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Abstract

We show that a central planner with two selves, or two “pseudo welfare
functions”, are sufficient to deliver the market equilibrium that prevails
among any (finite) number of heterogeneous individual agents acting com-
petitively in an incomplete financial market. Furthermore, we are able to
exhibit a recursive formulation of the two-central planner problem. In
that formulation, every aspect of the economy can be derived one step at
a time, by a process of backward induction as in dynamic programming.

Dynamic asset pricing increasingly considers models with incomplete mar-
kets and heterogeneity in an attempt to improve over the empirical performance
of benchmark complete-market representative-agent models. Numerous authors
have pointed out the difficulties faced when solving these models.1

In this paper, we aim to find a technique for computing an equilibrium in
an incomplete financial market, that is less onerous than the fixed-point tâton-
nement process. The tâtonnement process presents the major drawback that a
stochastic process for securities prices must be postulated ab initio to start the
procedure of obtaining optimal portfolios. The trial-and-error procedure would
wander in a vast space of stochastic processes. It is a hopeless undertaking.
Direct calculation of equilibrium makes sense only in special cases in which the
equilibrium has some properties that are known a priori.

∗We are grateful to Domenico Cuoco, to seminar participants at HEC, University of Am-
sterdam, Erasmus University Rotterdam, ISCTE, Carnegie Mellon University and Wharton
for comments, and to Raman Uppal and Tan Wang for numerous and stimulating exchanges
of view and correspondence on this topic.
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1Early examples includes Telmer (1993), Lucas (1994), Heaton and Lucas (1996), Krusell

and Smith (1998) and Marcet and Singleton (1999). Levine and Zame (2001) show that
market incompleteness is unimportant in the absence of aggregate risk. In the present paper
we incorporate aggregate risk.
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Like Cuoco and He (1994), our line of attack of this problem is to use a
representative-agent concept, where the representative agent utility is defined
as a stochastically weighted average of individual utilities. In Cuoco and He, the
way in which the representative agent is defined over time is derived separately
on the basis of individual financial choices, based on the dual approach of He and
Pearson (1991) and Karatzas, Lehoczky, Shreve and Xu (1991). These individual
financial choices involve as many value functions (interpreted as each person’s
financial wealth) as there are individuals in the economy.2

Below, we show that a central planner with two selves, or two “pseudo welfare
functions”, are sufficient to deliver the market equilibrium that prevails among
any (finite) number of heterogeneous individual agents. The first self solves for
individual consumption decisions and individual-specific components of state
prices, taking the economy-wide components of state prices as given. Simulta-
neously, the second self chooses individual consumption rules and equilibrium
state prices (i.e. such that the aggregate resource restriction is satisfied) taking
as given the individual-specific components of the state prices. In an equilibrium
of this game, the two selves agree and the competitive equilibrium is found.
In a complete-market setting, competitive equilibrium with heterogeneous

agents is typically obtained by virtue of the Pareto optimality of the compet-
itive equilibrium. Solving a Planner problem, which is the sum of individual
utilities weighted by Pareto weights, gives the equilibrium allocation so that
one can price assets off the marginal rate of substitution of this constructed
representative agent. This approach dates back to Negishi (1960) and was used
in, for instance, Constantinides (1982) and Dumas (1989). The definition of the
two pseudo welfare functions we propose is, however, not based on a claim that
the competitive equilibrium in an incomplete financial market is constrained
Pareto optimal. Indeed, Magill and Quinzii (1996, Chapter IV) have a simple
counter-example showing that this claim is not true. Nonetheless, our approach
is reminiscent of the work of Grossmann (1977) who shows that the market equi-
librium has some welfare properties from the vantage point of a central planner
who would act as several incompletely coordinated selves.3

Taking our method one step further, we are able to exhibit a recursive for-
mulation of the two-central planner problem. In that formulation, every aspect
of the economy can be derived one step at a time, by a process of backward in-
duction. Dynamic programming is used but, in principle, the dynamic program
involves two value functions which are solved for simultaneously. The only state
variables needed to summarize the distribution of resources across individuals
are the current values of the individual-specific components of the Lagrange
multipliers.
Many economists were tempted to believe that no no recursive formulation

2Barbachan (2001) extends Cuoco and He (1994) from the case of two individual agents
to more than two.

3This was done in the context of a multi-good economy, whereas we employ here a multi-
period economy. But it is well-known that analogous problems occur in both settings. In
Grossmann (1977), the planner has as many selves as there are goods, whereas our planner
has only two selves.
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of an incomplete market equilibrium was possible.4 Cuoco and He, however,
write a system of partial differential equations which is applicable to the ex-
change economy that we consider here. That PDE could be solved backward
in a recursive fashion. We expect, however, that our two-planner algorithm is
general enough to be applied later to more complex settings.
From the technical point of view, the recent paper by Harris and Laibson

(2001) is also related to our work in that it shows that some decision problems
plagued by time inconsistency — considered before them as being outside the
reach of recursive techniques — can be formulated recursively provided that the
decision maker is split into several selves which play a Nash game with each
other.
Throughout this paper, we assume that the incomplete-market equilibrium

exists. Hart (1975) has exhibited a well-known counter-example showing that
equilibrium may fail to exist. It involves a situation in which the rank of the
rate-of-return matrix drops in some states of nature. Fortunately, Duffie and
Shafer (1986) have shown that this occurs for a negligible subset of economies.
At any rate, existence is not the topic of our paper. Our paper is useful only

to calculate equilibria after someone has shown that they exist.
Not only do we take it for granted that competitive-market equilibrium ex-

ists but, for most of the paper, and for the entire theoretical part of the paper,
we take as given the variance-covariance matrix of equilibrium rates of return,5

for which we assume that it remains of constant rank N at all times with prob-
ability one. In a numerical illustration, however, we explain the way in which
that matrix could be determined endogenously within an extended procedure,
which would still be recursive. At this point, we cannot be sure that the ex-
tended procedure delivers the equilibrium when the variance-covariance matrix
is endogenous. That issue is left for future research.
The balance of the paper is organized as follows. Section 1 describes the

economy that we study. Section 2 reminds the reader of the dual formula-
tion of the portfolio choice problem in He and Pearson (1991) and Karatzas et
al. (1991), and gives the definition of the corresponding equilibrium. Section
3 presents a “simultaneous-game” formulation of the game played by the two
selves of the central planner and shows that the extent to which the equilibrium
of the game replicates the market equilibrium. Section 4 shows that the equi-
librium in the Magill-Quinzii example is indeed a solution of the static game
between the planners. Section 5 presents a recursive, or dynamic-game formu-
lation of the same problem. This will be most useful for purposes of numerical

4See Judd, Kubler and Schmedders (2000) for the case of one (risky) asset. Kubler and
Schmedders (2002) analyze the existence of recursive equilibria with minimal sufficient state
spaces and construct a counter-example where the current exogenous state variables along with
the wealth distribution across agents do not constitute sufficient state variables, even though
the fundamentals of the economy are Markovian. Krebs (2001) shows the non-existence of
recursive or Markov equilibria in infinite-horizon incomplete-market exchange economies with-
out aggregate risk for general preferences (and with aggregate risk for homothetic preferences)
when the wealth distribution is taken as a state variable. In this paper however, we suggest
a different set of state variables and obtain recursivity.

5More precisely, we take as given the diffusion matrix of securities prices.
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implementation, since dynamic programming can be used. Section 6 presents
an example of an actual numerical implementation that illustrates also how the
variance-covariance of returns could be endogenized. Section 7 demonstrates
how the same approach can be generalized to the case of recursive utility, which
is more general than that of time-additive utility, which is postulated in the rest
of the paper. Section 8 contains the conclusion.

1 The economy

1.1 Information and technical assumptions

The economy that we consider evolves over a finite interval [0, T ] of the real
line. (Ω,F , P ) is a probability space endowed with a filtration F. w (ω, t) is a
K-dimensional Wiener ((Ω,F , P )× [0, T ]→ RK) relative to the given filtration
where the components are independent of each other.
We define a filtration Fw which is the filtration generated by the Wiener w.

Definition 1 L1 space: the set of adapted, measurable processes b such that for
every T :6 Z T

0

kbk dt <∞ with probability one (1)

Definition 2 L2 is the space of adapted, measurable processes b such that for
every T :7 Z T

0

kbk2 dt <∞ with probability one (2)

Assumption: In what follows, all processes for which an Itô stochastic
integral is written are assumed to belong to the space L2. All processes for
which an integral over time is written are assumed to belong to the space L1.

1.2 Individuals and endowments

We consider an exchange economy with one good. There is a large but finite
number I of individuals who trade competitively in the financial market. They
are indexed by i. They are endowed at time 0 with a stock of good Fi (0) (ini-
tial wealth on hand or “financial wealth”) and they receive over time a flow
endowment ei (t) following a given Itô stochastic process. That process belongs
to L1+. Their consumption process is denoted ci and their utility functions are

time additive:8 E0

nR T
0
ui (ci (s) , s) ds

o
with u(., .) satisfying the Inada condi-

tions. As a result, the process ci belongs to L1+. All individuals have the same
information set, viz. the one provided by the filtration Fw.

6 If a is a scalar, kak is absolute value. If a is N ×1 dimensional, then a is in L1 if and only
if each of its components is in L1.

7 If a is matrix-valued, then kak2 = tr (aa| ) .
8For an extension, see Section 7 below.
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The process [ci (t)− ei (t)] is called “net consumption”. We shall only be
interested in equilibria in which

P
i Fi (0) = 0.

Definition 3 The aggregate resource restriction is:X
i

[ci (t)− ei (t)] = 0, ∀t ∈ [0, T ] , with probability 1 (3)

1.3 Financial assets

There are N + 1 securities one of which is instantaneously riskless. The N -
dimensional Itô process for the “dividends” ι (s) is given. Individuals can choose
to invest in these assets but, this being an exchange economy, the total net
supply of each asset is equal to zero. Calling [αi, θi] the portfolio choice process
of individual i, where αi (t) is the number of units of the riskless asset and
θi (t) is the vector containing the number of units of all the risky assets held by
individual i at time t,

Definition 4 The market clearing condition is:X
i

αi (t) = 0, ∀t ∈ [0, T ] , with probability 1 (4)X
i

θi (t) = 0, ∀t ∈ [0, T ] , with probability 1 (5)

2 The static formulation: equilibrium
We now write down the formulation of an equilibrium in the financial mar-
ket. In order to reach equilibrium, individuals have to choose their portfo-
lios [αi (t) , θi (t)] . In order to choose their portfolio, they have to postulate
a stochastic process for financial market prices. The central planning formula-
tion, which comes later, presents the major advantage that there is no need to
postulate such a stochastic process.

2.1 Financial market prices

The stochastic process for price is assumed to be an Itô process, denoted as
follows:

B (t) = B (0) e
R t
0
r(s)ds;B (0) = 1 (6)

S (t) +

Z t

0

ι (s) ds = S (0) +

Z t

0

ζ (s) ds+

Z t

0

σ (s) dw (s) ;S (0) = 1 (7)

S (ω, t) is a process in RN+ (N < K). At the individual level, the optimization
problem to be solved is:

sup
ci(s),αi(s),θi(s)

E0

(Z T

0

ui (ci (s) , s) ds

)
(8)
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subject to:

αi (0)B (0) + θi (0)
|
S (0) = Fi (0) (9)

αi (t)B (t) + θi (t)
| S (t) +

Z t

0

[ci (s)− ei (s)] ds =

αi (0)B (0) + θi (0)
|
S (0) +

Z t

0

[αi (s)B (s) r (s) + θi (s)
|
ζ (s)] ds

+

Z t

0

θi (s)
|
σ (s) dw (s) ;∀t ∈ ]0, T [ with probability 1 (10)

αi (T )B (T ) + θi (T )
|
S (T ) = 0 (11)

and subject to (6, 7). As the market is incomplete, the matrix σ has fewer rows
than columns.

Definition 5 A net-consumption plan [ci (t)− ei (t)] is said to be marketable
from Fi (0) if there exist stochastic processes [αi (t) , θi (t)] such that Equations
(9, 10, 11) are satisfied with probability one.

Obviously, the sum of two marketable plans is a marketable plan.

Lemma 6 If
P

i Fi (0) = 0 and the market clearing condition is satisfied, then
the aggregate resource restriction is satisfied.

Lemma 7 If
P

i Fi (0) = 0, the aggregate resource restriction is satisfied and
[ci (t)− ei (t)] is marketable from Fi (0) for all i, then the market clearing con-
dition is satisfied.

2.2 Minimax Individual Consumption Choice

We define an adapted process κ in RK such that:9

σ (t)κ (t) = [ζ (t)− r (t)× S (t)] (13)

We define three scalar Itô processes ξ, ηi and Z−1i :

ξ (0, t) , exp
½
−
Z t

0

r (s) ds− 1
2

Z t

0

kκ (s)k2 ds−
Z t

0

κ (s)
|
dw (s)

¾
(14)

ηκ
|

i (0, t) (15)

, exp

½
−1
2

Z t

0

kνi (s)k2 ds−
Z t

0

κ (s)| νi (s) ds−
Z t

0

νi (s)
| dw (s)

¾
i = 1, ..I

9There are many processes satisfying that restriction. One such process is:

κ (t) , σ (t)| [σ (t)σ (t)| ]−1 [ζ (t)− r (t)× S (t)] (12)

In that case, κ is in the span of σ| : κ (t) = σ (t)| x (t) where x (t) =

[σ (t)σ (t)| ]−1 [ζ (t)− r (t)× S (t)] . This is the process selected by He and Pearson.
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Z−1i (t) , Z−1i (0) ξ (0, t) ηκ
|

i (0, t) (16)

Z−1i (0) will be given a meaning very shortly. These processes satisfy the follow-
ing stochastic differential equations:

dξ (t)

ξ (t)
= −r (t) dt− κ (t)

|
dw (t) ; ξ (0) = 1 (17)

dηκ
|

i (t)

ηκ
|

i (t)
= −κ (t)| νi (t) dt− νi (t)

| dw (t) ; ηκ
|

i (0) = 1 (18)

dZ−1i (t)

Z−1i (t)
= −r (t) dt− [κ (t) + νi (t)]

|
dw (t) (19)

The restriction (13) on κ guarantees that:

E0

·
S (t) ξ (0, t) +

Z t

0

ι (s) ξ (0, s) ds

¸
= S (0) = 1 (20)

E0 [B (t) ξ (0, t)] = B (0) = 1 (21)

Lemma 8 For as long as νi ∈ kerσ (i.e. σνi = 0) and ci (t) − ei (t) is mar-
ketable at all times with probability one, we have:

E0

"Z T

0

[ci (s)− ei (s)] ξ (0, s) η
κ|

i (0, s) ds

#
= Fi (0) (22)

Proof. This can be verified by direct application of Itô’s lemma to (10),
(14) and (15).

Remark 9 The discounted present value in (22) is invariant with respect to the
choice of νi for as long as νi is in the kernel of σ.

One might reformulate the optimization problem as one of maximizing:

sup
ci(s)

E0

(Z T

0

ui (ci (s) , s) ds

)
(23)

subject to (22). However, that leaves the solution indeterminate for as long as
we have not specified νi. A duality reasoning would show that the choice of νi
must be dictated by:10

inf
νi(s)∈kerσ(s)

sup
ci(s)

E0

(Z T

0

ui (ci (s) , s) ds

)
(26)

10Starting at time t, the same sequence of decisions could have been obtained by solving
the problem:

inf
νi(s)∈kerσ(s)

sup
ci(s)

Et

½Z T

t
ui (ci (s) , s) ds

¾
(24)

subject to:

Et

·Z T

t
[ci (s)− ei (s)] ξ (t, s) ηi (t, s) ds

¸
= F (t) , αi (t)B (t) + θi (t)

| S (t) (25)

while the Lagrange multiplier of that constraint would have been equal to 1/Zi (t) .
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subject to (22). We call Z−1i (0) the Lagrange multiplier of that constraint writ-
ten at time 0. This is the main result of the dual approach of He and Pearson
(1991) (Theorems 1, 2 and 3) and Karatzas et al. (1991), which is the extension
to incomplete markets of the martingale methodology of Cox and Huang (1989),
Karatzas, Lehoczky and Shreve (1987) and Pliska (1986).
The legitimacy of this procedure is established by the following lemma which

shows that the solution of the dual problem is, indeed, the solution of the primal
problem.

Lemma 10 For any given ξ process, if a solution to problem (26) exists and
technical conditions are satisfied,11 individual i optimizing (26) subject to (22)
chooses net trades [ci (s)− ei (s)] that are marketable from Fi (0).

Proof. See He and Pearson (1991) proof of Theorem 2, pages 292-295,
which is applicable in the absence of an endowment stream. He and Pearson
had selected a process κ in the span of σ| . That restriction is immaterial. If κ
is not in the span, it can always be decomposed: κ = bκ + bν, where bκ is in the
span of σ| and bν is in the kernel of σ. The restriction σν = 0 is equivalent to
the restriction σ (ν − bν) = 0.12 Cuoco (1997) shows that technical conditions
must be strengthened to generalize the result to the case in which individuals
receive an endowment stream.

Remark 11 If we take for granted that the Lagrange multiplier at time 0 is
Z−1i (0), the time-0 problem (26) can be written equivalently:

inf
νi(s)∈kerσ(s)

sup
ci(s)

E0

(Z T

0

ui (ci (s) , s) ds

)

−Z−1i (0)E0

"Z T

0

[ci (s)− ei (s)] ξ (0, s) η
κ|

i (0, s) ds

#
(27)

2.3 Market equilibrium

We continue to impose that
P

i Fi (0) = 0.

Definition 12 A competitive market equilibrium is a set of decision processes
{{ci} , {αi} , {θi}} and price processes {B,S} such that, for each individual i,
{ci} , {αi} and {θi} are the optimizing argument of (8) subject to (9) through
(11) and such that the market clearing conditions (4) and (5) hold.
11For the existence of a solution to the dual and primal problem and technical conditions

guaranteeing the equivalence between the solution to the dual and the solution to the primal
problem, see He and Pearson (1991), Karatzas et al. (1991) and Kramkov and Schachermayer
(1999).
12We are not aware of technical conditions guaranteeing the validity of the dual approach

for incomplete-market situations with random endowments and interim consumption when
state prices are semimartingales. The economy-wide state price process ξ (t) will turn out to
be continuous in equilibrium. As we shall see, however, off equilibrium one has to allow for
discontinuities in the state price process.

8



Remark 13 Since the aggregate resource restriction holds, the set of equilib-
rium initial Lagrange multipliers {1/Zi (0)} is not just any element in RI . It is
truly an element of RI−1 because we must have:

X
i

·
∂

∂ci
ui

¸−1 ¡
Z−1i (0) , t

¢
=
X
i

ei (0) (28)

where
h

∂
∂ci

ui

i−1
(·, t) is the inverse marginal utility function of each individual

with respect to consumption.

Suppose that a competitive market equilibrium exists in which the initial
Lagrange multipliers are equal to {1/Zi (0)} (satisfying (28)) and the diffusion
matrix of traded asset prices is given by a N ×K dimensional process σ. Then,
we can define:

Definition 14 A competitive market “sub-equilibrium” is a set of processes
{{ci} , {νi} , ξ}, in which, for each individual i, {ci} , {νi} are the optimizing
arguments of (27), and which are such that the aggregate resource restriction
holds.

3 The static formulation: central planning
We suppose that a market equilibrium exists in which the initial Lagrange multi-
pliers are equal to

©
Z−1i (0)

ª
(satisfying (28)) and the diffusion matrix of traded

asset prices is given by a N ×K dimensional process σ.13

Our goal is now to define a central-planning problem that generates a sub-
equilibrium.
In the market setting, ξ has been implied from the behavior of market prices

(6) and (7). In the central planning setting, however, ξ is just an adapted process
to be determined. In both contexts, νi is an adapted process, to be determined,
which is in the kernel of σ.
The central planner that achieves our goal has two selves which operate

jointly in a Nash game with each other. The two selves solve two interdependent
allocation problems with two different objective functions and constraints:
Problem 1:

inf
{νi(s)∈kerσ(s)}

sup
{ci(s)}

(X
i

E0

(Z T

0

ui (ci (s) , s) ds

)

−
X
i

Z−1i (0)E0

"Z T

0

[ci (s)− ei (s)] ξ (0, s) η
κ|

i (0, s) ds

#)
(29)

13 In this section, therefore, σ is given. In Section 6, we illustrate how σ could be obtained
from the recursive version of the central planning algorithm. This is done numerically only.
We leave for future research the generalization of the theory for the case of endogenous σ.
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Problem 2:

sup
{ci(s)}

(X
i

Zi (0)E0

(Z T

0

1

ηκ
|

i (0, s)
ui (ci (s) , s) ds

)

+ inf
ξ(0,s)∈R+

"
−E0

"Z T

0

X
i

[ci (s)− ei (s)] ξ (0, s) ds

##)
(30)

Self 1 makes sure that the budget constraints are satisfied. It takes ξ as given
and makes exactly the same decisions as in the partial-equilibrium dual approach
of He and Pearson and Karatzas et al. Self 2 acts very much like the central
planner in a complete market problem or like an auctioneer; it makes sure that
the aggregate resource restriction is satisfied at all times.14 It takes the ηi’s as
given in constructing his objective function. Observe that the decisions of one
player serve to define the objective function of the other. The two selves could
not be reduced to one since they face different objective functions and discount
utility of consumption at different rates, but they agree on the consumption
allocation. Indeed the FOCs for consumption are the same in both cases:

∂

∂ci (s)
ui (ci (s) , s) = Z−1i (0) ξ (0, s) ηκ

|

i (0, s) (31)

≡ Z−1i (s)

Remark 15 When markets are dynamically complete, i.e. when σ is a square
matrix (N = K) of full rank, the kernel of σ is the singleton 0: there is a unique
equivalent martingale measure. Problems 1 and 2 become respectively:

sup
{ci(s)}

(X
i

E0

(Z T

0

ui (ci (s) , s) ds

)

−
X
i

Z−1i (0)E0

"Z T

0

[ci (s)− ei (s)] ξ (0, s) ds

#)
(32)

inf
ξ(0,s)∈R+

sup
{ci(s)}

(X
i

Zi (0)E0

(Z T

0

ui (ci (s) , s) ds

)

+

"
−E0

"Z T

0

X
i

[ci (s)− ei (s)] ξ (0, s) ds

##)
(33)

so that central planning can be achieved by a planner with a single self. Indeed
Planner 2 in this case needs no input from Planner 1.

14Although reminiscent of the ‘auctioneer’ algorithm of Lucas (1994) and Heaton and Lucas
(1996), our auctioneer is different as he directly targets the aggregate resource restriction (by
choosing aggregate state prices), rather than market clearing in financial markets (by searching
for asset holdings), as in their approach.
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Definition 16 A Nash equilibrium of the above game is a set of decision pro-
cesses {{ci} , {νi}} that are optimal for Planner 1 (in particular, individually
marketable) given the values {ξ} of the decisions of Planner 2 and a set of
decision processes {{ci} , ξ} that are optimal for Planner 2 (in particular, mar-
ketable in the aggregate and satisfying the budget constraint) given the decisions
{νi} of Planner 1.

Theorem 17 Suppose that a competitive market equilibrium exists in which the
set of initial Lagrange multipliers is equal to

©
Z−1i (0)

ª
(satisfying the aggregate

resource restriction (28) at time 0) and the diffusion matrix of traded asset
prices is given by a N ×K dimensional process σ. The Nash equilibrium of the
above game is a market sub-equilibrium.

Proof. First, for any given ξ processes, Planner 1 chooses net trades
[ci (s)− ei (s)] that are marketable.
Indeed, since Problem 1 is nothing but the sum taken over all individuals of the
individual problems of the form (27), lemma 10 above implies that individual
net trades are marketable.
Second, for any given set of processes {νi (s) ∈ kerσ (s)}, the choice of ξ by
Planner 2 guarantees that the aggregate resource restriction is satisfied with
probability one. Indeed, the planner’s objective function is nothing but a La-
grangian objective function incorporating that constraint.

Remark 18 Given any solution {{ci} , {νi} , ξ} of the above game, equivalently
written as

©{ci} ,©ηκ|i ª , ξª , define a process bη :
bηκ| (0, t) , exp½−1

2

Z t

0

kbν (s)k2 ds− Z t

0

κ (s)
| bν (s) ds− Z t

0

bν (s)| dw (s)¾ ; i = 1, ..., I
(34)

where bν is any adapted process satisfying the kernel constraint: σbν = 0. Then it
can be checked readily that

n
{ci} ,

n
ηκ

|
i bηκ| o , ξ/bηκ| o is another solution of the

game. To understand this, observe that κ could have been reset at κ+ bν wherebν is an arbitrary element of the kernel of σ. Then the kernel condition would
really be σ (νi − bν) = 0. But this last is equivalent to σνi = 0.
Faced with this indeterminacy, one could impose the condition that κ be in the
span of σ|or that, for the first individual, ν1 = 0, (the latter being a much more
convenient restriction in general). Either restriction will pin down (standardize)
κ which otherwise would be indeterminate, with a cancelling indeterminacy in
each of the νi’s.
In terms of economics, the meaningful kernel condition is one that says only
that differences in ν’s between any two individuals should be in the kernel, not
that each single νi should be in the kernel. This corresponds to the fact that we
want any pair of individuals to agree on the prices of traded securities.

Proposition 19 Since the Nash equilibrium of the game has the property that
the aggregate resource restriction is satisfied at all times, we have, for an ex-
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change economy:

X
i

·
∂

∂ci
ui

¸−1 ³
Z−1i (0) ξ (0, t) ηκ

|

i (0, t) , t
´
=
X
i

ei (t) with probability 1

(35)
Differentiating, it follows that the equilibrium choices of the r, ξ and {νi} pro-
cesses satisfy:15

−
X
i

1

∂2

∂c2i
ui

µh
∂
∂ci

ui

i−1 ¡
Z−1i (t) , t

¢
, t

¶Z−1i (t) [κ (t) + νi (t)]
| =

X
i

σei (t) with probability 1,

(37)
where σei is the diffusion row vector process of the endowment of individual i,
as well as:X
i

∂

∂t

(·
∂

∂ci
ui

¸−1 ¡
Z−1i (t) , t

¢)−X
i

1

∂2

∂c2i
ui

µh
∂
∂ci

ui

i−1 ¡
Z−1i (t) , t

¢
, t

¶Z−1i (t) r (t)

+
1

2

X
i

1·
∂2

∂c2i
ui

µh
∂
∂ci

ui

i−1 ¡
Z−1i (t) , t

¢
, t

¶¸3
× ∂3

∂c3i
ui

Ã·
∂

∂ci
ui

¸−1 ¡
Z−1i (t) , t

¢
, t

!£
Z−1i (t)

¤2
[κ (t) + νi (t)]

| [κ (t) + νi (t)]

=
X
i

µei (t) with probability 1 (38)

where µei is the drift process of the endowment of individual i.

In Section 5, we provide a recursive formulation of the same central planning
problem. But, first, we look at an illustration of the static method.

4 TheMagill-Quinzii example solved by the static
central plan

In their textbook, Magill and Quinzii (1996, Chapter IV) construct an example
that purports to show that an equilibrium in an incomplete market is not Pareto
optimal, not even under the constraint of marketability of consumption plans.

15The solution for κ in the span (κ = σ|x for some x) is:−X
i

1

∂2

∂c2i
ui

µh
∂
∂ci

ui
i−1 ³

Z−1i (t) , t
´
, t

¶Z−1i (t)

 x (t) = [σ (t)σ (t)| ]−1X
i

σei (t)σ (t)
|

(36)
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Indeed, we have been careful here not to give our algorithm involving two central
planners any welfare interpretation.
We now use that same example to illustrate the way in which the two central

planners would arrive at the incomplete market equilibrium.
Magill and Quinzii’s example is set in a three-date (indexed by t), two-agent

(indexed by i), two-state (indexed by s) environment. All uncertainty is resolved
at t = 1 and both states have equal probability. The event-tree for the aggregate
state Yt,s is:

t = 0 t = 1 t = 2
Y11 Y21

Y0
Y12 Y22

The endowment processes ei as a function of the aggregate state Yt,s are as
follows for the two agents:

e1 = (e1 (Y0) , e1 (Y11) , e1 (Y12) , e1 (Y21) , e1 (Y22)) = (4, 0, 6, 6, 6)

e2 = (e2 (Y0) , e2 (Y11) , e2 (Y12) , e2 (Y21) , e2 (Y22)) = (9, 8, 0, 8, 8)

If state Y11 occurs, agent 1 temporarily has a zero endowment, and similarly for
agent 2 in state Y12.
Agents have time-separable logarithmic utility, but are heterogeneous in

terms of time preference:

E0

(
2X

t=0

ui (ci (Yt,s) , t)

)
= log (ci (Y0)) + βi

·
1

2
log (ci (Y11)) +

1

2
log (ci (Y12))

¸
+β2i

·
1

2
log (ci (Y22)) +

1

2
log (ci (Y22))

¸
where the discount factors are given by (β1, β2) =

¡
1
2 ,

1
3

¢
.

In each period, there is only one financial asset, a short-lived bond that
permits lending and borrowing. Markets are incomplete, as there is no risky or
state-contingent asset that would allow agents to hedge their endowment risk.
The spanning and kernel restrictions are now written with respect to the

payoff matrix instead of the diffusion matrix. As there is no risky asset, the
spanning condition implies that κ (Yt,s) = 0. Also, the kernel restriction is
vacuous, which means that νi can be chosen freely.
However, we also need to impose that ηi (Yt,s) = exp (−νi (Yt,s)) be a mar-

tingale. This implies νi (Yt,s) = 0 for t = 2. For t = 1, we obtain

1

2
× e−ν(Y11) +

1

2
× e−ν(Y12) = 1

13



It is straightforward to verify that the equilibrium consumption allocation
described by Magill and Quinzii,

c1 = (c1 (Y0) , c1 (Y11) , c1 (Y12) , c1 (Y21) , c1 (Y22)) = (4, 0.8, 4.8, 2, 12)

c2 = (c2 (Y0) , c2 (Y11) , c2 (Y12) , c2 (Y21) , c2 (Y22)) = (9, 7.2, 1.2, 12, 2)

along with the values

r = (r (Y0) , r (Y11) , r (Y12)) = (−38%, 161%, 161%)

ν1 = (ν1 (Y11) , ν1 (Y12) , ν1 (Y21) , ν1 (Y22)) = (−54%, 125%, 0, 0)
ν2 = (ν2 (Y11) , ν2 (Y12) , ν2 (Y21) , ν2 (Y22)) = (125%,−54%, 0, 0)

solves the following planning problems, given values for
©
Z−1i (0)

ª
: (Z1 (0) , Z2 (0)) =

(4, 9) :
Problem 1:

inf
{νi(Yt,s)}

sup
{ci(Yt,s)}

(
2X
i=1

E0

"
2X

t=0

ui (ci (Yt,s) , t)

#

−
2X

i=1

1

Zi (0)
E0

"
2X

t=0

[ci (Yt,s)− ei (Yt,s)] ξ (Yt,s) ηi (Yt,s)

#)
(39)

Problem 2:

inf
ξ(Yt,s)

sup
{ci(Yt,s)}

(
2X

i=1

Zi (0)E0

"
2X

t=0

1

ηi (Yt,s)
ui (ci (Yt,s) , t)

#

+

"
−E0

"
2X

t=0

2X
i=1

[ci (Yt,s)− ei (Yt,s)] ξ (Yt,s)

##)
(40)

5 Recursive formulation
We now show that it is possible to develop a recursive (dynamic-programming)
formulation of the static central-planner problem. This should be useful for
numerical implementations.
For the purpose, adopt a Markovian setting:16

ei(t) = ei(0)+

Z t

0

µei ({ei (s)} , Y (s) , s)ds+
Z t

0

σei ({ei (s)} , Y (s) , s)dw(s) (41)

where Y is an Itô process in RK :

Y (t) = Y (0)+

Z t

0

µ ({ei (s)} , Y (s) , s) ds+
Z t

0

ρ ({ei (s)} , Y (s) , s) dw (s) (42)
16We assume that the functions µei , σ

e
i , µ and ρ satisfy growth and Lipschitz conditions.
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The aim in the recursive setting is to derive the competitive market equi-
librium one step at a time. We show that this can be done by having the two
Planners play a dynamic game. Given the Markovian setting, it is natural to
focus on Markov strategies and Markov Perfect equilibria. That is, we restrict
attention to Nash equilibria that are subgame perfect, and only consider Markov
strategies.17

It is important in that context to keep two basic ideas in mind. First, even
though the process ξ in equilibrium is a continuous process, since it solves Equa-
tion (35), it should nevertheless generally be conceived of as a jump process,
or an instantaneous control, which accommodates the current values of {ηi} to
satisfy that equation.
Second, the timing of the game needs to be specified carefully:

• The state variables of the game are {ηi (0, t)}. The two players arrive at
time t with given values {ηi (0, t)} for these state variables.

• At time t, they play simultaneously a Nash game in which Planner 1
chooses {νi (t)} , Planner 2 chooses ξ (0, t) to satisfy (35) and they both
agree on the choice of {ci (t)} . Note that the choice of ξ (0, t) by Planner
2 only depends on the values of the state variables {ηi (0, t)} , and {ei (t)},
not on the choice of {νi (t)} made by Planner 1. Hence, Planner 1 can
take into account that choice of ξ (0, t) by Planner 2 and still be playing
Nash.

• As they move to time t+dt, a realization dw (t) of the Wiener occurs. This
leads to a realization of Z−1i (t+ dt) = Z−1i (0) ξ (0, t+ dt) ηi (0, t+ dt) .At
that time Planner 2 will instantaneously accommodate the aggregate re-
source constraint by adjusting ξ (0, t+ dt). That behavior can be antici-
pated at time t by Planner 1, by virtue of the subgame perfection assump-
tion.

In short, we have the following definition:

Definition 20 A Markov Perfect equilibrium of the above game is a set of ad-
missible, measurable functions

c∗i ({ηi} , {ei} , t)
ν∗i ({ηi} , {ei} , Y, t)

and
ξ∗ ({ηi} , {ei} , t)

such that the decisions {{c∗i } , {ν∗i }} are optimal for Planner 1 given the val-
ues {ξ∗} of the decisions of Planner 2 and given the current state variables
17 See Maskin and Tirole (2000) for a rigorous treatment of Markov Perfect Equilibria in

discrete-time. Borkar and Ghosh (1992) prove existence in continuous-time stochastic set-
tings. Continuous-time applications include for instance Budd, Harris and Vickers (1993) in
industrial organization and Harris and Laibson (2001) for the case of an intrapersonal game.
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{ηi (t)} , {ei (t)} , Y (t) , t and such that the decisions {{c∗i } , ξ∗} are optimal for
Planner 2 given the decisions {ν∗i } of Planner 1 and given the current state
variables {ηi (t)} , {ei (t)} , Y (t) , t, where the processes ({c∗i } , {ν∗i } , r∗, κ∗) are
defined by:

c∗i,t = c∗ ({ηi (0, t)} , {ei (t)} , t) (43)

ν∗i,t = ν∗ ({ηi (0, t)} , {ei (t)} , Y (t) , t) (44)

and:
ξ∗t = ξ∗ ({ηi (0, t)} , {ei (t)} , t) . (45)

Theorem 21 Suppose that a competitive market equilibrium exists in which the
initial Lagrange multipliers are equal to

©
Z−1i (0)

ª
and the diffusion matrix of

traded asset prices is given by a N × K dimensional process σ. The Markov
Perfect equilibrium of the above dynamic game is a market sub-equilibrium.

The task is now to prove this claim and to characterize the Markov Perfect
equilibrium. The remainder of this section is devoted to this. We define the value
function(s) and construct the corresponding Hamilton-Jacobi-Bellman PDE(s).
The first-order conditions are then shown to generate a competitive market
sub-equilibrium.

5.1 Value functions

Define the value function of Planner 1:

J
¡©
Z−1i (0)× ξ (0, t)× ηi (0, t)

ª
, {ei (t)} , Y (t) , t

¢
, inf
{νi(s)∈kerσ(s)}

sup
{ci(s)}

X
i

Et

(Z T

t

ui (ci (s) , s) ds

)

−
X
i

Z−1i (0) ξ (0, t) ηi (0, t)Et

"Z T

t

[ci (s)− ei (s)] ξ (t, s) ηi (t, s) ds

#
(46)

In this definition, {ηi (0, t)} is an argument because it is a state variable but
ξ (0, t) is an argument because Planner 1 plays Nash and takes the action of
Planner 2 as a given.
Assumption: We assume that J is C2,2,2,1.
Given the functional form of the argument, we have:

∂J

∂ηi
=

∂J

∂Z−1i

Z−1i (0) ξ (47)

∂J

∂ξ
=

X
i

∂J

∂Z−1i

Z−1i (0) ηi (48)

and therefore:

ξ
∂

∂ξ
J
¡©
Z−1i (0) ηiξ

ª
, {ei} , Y, t

¢
=
X
i

ηi
∂

∂ηi
J
¡©
Z−1i (0) ηiξ

ª
, {ei} , Y, t

¢
(49)
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Lemma 22 The envelope theorem implies:

∂

∂Z−1i

J
¡©
Z−1i (0) ξηi

ª
, {ei} , Y, t

¢
= −Et

"Z T

t

[ci(s)− ei(s)]ξ (t, s) ηi (t, s) ds

#
(50)

so that this partial derivative is equal to minus the financial wealth of investor
i.

We need to incorporate a constraint that the individual specific diffusion νi
is in the kernel. “νi is in the kernel” imposes the constraint: σνi = 0.We assign
Lagrange multiplier Z−1i (0) ξ (0, t) ηi (0, t) θ

|
i to that last constraint.

One could define an analogous value function for Planner 2 but in the present
exchange-economy setting, Planner 2 has no intertemporal decisions to make.
Hence, that is really pointless.

5.2 Conditions of optimality

The Hamilton-Jacobi-Bellmann PDE for J is:18

0 = sup
{θi(t)}

inf
{νi(t)}

sup
{ci(t)}

X
i

·
ui (ci, t)− 1

Zi
(ci − ei (t))

¸
+Dr(t),κ(t)| ,ν|i J

¡©
Z−1i

ª
, {ei} , Y, t

¢
−
X
i

Z−1i θ|i σνi (51)

where the operator Dr,κ| ,ν|i is defined as:

Dr,κ| ,ν|i J , ∂J

∂t
− r

X
i

∂J

∂Z−1i

Z−1i +
X
i

∂J

∂ei
µei +

µ
∂J

∂Y

¶|
µ

+
1

2

X
i

X
j

∂2J

∂Z−1i ∂Z−1j

(κ+ νi)
| (κ+ νj)Z

−1
i Z−1j

+
1

2

X
i

X
j

∂2J

∂ei∂ej
(σei )

¡
σej
¢|
+
1

2
tr

µ
∂2J

∂Y ∂Y
ρρ|

¶

−
X
i

X
j

∂2J

∂Z−1i ∂ej
(κ+ νi)

| Z−1i

¡
σej
¢| − tr

ÃX
i

∂2J

∂Z−1i ∂Y
(κ+ νi)

| Z−1i ρ|

!

+tr

ÃX
i

∂2J

∂ei∂Y
σeiρ

|

!
(52)

and where κ and r are given by (37) and (38) respectively, but are taken as given
by Planner 1 in his choice of {νi}.19 The four first-order conditions associated
with the game are:
18We omit verification of the fact that the solution of this PDE is identically equal to the

value of problem (46), given the standard nature of the program faced by Planner 1.
19Recall that (37) and (38) follow from (54) by differentiation. They are therefore, properly

part of the system made up of the PDE (52) and the first-order conditions (53 to 56).
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• Joint condition
∂

∂ci
ui(ci, t) = Z−1i (53)

• Planner 2’s condition: X
i

[ci − ei (t)] = 0 (54)

• Planner 1’s conditions:X
j

∂2J

∂Z−1i ∂Z−1j

(κ+ νj)
|
Z−1i Z−1j

−
X
j

∂2J

∂Z−1i ∂ej
Z−1i σej −

X
k

∂2J

∂Z−1i ∂Yk
Z−1i ρk = Z−1i θ|i σ; 1×K × I

(55)

σνi = 0; N × 1× I (56)

The first condition is the usual condition of optimality of consumption. The
interpretation (50) of the derivative ∂

∂Z−1i
J as (minus) the financial wealth of

individual i shows that the last two first-order conditions are, by construction,
identical to He and Pearson’s conditions (20, 21) but generalized to incorporate
cross-derivatives across individuals. This shows that the θ|i s are interpretable as
portfolios.
The last three conditions are linear and can be organized into a large parti-

tioned system that can be solved easily for all the θ|i s, and νis.

6 Numerical implementation
We choose to illustrate our method on the example of the limited-participation
equilibrium of Basak and Cuoco (1998). In this section, we adopt their notation.
Even though we do not know yet how to handle the general case of limited
participation — in which each investor is assigned a list of securities to which
he/she has access, — we can handle the specific case situation analyzed by Basak
and Cuoco, in which there is only one Wiener shock in the economy, one risky
asset and one instantaneously riskless asset and just two (or two categories of)
finite-lives agents. Agent 1 has access to both securities, whereas Agent 2 has
access to the riskless security only. Basak and Cuoco calculate the equilibrium
for the case in which Agent 2 has logarithmic utility. We show here how this
can be generalized to any utility function.
In this setup, the risky security is effectively redundant since a group of

identical agents (those of Category 1) are the only ones having access to it. No
trading of it actually takes place at any time. In Basak and Cuoco, the security
is nonetheless “held”, but only because agents of Category 1 are endowed with
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it. The cash-flow process for the risky security, which we prefer to view as the
process for the flow endowment of agents of Category 1 is:

δ (t) = δ (0) +

Z t

0

µδ (s) ds+

Z t

0

σδ (s) dw (s) (57)

The remainder of the agents’ endowments is unconventional in the sense
that they are not defined by exogenous cash flows. Instead, agents of the two
categories share the total zero net supply of the riskless security, which yields
an endogenous rate of interest. Agents of Category 1 are endowed with a short
position in β shares of the bond and agents of Category 2 are endowed with a
long position in the same β shares of the bond (β > 0). Agents of Category 1
are the only ones receiving a flow endowment, of the kind we consider in this
article. On an average, Category 1 agents consume less than their endowment
because they start out with a short position of the bond. This allows Category
2 agents to consume something out of Category 1’s flow endowment δ.
Since the riskless security is tradable by all, the initial endowment of bonds

only serves to specify the initial distribution of financial wealth. This is not
important for our procedure since we are only interested in generating sube-
quilibria, i.e., equilibria with given initial Lagrange multipliers, as opposed to
equilibria with given initial wealth distribution.20

Concerning the diffusion matrix of security prices, we need to distinguish
between securities to which both classes of investors have access and securities
that are exclusively available to Category 1 agents. It is easiest to view this
market as an incomplete market in which the only traded security is the instan-
taneously riskless one, the risky security being absent. In our approach, that
pins down the diffusion matrix of traded securities: σ = 0. Note that here σ
does not contain the volatility of the risky security. The risky security is redun-
dant. Its volatility σ1 can be determined separately from the determination of
the equilibrium. We first treat the case of exogenous σ1 and then show how to
find σ1 endogenously in our recursive numerical procedure. If we maintain that
κ should be in the span of σ| , it follows that κ = 0, (as in the example of Magill
and Quinzii).21 Furthermore, there is no kernel restriction on the choice of ν1
and ν2.
20As Basak and Cuoco point out, the initial distribution of wealth, in their set up, also

determines whether an equilibrium exists (β must be positive, but not so large that agents of
Category 1 could never repay their initial short position in the bond). But this is not an issue
that we consider.
21Here the notation differs from that of Basak and Cuoco. They call κ the price of risk in

the market for the risky security. Our analog is denoted ν1. Indeed, the risky security is priced
by agents of Category 1 only. The common component ξ of state prices does not price the
risky security. The riskless security is the only one the two categories of agents have to agree
on.
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6.1 Exogenous σ1
Planner 2’s problem is easily solved. Assuming isoelastic utility functions (e−ρt c

γi−1
γi

),

it chooses ξ that solves:22X
i

n£
e+ρtZ−11 (0) ξηi

¤ 1
γi−1 − ei (t)

o
= 0 (59)

The value of r follows from (38) and (53):

r
¡
Z−11 , Z−12 , δ, {νi} , t

¢
= ρ+

1

−Pi=1,2
1

γi−1e
ρt

γi−1
¡
Z−1i

¢ 1
γi−1

(60)

×
µδ − 1

2

X
i=1,2

1

γi − 1
µ

1

γi − 1
− 1
¶
e

ρt
γi−1

¡
Z−1i

¢ 1
γi−1 ν|i νi

(61)
Let us now focus on Planner 1 who chooses ν1 and ν2.

23 Under the present
circumstances, the PDE for its value function J

¡
Z−11 , Z−12 , δ, t

¢
is:

0 =
X
i=1,2

·µ
1

γi
− 1
¶
e

ρt
γi−1

¡
Z−1i

¢ γi
γi−1 − e−ρt

γi

¸
+ Z−11 δ +

∂J

∂t

−r ¡Z−11 , Z−12 , δ, {νi} , t
¢ X
i=1,2

∂J

∂Z−1i

Z−1i

+
∂J

∂δ
µδ − 1

2

X
i=1,2

X
j=1,2

∂2J

∂Z−1j ∂δ
σδ

"
∂2J

∂Z−1i ∂Z−1j

#−1
i,j

∂2J

∂Z−1i ∂δ
σδ +

1

2

∂2J

∂δ2
σ2δ2

(62)

while the first-order conditions are:X
j=1,2

∂2J

∂Z−1i ∂Z−1j

νjZ
−1
j −

∂2J

∂Z−1i ∂δ
σδ = 0; i = 1, 2

and the solution is:

νjZ
−1
j =

X
i=1,2

"
∂2J

∂Z−1i ∂Z−1j

#−1
i,j

∂2J

∂Z−1i ∂δ
σδ; i = 1, 2

where
·

∂2J
∂Z−1i ∂Z−1j

¸−1
i,j

refers to the (i, j)th element of the matrix inverse of·
∂2J

∂Z−1i ∂Z−1j

¸
.

To be completed.
22

e−ρtcγi−1i = Z−11 (58)

23The choice of {νi} does not depend on r.
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6.2 Endogenizing σ1

To be written.

7 Recursive utility
The method described above can be extended straighforwardly from the case
of time-additive utility that we have considered so far, to the case of non time-
additive, but recursive utility. Dumas, Uppal and Wang (2000), following Ge-
offard (1996), have shown that recursive utility can be rewritten in the quasi-
addititive form of “variational utility”. They have also shown that, in a complete
market, variational utility permits straighforward welfare analysis and compu-
tation of Pareto optima, which are, in that case also, market equilibria.
The same method can be implemented here, not for purposes of welfare

analysis, but as a way of computing the equilibrium within an incomplete market
when individuals have recursive utility. The reader will note, however, that the
variational formulation will introduce a set of individual agent weights in the
objective function of Planner 1 (while there are none in the case of time-additive
utility) and that another set of state variables

©
Z−1i

ª
will also, as above, have

to be used. So, the total number of state variables will increase by the number
of agents relative to the case of time-additive utility.

8 Conclusion
We present a methodology for solving the competitive equilibria of economies
with dynamically incomplete markets and heterogeneous agents. The nature of
the algorithmic device we propose, a central planner with two selves, provides
new insights regarding the fundamental difference between economies with and
without complete financial markets. The first central Planner essentially solves
for individual consumptions, portfolios and investor-specific components of state
prices in the sense of He and Pearson, given economy-wide state prices. In
other words, he solves a partial equilibrium problem. Simultaneously, the sec-
ond Planner chooses equilibrium state prices to satisfy the aggregate resource
restriction, given the individual-specific choices of Planner 1. Planner 2 acts
like an (intertemporal) auctioneer. It is crucial that Planner 2 internalizes the
investor-specific components of the state prices of Planner 1 in his choices. This
makes the two Planners agree on consumption and generates equilibrium.
Our analysis is reminiscent of the work of Grossman (1977) who studied

equilibria in multi-good economies with incomplete markets. He analyzed the
welfare properties of these equilibria by introducing the notion of a central
planner with incomplete coordination. Instead of exploring welfare properties,
we pursue a similar construction in order to solve for the competitive equilibrium
in a multi-period economy.
In a Markovian setting, we establish a recursive formulation of the two-

central planner problem. The equilibrium can, therefore, be constructed one
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time step at a time, using standard dynamic programming techniques.
We believe our methodology has numerous interesting applications in dy-

namic asset pricing and the analysis of risk-sharing, beyond the confines of the
standard complete market paradigm. We plan to pursue these applications in
future research. In future work we also aim to extend our methodology to han-
dle the general case of limited participation, where asset markets are incomplete
in different ways for different individuals.
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