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Abstract

We study the close connections between game the-
ory, on-line prediction and boosting. After a brief
review of game theory, we describe an agorithm
for learning to play repested games based on the
on-line prediction methods of Littlestoneand Wer-
muth. The analysis of thisalgorithmyieldsasim-
ple proof of von Neumann's famous minmax theo-
rem, aswell asaprovable method of approximately
solving agame. We then show that the on-line pre-
diction model is obtained by applying this game-
playing a gorithmto an appropriate choice of game
and that boosting is obtained by applying the same
algorithmto the “dual” of thisgame.

1 INTRODUCTION

The purpose of this paper is to bring out the close connec-
tions between game theory, on-line prediction and boosting.
Briefly, game theory isthe study of games and other interac-
tions of various sorts. On-line predictionisalearning model
inwhich an agent predicts the classification of asequence of
itemsand attemptsto minimizethetotal number of prediction
errors. Finally, boosting isa method of converting a“weak”
learning algorithm which performs only dightly better than
random guessing into one that performs extremely well.

All three of these topics will be explained in more detail
below. All have been studied extensively in the past. In this
paper, the close relationship between these three seemingly
unrelated topicswill be brought out.

Here is an outline of the paper. We will begin with a
review of game theory. Then we will describe an agorithm
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for learning to play repeated games based on the on-line
prediction methods of Littlestone and Warmuth [15]. The
analysisof thisalgorithmyieldsanew (asfar asweknow) and
simple proof of von Neumann’s famous minmax theorem, as
well as a provable method of approximately solving a game.

In the last part of the paper we show that the on-line
prediction model is obtained by applying the game-playing
algorithmto an appropriate choice of game and that boosting
is obtained by applying the same a gorithm to the “dua” of
thisgame.

2 GAME THEORY

We begin with areview of basic game theory. Further back-
ground can befound in any introductory text on game theory;
see for instance Fudenberg and Tirole [11]. We study two-
person games in normal form. That is, each game is defined
by amatrix M. There are two players called the row player
and column player. To play thegame, therow player chooses
arow ¢, and, smultaneously, the column player chooses a
column j. The selected entry M (4, j) istheloss suffered by
therow player.

For instance, the loss matrix for the children’s game
“Rock, Paper, Scissors’ isgiven by:

R P S
R 3 1 0
P o 1 1
s 1 0 1

The row player'sgoal isto minimizeitsloss. Often, the
goa of the column player isto maximize thisloss, in which
case the game is said to be “zero-sum.” Most of our results
are given in the context of a zero-sum game. However, our
results also apply when no assumptions are made about the
goal or strategy of the column player. We return to this point
bel ow.

For the sake of simplicity, we assume that al the losses
are in the range [0, 1]. Simple scaling can be used to get
more genera results. Also, we restrict ourselves to the case
wherethenumber of choicesavailableto each player isfinite.
However, most of the results trandate with very mild addi-
tional assumptions to cases in which the number of choices
isinfinite. For a discussion of infinite matrix games see, for
instance, Chapter 2 in Ferguson [3].



21 RANDOMIZED PLAY

As described above, the players choose a single row or col-
umn. Usually, this choice of play is allowed to be random-
ized. That is, therow player choosesadistribution P over the
rows of M, and (simultaneously) the column player chooses
a distribution Q over columns. The row player's expected
lossiseasily computed as

> P()M(i./)QU) = PTMQ.

For ease of notation, we will often denote this quantity by
M(P, Q), and refer to it smply as the loss (rather than
expected loss). In addition, if the row player chooses a dis-
tribution P but the column player chooses asinglecolumn j,
then the (expected) lossis) ", P({)M(¢, j) which we denote
by M(P, j). The notation M (¢, Q) is defined analogously.

Individual (deterministically chosen) rows: and columns
j are caled pure strategies. Randomized plays defined by
distributions P and Q over rows and columns are called
mixed strategies. The number of rows of the matrix M will
be denoted by 7.

2.2 SEQUENTIAL PLAY

Up until now, we have assumed that the players choose their
(pure or mixed) strategies simultaneoudy. Suppose now that
instead play is sequential. That is, suppose that the column
player choosesits strategy Q after therow player has chosen
and announceditsstrategy P. Assumefurther that thecolumn
player's goal isto maximize the row player'sloss (i.e., that
the game is zero-sum). Then given P, such a “worst-case”
or “adversarial” column player will choose Q to maximize
M(P, Q); that is, if the row player plays mixed strategy P,
then its payoff will be

max M (P.Q). ®

(It is understood here and throughout the paper that maxq
denotes maximum over all probability distributionsover col-
umns; similarly, minp will always denote minimum over
all probability distributions over rows. These extrema exist
because the set of distributionsover afinite spaceiscompact.)

Knowing this, the row player should choose P to mini-
mize Eq. (1), so therow player'slosswill be

mgnmgx M(P, Q).
A mixed strategy P* redlizing thisminimumiscaled amin-
max strategy.
Suppose now that the column player plays first and the
row player can choose its play with the benefit of knowing

the column player’schosen strategy Q. Then by asymmetric
argument, the loss of the row player will be

maxminM (P, Q).
and aQ* realizing the maximum iscalled amaxmin strategy.

23 THE MINMAX THEOREM

Intuitively, we expect the player who choosesits strategy last
to have the advantage since it plays knowing its opponent’s
strategy exactly. Thus, we expect

mgx mPinM(P, Q) < mPinmgxM(P, Q). (2)

We might go on naively to conjecture that the advantage of
playing last is strict for some games so that, at least in some
cases, theinequality in Eq. (2) isstrict.

Surprisingly, it turns out not to matter which player plays
first. Von Neumann's well-known minmax theorem states
that the outcome isthe same in either case so that

mgx mPinM(P, Q) = mPinmgxM(P, Q) (3

for every matrix M. The common value v of the two sides
of the equality is called the value of thegame M. A proof of
the minmax theorem will be given in Section 2.5.

In words, Eq. (3) means that the row player has a (min-
max) strategy P* suchthat regardlessof thestrategy Q played
by the column player, the loss suffered M(P*, Q) will be at
most v. Symmetrically, it means that the column player has
a(maxmin) strategy Q* such that, regardless of the strategy
P played by the row player the loss will be at least v. This
mesans that the strategies Q* and P* are optimal in a strong
sense.

Thus, classical game theory says that given a (zero-sum)
game M, one should play using a minmax strategy. Such a
strategy can be computed using linear programming.

However, there are a number of problems with this ap-
proach. For instance,

o M may be unknown;

e M may be so large that computing a minmax strategy
using linear programming isinfeasible;

o the column player may not be truly adversarial and may
behavein amanner that admitslosssignificantly smaller
than the game value v.

Overcoming these difficulties in the one-shot game is
hopeless. But suppose instead that we are playing the game
repeatedly. Then it is natural to ask if one can learn to play
well against the particular opponent that is being faced.

24 REPEATED PLAY

Suchamaodel of repeated play can beformalized as described
below. To emphasize the roles of the two players, we refer
to therow player asthe learner and the column player asthe
environment.

Let M beamatrix, possibly unknowntothelearner. The
gameisplayed repeatedly in asequence of rounds. On round
t=1...,T:

1. thelearner chooses mixed strategy P.;

2. theenvironment chooses mixed strategy Q- (which may
be chosen with knowledge of P)

3. thelearner is permitted to observe theloss M (¢, Q;) for
each row ¢; thisisthelossit would have suffered had it
played using pure strategy i;

4. thelearner sufferslossM (P, Q:).

The goal of the learner is to do amost as well as the best
strategy against the actua segquence of plays Q1,..., Qr



which were chosen by theenvironment. That is, thelearner’s
goal isto suffer cumulative loss

> M(P, Q)

t=1

which is“not much worse” than the loss of the best strategy
in hindsight

T
mFinZM(P, Q).
t=1

An algorithmfor solving thisproblem can be derived by a
direct generalization of Littlestoneand Warmuth's"weighted
majority algorithm” [15], and isessentially equivalent to our
earlier “Hedge” agorithm [9]. The agorithm, called LW,
is quite simple. The learner maintains nonnegative weights
on the rows of M; let w;(7) denote the weight at time ¢ on
row 7. Initialy, all the weights are set to unity: w¢(i) = 1.
On each round ¢, the learner computes mixed strategy P, by
normalizing the weights:

, w(i)
P = ="
O = 5w
Then, given M(i, Q) for each ¢, the learner updates the
weights by the smple multiplicativerule:

we1(8) = wy(4) ~6M(int).

Here, g € [0, 1) isaparameter of the algorithm.
The main theorem concerning this algorithm is the fol-
lowing:

Theorem 1 For any matrix M with n rows and entries in
[0, 1], and for any sequence of mixed strategies Q1, ..., Qr
played by the environment, the sequence of mixed strategies
Pi, ..., Pr produced by algorithm LW with parameter 3 €

[0, 1) satisfy:

T T
> M(P, Qi) < ag m;n;M(P, Qi) +cslnn

t=1

where
B L€ V7 R
8 — 1_6 ﬁ_l—ﬁ

Proof: The proof followsdirectly from Theorem 2 of Freund
and Schapire[9], whichinturnisasimpleand direct general-
ization of Littlestone and Warmuth [15]. For completeness,
we provide a short proof in the appendix. B

As [ approaches 1, as also approaches 1. In addition,
for fixed g and as the number of rounds 7' becomes large,
the second term ¢ Inn becomes negligible (sinceit isfixed)
relativeto 7. Thus, by choosing 5 closeto 1, the learner can
ensurethat itslosswill not be much worsethan theloss of the
best strategy. Thisisformalized in the following corollary:

Corollary 2 Under the conditions of Theorem 1 and with 3

st to
2|n’
1+ /<inn

the average per-trial loss suffered by thelearner is

T T
1 1
T;M(Pﬁ Q) < min T;M(P, Qi) + 47

where

2lnn  Inn Inn

N )
Proof: See Section 2.2 in Freund and Schapire[9]. B

Since Ay — 0 asT — oo, we see that the amount by
which the average per-trial 1oss of the learner exceeds that
of the best mixed strategy can be made arbitrarily small for
large T

For simplicity, the results in the remainder of the pa
per are based on Corollary 2 rather than Theorem 1. The
details of the algorithm about which this corollary applies
are largely unimportant and could, in principle, be applied
to any algorithm with similar properties. Indeed, agorithms
for thisproblemwith similar propertieswere derived by Han-
nan[13],! Blackwell [1] and Foster and Vohra[6, 5, 4]. Also,
Fudenberg and Levine [10] independently proposed an ago-
rithm equivaent to LW and proved adightly weaker version
of Corollary 2.

Asasimplefirst corollary, we see that thelossof LW can
never exceed the value of the game M by more than Ar.

Corollary 3 Under the conditionsof Corollary 2,

T

1
TZ;M(P“Q” <v+hp
t=

where v isthe value of the game M.

Proof: Let P* be a minmax strategy for M so that for all
column strategies Q, M(P*, Q) < v. Then, by Corollary 2,

T T
1 1 .
TZM(Pta Q) < TZM(P Qi) + O <+ Dy
t=1 t=1

|

Notethat in theanal ysiswe made no assumption about the
strategy used by the environment. Theorem 1 guaranteesthat
its cumulative loss is not much larger than that of any fixed
mixed strategy. As shown above, thisimplies, in particular,
that the loss cannot be much larger than the game value.
However, if the environment is non-adversarial, there might
be a better fixed mixed strategy for the player, in which case
thealgorithmisguaranteed to bea most asgood asthisbetter
strategy.

25 PROOF OF THE MINMAX THEOREM

More interestingly, Corollary 2 can be used to derive a very
simple proof of von Neumann’s minmax theorem. To prove
thistheorem, we need to show that

mPinmgxM(P, Q) < mgx mPinM(P, Q). (4)

'However, Hannan's algorithm requires prior knowledge of the
entire game matrix.



(Proving that mine maxq M (P, Q) > maxq minp M(P, Q) is
relatively straightforward and so is omitted.)

Suppose that we run agorithm LW against a maximally
adversaria environment which always chooses strategies
which maximize thelearner’sloss. That is, on each round ¢,
the environment chooses

Q= argmgxM(Pt,Q). (5)

LetP = A7 P,andQ = AY/_,Q.. Clearly, Pand Q
are probability distributions.

Then we have:
i P™™M
mFangx Q
< maxﬁTMQ
Q
1 T
= mx=> P,’'M by definition of P
g T; ; MQ y
1 T
.
< Tngth MQ
t=1
1 T
= TZPtTMQt by definition of Q;
t=1

T
I
< mFlnT;_lP MQ; + Ar by Corollary 2

= mPinPTM6—|- Ap by definitionof Q

IN

o pT
mgxmgnP MQ + Ar.

Since Ar can be made arbitrarily close to zero, this proves
Eq. (4) and the minmax theorem.

26 APPROXIMATELY SOLVING A GAME

Aside from yielding a proof for a famous theorem that by
now has many proofs, the preceding derivation shows that
algorithm LW can be used to find an approximate minmax or
maxmin strategy. Finding these“optimal” strategiesiscalled
solving the game M.

Skipping thefirst inequality of the sequence of equalities
and inequalities above, we see that

mgxM(ﬁ,Q) < mgmeinM(P,Q)—i-AT =v+0rp.

Thus, the vector P is an approximate minmax strategy in the
sense that for al column strategies Q, M(P, Q) does not
exceed the game value v by more than Ap. Since Ap can
be made arbitrarily small, this approximation can be made
arbitrarily tight.

Similarly, ignoring the last inequality of this derivation,
we have that

mPinM(P,@ >v—Np

S0 Q dsoisan approximatemaxmin strategy. Furthermore, it
can be shown that Q. satisfying Eq. (5) can aways be chosen
to be a pure strategy (i.e.,, a mixed strategy concentrated on
asingle column of M). Therefore, the approximate maxmin

strategy Q has the additiona favorable property of being
gparseinthesensethat at most 7" of itsentrieswill benonzero.

Viewing LW as a method of approximately solving a
gamewill be central to our derivation of aboosting a gorithm
(Section 4).

Similar and closely related methods of approximately
solving linear programming problems have previously ap-
peared, for instance, in the work of Plotkin, Shmoys and
Tardos[16].

3 ON-LINE PREDICTION

Since the game-playing algorithm LW presented in Sec-
tion 2.4 is a direct generalization of the on-line prediction
algorithm of Littlestone and Warmuth [15], it is not surpris-
ing that an on-line prediction algorithm can be derived from
the more general game-playing agorithm by an appropriate
choice of game M. In this section, we make this connection
explicit.

In the on-line prediction modédl, first introduced by Lit-
tlestone [14], the learner observes a sequence of examples
and predicts their labels one at atime. The learner’s goal is
to minimizeits prediction errors.

Formally, let X beafiniteset of instances, and let H bea
finiteset of hypothesesh : X — {0,1}. Letc: X — {0, 1}
be an unknown target concept, not necessarily in H.2

In the on-line prediction model, learning takes placein a
sequence of rounds. Onroundt = 1,...,7"

1. thelearner observes an example z; € X;

2. thelearner makes a randomized prediction g, € {0, 1}
of the label associated with z;

3. thelearner observesthe correct label ¢(x;).

The goa of the learner is to minimize the expected number
of mistakes that it makes relative to the best hypothesisin
the space H. (The expectation here is with respect to the
learner’s own randomization.) Thus, we ask that the learner
perform well whenever the target ¢ is “close” to one of the
hypothesesin .

Itis straightforward now to reduce the on-line prediction
problemtoaspecia case of the repeated game problem. The
environment’s choice of a column corresponds to a choice
of aninstance + € X that is presented to the learner on a
given iteration. The learner’s choice of arow corresponds
to choosing a specific hypothesis h € H and predicting the
label h(x). A mixed strategy for the learner corresponds
to making a random choice of a hypothesis with which to
predict. In this reduction the environment uses only pure
strategies. The game matrix thus has |H| rows, indexed by
h € H and | X| columns, indexed by # € X. The matrix
entry that is associated with hypothesis h and instance « is

M(h,x):{ 1 ifh(x) # c(x)

0 otherwise.

2As was said above, much of this analysis can be generalized
to infinite sets. The cardinality of the set of examplesis actually
of no real consequence. Littlestone and Warmuth [15] generalize
their resultsto countably infinite setsof hypotheses, and Freund and
Schapire [9] and Freund [8] give generalizations to uncountably
infinite sets of hypotheses.



Thus, M(h, z) is1if and only if ~ disagrees with the target
c oninstance x. We call thisa mistake matrix.

The application of the algorithm LW described in Sec-
tion 2.4 to the on-line prediction problem is as follows.® We
apply the algorithm to mistake matrix M. On round ¢, given
instance z, LW providesuswith adistribution P, over rows
of M (i.e, over hypothesis space H). We randomly select
hy € H according to P, and predict g; = h:(x:). Next,
given ¢(x;), we compute M(h, ;) for each h € H and up-
date the weights maintained by LW. (Here, the strategy Q.
issimply the pure strategy concentrated on the :; column of
M.)

For the analysis, note that

M(P,z) = > Pi(h)M(h,z;)
heH

= Pr [h(xt) + c(a:t)]

= Pr [@t + c(a:t)].

Therefore, the expected number of mistakes made by the
learner equals

T T
;M(Pt, z) < min ;M(h, z0)+0(vV/TIn[H])
by a direct application of Corollary 2 (for an appropriate
choice of 3). Thus, the expected number of mistakes made
by the learner cannot exceed the number of mistakes made

by the best hypothesisin H by more than O (\ /T1In |H|) .

A more careful analysis (using Theorem 1 rather than
Corollary 2) givesabetter boundidentical to that obtained by
Littlestone and Warmuth [15] (not surprisingly). Still better
bounds using more sophisticated methods were obtained by
Cesa-Bianchi et a. [2] and Vovk [18].

This result can be straightforwardly generalized to any
bounded loss function (such as square loss rather than zero-
one mistake loss), and aso to a setting in which the learner
competes against a set of experts rather than a fixed set of
hypotheses. (See, for instance, Cesa-Bianchi et a. [2] and
Freund and Schapire[9].)

4 BOOSTING

The third topic of this paper is boosting. Boosting is the
problem of converting a“weak” learning a gorithm that per-
formsjust dightly better than random guessing into one that
performs with arbitrarily good accuracy. The first provably
effectiveboosting a gorithm wasdiscovered by Schapire[17].
Freund [ 7] subsequently presented amuch improved boosting
algorithm which is optimal in particular circumstances. The
boosting agorithm derived in this section is closdly related
to Freund and Schapire’'s more recent “AdaBoost” boosting
algorithm[9].

3Thereduction is not specificto the useof LW. Other algorithms
for playing repeated games can be combined with this reduction to
giveon-linelearning algorithms. However, thesealgorithms needto
be capable of working without complete knowledge of the matrix.
It should be sufficient for the algorithm to receive as input only
the identity and contents of columns that have been chosen by the
environment in the past.

Asin Section 3, let X be a space of instances, H a space
of hypotheses, and ¢ the target concept. For v > 0, we say
that algorithm WL isa~y-weak learning algorithmfor (#, ¢)
if, for any distribution Q over the set X, the algorithm takes
asinput aset of labeled examples distributed according to Q
and outputsa hypothesish € ‘H with error a most 1/2 — ,
i.e, Pryug [h(x) + c(x)] < % - .

Given a wesk learning agorithm, the goal of boosting
is to run the weak learning algorithm many times on many
distributions, and to combine the selected hypothesesinto a
final hypothesiswith arbitrarily smal error rate. For the pur-
poses of this paper, we simplify the boosting model further
to require that the final hypothesishave error zero so that al
instances are correctly classified. The agorithm presented
can certainly be modified to fit the more standard (and prac-
tical) model in which the final error must be less than some
positive parameter ¢ (see Freund and Schapire [9] for more
details).*

Thus, boosting proceedsinrounds. Onroundt = 1,...,7"

1. the booster constructs a distribution D; on X whichis
passed to the weak learner;

2. the weak learner produces a hypothesis h; € H with
error at most 1/2 — +:
P () #e(@)] <37
After 7" rounds, the wesk hypotheses hq, ..
bined into afinal hypothesisg,.
The important issues for designing a boosting algorithm
are. (1) how to choose distributions D;, and (2) how to
combinethe k;'sinto afina hypothesis.

41 BOOSTING AND THE MINMAX THEOREM

Before describing our boosting algorithm, let us step back for
a moment to consider the relationship between the mistake
matrix M used in Section 3 and the minmax theorem. This
relationship will turn out to be highly relevant to the design
and understanding of the boosting a gorithm.

Recall that the mistake matrix M has rows and columns
indexed by hypotheses and instances, respectively, and that
M(h,z) = 1if h(x) # c(x) and is zero otherwise. As-
suming (H, ¢) is y-weakly learnable (so that there exists a
v-weak learning algorithm), what does the minmax theorem
say about M? Suppose that the value of M isv. Then

min mgx M(P, Q)

., hp are com-

mFin max M(P,z) =

= v

mgx mFin M(P, Q)
= mgx rr}jn M(h, Q). (6)

4The standard boosting model usually also includes a “confi-
dence” parameter 6 > 0 which boundsthe probability of the boost-
ing algorithm failing to find afinal hypothesiswith low error. This
parameter is necessary if we assumethat the weak learner only suc-
ceeds with high probability. However, because we here make the
simplifying assumption that the weak learner always succeeds in
finding a weak hypothesiswith error at most 1/2 — v, we have no
need of aconfidenceparameter and instead require that the boosting
algorithm succeed with absol ute certainty.



(It is straightforward to show that, for any Q, mine M (P, Q)
isredized at apure strategy h. Similarly for P and «.)
Note that, by M’s definition,

M(h,Q) = Pr [h(z) # c(x)].

Therefore, theright hand part of Eg. (6) saysthat there exists
a disgtribution Q* on X such that for every hypothesis ,
M(h,Q*) = Pry~q- [h(z) # c(x)] > v. However, because
we assume v-weak |earnability, there must exist ahypothesis
h such that

P [h@) £ e@)] <3 -7
Combining these facts givesthat v < 1/2 — 4.

On the other hand, the left part of Eq. (6) implies that
there exists a distribution P* over the hypothesis space H
such that for every z € X:

M(P*, 2) = hPll;* [h(x) + c(x)] <v < %— v < %
That is, every instance « is misclassified by lessthan 1/2 of
the hypotheses (as weighted by P*). Therefore, the target
concept ¢ is functionally equivaent to a weighted mgjority
of hypothesesin .

To summarize this discussion, we have argued that if
(H,c) are y-weskly learnable, then ¢ can be computed ex-
actly as aweighted mgjority of hypothesesin H. Moreover,
the weights used in thisfunction (defined by distribution P*
above) are not just any old weights, but rather are a minmax
strategy for the game M.

A similar proof technique was previoudly used by Gold-
mann, Hastad and Razborov [12] to prove a result about the
representation power of circuits of weighted threshold gates.

4.2 |DEA FOR BOOSTING

The idea of our boosting algorithm then is to approximate ¢
by approximating the weights of this function. Since these
weights are a minmax strategy of the game M, we might
hope to apply the method described in Section 2.4 for ap-
proximately solving agame.

The problem is that the resulting algorithm does not fit
theboostingmodel. Recall that on each round, agorithm LW
computesadistributionover therowsof thegamematrix (hy-
potheses, in the case of matrix M). However, in the boosting
model, we want to compute on each round a distributionover
instances (columns of M).

Since we have an a gorithmwhich computes distributions
over rows, but need one that computes distributions over
columns, the obvious solution isto reverse the roles of rows
and columns. This is exactly the approach that we follow.
That is, rather than using game M directly, we construct the
dual of M which istheidentica game except that the roles
of the row and column players have been reversed.

Constructing the dual M’ of a game M is straightfor-
ward. First, we need to reverse row and column so we take
the transpose M. This, however, is not enough since the
column player of M wants to maximize the outcome, but
the row player of M’ wants to minimize the outcome (l0ss).
Therefore, we also need to reverse the meaning of minimum
and maximum which is easily done by negating the matrix
yiedding—MT. Finally, to adhereto our convention of losses

being in the range [0, 1], we add the constant 1 to every out-
come, which has no effect on the game. Thus, the dual M’
of M issimply

M=1-M'

where Lisan dl 1'smatrix of the appropriate dimensions.

In the case of the mistake matrix M, the dua now has
rows and columns indexed by instances and hypotheses, re-
spectively, and each entry is

1 ifh(z)=clx
M) = 1M = {5 gt

Notethat any minmax strategy of the game M becomes a
maxmin strategy of thegame M’. Therefore, whereas before
we were interested in finding an approximate minmax strat-
egy of M, we are now interested in finding an approximate
maxmin strategy of M’.

We can now apply agorithm LW to game matrix M’
since, by the results of Section 2.6, thiswill lead to the con-
struction of an approximate maxmin strategy. The reduction
proceeds as follows: On round ¢ of boosting

1. agorithm LW computes a distribution P, over rows of
M (i.e, over X);

2. the boosting algorithm sets D, = P, and passes D, to
the weak |earning a gorithm;

3. thewesk learner returns a hypothesis #; satisfying
P [he(e) = e(@)] > 3+

~L/t

4. the weights maintained by algorithm LW are updated
where Q; isdefined to be the pure strategy ;.

According tothemethod of approximately solvingagame
given in Section 2.6, on each round ¢, Q; may be a pure
strategy h; and should be chosen to maximize

M/(Py, hy) = Y Pi(a)M(z,he) = Pr [hy(x) = e(x)].

r~Py

In other words, h; should have maximum accuracy with re-
spect to distribution P,. Thisisexactly the goa of the wesk
learner. (Althoughit is not guaranteed to succeed in finding
the best k., finding one of accuracy 1/2 + + turns out to be
sufficient for our purposes.)

Finally, thismethod suggeststhat Q = (1/7)Y"_,Q: is
an approximate maxmin strategy, and we know that the target
cisequivaenttoamagjority of thehypothesesif weighted by a
maxmin strategy of M’. Since Q; isinour case concentrated
onpurestrategy (hypothesis) h;, thisleadsusto choose afina
hypothesish g, whichisthe(simple) mgjority of A1, . .., Ap.

43 ANALYSIS

Indeed, the resulting boosting procedure will compute afina

hypothesis %4, identical to ¢ for sufficiently large 7". We

show in this section how thisfollowsfrom Corollary 2.
Asnoted earlier, for al ¢,

M'(Pe k) = Pr [hi(2) = e(2)] >

NI

+ .



Therefore, by Corollary 2,

T
EZ Pta
t=1

NI

) < minZ ZM (x,he) + Dp.

- T t 1
Therefore, for dl «,
1 T
TZM/(x’ht)Z %-l—’y—AT > % (7)
t=1

wherethelast inequality holdsfor sufficiently large 7" (specif-
ically, when Ar < 7). Note that, by definition of M’,

Zt 1M (z, hy) isexactly thenumber of hypotheses i, which
agree W|thc oninstance x. Therefore, inwords, Eq. (7) says
that morethan half the hypothesesh, are correct on . There-
fore, by definition of hx,, we have that h g, (2) = c(x) for
al z.

For this to hold, we need only that Ar < ~, which will
bethe casefor T' = Q(In|X|/~?).

The resulting boosting agorithm, in which the game-
playing subroutine LW has been “compiled out” is shown in
Fig. 1. The agorithmisactualy quiteintuitivein thisform:
after each hypothesis h; is observed, the weight associated
with each instance « is decreased if h; is correct on that
instance and otherwise isincreased. Thus, each distribution
focuses on the examples most likely to be misclassified by
the preceding hypotheses.

In practice, of course, the booster would not have access
to the labels associated with the entire domain X. Rather,
the booster would be given alabeled training set and al dis-
tributionswould be computed over thetraining set. The gen-
eraization error of thefina hypothesis can then be bounded
using, for instance, standard “VC theory” (see Freund and
Schapire [9] for more details).

A more sophisticated version of this agorithm, caled
AdaBoost, is given by Freund and Schapire [9]. The advan-
tage of thisversion isthat the learner does not need to know
apriori the minimum accuracy rate of each wesk hypothesis.

5 SUMMARY

In sum, we have shown how the two well-studied learning
problems of on-line prediction and boosting can be cast ina
singlegame-theoretic framework in which thetwo seemingly
very different problems can be viewed as “duas’ of one
another.

We hope that the insight offered by this connection will
help in the development and understanding of such learn-
ing agorithms since an agorithm for one problem may, in
principle, be trandated into an agorithm for the other. As
a concrete example, the boosting algorithm described in this
paper was derived from Littlestone and Warmuth’sweighted
majority agorithm by following thisdua connection.
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Input: instance space X and target ¢
v-weak |earning algorithm

Set T = [%mm] (so that Ap < 7).

Sat 5 =1/(1++/2In|X|/T).
Let D1(x )_ 1/|X|forz € X.
Fort=1,...,7T:
e Passdistribution D; to weak learner.
o Get back hypothesis h; such that

P [hife) £ e(@)] < -

o Update D;:
Diga(e) = D) X { gt h(e) = c(z)

7 1 otherwise

where 7, is a normalization constant (chosen so that
Dy41 will be adistribution).

Output final hypothesish g, = MAX A1, . .., h7).

Figure 1. The boosting a gorithm.
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A PROOF OF THEOREM 1
Fort=1,...,7, wehave that

> wipa(i) Zwt ) pMEQY
i=1

Zwt - AIM(i, Q1))

o)

Thefirst line uses the definition of w;.1(¢). The second line

followsfrom the fact that 5* < 1— (1— )z for 5 > O and

z € [0,1]. Thelast line uses the definition of P;.
Unwrapping this si mple recurrence gives

ZwT+l < n- H

(Recdll that w1(7) = 1.)

IN

(Pe, Qu)).

M(P:, Q). (8)

Next, notethat, for any j,

> ety

Combining with Eq. (8) and taking logs gives

6Zt 1M(] Qt)

> wr41(j) =

(Ing) > _M(j, Q:)

t=1

Inn—i-ZIn

IN

M(P;, Q)

IN

T
Inn— (1-8) Y M(P,, Q)
t=1

sinceIn(l — z) < —« for z < 1. Rearranging terms, and
noting that thisexpression holdsfor any j gives

T T

> M(P;, Qi) < ag manM 5, Qi) 4 s Inn.

t=1 t=1
Since the minimum (over mixed strategies P) in the bound
of the theorem must be achieved by a pure strategy j, this
impliesthe theorem.



