a are due to some phenomenon unrelated to the presence of observation, we would expect to

see similar correlations in Table 3b. Similar correlations are not observed; there are no substantial

di�erences between elements in each row of Table 3b. Thus it appears that the correlations seen in

Table 3a really are due to Player 1s taking the observed information into account when choosing

14



Own Observed Outcome
Outcome 60 % Accepted 60% Rejected

50 % Accepted .58 .51

60 % Accepted .82 .42

60 % Rejected .44 .32

Table 3a: Use of Observed Outcomes by Player 1s:
Probability of Demanding 60% or More in the Next
Round Given Own and Observed Outcomes in the
Current Round.

Own Outcome of Assigned Player 1
Outcome 60 % Accepted 60% Rejected

50 % Accepted .78 (.05) .89 (.11)

60 % Accepted .77 (.02) .81 (.09)

60 % Rejected .83 (.07) .78 (.13)
Table 3b: Player 1s in Sessions Without Observation
Randomly Assigned to Other Player 1s: Mean (Std.
Error) Probability of Demanding 60% or More in the
Next Round Given Own and Assigned Outcomes in
the Current Round (100 Simulations).

strategies for the next round.

5.2 Ultimatum Game Results|Player 2 Behavior

We have suggested that the di�erences in behavior between Player 1s in the observation and no{

observation cells may be explained by the presence of observation in the former. An alternative

explanation is that Player 1s are merely reacting to the actions of Player 2s who are behaving

di�erently in the two cells. Many experimenters have sought to explain Player 1 behavior in

the ultimatum game by examining how well Player 1 actions correspond to best responses to the

historical frequency distribution of Player 2 actions.11 Figure 3 shows, for both ultimatum game

cells, the relative frequencies with which Player 2s accept Player 1 demands of 50%, 60%, and 70%

of the prize over 5 round intervals.12 The principal di�erence in Player 2 behavior between the two

cells appears to be in their responses to proposed 70{30 splits. In the no{observation cell, proposals

11See, e.g., Roth et al. (1991).
12In the bottom panel of Figure 3, frequency values of 0 for a given 5{round period do not imply the absence of

Player 1 demands of 70%. Rather, they indicate that Player 2s rejected all 70{30 proposals they faced.
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Figure 3: Ultimatum Game|Player 2 Frequencies of Acceptance
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for 70{30 splits are accepted more than half the time in the �rst 5 rounds, and the frequency of

acceptance increases to over 80% in the last 30 rounds. Nevertheless, using robust rank order tests

on frequency data at the session level, we are unable to �nd statistically signi�cant di�erences in

acceptance rates for Player 2s facing 70{30 proposals between the observation and no{observation

treatments. The same �nding also holds for Player 2s facing 50{50 and 60{40 proposals, again

using robust rank{order tests on frequency data at the session level.

Since the session level data do not reveal any signi�cant di�erences in Player 2 behavior across

treatments, we also examined the individual{level Player 2 data using probit analysis. The de-

pendent variable, Accept, is the Player 2's decision of whether to accept (=1) or reject (=0) a

particular Player 1 proposal. We considered Player 2 responses to all Player 1 demands as well as

to Player 1 demands of 60% and 70%. The model we estimated is:

Accept = �0 + �1Round + �2Observation Dummy + �3Round � Observation Dummy

+
4X

i=1

�3+iSession Dummy
i
+ �8Player 1 Demand:

Here, the Round variable, the Observation dummy, the Round � Observation variable and the

Session dummies are the same as in the Player 1 regressions reported in section 5.1. The Player

1 Demand variable is the proposal that the Player 2 faced. In those cases where we focus on a

particular type of Player 1 proposal, this variable is omitted as a regressor. The regression results
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are presented in Table 4.13

All Player 1 Player 1 Player 1
Regressor Demandsa Demands $6 Demands $7

Constant 8.579*** 2.031*** 1.106***
(0.535) (0.429) (0.282)

Round -0.007 -0.002 0.016
(0.006) (0.008) (0.011)

Observation Dummy -0.391* -0.012 -0.889*
(0.228) (0.492) (0.481)

Round � Obs. Dummy -0.017* -0.019* -0.075*
(0.008) (0.011) (0.031)

Player 1 Demand -1.100*** { {
(0.069)

Pr > �2 0.000 0.000 0.000
Number of
Observations 1,440 636 236

Table 4: Probit Estimates: Probability that Player 2 Accepts the Demand
of Player 1.

aStandard errors in parentheses. Coe�cient estimates with a * (**, ***) are signi�-
cantly di�erent from zero at the :10 (:01,:001) level of signi�cance.

We see that in all cases, the coe�cient estimate on the Round � Observation Dummy term

is negative and signi�cant at the .10 level suggesting that over time, the probability that Player

2s accept Player 1 demands is decreasing in the observation treatments as compared with the

no observation treatments. We also see that the coe�cient estimate on the observation dummy

by itself is also negative and signi�cant at the .10 level for the regressions involving all Player 1

demands and Player 1 demands of 70%. Thus we �nd some evidence that the probability a Player

2 accepts a given Player 1 demand is lower in certain cases in the observation treatment compared

with the no{observation treatment.

This lower probability of acceptance in the observation treatment may have a�ected Player 1

demands. Given the frequencies with which Player 1 proposals are accepted by Player 2s the optimal

Player 1 demand|the demand that maximizes expected monetary payo�|is typically lower in

the observation cells than in the no{observation cells.14 Since there is essentially no di�erence

13To save space we have again suppressed the coe�cient estimates on the dummy terms.
14In two of the three ultimatum sessions with observation, the optimal demand is 5 in all 5{round periods; in the
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between Player 2 initial behavior (in the �rst 5 rounds) in the observation and no{observation

cells, we conclude that changes over time in Player 2 behavior di�er between the observation and

no{observation cells, and that this di�erence may help explain the di�erences in Player 1 learning

behavior.15

5.3 Best{Shot Game|Player 1 Results

Figure 4 shows mean Player 1 investment amounts in the best{shot game cells over 5{round periods.

We see that these investment amounts follow similar paths, both starting above 3, dropping o�

quickly over the �rst 10 rounds, and then remaining approximately constant over the last 15 rounds,

near the subgame perfect equilibrium prediction of 0.16 In fact, the modal Player 1 investment

amount is 0 in all 5{round periods of the observation cell, and in all 5{round periods except the

�rst in the no{observation cell. We also observe that in every 5{ round period, Player 1 investment

amounts are somewhat closer to the subgame perfect equilibrium prediction of 0 in the observation

cell than in the no{observation cell, consistent with our hypothesis regarding behavior in the best{

shot game.

However, according to robust rank{order tests reported in Table 5, the observed di�erences

in investment amounts between the two treatments are not signi�cant (p >.10), except in the

�rst 5 rounds. The observed decrease over time in mean Player 1 investment amounts in the no{

observation cell is signi�cant (Page test for ordered alternatives, p � .005); however, it is only

marginally signi�cant in the observation cell (Page test for ordered alternatives, p � .1). We

conclude that Player 1s in both cells quickly learn to play close to the subgame perfect equilibrium

and that there is little support for our hypothesis that observation leads Player 1s in the best{ shot

other session, the optimal demand is 6 in all 5{round periods. In two of the three sessions without observation, the
optimal demand varies between 5 and 6; in the other session, the optimal demand is 6 in the �rst two 5{round periods
and 7 in the last six 5{round periods.

15It is also of interest to consider whether Player 2's in our ultimatum game experiments are foregoing signi�cant
payo� amounts in their rejection of positive o�ers by Player 1s. If Player 2s perceive that the monetary stakes are
low, they may (rationally) refuse to employ much e�ort in assessing how to play the game. (For a further discussion
of this subject, see e.g. Harstad and Marrese (1982) for public good games, or Ho�man, McCabe and Smith (1996)
for ultimatum games.) In our ultimatum games without observation, the total amount foregone each round by Player
2s averaged 15.7% of expected earnings per round (given Player 1 proposals) while in sessions with observation the
total amount foregone each round averaged 19% of expected earnings per round (given Player 1 proposals).

16These initial investment levels are almost twice as high as those found by Harrison and Hirschleifer (1989) and by
Prasnikar and Roth (1992). This di�erence may be due to the repeated nature of our game versus the one{shot nature
of the earlier experiments. It is also worth noting that Harrison and Hirschleifer conducted only one sequential best{
shot session and Prasnikar and Roth conducted only two; therefore, it may not yet be clear what initial conditions
one should expect to �nd in a best{shot experiment.
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Figure 4: Best{Shot Game|Mean Player 1 Investments
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game to adopt strategies closer to the subgame perfect prediction.

An OLS regression serves to con�rm that observation of others does not signi�cantly a�ect

Player 1 behavior. Our estimated model of Player 1 investment is:

Player 1 Investment = 4.2568 -0.6662 (Obs. Dummy) -0.3456 (Round)
(0.3101) (0.4163) (0.0432)
-0.0042 (Round � Obs. Dummy) +0.0082 Round2

(0.0581) (0.0014)
0.0008 (Round2� Obs. Dummy ) +

P
4

i=1 SessionDummyi
(0.0040)

Mean Investment| Mean Investment| p{value

Rounds Observation Sessions No{Observation Sessions �U (if p � :10)

1{5 3.14 3.94 -1 .05
6{10 1.43 1.81 -0.18 {
11-15 0.77 1.47 -1.13 {
16{20 0.92 1.19 -1.13 {
21{25 1.21 1.31 -0.18 {
26{30 0.88 1.14 -0.53 {

All 1.39 1.81 -1.13 {

Table 5: Best{Shot Game|Player 1 Investment Amounts
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The adjusted R2 is 0.1893. Here the Round and Observation variables are as in the ultimatum

game regressions. We have also included variables based on a quadratic trend term, Round2 to

account for the possibility of nonlinear changes in Player 1 investment levels over time. We see

from the standard errors on the coe�cient estimates (given in parentheses), that the coe�cients on

variables involving the observation dummy are never signi�cantly di�erent from zero. On the other

hand, the Round and Round2 terms are signi�cantly di�erent from zero; the negative coe�cient on

Round and the positive coe�cient on Round2 indicate that Player 1 investment levels decrease over

time at a decreasing rate. We conclude that there is no support for our hypothesis that observation

a�ects the evolution of Player 1 investments. Player 1s in both treatments learn at about the same

rate to play near the subgame perfect strategy.

Furthermore, Player 1s in the best{shot game do not appear to be inuenced by di�erences in

payo�s between own and observed actions. In contrast to the ultimatum game, we �nd no strong

correlation between best{shot game payo�s (own or observed) and next{round actions using an

analysis similar to the one we conducted for the ultimatum game (as reported in Table 3a{3b).17

Since we assumed in our simulations that Player 1s are inuenced by such di�erences in payo�s,

it is not surprising that the predictions of our best{shot simulations were not borne out in the

experimental data.

5.4 Best{Shot Game { Player 2 Behavior

Figure 5 illustrates the evolution of Player 2 behavior in the best{shot game over 5{round periods.

The top panel shows Player 2s' mean response to nonzero investments by Player 1s. While Player

2s do not initially recognize that 0 is a best response to any nonzero investment by Player 1s,

they begin to recognize this strategy after the �rst few rounds, as the mean response to nonzero

investment drops sharply from rounds 1{5 to rounds 6{10, and stays low throughout the last 20

rounds.18 In the bottom panel, we see that Player 2s initially respond to a Player 1 investment of

zero with 3 on average in both cells. Then, instead of increasing toward the monetary best response

of 4, Player 2 responses actually decline slightly in both cells.

Robust rank{order tests show no signi�cant di�erences between cells in Player 2 responses to

either zero or nonzero investment levels by Player 1s using session level data. Therefore, we again

17We have therefore chosen not to report this analysis here. See Du�y and Feltovich (1996) for details.
18The apparent increase in the last few rounds of the sessions with observation is the result of a few outliers; the

median and modal responses are 0 in every 5{round period but the �rst in both treatments.
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Figure 5: Best{Shot Game|Mean Player 2 Responses
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turned to an examination of the individual level Player 2 data using probit analysis. The dependent

variable, Player 2 Investment, is the Player 2's decision of whether to invest a positive amount (=1)

or zero (=0) in response to a particular Player 1 investment level. As in the aggregate data analysis,

we considered responses to all Player 1 investment levels and to Player 1 investment levels of zero

and nonzero amounts. The model we estimated is given as:

Player 2 Investment = �0 + �1Round + �2 + �3Round
2 + �4Observation Dummy

+�5Round �Observation Dummy+ �6Round
2 �Observation Dummy

+
4X

i=1

�6+iSession Dummy
i
+ �11Player 1 Investment:

The round and observation variables are similar to those used in the ultimatum game probit anal-

ysis. Note that in these regressions, we also include variables involving the square of the round

number, Round2; the purpose is to capture the possibility of very rapid, nonlinear changes in be-

havior over time. The Player 1 investment variable is the amount invested by the Player 1 that is

matched with the Player 2. The regression results are presented in Table 5.19 We see from this

table that in all three cases, the variables involving the observation dummies are never signi�cant;

this �nding is consistent with our tests for di�erences in Player 2 behavior using the session{level

19To save space we have again suppressed the coe�cient estimates on the dummy terms.
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All Player 1 Player 1 Player 1
Regressor Investmentsa Investment = 0 Investment > 0.

Constant 1.657*** 2.703*** 0.504*
(0.224) (0.551) (0.298)

Observation 0.053 -0.007 -0.490
(0.273) (0.701) (0.339)

Round -0.134*** -0.193** -0.190***
(0.029) (0.621) (0.044)

Round2 0.004*** 0.005** 0.005***
(0.001) (0.002) (0.002)

Round � Obs. Dummy 0.029 0.057 0.048
(0.038) (0.080) (0.059)

Round2� Obs. Dummy -0.001 -0.002 -0.001
(0.001) (0.002) (0.002)

Player 1 Investment -0.175*** { 0.067*
(0.021) (0.033)

Pr > �2 0.000 0.000 0.000
Number of
Observations 1,140 663 477

Table 5: Probit Estimates: Probability that Player 2 Invests a Positive
Amount, Given Player 1 Investment

aStandard errors in parentheses. Coe�cient estimates with a * (**, ***) are signi�-
cantly di�erent from zero at the :10 (:01,:001) level of signi�cance.

data. Like the Player 1 regressions, we also see that the only signi�cant coe�cient estimates are

associated with the round and round2 terms; the negative sign on the round coe�cient and the pos-

itive sign on the round2 coe�cient imply that Player 2's probability of investing a positive amount

decreases over time at a decreasing rate. The deviation from subgame perfect play (in response to

zero Player 1 investments) might be explained by reputation{building on the part of Player 2s.20

We note that our Player 2 responses to zero investment amounts di�er from the game{theoretic

best response of 4 and also from the mean responses observed by Harrison and Hirshleifer (1989)

and Prasnikar and Roth (1992) that were close to 4. These di�erences might be explained by the

repeated{game nature of our experiment and the resulting incentives for reputation{building that

are not present in the experiments of Harrison{Hirshleifer and Prasnikar{Roth. However, while

20See section 5.5.
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Player 2s do not always respond optimally (in terms of monetary payo�) to Player 1 actions, they

do play close enough to their monetary best responses that the optimal Player 1 investment in

every 5{round period is zero. Given this Player 2 behavior, a Player 1's payo� from investing zero

is always much greater than her payo� from investing a positive amount. Thus, even in the early

rounds, Player 1s face a strong incentive to play the subgame perfect strategy.21

5.5 Reputation{Building

We have previously mentioned that the e�ect of increased information on Player 1 behavior may

be complicated by the fact that Player 2s know that this information is being provided, and may

recognize and act upon the increased incentive to establish a reputation of \toughness" in treatments

with observation relative to those without observation. In Du�y and Feltovich (1996), we look

for evidence of such reputation building by examining certain types of behavior by Player 2s in

observation and no observation cells. While we �nd evidence that suggests Player 2s seek to build

tough reputations in both cells, the evidence also suggests that there is not much of a di�erence

in the incidence of reputation{building by Player 2s in the observation cells as compared with the

no{observation cells. This �nding is not too surprising, since the incentives for reputation building

in the observation cells are not all that much greater than in the no{ observation cells; players in

the observation cells only get to observe the actions and payo�s of one pair of players.

6 Conclusion

In this paper we have examined the e�ect of additional information on learning in the ultimatum

and best{shot games. In one treatment we allowed pairs of players to observe, prior to choosing

their own actions, the actions and payo�s of one other pair of players in the just completed round

of play. We have compared and contrasted the results from this treatment with results from the

standard treatment in which observation of other players is not allowed, and found that there were

some di�erences in the results.

Our main �nding is that increasing the quantity of information available to players need not

hasten the rate at which players learn to play subgame perfect equilibrium strategies. In the

ultimatum game, giving players additional information leads to play that is signi�cantly further

21We note again (cf. footnote 15) the amounts foregone on average each round by Player 2s were 21.7% of
expected earnings per round in sessions without observation and 24% of expected earnings per round in sessions with
observation (given Player 1 investment levels).
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from the subgame perfect equilibrium prediction relative to the case where players do not receive this

additional information. In contrast, in the best{shot game, giving players additional information

does not signi�cantly a�ect the rate at which players learn to play subgame perfect equilibrium

strategies. The reason for these di�erent results lies in di�erences in the content of the additional

information that players receive. In the case of the ultimatum game with observation, Player 1s

see that other Player 1s get higher payo�s by deviating further from the subgame perfect strategy,

and hence observation only reinforces this type of behavior. In the case of the best{shot game, the

o�{the{equilibrium path incentives are such that players do better by moving closer to subgame

perfect equilibrium strategies. The incentive to play the equilibrium strategy in both treatments is

so strong that players quickly react to this incentive on their own, so that additional information

on how other players play the game is not as useful as it is in the ultimatum game, and does not

signi�cantly a�ect the manner in which players play the best{shot game. We conclude that the

e�ect of additional information on the evolution of play cannot be ascertained a priori; one must

consider the content of the additional information as well.
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