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1.  Introduction: The need for a unifying explanation

The various areas of inquiry that constitute experimental economics appear at times to be

surveying distinct and isolated regions of behavior.  What we see in experiments involving market

institutions is usually consistent with standard notions of 'competitive' self-interest.  But other

types of experiments appear to foster sharply different conduct.  'Equity' has emerged as an

important factor in bargaining games.  'Reciprocity,’ of a type that differs from the standard

strategic conception, is often cited to explain behavior in games such as the prisoner’s dilemma.

Many economists wonder what-if-anything connects these patterns of behavior.  The issue goes to

the heart of what it is that experimental economics can hope to accomplish, if only because

economists have traditionally placed a high value on generality.  If no connection can be found,

we are left with a set of disjoint behavioral charts, each valid for no more than a limited domain.

But to the extent a common pattern can be established, laboratory research presents a broad, and

a potentially powerful map of economic behavior.

In this paper, we describe a simple model we call ERC to denote the three important kinds

of behavior the theory captures: equity, reciprocity and competition.  We show that ERC is

consistent with a wide variety of experimental observations gathered by many independent

investigators.  ERC is simple to apply – in part, because it is not a radical departure from standard

modeling techniques.  The major innovation is the premise that, along with the pecuniary payoff,

individuals are motivated by a 'relative' payoff, a measure of how the pecuniary payoff compares

to that of the other players.  Different games present different sets of tradeoffs between pecuniary

and relative gains.  What ERC demonstrates – and the point we will stress – is that a simple model

of how pecuniary and relative motives interact, organizes a large, and seemingly disparate group

of experiments as one consistent pattern of behavior.

Three experiments provide a sense of the breadth of ERC. One experiment, reported by

Forsythe, Horowitz, Savin and Sefton (1994), involves two elementary strategic situations: the

ultimatum game and the dictator game.  In the ultimatum game, the ‘proposer’ offers a division of

$10, which the ‘responder’ can either accept or reject; the latter action leaves both players with a

payoff of zero.  The dictator game differs only in that the responder has no choice but to accept.

The standard perfect equilibrium analysis of both games begins with the assumption that each

player prefers more money to less.  Consequently, the responder in the ultimatum game should

accept all positive offers.  Given this, the proposer should offer no more than the smallest
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monetary unit allowed.  In the dictator game, the responder has no say, so the proposer should

keep all the money.  So, in both games, the proposer should end up with virtually the entire $10.

Figure 1 here.

Figure 1 displays the amounts proposers actually offered.  While there is a great deal of

heterogeneity, average offers for both games are clearly larger than minimal.  Various authors

have given these results an equity interpretation (Roth, 1995, provides a survey).  But equity is

insufficient to explain everything in Figure 1.  Offers are plainly higher in the ultimatum game.

This has to do with a fact well-known to those who do ultimatum experiments: Responders

regularly turn down proportionally small offers.  So proposers adjust their offers accordingly.

Proposers may care about equity – they do give money in the dictator game – but it appears that it

is responder concern for equity that drives the ultimatum game.  Hence Figure 1 illustrates a

subtle interplay between equity and strategic considerations – an interplay that ERC captures.1

The second experiment, performed by Roth, Prasnikar, Okuno-Fujiwara and Zamir

(1991), concerns a simple auction market game.  A single seller has one indivisible unit of a good

to offer nine buyers.  Exchange creates a fixed surplus.  Buyers simultaneously submit offers.  The

seller is then given the opportunity to accept or reject the best offer.  All subgame perfect

equilibria have the seller receiving virtually the entire surplus.

Ten rounds of the auction market experiment were performed in each of four countries.

In every case, by round 10, the transaction price had converged to subgame perfect equilibrium.

Hence the experiment produces behavior that is remarkably consistent with standard theory.  The

same study examined ultimatum game play.  While there were some differences across countries,

the qualitative pattern was the same in all four places: offers were generally higher than subgame

perfection predicts and a significant number of offers were rejected.  Are the motives behind

                                                       
1 The results from dictator and ultimatum have been shown to be very stable when the experiment is performed
with comparable instructions. Forsythe et al. show that dictator giving is stable with respect to time.  Hoffman,
McCabe, Shachat and Smith (1995) replicate the Forsythe et al. distribution.  Bolton, Katok and Zwick
(forthcoming) demonstrate that the amount the dictator gives is stable with respect to various game manipulations.
Giving behavior is not restricted to people: capuchin monkeys give food in what is an animal version of the
dictator game; see de Waal (1996, p. 148).   Evidence on whether behavior is different when the experimenter can
associate dictator actions with subject identities is mixed.  Roth (1995) summarizes much of the research, and
suggests an alternative interpretation for what positive evidence there is.  The same article surveys the many
ultimatum game experiments.
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market behavior fundamentally different than those behind the ultimatum game?  ERC answers

‘no, the same motivation suffices to explain both games.’

The third experiment, by Fehr, Kirchsteiger and Riedl (1993), involves what is sometimes

referred to as the gift exchange game.  Subjects assigned the role of firms offer a wage to those

assigned the role of workers. The worker who accepts the wage then chooses an effort level.  The

higher the level chosen, the higher the firm's profit and the lower the worker's payoff.  The game

is essentially a sequential prisoner's dilemma, in which the worker has a dominant strategy to

choose the lowest possible effort.  The only subgame perfect wage offer is the reservation wage.

Figure 2 here.

Figure 2 compares the effort level actually provided with the wage offered. Behavior is

clearly inconsistent with the horizontal line that indicates the equilibrium prediction. In fact, there

is a strong positive correlation between wage and effort.  This is sometimes taken as evidence for

reciprocity (Fehr et al. suggest this interpretation).  The dictionary defines reciprocity as a "return

for something done." While there is surely some relationship between this concept and equity, the

two are not equivalent.  Dictator game giving may involve an assessment of what is equitable, but

it does not involve reciprocity as defined by the dictionary.  The positive correlation evident in

Figure 2 suggests to some that we need more than fairness to explain behavior in the labor market

game.  Or do we?  ERC implies that we do not.

We begin by laying out the basic ERC model (section 2).  We then show that ERC can

account for a variety of patterns reported for dictator, bargaining, and related games, including

the Forsythe et al. experiment (section 3).  Next we explain why the model predicts competitive

behavior for a class of market games including the Roth et al. experiment, and the guessing game

(section 4).  We then describe some basic results having to do with one-shot dilemmas.  We can

say more with a parametric model.  We fit the simplest possible version to the Fehr et al. data

(section 5).  We show that the fit is robust by estimating the Berg, Dickhaut and McCabe’s

(1995) investment game experiment.  We then make some observations concerning repeated

dilemmas (section 6).

We are not alone in our pursuit.  After laying out what ERC can do, we compare with

other approaches found in the literature (section 7).  One model, Bolton (1991), does well
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explaining simple bargaining games, but fails with others.  It turns out that this model is ‘almost’ a

special case of ERC (section 3.3).

2.  The basic ERC model

Because the immediate purpose is to explain lab data, our guiding criterion in constructing

the model is that the implied hypotheses be both applicable to the lab environment, and lab

testable.  Lab subjects can have no better than incomplete information about how their game

partners trade-off pecuniary and relative payoffs, and this is what our propositions assume.  On

the other hand, in order to test the propositions, the investigator must be able to reliably measure

the underlying trade-offs.  We have found that much of what we need to know has to do with the

thresholds at which behavior deviates from the standard self-interest assumption.  This

information is readily recovered from dictator and ultimatum game data.  We demonstrate

throughout the paper that knowing the distributions of these thresholds is sufficient to

characterize many phenomena.

2.1  Formal statement of the model

We concern ourselves with n - player lab games, i = 1,2,…n, where players are randomly

drawn from the population, and anonymously matched (face-to-face play is a known complicating

factor).  All game payoffs are monetary and non-negative, iy 0≥  for all i (this is relaxed in section

6).  We assume that if a subject plays a game multiple times, she never plays with any particular

subject more than once.  We can therefore analyze each game as one-shot.

Each player i acts to maximize the expected value of his or her motivation function,

),( iiii yvv σ=   (2.1)
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 is the total pecuniary payout.

Motivation functions may be thought of as a special class of expected utility functions.

We prefer ‘motivation function’ because it emphasizes that (2.1) is a statement about the
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objectives that motivate behavior during the experiment.  The weights individuals give these

objectives may well change over the long-term, with changes in age, education, political or

religious beliefs, etc. (Ockenfels and Weimann, 1996).  It is, however, sufficient for our purposes

that the trade-off be stable in the short term, for the duration of the experiment.2

The formulation in (2.1) is similar to that used by Bolton (1991) (the restrictions we place

on (2.1) will differ).  When extended to games with more than two players, (2.1) specifies

preferences over how the payoff is distributed between ‘self’ and ‘others,’ but does not capture

any preference there might be over how the payoff is distributed among the others.  While this

level of abstraction is sufficient to explain much of what we see in various games, there is

evidence that (2.1) is more accurate than this defense might suggest.  In section 3.5, we discuss

several recent experiments that find that subjects pay little attention to how the payoff is

distributed across the rest of the group.

The following assumptions characterize (2.1):

A0.  iv  is continuous and twice differentiable on the domain of ),( iiy σ .

A1.1.  Narrow self-interest:  01 ≥iv , 011 ≤iv .

A1.2.   Tie breaker: Given two choices where iv ( 1y , σ) = iv ( 2y ,σ) and 1y  > 2y ,

player i chooses ( 1y , σ).

A2.  Comparative effect: =for    02 iiv σ=  1/n, and 022 <iv .

A0 is for mathematical convenience.  A1.1 is a slightly weakened version of the standard

assumption made about preferences for money.  We do not assume that iv  is strictly increasing in

the pecuniary argument since this would rule out players who care more about the relative

argument than the pecuniary one (players who, for example, divide 50-50 in the dictator game).

A1.2, however, insures that when presented with two alternative outcomes having the same

relative argument, the player makes the choice with the higher pecuniary payoff.  A2 states that,

holding the pecuniary argument fixed, the motivation function is concave down in the relative

                                                       
2 Prasnikar (1997) examines three large ultimatum game data sets and concludes that the trade-off is stable even
with repeated play.  An objection sometimes raised to the motivation approach is that one “can explain anything by
changing the utility functions.”  This objection implicitly assumes there is no way to invalidate the functional
specification.  In the lab, however, we can, and often do, perform these types of validation tests.
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argument, with a maximum around the allocation at which ones own share is equal to the average

share.  This assumption implies that equal division has collective significance – hence we refer to

equal division as the social reference point.3

The data for many of the games we will deal with exhibits a great deal of heterogeneity.

The theory accounts for this by positing a tension, or trade-off, between adhering to the reference

point (the comparative effect) and achieving personal gain (narrow self-interest4).  Individuals are

distinguished by how this tension is resolved.  Much of what we need to know about this tension

is captured by the thresholds at which behavior diverges from the narrow self-interest assumption.

Each player has two thresholds, )(cri  and )(csi , defined as follows (note that ii cy σ= ):

         ),(maxarg:)( iii

i

i cvcr σσ
σ

= , c > 0    and   is (c): )/1,0(),( nvscsv iiii = , c > 0, is ≤  1/n

As we demonstrate in section 3, ir  corresponds to the division that i fixes in the dictator game,

and is  corresponds to i’s rejection threshold in the ultimatum game.  Postulates A0 to A2

guarantee there is a unique ir ∈ [1/n, 1] and a unique is ∈ (0, 1/n] for each c.  Both ir  and is  are,

technically speaking, functions of n; for simplicity of exposition, we suppress this argument.

Postulate A3 provides an explicit characterization of the heterogeneity that exists among

players.  Let rf  and sf  be density functions.

     A3.  Heterogeneity:  For all c > 0: ( ) 0>crf r , [ ]1,/1 nr ∈  and ( ) 0>csf s , s ∈ (0, 1/n].

Hence we assume that the full range of thresholds is represented in the player population.

2.2 A useful two-player game example

It will be useful to have an example motivation function to illustrate some key points as

we go along.  We emphasize that we will not use the example to prove any propositions.

                                                       
3 A2 runs counter to the hypothesis that people want to be first in payoff ranking (Duesenberry, 1949).  By this
hypothesis, we would always see dominant strategy play in prisoner’s dilemma and public goods games, since this
strategy is best from both a pecuniary and relative perspective.  Many people, however, fail to play dominant
strategy in these games (see sections 5 and 6).  The equal split behavior in dictator games also contradicts the
hypothesis.
4 The reason we insist on the ‘narrow’ qualifier is that we are not at all convinced that any of the behavior implied
by ERC is altruistic.  See remarks in section 8.
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Consider the additively separable motivation function for player i, involved in a two-player game

(we continue to write iy  as icσ ),

( )22/1
2

),( −−= i
i

iiiii

b
cacv σσσσ ; 0,0 >≥ ii ba     (2.2)

The component in front of the first minus sign is simply an expression of standard (risk neutral)

preferences for the pecuniary payoff.  The component after the first minus sign delineates the

influence of the comparative effect.  In essence, the further the allocation moves from player i

receiving an equal share, the higher the loss from the comparative effect.  Figure 3 displays a

particular parameterization of (2.2).

Figure 3 here.

The functional form (2.2) allows us to express the range of heterogeneity posited by A3 in

a very succinct form.  A player’s type is characterized by the marginal rate of substitution between

pecuniary and relative argument, and is equal to the value a/(b(σ - ½)).  Strict relativism is

represented by setting a = 0.  Strict narrow self-interest is a limiting case (b → 0).

2.3 ERC-equilibria

As players gain experience with game rules and the subject population, play tends to settle

down to a stable pattern (see Roth and Erev, 1995).  ERC makes equilibrium predictions intended

to characterize the stable patterns.  The basic framework is an incomplete information game in

which each player’s r and s are private information, but the densities rf  and sf  are common

knowledge.  That is, we assume that, in the stable state, players have learned the distribution from

which their playing partners are drawn.  But consistent with our assumption that playing partners

are randomly and anonymously assigned, individual motivation functions are private information.

Define an ERC-Nash equilibrium as a Bayesian Nash equilibrium solved with respect to player

motivation functions.  Define an ERC-subgame perfect equilibrium as a Bayesian subgame

perfect equilibrium with respect to player motivation functions.  (The games present no

opportunities for updating strategic information, so except where noted, the ERC-subgame

perfect equilibria we derive are sequential equilibria.)
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ERC predictions about individual optimality that are independent of information

considerations apply starting from the first round.  The dictator game and second mover behavior

in the gift exchange game are examples, as we show below.

ERC does not attempt to capture learning or framing effects (at least not this version).

Section 7 compares what ERC explains to what present learning theories explain.  ‘Framing

effects’ refer to the influence on behavior that experimenters observe from changes in how the

game is posed to subjects. When using ERC to make comparative predictions across games, we

assume that the frame is held constant, in the sense that the directions given to subjects are

parallel across games.5

3. Games of fairness: dictator, shrinking pie bargaining, best shot, and impunity

These games, when played in the lab, are always finite (a finite number of possible

actions).  For simplicity, we derive many of the results in this section assuming a continuous

strategy space.  Unless otherwise stated, all propositions characterize ERC-subgame perfect

equilibria (recall the information conditions described in section 2.3).

3.1 Dictator and ultimatum games, and the relationship between them

 First consider a dictator game in which the [D]ictator distributes a pie of maximum size k

> 0 between self and a recipient.  We represent the dictator’s division as the pair (c, Dσ ).  So the

dictator’s payoff is Dcσ  and the recipient payoff is c – Dcσ .

Proposition 3.1: For all dictator allocations, c = k, and )(crDD =σ ∈ [½, 1].

Proof:  Follows directly from A1 and the definition of )(cri  given in section 2.1.

The dictator game has been the subject of several studies (e.g., Forsythe et al., 1994; Hoffman et

al., 1995; Bolton et al., forthcoming).  While the precise distribution of dictator giving varies with

framing effects, proposition 3.1 appears equally valid for all studies: Dictators distribute all the

money and (almost) always give themselves at least half.  (Those taking less than half, like the one

dictator in Figure 1, account for less than 1 percent of the data in the studies listed. Also see

footnote 1.)
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As an illustrative example, consider the additively separable motivation function given in

(2.2), and suppose that k = 1.  A straightforward calculation shows that









+= 1,
2

1
min

i

i
i b

a
r .

Hence the dictator’s decision reflects the marginal rate of substitution between pecuniary and

relative payoff.

Now consider an ultimatum game between a [P]roposer and a [R]esponder.  For the

moment, we assume the cake size, k > 0, is common knowledge.  We represent the proposal by

(c, Pσ ), interpreted analogously to the dictator notation. To keep the statements of the ultimatum

game propositions as simple as possible, we assume that if a responder is indifferent between

accepting and rejecting, that is, if )(1 csRP =−σ , then the responder always accepts proposal

(c, Pσ ).  We assume is (c) is differentiable.  Proposition 3.2 characterizes the responder’s ERC-

subgame perfect equilibrium strategy, and proposition 3.3 characterizes the proposer’s.

Proposition 3.2:  The probability a randomly selected responder will reject, ),( Pcp σ , satisfies the

following:  (i) p has the value 0 when Pσ = ½ and the value 1 when Pσ  = 1;  (ii) p is strictly

increasing in Pσ  over the interval (½, 1);  (iii) fixing a Pσ ∈ (½, 1),  p is strictly decreasing in c.

Proof:  (i) By A1, for all responders, )2/1,0()2/1,2/( RR vcv ≥ .  Hence, equal division is

never rejected.  The definition of is (c) implies that the responder rejects the offer if 1 –

RP s<σ (c), is ∈ (0, 1/n].  Therefore, Pσ  = 1 offers are always rejected.  (ii) This follows from

integrating over the density ( )csf s .  (iii) )(csi  is implicitly defined by )2/1,0(),( iiii vscsv =

for is  ≤  ½. Differentiating yields [ ] 0),(),( 21 =′+′+ iiiiiiiii sscsvscsscsv .  Hence,

0
),(),(

),(
)(

21

1 <
+

−=′
iiiiii

iiii
i scsvscscv

scsvs
cs .

This completes the proof.

                                                                                                                                                                                  
5 The experiments of Forsythe et al. (1995) and Roth et al. (1991) are good examples of parallel presentation of
different games.
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Proposition 3.3: For all ultimatum proposals, c = k and Pσ  ≥ ½.

Proof: For any fixed c > 0, all proposers prefer Pσ = ½ to any Pσ < ½, and Pσ  = ½ is

never turned down.  It follows that any equilibrium proposal has Pσ  ≥ ½.  By proposition 3.2,

),( Pcp σ is strictly decreasing in c when Pσ  > ½ and constant for Pσ  = ½  , so the proposer will

propose dividing all of k.

Many studies, beginning with Güth et al. (1982), confirm propositions 3.2(i) and 3.3.  The

experiment of Bolton and Zwick (1995) vividly illustrates that lower offers tend to have a higher

probability of rejection.  Slonin and Roth (forthcoming) present evidence that the probability of

rejection tends to decrease as c increases.6

Forsythe et al. (1994) found that, on average, offers are higher in the ultimatum game than

in the dictator game.  ERC predicts this relationship.  By propositions 3.1 and 3.3, we may

assume that all proposals divide all of k, which we normalize to size 1.

Proposition 3.4:  On average, offers in the ultimatum game will be higher than offers in the

dictator game.  In fact, no one offers more in the dictator game, and the only players who offer

the same amount are those for whom ir (1) = ½.

Proof:  That proposers who have ir (1) = ½ offer the same in both games is obvious.

Suppose instead that ir (1) = 1.  Since a demand of (c, Pσ ) = (1,1) is always turned down in the

ultimatum game, it is clear that the proposal will be Pσ  < 1.  For all other proposers, ir  ∈ (½, 1),

we write out the first order conditions (normalize 0)2/1,0( =v ):

FOC for the dictator game: 0),(),( 2 1 =+ DDDDDD vv σσσσ

FOC for the ultimatum game: 0
),1(1

),(),1(
),(),( 2 1 >

−

′
=+

P

PPpP
PPPPPP p

vp
vv

σ
σσσ

σσσσ .

By inspection, PD σσ > .  This completes the proof.

                                                       
6 The additively separable motivation function of (2.2) implies a negative relationship between is  and ir ;

specifically, 4/12 −−= iii rrs .  As far as we know, there is no data on whether a relationship exists (let alone

this one), although a relationship of some sort is plausible.  An experiment clarifying this issue would help us
towards a more precise version of the model.
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3.2 Unknown pie size games

Suppose now that the responder must decide whether to accept or reject an offer of y

monetary units without knowing the pie size, but knowing that the pie was drawn from some

distribution, f(k), with support [ ]kk , .  Suppose y < k /2.  Mitzkewitz and Nagel (1993), Kagel et

al. (1996), and Rapoport et al. (forthcoming) have all shown that responders are more likely to

reject y under these circumstances than if they know for certain that the pie is k , and less likely to

reject than if they know it is k .  The same is true in ERC. Let )( ypu denote the probability that y

will be rejected by a randomly selected responder.  For simplicity, we assume that the size of the

offer does not convey any information about the pie size (hence for this proposition, ERC-

subgame perfection does not imply sequential equilibrium).

Proposition 3.5:  For all y < k /2,  






 −
k

yk
kp ,  < )( ypu  < 







 −
k

yk
kp , .

Proof:  Suppose y < k /2.  Then there exists a responder i who, if he knew the pie size was

k , is just indifferent between y and rejecting.  Then, keeping in mind postulate A2,

dk
k

k
kf

k

y
yv

k

y
yvv iii ∫<= )(),(),()

2

1
,0( ,

which indicates that i and players with similar rejection thresholds are less likely to reject when

they do not know the size of the pie.  A very similar argument shows that i is more likely to reject

when he know the pie size is k.

3.3 Two period alternating offer games

Each round of a two-period alternating offer game is played like an ultimatum game, with

players switching roles from first to second periods.  If the first period offer is rejected, the pie is

discounted prior to the second period counterproposal.  Bolton (1991) describes a ‘comparative

model’ of two period alternating offer bargaining, and shows that the comparative statics fit the

data well.

The comparative model is ‘almost’ a special case of ERC.  The comparative model

assumes that ),( iii cv σσ is strictly increasing in iσ  for all i.  The proof of proposition 3.4 implies
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that, for proposers with )(crP  > ½, Pv  is an increasing function in some neighborhood around the

proposer’s demand, Pσ .  (This is also true for the two-period game.)  So the comparative statics

of the two models are, for these players, in local agreement.

ERC predicts that proposers with )(crP  = ½ will offer half the pie even if an offer of

somewhat less is very unlikely to be turned down.  Experimenters observe these people (e.g.,

Kagel, Kim and Moser, 1996).  The comparative model makes no room for them, which is why it

is only ‘almost’ a special case – ERC is a more accurate model, even for bargaining games.

3.4 Impunity and best shot

We concern ourselves with the “mini” versions of impunity and best shot games, and

compare these to the mini-ultimatum game.  In all three games, a proposer moves either ‘left’ or

‘right’.  The responder observes the proposer’s move and then either ‘accepts’ or ‘rejects.’ The

games differ only in the payoffs, which are listed in Table 1.

Table 1 here.

Note that the standard subgame perfect equilibrium is the same for all three games: the proposer

plays ‘right,’ and the responder plays ‘accept.’  Applying ERC to the mini-ultimatum game is

straightforward, and yields results qualitatively equivalent to those for the full version.

Application of ERC to the other games leads to markedly different predictions.

Proposition 3.6: For the impunity game: (i) The only outcomes with a positive probability of

occurring are (2,2) and (3,1). (ii) The proportion of (3,1) outcomes is equal to the proportion of

the population for whom iv (3, ¾) > iv (2, ½).  (iii) The probability of the (3,1) outcome is higher

for impunity than for the mini-ultimatum game.

Proof:  (i) For all responders, Rv (2, ½) ≥  Rv (0, ½) and Rv (1, ¼) > Rv (0,0).  (ii) Given

responders’ behavior, the proposer’s choice is effectively between (2,2) and (3,1).  (iii) In

ultimatum, all proposers who choose right prefer (3,1) to (2,2).  But not all who choose left

prefer (2,2) to (3,1).  By (ii), impunity proposers choose right iff they prefer (3,1) to (2,2), and by

(i), an offer of (3,1) is never rejected.
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Experiments by Güth and Huck (1997) and Bolton and Zwick (1995) furnish evidence for

3.6(i) and 3.6(iii).  Bolton, Katok and Zwick (forthcoming) provide evidence for 3.6(ii).

Proposition 3.7:  The probability of the (3,1) outcome is greater in best shot than in the mini-

ultimatum game.  The proportion of (3,1) offers rejected in best shot is the same as in mini-

ultimatum.

Proof:  For the proposer, the expected value of playing ‘right’ is the same in both games.

The expected value of playing ‘left’ in the best shot game is strictly smaller than in the ultimatum

game:  Let p be the probability a randomly chosen best shot responder prefers (1,3) to (1,1). Then

p Pv (1, ¼) + (1 – p) Pv (1, ½) < Pv (2, ½)  for all p ∈ (0,1].

For the second half of the proposition, note that, after an offer of (3,1), responders in mini-best

shot and mini-ultimatum have identical choices available to them.

Proposition 3.7 implies that, relative to the ultimatum game, best shot behavior moves

towards, but is not identical to, the standard subgame perfect equilibrium. Prasnikar and Roth’s

(1992) best shot experiment comes close to converging to subgame perfect equilibrium.7  Duffy

and Feltovich’s (forthcoming) best shot experiment clearly does not converge, even after 40

iterations, although as predicted, best shot is closer to perfect equilibrium than a corresponding

ultimatum game.  In sum, the experimental evidence is consistent with proposition 3.7.

3.5  Three-way ultimatum and the solidarity game

We conclude this section with a discussion of experiments that bear on the question of

whether motivation is adequately captured by motivation function preferences for distribution

between self and the group, or whether they are better captured by altruistic preferences, where a

person cares about the distribution across all individuals.

Güth and van Damme (forthcoming) report on a three-way ultimatum game experiment in

which the proposer proposes a three-way split of the pie, and one responder can accept or reject.

The third player, a recipient, does nothing save collect any payoff the other two agree to give him.

The experiment finds that information about the recipient’s share has no direct influence on the

                                                       
7 So does Harrison and Hirschleifer (1989), but the incomplete information aspect of the game renders the result
incomparable to the theory.
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responder’s decision to accept or reject.  ERC predicts the same, because the distribution among

the other players does not enter into the motivation function (see section 2.1).

Selten and Ockenfels (forthcoming) observe a similar phenomenon studying the solidarity

game.  In this game, each player in a three-person group independently rolls a die to determine

whether they (individually) win a fixed monetary sum.  Before the die is rolled, each announces

how much she wishes to compensate the losers, for both the case where there is one loser, and for

the case where there are two.  Most subjects give the same total amount independent of the

number of losers.  In addition, gifts for one loser are positively correlated with the expectation

about the gifts of others.  Selten and Ockenfels demonstrate that neither the behavioral pattern

nor the relation between decisions and expectations are easy to justify if subjects have standard

altruistic preferences.  They conclude that most subjects, even though they are willing to sacrifice

money for solidarity, are uninterested in the welfare of recipients, and only care about their own

share of the winnings.

Bolton et al. (forthcoming) find that the total gift dictators leave multiple recipients is

stable, but how dictators distribute gifts across recipients appears, in most cases, to be arbitrary.

Weimann (1994) analyzes a public goods experiment directed at the question of whether

individual behavior of others, or just aggregate group behavior influences the decision to

contribute.  He concludes that, "Whether or not the individual contributions [to a public good] are

common knowledge has no impact on subject's behavior" (p.192).

4. Competitive behavior

In the last section, we showed that if a game creates a trade-off between absolute and

relative motivations, we can observe behavior which sharply contradicts standard theoretical

predictions.  But people do not always ‘play fair.’  Many market institutions apparently induce

'competitive,' self-interested behavior.  In this section we show that typical market environments

interact with ERC-motivations in a way that aligns absolute and relative motives.  As a

consequence, traditional Nash equilibria are ERC-Nash equilibria.

Some well known experimental results come from games with symmetric equilibrium

payoffs, so we begin with the symmetric case. It turns out that ERC implies an interesting

difference between Bertrand and Cournot games with respect to symmetry, and we turn to this

issue at the end of the section.
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Bertrand and Cournot games are the standard textbook examples of (oligopolistic)

markets:  Suppose demand is exogenously given by M = p + q, where M is a constant, p denotes

the price and q the quantity.  Suppose 1≥n  identical firms produce at constant marginal cost θ (<

M).  In Cournot games, firms choose quantities [ ]θ−∈ Mqi ,0  yielding profits given by

2)()( iiii qqqMqy −−−= −θ , where [ ]θ−∈ Mqi ,0 .  In Bertrand games, firms choose prices

θ≥ip  yielding profits equal to npMppy iii
~/))(()( −−= θ  if i sets the lowest price along with

1~ −n  other firms, or equal to zero if there exists a firm ij ≠  which sets a lower price.  All pure

strategy spaces are finite. For simplicity, we assume that the interval between admissible price

offers, ∆, is ‘small;’ specifically, (p – ∆ – θ)(M – p – ∆) > (1/n)(p – θ)(M – p) for all p > θ, and

for all n (so there is a pecuniary incentive to undercut p, when all others bid p).

The informational assumptions laid out in section 2.3 continue to apply.

Proposition 4.1: For n ≥ 1, and for either price (Bertrand) or quantity (Cournot) competition, all

Nash equilibria are ERC-Nash equilibria.

Proof:  For n = 1, 1≡σ so that the ERC-monopolist simply maximizes his profits.  For n >

1, observe that all Nash equilibria in both the price and the quantity game, yield equal equilibrium

profits for all firms (see Binmore, 1992).  Hence, a firm that deviates from his Nash equilibrium

strategy can neither gain with respect to absolute nor relative payoffs.  This completes the proof.

The remaining propositions in this section provide a stronger characterization of ERC-

equilibria.  We will suppose that for some ε > 0 proportion of the population, r is approximately 1

for all possible total payoffs c, and for all number of players, n.  (How close the approximation

need be will be made explicit in the relevant propositions.)  These people are highly narrowly self-

interested, and they will drive some, but not all, of the market results. We make two technical

assumptions:  First, we suppose that )0,0(iv  is, for all i, the worst possible outcome.  Second, we

suppose that the value of )/1,( nyvi  is bounded with respect to both i and n.8

                                                       
8 The first technical assumption simply implies that the worst thing that can happen to i is to have to watch others
receive a positive payoff while receiving none himself.  The second is also mild: Bounded with respect to i (fixing
n) would follow immediately if we made the realistic, but less mathematically convenient, assumption that the
population were finite; we simply impose boundedness on the infinite population (see A3).  With respect to n, the
assumption implies that for a fixed pecuniary payoff, the value to i of achieving the social reference proportion is
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We first show that the competitive outcome is the unique ERC-Nash equilibrium for the

Bertrand game.  The intuition is quite simple: For large n, there is a high probability that at least

one player cares sufficiently about his pecuniary payoff to undercut high bids in pursuit of

pecuniary gain.  In equilibrium, everyone knows that the probability of such a person is high, and

so, in equilibrium, everyone undercuts because this is what is necessary to preserve relative as

well as pecuniary positions.

Proposition 4.2: For price competition and for n large enough, the market price in all ERC-Nash

equilibria is equal to cost θ or to θ + ∆, the standard Nash equilibrium prices for n > 1 firms.

Proof:   Let γ be the probability that the composition of players in the game is sufficiently

narrowly self-interested in the sense that, for all admissible p,

)/1),)()(/1(()1),)((( npMpnvpMpv ii −−>∆−−−∆− θθ  for at least one i.

Since the r ≡ 1 player satisfies this condition, it follows that, as n increases, γ increases

monotonically to 1.  Choose n large enough, so that γ satisfies

[ ] 0)/1,0()0,0()/1),)()(/1(()1(max <−+−−− nvvnpMpnv iiMMi
i

γθγ ,

where Mp  is the monopoly price.  A maximum exists because of the boundedness assumption.

Now suppose there is an ERC-Nash equilibrium in which the maximum bid that wins with

positive probability is Hp  > θ + ∆.  Since transactions are never made at a price of greater than

Hp , bidding above Hp  is strictly dominated by offering a price of Hp  (recall that we assume that

)0,0(iv  is the worst possible outcome for all i).  Therefore, in equilibrium, all prices bid with

positive probability by any player must be Hp  or lower.  Hence Hp  wins only if all n firms play

it.  It follows that the expected value to firm i of bidding Hp  is

  ( ) )0,0()1(/1),)()(/1( iHHi vnpMpnv βθβ −+−−        (4.1)

where β  is the probability that all firms other than i bid Hp .  On the other hand, the expected

value of firm i bidding Hp  – ∆  is

                                                                                                                                                                                  
bounded with respect to the number of players in the game. We think assuming the value of )/1,( nyvi  is fixed
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        ( ) [ ]K)1(1),)(( βθβ −+∆−−−∆− HHi pMpv       (4.2)

For sufficiently narrowly self-interested agents, (4.2) > (4.1).  Therefore, sufficiently self-

interested players always bid lower than Hp .  Given this, the expected value of bidding Hp  for

any player is

)/1,0()0,0()/1),)()(/1(()1(

)0,0()/1),)()(/1(()1(

nvvnpMpnv

vnpMpnv

iiMMi

iHHi

<+−−−≤
+−−−≤

γθγ
γθγ

which contradicts the assumption that Hp  is a best response for at least some player (any player

can guarantee himself iv (0,1/n) by playing θ ).  Since a construction like (4.2) is always possible

if Hp > θ + ∆, it follows that Hp  = θ or θ + ∆ for sufficiently large n.

In the guessing game, n > 1 players simultaneously choose a number z from an interval [0,

k].  For simplicity, we assume that the number of choices is finite, and that the interval between

any two consecutive choices is ∆.  The winner is the player whose number is closest to γ z , γ  <

1.  The winner receives a fixed prize; if there is a tie, winners share the prize equally. The guessing

game is very similar to a Bertrand game, save that the cake to be distributed is fixed.  Nagel’s

(1995) experiment shows that play converges to the unique standard Nash equilibrium, ≡iz  0.

Proposition 4.2a:  For n large enough, the unique Nash equilibrium in the guessing game is

equivalent to the (unique) ERC-Nash equilibrium.

Proof:  Showing that ≡iz  0 is an ERC-Nash equilibrium is straightforward.  For the proof

in the other direction: Note that any outcome in which i wins has a payoff greater than )1,0(iv .

Fix a strategy profile for the other n – 1 players, and let x  be the modal average implied by the

distribution.  If  n is large enough, player i’s influence on the average is negligible (and so we can

ignore it).  So when n is large enough, by guessing xγ , player i can guarantee herself greater

than )0,0()1,0( ii vv
k

k

k

∆−∆
+ .  Substitute this value for )/1,0( nvi , and the rest of the proof

closely parallels proposition 4.2.

                                                                                                                                                                                  
with respect to n would be reasonable, but boundedness will be sufficient.
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How large must n be? By proofs of propositions 4.2 and 4.2a, the answer depends on the

prevalence of ‘sufficiently narrowly self-interested’ subjects in the population. Hoffman et al.

(1994) performed a dictator game in a buyer-seller frame similar to Bertrand games (with players

being randomly assigned buyer and seller positions).  The proportion giving zero was about 45

percent.9  Then the probability of at least one subject with r = 1 in a group of n subjects is 1 –

0.55n.   Assuming that r is not too sensitive to the size of the pie, c, or to the number of players,

n, a lower bound on the probability of at least one sufficiently self-interested player in a group of

3 is over 83 percent.  It appears then that n need not be very large for ERC-Nash equilibrium

market prices to shrink to the standard Nash price.  Holt (1995) reports some evidence that

outcomes of oligopoly games are less competitive with two players than with three or more, but

no particular effect for numbers greater than two.

Interestingly, ERC implies that the auction market game studied by Roth et al. (1991)

(discussed in section 1) is sufficiently different from the Bertrand game to obtain competitive

results independent of the number of buyers.  Recall that, in this game, buyers simultaneously bid

on an object owned by a single seller.  The lowest bid is submitted to the seller who either accepts

or rejects; if the latter, all players receive a zero monetary payoff.

We prove that obtaining the (competitive) subgame perfect equilibrium does not depend

on the number of buyers, so long as there are at least two.  We normalize the surplus that can be

shared from the transaction to 1, and we represent a bid by the proportion of the surplus that the

buyer proposes keeping (defined this way, the relation to proposition 4.2 will be transparent).  A

bid wins if it is both the lowest submitted and large enough to be acceptable to the seller.

Analogous to the Bertrand game, we suppose that the interval between permissible bids, ∆, is

‘small.’

Proposition 4.2b:  Consider an auction market game having at least two buyers.  Under the

assumption that the seller accepts, all ERC-subgame perfect equilibria for the market game have a

winning buyer bid of 0 or ∆.

                                                       
9 We refer to Hoffman et al.’s buyer-seller dictator game with contest selection of roles. They also ran a buyer-
seller dictator game with random selection of roles.  The proportion giving zero was lower, but the proportion
almost giving zero (10 percent or less) was about 40 percent, and in this sense our calculation is appropriate for
both treatments.  We refer to these particular dictator treatments because they are roughly framed (buyer-seller) in
the same way as Bertrand experiments.  We nevertheless think of the resulting calculations as illustrations.  A
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Proof:  Suppose, contrary to proposition, that there is an equilibrium in which Hz  > ∆ is

the highest bid that wins with positive probability.  The proof that, in equilibrium, no one ever

bids higher is analogous to the proof of proposition 4.2 if one substitutes "price (p)" for "bid (z)"

and "firm" for "buyer".  However, in contrast to the Bertrand game, in this market one buyer with

the smallest bid is chosen randomly, and divides the surplus with the seller, who is an actual

subject in the experiment.  Consequently, equations (4.1) and (4.2) of proposition 4.2 become

β  [ (1/n) iv ( Hz , Hz ) + (1 – 1/n) iv (0, 0) ]  +  (1 – β ) )0,0(iv (4.1a)

β  iv ( Hz  – ∆, Hz  – ∆)  +  (1 – β ) [ …]. (4.2a)

The inequality (4.2a) > (4.1a) holds for all players, regardless of type. This contradicts the

assumption that bidding Hz  is a best response.  This completes the proof.

About the assumption concerning seller behavior: From the point of view of ERC, its

validity is an empirical question.  In fact, Roth et al. report that no best bid was ever rejected in a

non-practice round (p. 1075).  The assumption is basically equivalent to positing that

( ]1,/1)/1,0(),( nnvv iiiii ∈∀> σσσ ,10 which implies an asymmetry with respect to fairness: ‘I

reject offers that are very unfair to me but accept offers that are very unfair to you.’  Asymmetry

of this sort is suggested by Loewenstein et al. (1989), and by Fehr and Schmidt (1997).  While

ERC has no problem accommodating this assumption, we have avoided it to highlight the fact that

it is not relevant to any proof in this paper save proposition 4.2b – where it has but a very minor

role.  In particular, the assumption is not necessary to explain the competitive behavior of buyers

in the Roth et al. game.  Is there a restriction we could place on the motivation function to

guarantee the competitive results in Propositions 4.2 and 4.2a for any sized group (greater than 1,

of course)?  The only one we can think of is a stronger asymmetry assumption:

)/1,/()1,( nncvcv ii >  for all i, c and n.  But this is falsified by dictator game experiments.

                                                                                                                                                                                  
careful, meaningful calculation requires running dictator and Bertrand games in closely parallel frames (parallel
directions).
10 Strictly speaking, proposition 4.2b requires that the seller accepts all bids, not just those greater than 1/n.  The
proof, however, is easily extended:  Suppose that the zH  in the proof gives the seller less than 1/n.  Revise both
(4.1a) and (4.2a) to reflect the fact that undercutting increases the probability the seller will accept.
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Proposition 4.1 shows that the standard Cournot-Nash equilibrium is an ERC-Nash

equilibrium.  We do not know if this is the unique ERC-Nash equilibrium for the type of

incomplete information game played in the lab (the type we have been studying).  If we assume

complete information, however, and restrict to pure strategies, we can prove uniqueness.

Proposition 4.3 extends the classic textbook graph proof of duopoly Cournot equilibrium in pure

strategies (e.g. Binmore, 1992, p. 290) to ERC motivations.

Proposition 4.3: Consider a Cournot duopoly in which both players know one another’s

motivation function.  If ir (c) > 1/2 for all c, for at least one player i, then the unique ERC-Nash

equilibria in pure strategies is the standard Nash equilibrium.

Proof:
Figures 4 (a) and 4 (b) here.

In figures 4 (a) and (b), the x axis shows the quantity of firm j and the y axis the quantity

of firm i.  The thick lines show the standard Nash-reaction curves of player i (BE) and player j

(CF).  Two things need to be proved.  First, observe that for all quantity combinations lying on

the diagonal AD, the marginal utility with respect to relative payoffs is zero, because payoffs are

equal (assumption A2).  Since the marginal utility with respect to absolute payoffs is strictly

increasing for at least one player (note that ir (c) > 1/2 for all c implies 01 >iv  for 2/1=iσ ), the

only location on AD which can be an ERC-Nash equilibrium is point X, the Cournot equilibrium.

Second, note that: (1) on the Nash-reaction curves, 0)( =′ ii qy  and 0)( =′ jj qy , respectively;

(2) 0)( >′ ii qy  iff ),( ji qq is within ABE, 0)( >′ jj qy  iff ),( ji qq is within ACF; (3) ji yy < iff

),( ji qq is within ADE, ji yy >  iff ),( ji qq is within ACD; and (4) 0)( >′ kk qσ , k = i, j, everywhere

in the interior of ACE.  With these properties, it is easy to see that ERC-reaction curves are

bounded by the Nash-reaction curves and the diagonal: j's ERC-reaction curve must lie

somewhere in the darkly shaded areas and i's ERC reaction curve must lie somewhere in the

brightly shaded areas. (The areas include the Nash-reaction curves for both players and exclude

AD with the exception of point X for at least one player.)  The only possible point of intersection

of ERC reaction curves is X.  This completes the proof.

The proof requires a sufficiently self-interested player in a weaker sense than do the

Bertrand propositions, specifically ir (c) > 1/2 for one player.  From dictator games, we estimate
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the proportion of r(c) > 1/2-players to be 80 percent.  This is a conservative estimate – most

dictator studies find a higher proportion than this.  Then we estimate the probability of a standard

Nash equilibrium (under complete information) to be at least 96 percent.  The calculation ignores

the ‘pure strategy’ requirement.

Evidence for the standard Cournot-Nash equilibrium is less than conclusive.  Holt (1985)

conducted single-period duopoly experiments of the type we study here. While in the beginning

some subjects try to cooperate, quantity choices tend ultimately to Cournot level.  Holt (1995)

surveys a number of studies, and reports some support for Nash equilibrium, but also expresses

reservations.  Huck, Normann and Oechssler (1997) report rough convergence to Nash

equilibrium in the four-person case.

Finally, ERC implies symmetric payoffs are important to Cournot outcomes in a way that

they are not to Bertrand games.  Consider a Cournot duopoly in which firm i has a cost

advantage: ji θθ < . The standard Nash equilibrium profit of firm i is greater than the profit of

firm j.  But this may not be an ERC-equilibrium because firm i may choose a smaller quantity in

order to boost the relative payoff.  On the other hand, consider cost heterogeneity in Bertrand

games; i.e., each firm i is randomly assigned to costs { } ∞<∈ kk
i ,,,, 21 θθθθ K .  Then, the

competitive price is the lowest θ in the market, and it is also a standard Nash equilibrium.11  It

continues to be an ERC equilibrium if the market is large enough; the proof is analogous to that of

proposition 4.2.12

5.  Dilemma games: a simple quantitative ERC model

All dilemma games share two defining characteristics.  First, if players are purely narrowly

self-interested, then their set of choices includes a dominant strategy that yields the highest payoff

regardless of what others do.  Second, deviation from the dominant strategy contributes to a

higher joint payoff for the group, and enough contributions produce an outcome Pareto superior

to the dominant strategy outcome.  Dominant strategy is not a good description of the behavior

                                                       
11 This holds if there is more than one firm with minimum cost.  If there is only one firm with minimum cost,
there is a Nash equilibrium in which the price is the second lowest cost and the firm with minimum cost gets all
the surplus.
12 Roughly speaking, for n large enough there is one firm among the firms with minimum cost which is
sufficiently self-interested so that it undercuts any price greater than minimum cost.
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we typically see.  In this section, we show that ERC is consistent with many of the patterns we do

observe in the prisoner’s dilemma (PD) and associated one-shot dilemma games (we discuss

repeated dilemma games in section 6).  We can say more with a fitted parametric model.  In

sections 5.2 and 5.3 we fit the gift exchange and investment games, both essentially (sequential)

PDs.13

5.1 What’s necessary to induce cooperation in simultaneous and sequential PD’s?

We will demonstrate that, in ERC, the extent of cooperation can depend on the interaction

between (i) heterogeneity with respect to how players trade-off pecuniary for relative gains, and

(ii) the size of payoffs, especially the size of the efficiency gains that can be achieved through

cooperation.  These factors are important in both simultaneous and sequential PDs, although the

factors interact in somewhat different ways across the two games.

Table 2 here.

Consider the PD payoff matrix in Table 2.  To illustrate how trade-offs between pecuniary

and relative payoffs matter to ERC predictions, we will suppose that individuals can be described

by the motivation function given in (2.2), 
2

2

1

2
),( 






 −−= i

i
iiiii

b
cacv σσσσ .  Then the marginal

rate of substitution between pecuniary and relative payoffs, a/b, fully characterizes a subject’s

type.  The population distribution of types will be denoted by F(a/b).14

To see what influences cooperation in a one-shot simultaneous PD, examine the optimal

decision rule for a subject with type a/b:

C Df ⇔     
a

b

p

m m
g m p<

−
− +

=
1 2

4 1 1 2 2

/

( )( )
: ( , ) .

Here, p is the probability that the opponent cooperates. Thus, cooperation is influenced by the

extent to which subjects are motivated by relative payoffs, the magnitude of the mpcr, m, and the

proportion of cooperating subjects in the population. There is always an equilibrium in which

                                                       
13 Not every player in either the gift exchange or the investment game has a dominant strategy, so technically
speaking neither game is a dilemma game.  But, as will become clear, they are both very close off-shoots.
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nobody cooperates, but depending on the shape of F(a/b), there may also be equilibria in which a

proportion of subjects cooperate, while others defect.

We next consider the sequential PD, in which the second mover decides after being

informed of the first mover’s action.  We obtain an interesting result: Cooperation requires both

subjects who are willing to sacrifice pecuniary for relative gains, and subjects who are mostly

interested in absolute payoffs.  To see this, examine the optimal decision rules (the information

assumptions laid out in section 2.3 continue to apply):

second mover: C Df ⇔ 1.  first mover plays “C”

                  2.  
a

b
g m< ( , )1

first mover: C Df ⇔  1.  − + + >1 1 0m p( $)

2. 

a

b

p

mp m m
>

−
+ − +

1

8 1 1 2 2

$

( $ )( )

Here, $ $ ( ) ( ( , ))p p m F g m= = 1  is the probability that the second mover responds cooperatively if

the first mover cooperates. The second mover’s optimal decision rule corresponds to the one

applied in the simultaneous PD with p = 0 or 1 respectively.  The second mover cooperates if and

only if she is sufficiently motivated by the relative payoff, and the first mover cooperated. The first

mover cooperates iff she is sufficiently motivated by pecuniary payoffs, and the expected

monetary net return of cooperation (= )ˆ1(1 pm ++− ) is positive.  The reasoning behind the

required first mover motivation is simple: A first mover who is interested in relative payoff can

guarantee equal payoffs by defecting, since in this case, the second mover defects for sure.  Only

if a first mover is sufficiently interested in his absolute payoff, will he take the chance of being

exploited in an attempt to ‘trigger’ second mover cooperation.

                                                                                                                                                                                  
14 Of course, the results we derive will be special to this class of motivation functions.  But keep in mind that our
goal here is to demonstrate that particular factors can play an important role in what ERC predicts.
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Heterogeneity guarantees that the proportion of both first and second movers who

cooperate increases with the mpcr ( $ ( )′ >p m 0  and ∂ ∂
1

8 1 1 2
0

2

−
+ − +

<
$( )

( $ )( )
/

p m

mp m m
m ).  Even if

$p (m) is very small, a sufficiently high mpcr may induce the first mover to cooperate.15

Several studies support the view that potential efficiency gains and the propensity of

others to cooperate (measured in ERC by the marginal rate of substitution between absolute and

relative payoffs) are major determinants of cooperation in both simultaneous and sequential PDs.

In a well-known survey, Rapoport and Chammah (1965) demonstrate that cooperation rates in

PDs increase when the gains from cooperation increase, or when the ‘sucker’ payoff decreases.16

Ledyard (1995) surveys the literature on public good games, and concludes that, besides

communication, the mpcr is the only control variable that has a strong positive effect on

cooperation rates.  Many experiments show a strong relation between own and opponent

decisions.  Cooper, DeJong, Forsythe, and Ross (1996) found two behavioral types in one-shot

PDs, which are perfectly in line with the ERC-decision rules in PDs derived above: "egoists", who

always defect, and "best response altruists", for whom C (D) is a best response to C (D).17

Similarly, Pruitt (1970) and Rapoport and Chammah (1965, p. 56-66) found strong positive

interactions between cooperative choices of players.  Several studies have manipulated the

expectation about the cooperation behavior of the opponent and found a positive correlation of

own defective choices and the probability that the opponent defects (ex., Bixenstine and Wilson,

1963, and Lave, 1965). Bolton, Brandts and Katok (1996) and Fehr, Gaechter and Kirchsteiger

(1997) provide demonstrations that cooperation is sensitive to other player strategy choice in

sequential dilemma games.  While some (not all) of these studies involve repeated play, ERC

implies that the particular behavior is not due to repetition.

5.2 A parametric analysis of the gift exchange game: the α-model

In a well known paper, Fehr, Kirchsteiger and Riedl (1993) investigated wage and effort

decisions in an experimental labor market.  In the first stage of this gift exchange game, a firm

                                                       
15 The specific class of motivation functions also implies an income effect.  Suppose we multiply all payoffs in
Table 2 by a fixed positive number.  Then there is a stronger tendency for all players to behave according to
standard game theoretic predictions.  Rabin’s (1993) model makes a similar prediction.
16 Rapoport and Chammah (1965), p. 39, Figure 1.  Lave (1965) includes similar results.
17 The hypothesis that altruistic subjects cooperate unconditionally ("dominant strategy altruism") is clearly
rejected in their study.



- 25 -

offers a wage w; and in the second stage, a worker who accepts chooses an effort level e.  Since

efforts are costly and the game is one-shot, the standard subgame perfect equilibrium has workers

providing the minimal effort possible regardless of the wage, and the firm should therefore

provide the minimal wage.  This is not what Fehr et al. observed (see Figure 2).

What can ERC say about this game?  First, since gift exchange is essentially the sequential

dilemma game analyzed in section 5.1, the qualitative type of cooperative outcome Fehr et al. did

observe – an above minimal wage followed by an above minimal effort level – can be sustained in

ERC-equilibrium.  Somewhat more substantively, ERC’s most basic prediction is that all workers

will try to give themselves at least half the pie (proposition 3.1).  Workers in three cases had no

option that gave them half or more.  Consistent with ERC, all three chose the minimum effort.  In

96 percent of the other 273 cases, the worker gave himself at least the same payoff as the firm.  In

four of the 11 anomalous cases, the worker chose to keep 22 and gave 22.8. If they had chosen

the next smallest effort level, the payoff distribution would have been (15.2, 23).  Clearly, these 4

equated payoffs up to rounding.  In sum, 97.5 percent of worker responses are in, or nearly in, the

range predicted.  Hence, the very basic facts of the game are in line with the ERC model.

But we would like to say more about this experiment.  To do so, we need a parametric

model.  We use the Fehr et al. data to construct a very simple, parameterized ERC.

Quantitatively fitting firms comes down to the rather shallow claim that we can find a set of

expectations and risk postures to justify their actions.  We therefore confine ourselves to fitting a

model of optimal worker responses.  (One of the things we will find is that observed firm behavior

is quite sensible given worker behavior.)  Fehr et al. report that they found no learning effect

among workers – evidence that motivation functions are in fact stable.  We therefore fit the model

to all 276 wage-effort pairs collected over the 12 rounds of play.

For reasons of tractability, we fit the simplest possible model – one that uses a single

parameter, α, to express the shape of worker heterogeneity.  Specifically, we represent the range

with the end points:  Suppose then there are only two types of workers, a proportion α  of

[R]elativists and a proportion ( )1− α  of [E]goists.  The goal of the egoist is to maximize

pecuniary payoff.  The goal of the relativist is to “mitigate” payoffs; that is, the relativist

minimizes )()( weu π− , where u(e) and π(w) are respectively worker and firm payoffs.
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Both the data and the general ERC model (see A3) imply that many people are somewhere

in between these two categories.  Think of α as a summary measure of the propensity to

reciprocate found in the heterogenous population.  We will show that the value of α obtained

from the gift exchange game closely approximates values obtained from the investment game

experiment of Berg, Dickhaut and McCabe’s (1995), and from several dictator game experiments.

Hence, even though the α-model does not attempt to characterize the precise behavior of most

individuals, its estimate of the propensity to reciprocate is very robust.  Just as importantly, this

very sparse model explains the Fehr et al. experiment in substantial detail.

For the Fehr et al. experiment, payoffs for the firm and the worker were respectively

π( ) ( )w v w e= −  and 0)()( cecweu −−= , with v = 126, c0  = 26, { }e ∈ 01 0 2 1. , . , ,K , and

{ }w ∈ 30 35 40 125, , , ,K .  To keep the exposition simple, we assume continuous strategy spaces

[ ]e ∈ 011. ,  and ],[ 0 vcw ∈ , and a continuous cost function c(e) with c(0.1) = 0, c(1) = 18 (see

Appendix for Fehr et al.'s whole cost function), ′ ≥ ′′ ≥c e c e( ) , ( )0 0 .  The data analysis, however,

accounts for the discontinuities in the experiment’s strategy spaces. The Fehr et al. design

involved an excess supply curve, but Charness (1996) replicated the experiment without one, and

so we will not consider supply conditions here.18

Define w and w  by

w w e e≤ ⇔ = min  = 0.1 minimizes )()( weu π−

w w e e≥ ⇔ = max  = 1 minimizes )()( weu π−

Then the best response-functions for the workers are

e w eE ( ) .min≡ = 01  for egoists;

e w

w w

e w w w w

w w

R ( )

. ,

* ( ),

,

=
≤

< <
≥









01

1

  for relativists.

Here, e*(w) is implicitly defined by equating u(e) and π( )w : ( )( ) *( ) * ( )v w e w w c e w c− = − − 0 .

                                                       
18 Charness set v = 120 and 0c  = 20 and [ ]vcw ,0∈  with all other variables the same.  The results of our analysis

are valid for both designs.
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We state three hypotheses concerning efforts and payoffs, and provide a rough sketch of

the proofs.  The formal derivations – all straightforward calculations – are in the Appendix.   We

compare each hypothesis with the experimental data collected by Fehr et al.

Proposition 5.1 (effort hypothesis): A higher wage induces a higher average effort level;

specifically, [ ] 0/)()1(:)('
_

≥∂+−∂= wweewe RE αα  with strict inequality for ),( www ∈ .

Sketch of proof:  For ),( www ∈ , an increase in the wage leads to an increase in workers’

payoff, which relativists mitigate through higher effort.  Since egoists’ effort levels are constant,

average effort levels increase. For ),( www ∉ , the model predicts constant average effort levels

for both egoists and relativists (see the best response-functions and Appendix).

The effort hypothesis is clearly confirmed by the data.  Fehr et al. report strongly

significant correlation measures for highly aggregated data (p. 447-448).  On a somewhat less

aggregated level, the Spearman rank correlation coefficient between wages and average effort

levels calculated over all 17 values of wages actually chosen ( [ ]w ∈ 30 110, ) shows a clear

correlation (ρ( , )e w = 0.965, two-tail p-value < 0.00012). The α -model predicts that the wage-

effort correlation is less prominent on the individual level since the egoists do not respond at all to

different wage offers. The Spearman rank correlation coefficient between efforts and wages on

the disaggregated data is ρ( , )e w  = 0.495, a lower value than what is observed on the aggregate

level, but nevertheless one that is very significant (two-tail p < −10 14 ).

Proposition 5.2 (worker payoff hypothesis): Higher wages increase the worker payoff;

0/))((:)(' >∂∂= wweuwu .

Sketch of proof: This is obviously true for egoists since u w w cE ( ) = − 0 . The payoff for

relativist workers is

( )u e w w c e w c

w c w w

w c e w c w w w

w c w w

R R R
o( ( )) ( ( ))

,

* ( ) ,

,

= − − =
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− − ≥
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u R  is increasing for small and large wages ( w w w∉( , ) ). In the middle interval, a relativist’s

payoff is increasing because increases in wage and effort lead to efficiency gains, as measured by

total payoffs (see the Appendix).

The Spearman coefficient between wages and the worker payoff using individual data is

ρ( , )u w  = 0.94 (two-tail 5210−<p ), consistent with the worker payoff hypothesis.

Proposition 5.3 (firm’s payoff hypothesis): The average profit, π( )w , is decreasing in [ ]c w0 , ,

then, for α not too small (> 12%), increasing up to a maximum w w* ≤ , and finally decreasing for

w w> *.

Sketch of proof:  The average payoff to a firm within the α -model is given by

[ ] ( )
( )

π α α α α

α α

( ) ( ) ( ) ( )

( ) . ,

( ) ( ) . * ( ) ,

( ) ( ) . ,

w v w e e w

v w w w

v w e w w w w

v w w w

E R= − − + =

− ≤

− − + < <

− − + ≥









1

01

1 01

1 01

Since effort levels are constant for very small and very high wages, our model predicts a negative

relationship between π( )w  and w for w w w∉( , ) .  For ( )www ,∈ , )(wπ  is strictly concave,

because marginal total payoffs are decreasing in w (see Appendix).  Relativists are willing to share

total payoffs equally so that the marginal expected profit )(wπ ′  is decreasing.

Of course, the exact shape of π( )w , and whether it pays for firms to deviate from the

minimum wage, depends on α .  Let α  be implicitly defined by 0);( =′ απ w . Since )(wπ  is

strictly concave for w ∈ (w, )w , the profit of a firm is decreasing for all w, iff αα ≤ .  However, if

α  > α  ≈  12%,19 which is very reasonable in view of other experimental results (see section 5.3),

π( )w  is increasing for w w>  up to a maximum w* w≤  and decreasing beyond w* (see

Appendix).

In order to compare the firm’s payoff hypothesis to the data, we need an estimate of α .

We obtain an estimate in the most straightforward manner possible.  We calculate the average

                                                       
19 12% is the value calculated with the discrete strategy spaces and cost function used in the experiment.  With the
continuous strategy spaces and cost function,  the corresponding value is 10% (see Appendix).
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effort level for each wage level actually offered, and then calculate )(wα  by solving

)(1.0)1()( wewe Rαα +−= . Then ∑
>

=
ww

w
w

)(
273

#
αα  (for ww ≤ , all subjects chose minimum

effort – as predicted). Calculating α  in this way yields (exactly) α = 0.5.20

Figures 5(a) to 5(c) demonstrate that the estimated model fits the data very closely.  Note

that the α-model (and ERC generally) predicts no variance in the effort levels and payoffs for

w w≤ =35 , and in fact all three observations in this range are at the minimum effort level.  There

is only one observation for w = 110, and the corresponding actual effort and actual payoffs are

within the range permitted by the model.  Finally, Figure 5(c) shows how actual wage offers

cluster around the optimal wage offer.  It appears that firms learned to accurately anticipate effort

response during the course of the experiment.

Figure 5 here.

Finally, the ‘fair wage-effort hypothesis’ that Fehr et al. studied posits a correlation

between wages and effort.  This is, as we have indicated, confirmed in the data.  But Figure 5(c)

shows that higher wages are not always met by higher profits.  If we think that higher than

minimal effort indicates reciprocal behavior, in the dictionary sense, we might have expected a

strictly positive relation; that is, we might have expected higher worker payoffs to always be

rewarded by higher profits.  In fact, there is no correlation that is both clearly significant and

positive, no matter how we calculate it: 16.0),( −=πρ u  (two-tailed p = 0.0065),

ρ π ρ π( , ) ( , )w u≈ = 0.304 (two-tailed p > 0.22), 109.),( =wπρ  (two-tailed p > 0.07), and

316.),( =wπρ  (two-tailed p > 0.20).  We cite additional evidence of the same flavor in the next

subsection, and return to comment in section 7.

5.3  Checking the robustness of the α-model

One quick way to check the robustness of our estimate of α is to determine whether it is

consistent with the values obtained from dictator game experiments.  While the rates reported

                                                       
20 The described estimation technique is somewhat crude, but has the advantage of being transparent.  A somewhat
more sophisticated method is minimizing the weighted deviations from actual and predicted payoffs:

)),()(),()((
276

)(# modmod ααππ αα wuwuww
w elactual

w

elactual −− −+−∑ .

Doing so, we obtain the value α  = 0.46, very close to the value from the simpler estimation method.
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vary somewhat due to framing effects and other design differences, the Forsythe et al. (1994)

experiment, discussed in section 1, has an average rate of giving of 0.23, one of the Hoffman et

al.’s (1994) dictator games (buyer-seller frame, random selection of roles) has 0.27, and a recent

study by Andreoni and Miller (1996) obtained a value of 0.25.   Within the context of a dictator

game, a strict egoist gives 0, and a strict relativist gives half.  Hence all of the average rates of

return mentioned imply α ≈ 05. , very similar to the estimate from the Fehr et al. data.

Another way to check the robustness of our result is to see if we obtain a similar estimate

from a different dilemma experiment.  Berg, Dickhaut and McCabe (1995) report on an

investment game in which an investor and the responder each begin with an endowment of $10.

The investor may then send some of his endowment to the responder.  Whatever is sent,

immediately triples in value.  The responder then decides how much, if any, of the money to

return to the investor.  We denote the investment by x and the return by z.  Keep in mind that both

players start with a $10 endowment.  From the general ERC model, we would expect xz 2≤ .  In

fact, the inequality holds for 30 out of 32 cases (94 percent).

In estimating α, we confine ourselves to the 32 independent observations in the "no

history" treatment (history complicates the analysis).  We compute α  for each game in which the

investment was greater than 0, precisely in the same manner as for the Fehr et al. data.  The

resulting value of α  is 0.42, very close to the value we obtained in the gift exchange game.21

Looking for evidence of reciprocity, Berg et al. hypothesized that, on average, z/x and x

are positively correlated (p. 127).  On the other hand, since αα 2/2 =⇒= xzxz , the α -model

implies that z/x is constant for all x.  The data confirms the α -model: the Spearman rank

correlation coefficient is 0.01 (p. 131).

The α-model is the simplest model rich enough to capture the interplay between

heterogeneity and efficiency gains necessary to achieve cooperation.  In fact, the predicted

interplay is different across gift exchange and investment games, and we can use this to explain

why counting on reciprocity paid in one game, but not in the other.  In the gift-exchange game,

marginal efficiency gains are extremely high for small wages so that self-interested firms should

                                                       
21 The more sophisticated estimation technique mentioned in the last footnote is, for the investment game,
equivalent to the simpler technique.
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cooperate even if α is much lower than the 0.5 we calculated.22  Marginal efficiency gains

eventually decrease, and so increasing the wage is less attractive for a firm that already pays a

high wage.  Nevertheless, in an expected value sense, it pays to offer a higher than minimal wage

(see Figure 5 (c)).  In the investment game, investments of any size are multiplied by a fixed

factor of 3.  So efficiency gains are fixed – and at a rather low level – the factor 3 has to be

matched with an α of at least 0.5 just for an investment to break even.  Given our estimate of α,

we are not surprised that investments in the investment game failed by just a bit to generate a

positive net return: the average net return was  – $0.50.

6.   Some observations on the finitely repeated prisoner’s dilemma

Defection in all rounds is the unique standard subgame perfect equilibrium for the finitely

repeated prisoner’s dilemma (PD).  Subjects in experiments, however, systematically cooperate,

although they typically fail to reach full efficiency.  In a famous paper, Kreps et al. (1982) present

two models of the finitely repeated PD.  One model demonstrates that if each player assesses a

(small) positive probability that his partner is 'cooperative' (i.e., he prefers to cooperate (defect) if

the other cooperates (defects)), then sequential equilibria exist wherein purely money-motivated

and perfectly rational players cooperate until the last few stages.

Note that, by the ERC heterogeneity assumption, cooperative subjects exist in reality, not

just in people’s minds.23   This is not to say that the two models are the same.  They differ on two

important points.  First, ERC predicts that cooperation rates may be positive even in the last

round of a repeated PD (consider two players who are mostly interested in the relative payoff and

believe with a high degree of certainty that there partner is too), and even among experienced

players (experience teaches that some people are willing to cooperate until somebody defects on

them).  Second, in ERC, the proportion of cooperative subjects is not exogenous, but depends on

the stage game payoff matrix (see section 5.1).  We discuss evidence in favor of ERC taken from

different sets of studies:

                                                       
22 If one of the players sacrifices one payoff unit in the subgame perfect equilibrium, total payoffs are increased by
about ten payoff units. This is a much higher efficiency gain than in most experimental dilemma games.

23For a subject with r = ½, )
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Hence, a subject who prefers the equal split in a dictator game also prefers to cooperate if the PD partner
cooperates. The same conclusion holds for a ‘½ - ε’ -type for sufficiently small ε. This, together with the
heterogeneity assumption (A3) and the fact that all subjects prefer to defect if the opponent defects yields the result.
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Andreoni and Miller (1993) conducted a series of experiments to test the performance of

the sequential equilibrium prediction of Kreps et al. They ran several experimental conditions

including partners (each subject partners with another subject for a 10-period game, repeated 20

times, each time rotating partners) and strangers (each subject plays 200 iterations of the PD with

a new partner every iteration).  Andreoni and Miller conclude (p. 582):

“Subjects in a finitely repeated prisoner’s dilemma were significantly more cooperative
than subjects in a repeated single-shot game. Moreover, by increasing subjects’ beliefs
about the probability that their opponent is altruistic, we can further increase reputation
building. Several findings in the experiment suggest that, rather than simply believing that
some subjects may be altruistic, many subjects actually are altruistic.”

Among the findings which make the authors think there is a stable number of cooperative subjects

is that the mean round of first defection in the partners-treatment is increasing across the 10-

period games, whereas strangers quickly develop a stable pattern of cooperation.  Under the

assumption that subjects update their belief about the proportion of cooperative subjects, this

clearly contradicts the rationality hypothesis, but is consistent with ERC.

Likewise, Cooper et al. (1996) conclude that the reputation model fails to explain positive

cooperation rates observed in their one-shot PDs, whereas altruism alone (without reputation

building) cannot explain the significantly higher cooperation rates and the path of play in their

finitely repeated PDs.  Apparently isolated models of reputation or altruism fall short of explaining

typical behavior patterns.  ERC, however, suggests that it is the interplay of strategic triggering

behavior of egoists and altruistic responses of cooperative subjects which drives the results in

repeated and sequential (cf. section 5) dilemma games. Additional evidence comes from two other

studies dealing with repeated dilemma games:

Camerer and Weigelt (1988) conducted an experimental test of a one-sided reputation

model in a supergame.  Subjects played 8 periods of a stage game with the same partner.  Table 3

shows the payoff matrix for each stage.  Player 1 chooses first and player 2 chooses knowing the

first mover’s choice. Payoffs when the first mover cooperates and the second mover defects

varied across sessions as indicated in Table 3.  The 'proportions' column indicates that the authors

induced 2/3 of the second movers to prefer to defect and 1/3 to prefer to cooperate, at least when

one applies the standard analysis to the stage game.  First movers were not told the type of their

partner.  From their data, Camerer and Weigelt conclude that the sequential equilibrium is a good
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approximation for aggregate behavior, save that subjects cooperate longer and more often than

predicted.  They explain the discrepancy with evidence indicating that the actual proportion of

cooperative subjects exceeded the proportion induced.24

Table 3 here.

Cell 1 of a follow-up study by Neral and Ochs (1992) replicated Camerer and Weigelt’s

result (see Table 3).  Cell 2 modified second mover payoffs, but left the induced probability of

cooperative subjects constant.  Sequential equilibrium predicts that (SE1) a cell 2 first mover is on

average less willing to cooperate in each round once mixed strategy play begins (mixed strategy

should begin in the same round in both cells); and (SE2) there is no systematic influence on the

second mover.  But Neral and Ochs found a systematic influence on both movers.

To analyze the game using ERC, we need a method for calculating relative payoffs for

outcomes with negative pecuniary payoffs.  The most straightforward way to do so is to

normalize each outcome involving a negative payoff by adding the absolute value of the smallest

payoff at the outcome.  For the games represented in Table 3, this means adding 100 to each

payoff in an outcome with a –100 payoff.  (We emphasize that this normalization is solely for the

purpose of calculating relative payoffs.  Absolute payoffs are as originally stated.)  So for

outcomes where one player gets a negative pecuniary payoff and the other gets a positive

pecuniary payoff, the relative payoffs are normalized to 0 and 1 respectively, which is consistent

with the types of outcomes we calculate with solely positive pecuniary payoffs.25

ERC predicts that for both movers, mixed strategy play begins later in cell 2 compared to

cell 1, but once mixed strategy play begins, the probability shifts are as predicted by SE1 and SE2.

The reason for the delay in defecting is that ERC anticipates a greater proportion of cooperative

subjects in cell 2 than in cell 1. To see this, first observe that the relative payoffs for each outcome

are unaffected by the modification of the payoff structure.  Since there is no change in the

absolute payoffs of the first mover, his preference over the outcomes remain constant. On the

other hand, the absolute payoff of the second mover is smaller when he defects, while the value

from cooperation remains constant.  Therefore, ERC predicts that more second movers choose to

                                                       
24 A further test, in which no cooperative players were induced, provided evidence for the sequential equilibrium
hypothesis under the assumption that first movers have “homemade” priors regarding the proportion of cooperative
subjects.
25 For example, pecuniary outcomes of (0, 100) and (0, 150) both produce the relative weights (0, 1).
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cooperate in cell 2 than in cell 1.  This implies that mixed strategy play begins later for both the

first and the second mover than predicted by SE1 and SE2.

The following figures show the observed frequency of defection in cell 1 and 2 of the

Neral and Ochs experiment for first movers (figure 6(a)) and for second movers (figure 6(b)),

respectively.  A cross symbolizes a significant difference on the 5% level.26

Figures 6(a) and 6(b) here.

The results support the ERC hypothesis. First, as predicted by ERC both first and second

movers start to defect significantly later (round 3 in cell 1 and round 4 in cell 2).  Furthermore, as

predicted by both models, there is no significant difference with respect to the second mover

behavior once mixed strategy is played in both cells (from round 4 on).  For the first mover, both

ERC and sequential equilibrium predict a ‘jump’ from full cooperation to a constant fixed

probability until the last round. Also, both theories predict that this fixed probability is smaller in

cell 2.  The data shows that, although the first movers do not jump in the lower cooperation rate

in cell 2 there is a clear downward trend and finally, in round 6, first movers in cell 2 cooperate

significantly less.  Jung et al. (1994) obtains a similar result.

We do not want to overstate the case: There are some clear limits to what a static

equilibrium model like ERC can explain.  For example, Camerer and Weigelt observe that some

subjects seem to apply simple cutoff strategies, and Selten and Stoecker (1986) identify some

simple adaptive learning rules.  That said, ERC captures some important behavioral regularities

that are not captured by the rationality hypothesis alone.27

7.  Other theories

Here we provide a brief comparison of ERC with two other approaches in the literature.

                                                       
26 The data and statistics are from Neral and Ochs, table V, p. 1163. Values are averages for experienced subjects.
27 Estimates of those willing to cooperate are remarkably stable across investigations (particularly given differences
in frames and payoffs).  We explained above that all dictators who share the cake equally are willing to cooperate
in a prisoner's dilemma.  In section 4, we mentioned evidence that the proportion of 'strictly relativistic' dictators is
about 20%.  Andreoni and Miller reported corresponding values in dilemma games (1993, p. 581): "... the
behaviour in the stranger condition is consistent with an imperfect-information equilibrium in which individuals
share a common prior on the probability of experiencing cooperation, p*, of about 0.20.  Two previous studies have
also estimated subjects' priors on cooperation. Camerer and Weigelt (1988) estimated 'homemade priors' of 0.17
that an opponent would play cooperatively, and McKelvey and Palfrey (1992) estimated the proportion of altruists
to be 0.05 and 0.10."  Furthermore, Cooper et al. (1996) estimated the proportion of cooperative subjects ("best-
response altruists") in their one-shot PDs to be 12.5-15 percent.
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Reinforcement learning theory, describes behavior as a learning-through-adaptation

process (e.g., Roth and Erev, 1995; also see Gale, Binmore and Samuelson, 1995).  Differences in

behavior across games are attributed to the differential reinforcement delivered by differing payoff

structures.  Roth and Erev have shown that simulations based on this sort of learning generate

paths like those observed for the ultimatum, best shot, and auction market games.

Learning theory and ERC are complimentary along certain lines.  For example, learning

theory makes predictions about the dynamic path of play, taking the initial conditions as given.

ERC predicts the stable outcome at the end of the learning path, and also characterizes some

initial conditions (e.g., second movers will have a propensity to reject in the ultimatum game but

not in the impunity game; see Abbink et al., 1997).  ERC can explain dilemma games, whereas

adaptive learning does not easily explain the failure of dominant strategy.  A recent paper by Erev

and Roth (1997) extends learning to constant sum games, which ERC has not yet tackled.  When

the theories make contrary predictions, it usually has to do with whether there is any learning to

be observed.  For example, ERC characterizes second mover behavior in the ultimatum and best

shot games as stable, whereas learning implies change (we mentioned evidence on this question in

section 2).

Rabin (1993) exemplifies an equilibrium approach based on the idea that people help those

who help them, and hurt those who hurt them.  Note the emphasis on intentionality; that is, a

player is conjectured to care whether another player's actions were intended to help or hurt.  The

model is limited to two-person normal form games, but it successfully accounts for behavior in

games such as the simultaneous prisoner’s dilemma.  Levine (1997) presents a related theory for

extensive form games.   An inherent limitation of this approach is that it cannot explain the

dictator game.  The recipient does not have a chance to act either kindly or unkindly to the

dictator, so there is nothing to reciprocate.  This limitation is important for two reasons.  First, the

dictator game is arguably the simplest possible dominant strategy game (it is not even a game – it

is a one person decision problem).  It seems to us that a satisfactory explanation for why people

violate dominant strategy should explain the simplest violation.

Second, the fact that dictators do give suggests that a substantial portion of the other-

regarding behavior we see in these games is based in something other than intentions.  In fact, the

dictator game is not the only evidence for this.  Charness (1996) ran a gift exchange experiment

with three treatments.  The first essentially replicated the experiment of Fehr et al. (1993).  In the
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second treatment, wages were determined by an unpaid third party.  In the third, wages were

randomly drawn from a bingo cage.  There was no difference between outside party and random

treatments, and only a mild difference between these and the standard game.  Perhaps most

importantly, strong evidence for what is usually thought to be the tell-tale sign of reciprocity in

gift exchange games, positive correlation between offers and second mover actions, is found in all

three treatments.28  This result is consistent with ERC but not with intentionality models.29

8.  Summary

ERC demonstrates that much of what we want to understand about behavior over a wide

class of strategic situations can be deduced from two of the most elementary games: ultimatum

and dictator.  Taken together, these games expose the thresholds – the flash points – at which the

pull of narrow self-interest is subjugated to concern for relative standing.  These flash points,

when combined with the structure of a specific game, determine the strategic opportunities open

to players.  The success of the standard equilibrium concepts employed by ERC implies that

players do indeed behave in a bona fide strategic manner.

But what is this concern for relative standing?  Is it altruism, equity, or reciprocity?

Regardless of the label we choose, there is a second, deeper question: Why should people care

about relative standing?  We speculate that the answer to the first question is ‘reciprocity’ – of a

non-standard type – and that the answer to the second question has to do with biology.  As we

explained in section 3.5, several experimental studies cast doubt on the proposition that people

care about distribution in a way that we would expect an altruist to care.  The same evidence

suggests that people are willing to sacrifice little to defend equity as a principle.  People appear

self-centered, albeit in a way that differs from received theory.

While the dictionary definition of reciprocity will not work (see section 1), we think there

is a sense in which ‘reciprocity’ can be defended.  People have always lived in groups, and so we

                                                       
28 The correlation is not only positive but also very similar in all three treatments.  The range of the (highly
significant) Spearman rank correlation coefficient between wages and effort is 0.404 (random) to 0.491 (standard
game), and between wages and average effort is 0.905 (random) to 1 (third party).
29 Blount (1995) found no difference in minimum acceptable offers in ultimatum games whether the proposals
comes from the first mover, or an unpaid third party.  The minimum acceptable offer dropped substantially when
proposals were drawn randomly, but responders still rejected an average of 12 percent.  So not all of the motive for
rejection can be attributed to intentions, and section 3 shows that much of what we observe in ultimatum games
can be explained without considering intentions.  Bolton, Brandts and Katok (1996) and Bolton, Brandts and
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expect that evolution has molded them for successful group living.  People may then have a

propensity to contribute to the group, because a successful group contributes to their own

individual biological success.  A propensity to punish the non-contributors could be the way

evolution (partially) solves the free riding problem inherent in such an arrangement.  The reward

or punishment need not come directly from the benefactor or the injured; hence we refer to our

reciprocity conjecture as the indirect reciprocity hypothesis. Güth (1995), Huck and Oechssler,

(1995), and Kockesen, and Ok and Sethi (1997) study evolutionary models that produce

conclusions along these lines.  Ellingsen (1997) studies a bargaining game in which evolutionary

forces are allowed to shape behavior.  The model suggests that a concern for fairness persists

because it averts exploitation and reduces the probability of conflict.

In its present form, ERC has some clear limitations.  Most have to do with the fact that

ERC is a theory of “local behavior.”  ERC explains stable patterns for relatively simple games,

played over a short time span in a constant frame.  The most important challenges for extending

ERC have to do with the italicized phrases.  Incorporating learning requires a dynamic theory

(although the present version of ERC helps us to understand what people learn).  We suspect that

an analysis of more complicated games will require us to deal with cognitive limitations –

bounded rationality.  Consideration of longer time spans will force us to deal with changes in

motivation; that is, changes in how people weight their goals as their age and outlook change.

There is room to extend ERC to the framing issue: A more sophisticated definition of the social

reference point, for example, may be a function of the frame.

All of these limitations can, in principle, be straddled.  At the same time, if only because of

the sheer volume of data it organizes, we doubt that the necessary extensions will supplant the

basic message of the present work: The interaction between pecuniary and relative motives drives

behavior in many games.  For this reason, we think that ERC provides a promising base for a

much larger theory of economic behavior.

                                                                                                                                                                                  
Ockenfels (1997) describe evidence that dictator gifts accurately predict dilemma game contributions (as ERC
would predict).
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Appendix

Actual costs of effort in Fehr et al. (1993):
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Proof of the concavity of the profit function: ′′ <π ( )w 0  for w w w< <
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Figure 1.  Amounts offered to the recipient in dictator

and ultimatum games (Forsythe et al., 1994)
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Figure 2. Average Effort in Response to Wage (Fehr et al., 1993)
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Figure 3.  Additively separable motivation function, with c = 1, and a/b = ¼ ( ir  = 3/4, is  = 1/5)
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Figures 4 (a) and 4(b). ERC-reaction curves in a Cournot duopoly
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Figure 5(a). Actual and predicted average effort levels
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Figure 5(b). Actual and predicted average payoffs of the workers
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Figure 5(c).  Actual and predicted average payoffs to the firms, and actual wage offers

0

5

10

15

20

25

30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110

wage

av
er

ag
e 

p
ay

o
ff

s

actual predicted #(w)/10



- 49 -

Figure 6(a). Probability first mover cooperates (by round)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6

Cell 1

Cell 2

*

Figure 6(b). Probability second mover cooperates given first mover cooperates (by round)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6

Cell 1

Cell 2

*

*

*



- 50 -

Table 1.  A comparison of payoffs for the mini-games.

mini- proposer left right

games responder reject accept reject accept

ultimatum
Py 0 2 0 3

game
Ry 0 2 0 1

impunity
Py 0 2 3 3

game
Ry 0 2 0 1

best shot
Py 1 1 0 3

game
Ry 3 1 0 1

Table 2.  One-shot prisoner’s dilemma payoff matrix

2

y y1 2, cooperate (C) defect (D)

1 cooperate (C) 2m, 2m m, 1+m

defect (D) 1+m, m 1, 1

m = marginal per capita return (mpcr)∈( . , )0 51

Table 3. Sequential stage game

2

y y1 2, cooperate (C) defect (D) proportions sessions
-100,150

-100,0

.66

.33

Camerer and

Weigelt

1 cooperate (C) 40, 60 -100,150

-100,0

.66

.33

Neral and Ochs

cell 1

-100,100

-100,0

.66

.33

Neral and Ochs

cell 2

defect (D) 10,10 10,10


