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Abstract

We address the problem of learning and implementation in the Internet.

When agents play repeated games in distributed environments like the Internet,

they have very limited a priori information about the other players and the

payo� matrix. Consequently, standard solution concepts like Nash equilibria, or

even the serially undominated set, do not apply in such a setting. To construct

more appropriate solution concepts, we �rst describe the essential properties

that constitute \reasonable" learning behavior in distributed environments. We

then study the convergence behavior of such algorithms; these results lead us to

propose rather non traditional solutions concepts for this context. Finally, we

discuss implementation of social choice functions with these solution concepts,

and �nd that only strictly coalitionally strategyproof social choice functions are

implementable.

1



1 Introduction

The Internet is rapidly becoming a centerpiece of the global telecommunications in-

frastructure, and someday it may well provide all of our telecommunication needs. In

this paper we consider the Internet as an exercise in resource sharing. Users share

access to the underlying transmission facilities themselves; with the best-e�ort nature

of the Internet, where resources are not reserved and all packets are serviced on a

�rst-come-�rst-serve basis, one user's usage can a�ect the quality of service seen by

another user.1 Moreover, the Internet provides a seamless way of accessing remote

services, such as databases or web servers, which are themselves examples of shared

resources where usage can induce congestion. For example, delays on the world wide

web have increased signi�cantly in recent years {it is now sometimes waggishly re-

ferred to as the \world wide wait" { and service providers such as America Online
are currently facing lawsuits over their access delays. Both of these are cases where
overuse has resulted in deteriorating service quality for all users.

In each case, aggressive applications (or users) get more than an equal share of

these shared facilities, and so the Internet is likely to be a place where noncooper-
ative game theory is particularly relevant. For instance, web browsers which open
more TCP2 connections receive more bandwidth (at the expense of less opportunistic
users of the Internet).3 Similarly, users that modify their TCP implementation to
be less responsive when congestion is detected can obtain much larger shares of the

bandwidth (Zhang 1989, Demers et al. 1990)
For the Internet's architecture to be viable in the long-term, it must not be vul-

nerable to such greedy users, and thus it must be designed with incentives in mind.
Network architects are increasingly addressing the incentive properties of their de-
signs. For example, McCanne et al. (1996) discuss the incentive issues in packet

dropping algorithms and its implications for layered multicast; Nagle (1985) was the
�rst to explore the incentive issues inherent in packet scheduling in network routers,
and this has been the focus of much subsequent research (see, for example, Sanders
1988, Demers et al. 1990, Shenker 1990 and 1995, Korilis and Lazar 1993, Korilis et

al. 1995); Resnick et al. (1996) have proposed market-based solutions to the prob-

lem of network address allocation and route advertisements. Also, Networks with
multiple qualities of service raise interesting incentive issues, and this has promoted

much of the recent interest in pricing and accounting for computer networks (Cocchi
et al. 1993, Clark et al. 1992, MacKie-Mason and Varian 1993 and 1994, Murphy

1This e�ect does not occur on telephone networks because the underlying transmission facilities
are not shared on a packet-by-packet basis; bandwidth is reserved for each call and so the quality
of service perceived by a particular user is independent of the presence of other callers.

2TCP stands for Transmission Control Protocol, and this is the protocol that governs the band-
width usage in �le transfers. In particular, TCP is designed so that 
ows slow down their rate of
transmission when they detect congestion.

3In the Netscape Navigator browser, the maximal number of TCP connections can be set by the
user, so that this form of \greediness" is under user control!

2



and Murphy 1994, Mendelson and Whang 1990).

For similar reasons, many theorists have begun applying game theory to the Inter-

net (see, for example, Ferguson 1989, Ferguson et al. 1989, Gupta et al. 1994, Hsiao

and Lazar 1988, Korilis et al. 1995 and 1996). Most of these analyses assume that

the appropriate solution concept { the set of asymptotic plays in a repeated game {

is contained within the set of Nash equilibria. To the contrary, in this paper we argue

that Nash equilibria are not necessarily achieved as a result of learning in the Internet

setting, and that, in fact, distributed settings like the Internet require a dramatically

di�erent solution concept.

Because of its increasing centrality in our lives, it is important that we achieve

e�cient/socially desirable allocations of service in the Internet. This will require

understanding the nature of learning and convergence in the Internet, and other dis-

tributed settings, so that we can identify the appropriate solution concept. Learning
and convergence, and its implications for mechanism design in the Internet, is the
subject of this paper.

For a concrete example of the incentive issues we are concerned with, consider the

scenario (which is more fully described in Shenker 1995) where several Internet users
are simultaneously sending data across a particular link. The delay experienced by
the packets is a function of the total load { the aggregate bandwidth { on the link.
Each user's utility function Ui depends on her average bandwidth (transmission rate),
ri, and on the average queueing or congestion experienced by her packets, ci. Users
control their bandwidth usage ri, and the network determines the vector of average

queueing c as a function of the set of bandwidths r: i.e., c = C(r) where C re
ects
the particular packet scheduling algorithm used by the network (and must obey the
sum rule that

P
iCi(r) = f(

P
i ri) for some constraint function f because the overall

average queue length is independent of the order in which packets are served). This
\congestion game", where each players usage can impose delay on other players, can

be modeled as a normal form game, with the bandwidths ri being the actions and the
payo� being Ui(ri; Ci(r)). The equilibria or, more generally, the solution concept of
this congestion game will determine the allocation of network bandwidth among these

users, and thus has signi�cant practical rami�cations, since typically the designer can
choose the scheduling algorithm C(�) in order to attain some e�cient or fair outcome.

This congestion game also arises in many other settings. For instance, ri could
be the usage level of a shared database (such as a video or text library) or web

server and ci as the processing delay, or ri could be the average time connected to
an online service and ci the expected time required to connect. These examples

suggest that there are many game-like situations arising in distributed systems like

the Internet. We call them distributed systems because the users are geographically

dispersed and are accessing the resource through the network, and so it is quite likely

that the agents have little or no information about each other. The `games' in these
distributed systems share the feature that the agents interact only through their joint

use of a shared resource; for instance, the only form of interaction between users in
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the congestion game is that their packets that happen to collide somewhere inside

the network. Moreover, the users probably know very little about the detailed nature

(e.g., capacity, latency, etc.) of the resource itself; to use the congestion game again

as a speci�c example, users have little knowledge of the underlying network topology

and characteristics, so they can't always distinguish between performance due to

native network characteristics (e.g., speed-of-light delays in transmission links) and

performance due to network congestion (e.g., queueing delays in routers).

In this paper we ask two questions: 1) What is the appropriate solution concept

for the congestion game and other games that arise in distributed settings? 2) Given

this solution concept, can we design scheduling or sharing algorithms to achieve the

allocations we desire? If the congestion game were a canonical one-shot game with

common knowledge, then one could invoke standard solution concepts such as Nash

equilibria or the rationalizable set. However, the congestion game is neither a one-shot
game nor one with common knowledge. The data transmissions persist for a period of
time, and the users are able to adjust their bandwidth at any point while transmitting.
Thus, this should be modeled as a repeated game rather than a one-shot game.

Moreover, because users are geographically distributed and have no direct contact
with, or knowledge of, each other, solution concepts based on common knowledge are
not applicable here. We instead must look at the process of learning through repeated
play. Traditional approaches to learning through repeated play, which we discuss more
fully in Section 5, typically assume the players use their experience to build a model
of the likely actions of other players, and then play some form of best response (either

exact best response as in the original `�ctitious play' approach (Robinson 1951) or
a stochastic best response as in Fudenberg and Levine 1993). Bayesian learning,
as in Kalai and Lehrer (1993), is a particular example of this approach, whereby
agents begin the game with priors about the expected play of individuals and then
update those beliefs as they observe the play. Many of the analyses of such learning

algorithms suggest that they result in either Nash or correlated equilibria (see Kalai
and Lehrer 1993, Fudenberg and Levine 1993, Foster and Vohra 1996).

These results, while important to understanding the rational foundations of equi-

libria, do not apply in the distributed setting. Due to the factors we discussed above,
in terms of the underlying game users know their own action space, and can observe

(after some delay) the payo� resulting from a particular action at a particular time,
but do not know their own payo� function, nor any other player's payo� function,

and cannot observe the actions of other players. Given this very limited information,
users have no sense of what other players are doing, nor any idea of what would con-

stitute a best reply if they did, and so users cannot adopt a �ctitious play approach.

Instead, we posit that users (or the software on the machines they are using) employ

simple learning algorithms that experiment with various actions and then focus their

play on the actions providing the highest payo�s. This is similar in spirit to the
`stimulus-response' approaches studied in Roth and Erev (1995), Borgers and Sarin

(1996), Erev and Roth (1996). Often the work on such learning approaches concen-
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trates on matching the results of the learning algorithm to experimental data. Our

focus here is quite di�erent, and has three distinct components.

First, we want to understand the nature of learning in settings like the Internet,

where players are geographically distributed and have little or no information about

each other and the underlying game. In Section 2 we discuss some of the relevant

considerations arising in the Internet and other distributed settings. We then present

criteria that all `reasonable' learning algorithms in this setting must satisfy. The key

components are optimization, monotonicity, and responsiveness.

Second, in Section 3, we address the asymptotic result of play among a set of

reasonable learners. In a previous paper (Friedman and Shenker 1995), we analyzed

one particular family of learning algorithms with these properties. Here, we attempt

to identify the class of all learning algorithms that can be considered reasonable, and

then study the union of asymptotic plays for all populations of reasonable learners.
In other words, if all we know is that agents are reasonable, what predictions can
we make about their asymptotic play? We �nd that the asymptotic play always
resides in the serially unoverwhelmed set (de�ned in Section 3). We are not able to

show, and in fact do not believe, that reasonable learning algorithms actually visit
(with signi�cantly large probability) all points in the serially unoverwhelmed set. We
conjecture instead that the tight characterization of asymptotic play { the solution
concept { is the Stackelberg undominated set. Some simulation data supporting this
conjecture is presented.

Third, in Section 4, we discuss the implications of these convergence results for

mechanism design and explore which social choice functions can be implemented in
these distributed setting. We �nd that implementable social choice functions must
be strictly coalitionally strategyproof (see Section 4 for a de�nition). We present
examples of some implementable social choice functions.

2 Learning in Distributed Systems

In this section we �rst informally discuss the nature of learning algorithms appropriate
for the Internet. We then formalize these notions of what makes a reasonable learning

algorithm into precise de�nitions and provide some examples. It is important to
emphasize that we are not claiming that these algorithms are justi�ed on some deep

sense of being truly rational or optimal in any precise sense. We are merely trying
to model the kinds of adaptive learning procedures that are either currently or will

potentially be used on the Internet.

2.1 Learning in the Internet

We think that many of the game-theoretic properties of the Internet are common
to many other distributed settings, but for concreteness in the paragraphs below we
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focus solely on the Internet context. There are four main aspects of the Internet

which in
uence the game theoretic foundations which we propose.

First, as we discussed above, players typically have extremely limited information.

They do not know who the other players are, or even how many, and they do not ob-

serve other players' actions. In addition, because they are not aware of the underlying

network topology or characteristics, players typically don't know the payo� functions;

that is they don't know how their payo�s depend on the action of other players. The

only information available to users are their own actions and the resulting payo�s

(and they may only learn the payo� after some delay). This lack of information is

actually a central design principle of the Internet. The architectural notion of layering

(see Tanenbaum 1996 for a textbook discussion of layering) of network protocols is

intended to allow computers to utilize the network without knowledge of the underly-

ing physical infrastructure, and to allow applications (such as email, or �le transfer)
operate without detailed knowledge of the underlying current state of congestion.

Second, players do not carry out any sophisticated optimization procedures. Often
the actual decisions about resource utilization are made by computer programs (either

the application, or lower level protocols like TCP) without direct human intervention.
Thus, the \learning algorithm" must be embedded in software, and that limits the
extent the 
exibility and complexity of the optimization involved. Moreover, such
learning algorithms are intended to be \portable" { i.e., usable on any machine located
anywhere { and so are expressly designed to not rely on the details of the speci�c
system. In particular, a Bayesian approach based on updating priors is not realistic

here, since the layering of network protocols ensures that any priors would be quite
ill-informed. Even in cases where the resource decisions are made directly by the
human user, it seems unlikely that the user will be making complex optimization
decisions given the very meager information available. Typically the user actions in
such cases are limited to adjusting parameter settings for underlying programs (such

as adjusting the number of TCP connections a browser opens) rather than actually
exercising detailed control.

Third, there is no synchronization and no natural unit of time on the Internet.

Players do not all update their actions at the same time (as in the standard repeated
game literature). To the contrary, the rate at which the updating occurs can vary by

many orders of magnitude. Note that there is a delay between when agents update
their action and the time they notice a change in their payo�s; for the congestion

game described in the Introduction, this delay is typically on the order of a roundtrip
time (the time it takes a packet to get to its destination and its acknowledgement to

make the return trip). These roundtrip delays vary from 100s of microseconds if the

destination is on the same ethernet (the delay is due to operating system overhead),

to 100s of milliseconds if the destination is across the country (the delay is the speed-

of-light delay of propagation). Standard control-theoretic results suggest that control
loops should not update faster than the roundtrip time. Since updating rates are

tied to roundtrip times, the variation in update rates will be quite large. At the
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same time as various algorithms are learning, people using the internet will also be

learning. Their \updating rates" are most likely on the order of at least seconds,

if not signi�cantly slower. Thus the standard model of a repeated game in which

players are synchronized can be misleading in the Internet context.4

Fourth, and �nally, it is neither the long term nor the short term, but the medium

term as discussed by Roth and Erev (1995) that is relevant. Players typically use the

system for many time units, measured in their appropriate timescale; however, the

nature of their payo� function changes fairly often as new players enter the system,

or as the system con�guration changes { often due to equipment failures for which

the network automatically compensates. The important point here is that players do

not know directly that the payo� function has changed; they can only observe the

payo�s they get and so can't distinguish between when another player changes her

action and when the environment itself changes. This requires the learning algorithm
to always be responsive, as we discuss in the next section.

In such settings, there are three primary requirements that one would expect of
any reasonable learning algorithm. One requirement is that, against a �xed (i.e., a

single player) payo� function, the player learns to achieve the optimal payo�. Another
reasonable requirement is that the learning algorithm be monotonic in the payo�s;
that is, if we modify the payo� function by raising the payo�s for a certain action,
then the probability of the agent playing that action should increase. This is similar
to the \Law of the E�ect" which is well know in the psychology literature, and
is discussed by Roth and Erev (1995) as a fundamental property in experimental

learning. Finally, many of the learning algorithms in the literature decrease the
rate at which they respond with time; in settings like the Internet, where the payo�
function changes frequently as players come and go, agents must always be prepared
to respond to a new situation in a bounded amount of time. Thus, there are three
informal components of being a reasonable learner: optimization, monotonicity, and

responsiveness. We now proceed to make these concepts precise, but �rst we must
describe our basic model.

2.2 Model

In this section we describe a simple model to capture the key elements of a distributed
setting such as the Internet. Consider a game with P players where each player has
a �nite action set Ai. The payo�s of the game are described by a time dependent

(and possibly stochastic) function G : A1 � A2 : : : � AP � < 7! [0; 1]P , where for

convenience, and to simplify notation, we have restricted payo�s to [0; 1]. The game

is played in continuous time; ai(t) 2 Ai denotes player i's action at time t and

Gi(a(t); t) denotes her instantaneous payo� 
ow at time t. A stable game is one in
which G(a; t) = G(a; t0) for all t; t0, so there is no time dependence. For stable games

4Laguno� and Matsui (1995) have also made a similar point about the role of asynchrony in
repeated games.
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< G;A > we will drop the last argument from the notation and just write Gi(a(t)).

Later we will refer to games which are stable after time t.

While the payo�s arise from the game structure, each individual player is com-

pletely unaware of the presence of other players and of the payo� function G. Thus,

from the perspective of an individual player, we need only model the fact that they

receive some payo� 
ow �i(t). This payo� 
ow �i(t) can depend explicitly on time

(perhaps in a stochastic manner) and on all the player's previous actions.

Preferences over di�erent payo� 
ows can be extremely complex.5 Here we restrict

our attention to a simple case by assuming that players have a �xed sampling rate,

evaluating average payo�s at discrete and deterministic epochs.6 In our model, a

player has discrete time horizons t1i ; t
2
i ; : : : at which she evaluates her payo� as some

possibly weighted average of her 
ow payo�s, and then at the end of the epoch can

decide alter her action. We let ai(n) be the player i's action chosen at tni which is
then maintained until tn+1i . Note that there is no synchronization in the system, so
the time horizons are di�erent for each player; i.e., we can have, and generally do
have, tni 6= tnj for i 6= j.

De�ne

�i(n) =
Z t

n+1
i

tn
i

Gi(a(t); t)d�i

 
t� tni

tn+1i � tni

!
;

where �i(t) is some cumulative distribution function with �i(0) = 0, �i(1) = 1, and

�i(s) is nondecreasing in s. Thus �i(n) is a weighted average of �i(t) over the time pe-
riod [tni ; t

n+1
i ]. Let hai (n) = (a(1); a(2); : : : ; a(n�1)), h�i (n) = (�i(1);�i(2)); : : : ;�i(n�

1)) and hi(n) = (hai (n); h
�
i (n)) be player i's history up to period n, and let Hi(n) be

the set of all possible histories for player i. �i(n) is a function of the time n, the
current action ai(n), the history hi(n) and may also be stochastic. For the remainder

of this section we will write �i(ai(n); n; hi(n)). In this formulation the other players
are modeled as part of the environment; the fact that their behavior is a�ected by
agent i's history of play is incorporated into �'s dependency on hi.

Agent i uses a learning algorithm to choose ai(n). Since, in this setting, agents
cannot observe the actions of other agents, their choice of ai(n) can only depend on
the history of agent i's own plays and own payo�s hi(n). With such little a priori

information about the game, players must experiment with various actions in order

to learn about the resulting payo�s. Such experimentation is often best done with
randomized algorithms. While randomization is often extremely useful, it can be

unlucky, and so we must allow for occasional `mistakes' (i.e., suboptimal behavior).
We will consider learning which is almost optimal almost all of the time. This type

5For example, for �le transfers or email players' preferences depend mainly on the total time
required by the transfer, while for voice or video consistency is crucial; average rate can be compen-
sated for by adjusting �delity.

6Thus, we are not considering anything as complex as the equilibria of repeated games in con-
tinuous time (see, e.g. Stinchcombe 1992 for a discussion), but attempting to analyze the behavior
of fairly simple learners.
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of learning is known as PAC learning { probably almost correct learning { and can

be extremely powerful. See, e.g. Valiant (1984) or Blumer et. al. (1989).

Given a payo� function �i and history hi(n) we must be able to compare the

value of di�erent actions. One simple method, which we will choose for its simplicity,

is to compare the means of the random variable �i(ai; n; hi(n)). For any � > 0,

we will write �i(ai; n; hi(n)) �� �i(bi; n; hi(n)) to mean that E[�i(ai; n; hi(n))] �
� + E[�(bi; n; hi(n))].

In the remainder of this section we will consider a single player, i and thus will

drop the subscript, which will be implicit. Let E(N) be an environment de�ned over

N periods, i.e. a payo� function de�ned on 0 � n < N .

2.3 \Reasonable" Learning Algorithms

As we discussed in Section 2.1, the three requirements of a reasonable learner are
optimization, monotonicity, and responsiveness. These informal concepts can be made
more precise with the help of the following de�nitions.

The requirement of optimization is simply the notion that, in an environment
has a single action that is better { provides higher payo�s { than any other, the
learning algorithm should eventually learn to almost always take this optimal action.
Certainly one cannot imagine reasonable learning algorithms doing otherwise.

De�nition 1 An environment E(N) is �-simple with optimal action a� 2 A if, for
all 0 � n < N ,

�(a�; n; h(n)) �� �(a; n; h(n))

for all a 2 A such that a 6= a�, for all h(n) 2 H(n).

A reasonable learner should be able to learn the optimal action in such games if
N is su�ciently large. A learning algorithm or learner, l, is a mapping from histories
h(n) to probability distributions over actions in A. Given an environment E(N) this

induces a probability distribution over the set of all histories, H(n), which we will
denote �l;E(N).

De�nition 2 (Optimization) A player is a simple (�; �;N; !) learner if, for any

E(N 0) which is �-simple with optimal action a� 2 A, such that N 0 > N , and any m

such that N < m < N 0, there exists a subset Ĥ(m) � H(m) such that �l;E(N)(Ĥ(m)) >

1� !, and for all h(m) 2 Ĥ(m), Pr[a(m) = a� j h(m)] � (1 � �).

Simple learners can �nd the optimal action in simple games, in the sense of playing
the optimal action with high probability for \most" histories, where \most" is de�ned

by the probability distribution induced by the learner. Note that the probabilistic

formulation of the above de�nition, with the allowance of occasional `mistakes', is
necessary since a randomized learning algorithm can be `unlucky.' Now we attempt

to capture the more general idea of responsiveness, or medium term learning.

9



De�nition 3 (Responsiveness) A learner is (�; �;N; !)-responsive if, given any

environment E(N 0) and any N < m < N 0 such that E(N 0) restricted to [m � N;m]

is �-simple with optimal action a� there exists a subset Ĥ(m) � H(m) such that

�l;E(N 0)(Ĥ(m)) > 1 � !, and for all h(m) 2 Ĥ(m), Pr[a(m) = a� j h(m)] � (1� �).

Being (�; �;N; !)-responsive requires that the learner algorithm respond to changes

in the environment within a �nite time, N ; that is, in any period of length N during

which the environment has been �-simple, the learning algorithm must converge (in

a probabilistic sense) to the optimal action.7

Note that responsiveness is strictly stronger than being a simple learner. For

example, consider the following \quasi-static" environment in which every � periods

the optimal action may change, but in between changes the environment is �-simple.

Let I(n) be the indicator variable which is 1 when the agent chooses the optimal

action in time period n and 0 otherwise. Let � be a random variable with mean � .

Theorem 1 In the quasi-static environment

lim
�!1

lim
m!1

1

m�

m�X
t=0

I(t) � (1� �)(1� !);

almost surely, for any (�; �;N; !) responsive learner.

Proof: Let � = rN , for r > 4, and consider a period of length � where the environment
is �-simple. With probability greater than 1=

p
r the period is longer than

p
rN .

Then, for that period E[I(T )] � (1 � �)(1 � !)(r �p
r)=r. Note that this bound is

independent of all previous periods and since with probability 1 � 1=
p
r the bound

holds, we get limm!1
1
m�

Pm�
t=0 I(t) � (1 � �)(1 � !)(1 � 1=

p
r)(r � p

r)=r; almost

surely, and taking the limit as r!1 completes the proof. 2
Our next de�nitions formalize the notion of monotonicity or the \Law of the

E�ect" (Thorndyke 1898). First we de�ne what it means for one history to be better
with respect to an action.

De�nition 4 Given two histories h(n) and ~h(n) we say that h(n) is higher with

respect to action a 2 A if ha(n) = ~ha(n), and (h�(n))m � (~h�(n))m whenever
(ha(n))m 6= a and (h�(n))m � (~h�(n))m whenever (ha(n))m = a.

De�nition 5 (Monotonicity) A learner is monotonic if for any pair of histories

h(n); ~h(n) such that h(n) is higher with respect to a 2 A than ~h(n), then

Prob[a(n) = a j h(n)] � Prob[a(n) = a j ~h(n)]
7Most adaptive learning algorithms in the literature (Fudenberg and Levine 1993, Erev and Roth

1996, Borgers and Sarin 1995) are not adaptive, because as time goes on they become less reactive to
changes in their environment. In theory, Bayesian-type learners (e.g. Kalai and Lehrer 1995, Foster
and Vohra 1996) could satisfy responsiveness by including the possibility of switching in the priors.
Clearly this would result in an algorithm that is extremely di�cult to implement and completely
impractical.
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Combining these various de�nitions, we can now precisely de�ne what we consider

to be a reasonable learning algorithm in distributed settings like the Internet.

De�nition 6 A learner is an (�; �;N; !) reasonable learner if it is monotonic and

(�; �;N; !) responsive.

Note that monotonicity allows us to make statements about environments which

are not \simple". For example, in an environment there may be several actions, any

one of which may be optimal depending on exogenous e�ects, but there may also

be actions which are clearly suboptimal. In this case we can show that such clearly

suboptimal actions will be played rarely by a reasonable learner.

Theorem 2 Consider an environment E(N 0). Assume that there is an action a� 2 A

and a set of actions ~A � A such that all actions in ~A are always worse than a�,
�(a�; n; h(n)) �� �(a; n; h(n)) for all a 2 ~A. If a player is a (�; �;N; !) reasonable
learner with N 0 > N then for any m with N < m < N 0 there exists a subset Ĥ(m) �
H(m) such that �l;E(N 0)(Ĥ(m)) > 1 � !, and for all h(m) 2 Ĥ(m), Pr[a(m) 2
~A j h(m)] � �.

Proof: Consider the environment in which has the same payo�s as E(N 0) when either
the action a = a� or a 2 ~A, but has zero payo� for any other action. This environment
is �-simple with optimal action a�, and thus Pr[a(m) 2 ~A j h(m)] � � by Theorem 1.
However for all a 2 A this environment is higher than E(N 0). Thus in E(N 0), the
probability of playing a 2 ~A can not be larger than this. 2

2.4 Examples

Each of the three notions of optimizing, monotonicity, and responsiveness, that com-
prise our de�nition of reasonableness seem, on the surface, to be quite natural and
undemanding requirements. Surprisingly, few formal learning algorithms in the eco-
nomic literature satisfy this de�nition of reasonableness.8 Typically the learning

algorithms in the standard literature do not have the responsive property; their re-

sponsiveness to changes in payo�s, or their level of experimentation, diminishes over
time. We also note that there are no deterministic algorithms which are responsive.9

We now present three examples of reasonable learning algorithms.

2.4.1 Stage Learners

The �rst is a \stage learner", which very simply demonstrates a reasonable learner

satisfying the requirements. The stage learner SL� learns in \stages" of length 1=�3.

During each stage, the action that had the highest average in the previous stage

8With suitable choices of parameters Roth and Erev's (1995) model of learning is \reasonable."
9A slight variant of this statement is proven in Fudenberg and Levine (1995).
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is played with probability 1 � �, while the remaining actions are each played with

probability �=(jAj � 1). The choice of action in any time period is i.i.d. Note that

the stage learner almost always tries to play the action with highest expected value,

but `experiments' with su�cient frequency to notice changes in the environment and

react to them.

Theorem 3 For su�ciently small � > 0 SL� is an (�;
p
�; 1=�3; exp(�1=�)) reasonable

learner.

Proof: Assume that during a particular stage of length 1=�3 the environment is �-

simple with optimal action a and � =
p
�. De�ne �̂(a0; n; h(n)) = �(a0; n; h(n)) �

E[�(a; n; h(n))]. In this environment E[�̂(a; n; h(n))] = 0 and E[�̂(a0; n; h(n))] �
�p� for all a0 6= a. Note that V ar[�̂(a0; n; h(n))] � 1 for all a0 2 A, since �(�) 2 [0; 1].

De�ne a stage to be `normal' if each action has been played at least (2jAj�2)�1
times. The expected number of plays for any particular action is greater than
(jAj�2)�1 while the standard deviation (of the number of times it is played) is less

than (
q
2jAj�2)�1. Thus, from the central limit theorem, the probability of an ac-

tion not being played at least (2jAj�2)�1 times is less than erf((
q
2jAj�2)�1) which

is bounded by exp(�(
q
jAj�)�1) so the probability of a stage being normal is greater

than (1� exp(�(
q
jAj�)�1))jAj which is approximately 1� exp(��1).

De�ne 
(a0) to be the average payo� for action a0 2 A over a normal learning
stage. The standard deviation of 
(a0) is less than

p
2m�2 while the average is 0 if a0

is the optimal action and less than �p� if a0 is not optimal. Thus, the probability

of the optimal action having average less than �p�=2 is less than exp(�1=
q
jAj�)

since the sequence �̂ is a martingale. (See, Hoe�ding, 1994 for details.) This is also
the probability of a nonoptimal action having payo� greater than �p�=2. Thus,
the probability of the optimal action having the highest payo� is greater than (1 �
exp(�2=

q
jAj�))jAj which is approximately 1 � exp(1=�), completing the proof. 2

2.4.2 Schizophrenic Learners

The schizophrenic learner is a slightly more complicated version of a stage learner,

and will prove to be a useful example in Section 3. A schizophrenic learner with p per-
sonalities, consists of p stage learners who take turns. In period t the t (mod p) learner

(personality) plays. It is straightforward to show that such a learner is reasonable.

Corollary 1 For su�ciently small � > 0, a schizophrenic learner made up of p simple

stage learners where each SL� is an (�;
p
�; 1=�3; exp(�1=�)) reasonable learner, is an

(�;
p
�; p=�3; exp(�1=�)) reasonable learner.

Note that from any reasonable learner we can construct its related schizophrenic

version, by interlacing p such learners.
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2.4.3 Responsive Learning Automata

Our third example is the responsive learning automata (RLA) which was studied

in Friedman and Shenker (1995) and motivated the analysis in this paper. RLAs

are based on algorithms studied in the engineering literature which have been im-

plemented for many network optimization tasks (see e.g., Chrysalis and Mars 1981,

Mason and Gu 1986, and Shrikantakumar 1986). They are also closely related to

several models proposed for experimental economic learning (Arthur 1991, Mookerji

and Sopher 1996, Roth and Erev 1995). An RLA consists of a probability vector,

which can be interpreted as a mixed action at every choice epoch { with probability

pa(n) action a is played. After the payo� is observed, the probability vector pa(n+1)

is updated by the following rule.

pa(n + 1) = pa(n) + �2�(n)
X
j 6=i

anj p
n
j

8b 6= a pn+1b = pnb � �2�(n)ab(n)pb(n)

where

ab(n) = min[1;
pb(n) � �2=2

�2pb(n)�(n)
]:

We will denote these learners by RLA�.

Theorem 4 For � > 0 su�ciently small, there exist constants �; � > 0 such that

RLA� is an (�; �; 1=�6; � exp(��=�)) reasonable learner.

Proof: This follows directly from Friedman and Shenker (1995) Theorem 1.

3 Groups of Reasonable Learners

3.1 Context and De�nitions

Our discussion of learning algorithms considered an environment seen by a single

player which consisted of a general payo� function �, with no restriction on how

these payo�s were generated. Here we return to the original situation where this

payo� function arises from a game G involving P players, each with action space Ai.
When focusing on a single player in a general environment, results like Theorem 2

allow us to make some statements about the asymptotic nature of play of a reasonable
learner as de�ned in Section 2.3. Similarly, in this section we assume that each

of the P players is a reasonable learner, and ask what the asymptotic nature of

joint play is. This asymptotic set of actions is the solution concept appropriate for

learning in distributed systems like the Internet. Note that the solution concept

must contain the eventual play of all possible sets of learning algorithms. We are
not interested in results for one particular learning algorithm, even if the set of such
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learners have particularly nice convergence properties. All we can assume is that

learners are reasonable, not that they conform to some speci�c algorithm.

Milgrom and Roberts (1990) de�ne an \adaptive learner" as one who eventually

eliminates actions which are strictly dominated (in pure actions) over time. They

prove that when a group of adaptive learners play together they converge to the seri-

ally undominated set, which is the result of the iterated deletion of these dominated

actions.

In this section we parallel those results with two main distinctions. First, we only

assume that players are reasonable learners, as de�ned in the previous section. In

this setting it is not true that players always eventually abandon dominated actions.

Players cannot explicitly identify dominated actions (because they don't know the

payo� matrix) and furthermore we show that in some cases dominated actions can

even be played in equilibrium. Thus, we can only impose the requirement of reason-
ableness (as we have de�ned it) on learners. Second, since in this distributed setting
no action can ever be completely discarded, the convergence to any set of actions (or
the elimination of others) only approximate.10 The fact that all actions remain in

play forever makes the analysis of their joint play quite delicate.
As we shall see, a set of reasonable learners need not converge to the serially

undominated set. The main result of this section is that a set of reasonable learners
eventually play in the serially unoverwhelmed set, that is, the set remaining after
iterated elimination of overwhelmed actions. We do not believe this characterization is
tight, in that there are some games where no set of reasonable learners will eventually

play (with signi�cant probability) in some portions of the serially unoverwhelmed set.
However, the serially unoverwhelmed solution concept is the tightest \local set based"
solution concept possible, where local set based solution concepts are the natural
generalizations of the serially undominated set. Moreover, we present another set,
the Stackelberg undominated set, and conjecture that it is tight. The Stackelberg

undominated set is a superset of the serially undominated set.
Before proceeding, we require several de�nitions.

De�nition 7 A \local" dominance operator on a stable game < G;A > is a set of

monotone operators, one for each i, �G
i : 2A ! 2Ai where �i only depends on player

i's payo� matrix Gi. (Note that an operator is monotone if for �; � 2 2A such that if
� � �, then �G

i (�) � �G
i (�).)

Given a stable game G and a set of local dominance operators �i de�ne �G(�)
by (�G(�))i = �G

i (�) for each i and � � A. Using this operator we de�ne a solution
concept.

De�nition 8 A local set based solution concept (LSB) is an operator �1 which
maps games into action sets and is de�ned as �1(G;A) = limm!1(�

G(A))m.11

10Recall that a reasonable learner, in order to remain responsive, can never completely stop playing
any action since an exogenous e�ect could modify the payo�s for that action making it optimal.

11The limit exists since �G is a monotone set operator, and A is �nite.
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One standard LSB is de�ned using dominated actions. The local dominance op-

erator is given by �G
i (�) = fai 2 Ai j 6 9bi 2 Ai s:t: 8a�i 2 � Gi(a) < Gi(bi; a�i)g.

We will denote the LSB for this operator byD1, and so D1(G;A)denotes the serially

undominated set of the game < G;A >. The set of rationalizable actions is also an

LSB.

The relevant LSB for decentralized games is based on unoverwhelmed actions.

The local dominance operator is

OG
i (�) = fai 2 Ai j 6 9bi 2 Ai s:t: 8a�i; b�i 2 � Gi(a) < Gi(b)g:

We will denote the LSB that results from the iteration of this operator by O1, and

refer to O1(G;A) as the serially unoverwhelmed set of the game < G;A >.

For comparison, note that one action dominates another if all payo�s for the one

are greater than the other for all give �xed sets of other players' actions. In contrast,
one action overwhelms another if all payo�s, over all sets of other players' actions,
for the one are greater than all payo�s , over all sets of other players' actions, for
the other. Domination compares the `vector' of payo�s term-by-term; overwhelming
compares the entire `bag' of payo�s available, and thus is a much stricter property.

For any game, the serially unoverwhelmed set contains the serially undominated

set, which contains the set of rationalizable actions.

3.2 Convergence Results

Given a �nite set of reasonable learners L = fL1; : : : ; Lmg where each Li is an

(�i; �i; Ni; !i) reasonable learner, let (�; �;N; !)(L) = (maxi �i;maxi �i;maxiNi;maxi !i).
Now consider a repeated game played by these players with payo� functions Gi(a(t); t)
and let �+i be the largest time interval between player i's decision epochs, ��i the small-

est, and let �+(L) = maxi �
+
i and ��(L) = mini �

�
i . De�ne �(L) = N(L) �

+(L)

��(L)
and

let jAj = �jAij.
Note that a set of learners L and a game < G;A > induce a measure over histories

H by their play, which we will call �L;G. We now present our main result which is

that decentralized learning leads to the serially unoverwhelmed set.

Theorem 5 Let L be a set of reasonable learners playing game G(a(t); t) which is

stable after time t. Then for any !̂ > 0 there exists (�0; �0; N 0; !0) > 0 such that for any

s > t+N 0, if (�; �;N; !)(L) � (�0; �0; N 0; !0), and !(L)�(L) � !̂ then there exists a set

Ĥ(s) � H(s) with �L;G(Ĥ(s)) � 1�! such that Pr[a(s) 2 O1(G(�; u)) j h(s)] � 1��0.

Proof: Given a game G de�ne �k;i = minfGi(a)�Gi(a
0) j ai 2 Ok(A); a0i 62 Ok(A)g,

and note that by the de�nition of Ok(A) we know that �+k;i > 0. Let � = maxk;i �k;i.
De�ne time interval k by Ik = [t+k�+(L)N(L); (t+k+1)�+(L)N(L)]. Note that

in I1 all play is in O
0(G). We proceed inductively. Assume that for any s in period Ik

learner i is playing in Ok(A) with probability greater than 1��(L). If m�(L)+�i � �
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then learner i is playing in an environment in which all actions not in Ok+1 must be

exceeded in expected value by those actions in Ok+1 and thus we can apply Theorem

2 to show that the learner learns to play these actions in period k+1 with probability

less than �i with probability greater than 1�!i. The probability that the player does

this at every interval in period k+1 is greater than 1��(L)!(L). Thus the probability
that all learners do this is greater than 1�m�(L)!(L). Finally, the probability that

this occurs over all stages is greater than 1 �mjAj�(L)!(L), since there can be at

most jAj stages required to reach O1(G). Thus if !0 > mjAj�(L)!(L) this shows
that convergence will occur. 2

This theorem immediately applies to Stage Learners and RLAs.

Corollary 2 There exists some �0; p > 0 such that any group, L of Stage learners

and RLAs satisfying �(L) < �0 and (maxi �i)
p < mini �i converge to the serially un-

overwhelmed set, where convergence is de�ned as in the previous theorem.

Now consider the \quasi-static" game in which every � periods the payo� functions
may change, but in between changes the game is constant. Let I(t) be the indicator
variable which is 1 when current action is in the serially unoverwhelmed set, a(t) 2
O1(G(�; t)). Let � be a random variable with mean � .

Corollary 3 In the quasi-static game just described

lim
�!1

lim
m!1

1

m�

m�X
t=0

I(t) � (1� �(L))(1� !(L));

for any group of learners satisfying the conditions in the previous theorem.

Proof: This follows immediately from the proof of the previous theorem.
We now show that the above theorem is tight in the sense that there is no smaller

LSB with the same property.

Theorem 6 Let �1 be an LSB such that all sets of reasonable learners converge,

where convergence is de�ned in the sense of the previous theorem, to �1(G;A) for

any game. Then for any game O1(G;A) � �1(G;A).

Proof:(Sketch) Consider a game < G;A > such that O(A) = A but �(A) � A. Thus

there exists some i and ai 2 Ai such that ai 2 Oi(A) but ai 62 �i(A), for any game G0

with G0
i = Gi. We now construct a situation in which ai is the Stackelberg equilibrium

and the players learn Stackelberg because of the timing.

Since ai is not overwhelmed, there exists a function b�i(bi) 2 A�i for all bi 2 Ai

such that G0
i(ai; b�i(ai)) > G0

i(bi; b�i(bi)) for all bi 6= ai. Now for all j 6= i de�ne
Gj(b) to be 1 if bj = bj(bi) and 0 otherwise, and consider a set of learners where

learner i updates every r units of time and all other players update every 1 unit

where r > pN(L). Assume all players use simple averaging and choose p such that
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1=p > minfG0
i(ai; b�i(ai)) �G0

i(bi; b�i(bi)) j bi 6= aig. Thus, all learners j 6= i rapidly

converge to b�i(bi) when learner i plays bi. Therefore learner i is essentially playing

the game G0
i(bi; b�i(bi)) which is a simple optimization game which has its highest

payo� for ai which learner i will learn. 2

The following is an immediate corollary from the proof of the previous theorem.

Corollary 4 If a 2 A is a Stackelberg equilibria for the game < G;A >, then a 2
O1(G;A).

3.3 Examples and Simulation

This section is not yet completed. The following notes indicate what we

hope will soon be here.

3.3.1 Selected Finite Games

Simulations on a few games showing convergence to O1.

3.3.2 Congestion Game with FIFO and Fair Share

FIFO and Fair Share are two di�erent choices for C(r) in the congestion game. We
will show that FIFO is D-solvable in some situations, and not in others, while Fair
Queueing is O-solvable in general. Simulations show that D-solvability is not enough
in practice.

3.3.3 Stackelberg Behavior in Oligopolies

In Cournot Oligopolies, the slower (usually bigger) player will become the de facto
Stackelberg leader. However, when the environment is explicitly time dependent,
being the slow leader is not necessarily an advantage.

3.3.4 Synchronous Games

Note that for synchronous games both stage learners and RLAs converge to D1, but
this is not true in general. Schizophrenic learners can become Stackelberg leaders.

3.4 A Tighter Solution Concept?

Although our solution concept, the serially unoverwhelmed set, is the tightest LSB so-

lution concept, it is probably not the tightest solution concept. Consider the following
game:

L R

T 1,1 .3,.6

B .6,.3 0,0
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O1 of this game is the set of all actions. It seems intuitively obvious, although we

have no formal proof, that any pair of decentralized learners will converge to (T;L).

Simulations of the RLAs and Stage Learners are consistent with this belief. Since

our goal here is to describe the possible outcomes of a game played by decentralized

learners it is important to �nd the tightest solution concept to which decentralized

learners converge.

We now describe a solution concept which is suggested by the proof of Theorem 6.

We believe that this must be contained in the exact solution concept for reasonable

learners, but do not know whether the exact one is larger.

We de�ne a version of backward induction based on the serially undominated set.

Given a (�nite) set of playersP (with P = jPj), de�ne a play order � = �(1); : : : ; �(m)

where �(r) � P, Sr2f1;:::;mg �(r) = P, and for r 6= r0, �(r)
T
�(r0) = ;. Let � be the

set of all play orders, ��(r) =
S
r02f1;:::;r�1g �(r

0), and �+(r) =
S
r02fr+1;:::;mg �(r

0).
Given a play order � de�ne the associated Stackelberg game where players move

according to that order. Each player takes the actions of the players earlier in the
order as a given and plays accordingly. Thus, a players sees the behavior of the earlier

players as �xed, and sees the later players as reacting to their moves. Each player's
elemental action in this Stackelberg game is actually a response function, in which an
action of the underlying normal form game ai is chosen as a function of the actions of
the previous (in terms of the ordering) players. That is, for agent i 2 �(r), a strategy
in the Stackelberg game is a response function �i : A��(r) 7! Ai. Let G� be the set of
all such Stackelberg strategies � for the ordering �. For � 2 G�, let Outi(�) be the

action chosen by player i when play is de�ned by �. Given a vector of strategies, �
the payo� is G(Out(�)).

For any r, a��(r), and ��+(r) 2 G�;r(�) consider the game played by the players in
�(r); it has payo�s of the form:

Gr;�(a�(r); a��(r); ��+(r)) = G(a�(r); a��(r); ��+(r)(a�(r); a��(r))):

Given an order we now de�ne the ordered serially undominated set inductively. For
all a��(r) 2 A��(r); let

D1
�(r)(G;A; �; a��(r)) =

[
�
�
+(r)

2D1
�
+(r)

(G;A;�)

D1(Gr;�(a�(r); a��(r); ��+(r)); A�(r));

and letD1
�(r)(G;A; �) be the set of ��(r) such that ��(r)(a��(r)) 2 D1

�(r)(G;A; �; a��(r)):

For a strategy set B � G� de�ne the set of reachable actions by

R(B) = fa 2 A j 9� 2 B s:t: a = Out(�)g

We can now de�ne the set of Stackelberg undominated actions, denoted by S1(G;A),

of a game < G;A >.
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De�nition 9 The set of Stackelberg undominated actions S1(G;A) of a game <

G;A > is given by:

S1(G;A) =
[
�2�

R(D1(G;A; �))

Note that for any ordering in which no two players move simultaneously (i.e., each

�(r) is a singleton), D1(G;A; �) is simply the set of subgame perfect strategies, and

R(D1(G;A; �)) is the union of all subgame perfect outcomes.

Theorem 7 D1(G;A) � S1(G;A) � O1(G;A).

Proof: That D1(G;A) � S1(G;A) follows immediately from the de�nition, since

� = (1; 2; : : : ;m) is a valid order. Now consider any overwhelmed action. It must be

serially dominated for any game, and order. 2
The Stackelberg undominated actions are a likely candidate for a decentralized

solution concept.12

Conjecture 1 Reasonable learners converge to S1(G;A).

Recall the game discussed at the beginning of this section.

L R

T 1,1 .3,.6

B .6,.3 0,0

Note that for the above game there are three orders (f1; 2g),(f1g; f2g), and
(f2g; f1g). For the order (f1; 2g) we just have the original game which is D-solvable
with actions (T;L), while for � = (f1g; f2g) if player 1's action is �xed then player 2's
only undominated strategy is s2(T ) = L and s2(B) = L, and after restricting to this,
player 1's only undominated strategy is s1 = T , thus the outcome for this game is
(T;L), which is the same outcome for the order � = (f2g; f1g), by symmetry. Thus,

S1 = (T;L) which is the same as D1, but O1 is the entire game.
Note that there are few solution concepts which have been proved to be tight

for a class of learners. For example, various conditions have been shown to hold for

�ctitious play, but no tight solution concept is known.13

Following Milgrom and Roberts (1991) it is easy to show that the serially undom-

inated set is tight for adaptive learners. Also, Foster and Vohra (1996) have shown
that the set of rationalizable actions is tight for calibrated learners. However, both

of these results are nonconstructive, in the sense that one can not exhibit reasonable
learning procedures which \�ll out" the various sets. In fact, it seems likely that such

learning procedures may not even be constructible.

12Note that we could de�ne the Stackelberg version of any LSB.
13The only reasonable and constructively tight solution concept we know of is for best reply

learning, where the LSB solution concept based on the best reply correspondence is tight.
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4 Solvability and Mechanism Design

4.1 Solvable Games

Often the sets S1(G;A) or O1(G;A) are quite large, and in those cases one cannot

predict with precision the asymptotic play of reasonable learners. There are, however,

some games where the outcome is unambiguous. We will call such games S-solvable

and O-solvable respectively, depending on the solution concept involved.

De�nition 10 A game < G;A > is O-solvable if jG(O1(G;A))j = 1. Similarly,

a game < G;A > is S-solvable if jG(S1(G;A))j = 1, and a game < G;A > is

D-solvable if jG(D1(G;A))j = 1.

Note that solvability does not require that there is a single eventual play, only
that there is a single eventual outcome (payo�). Because D1(G;A) � S1(G;A) �
O1(G;A), any O-solvable game is S-solvable, and any S-solvable game is D-solvable.

Below is an example of a 3�3 game with varying degrees of solvability as x varies.

L C R

T 4,6 5,4 1,1

M 1,5 6,4 5,2

B 2,2 3,5 3,x

When x = 1, this game is O-solvable, and when x = 4 it is S-solvable but not
O-solvable. When x = 7, this game is not even D-solvable.

To illustrate a more general O-solvable game, we de�ne the class of generalized

serial games < G;A >, following Moulin and Shenker (1992), to be those that have
the following �ve properties for any i; j with i 6= j:

� Ordered action domains: Ai � <
� Cross-Monotonicity: Gi(a) � Gi(~aj; a�j) for any ~aj � aj, i 6= j.

� Seriality: Gi(aj; a�j) = Gi(~aj; a�j) for any aj; ~aj � ai, i 6= j.

� Unique best reply: for each a�i there exists an element BRi(a�i) such that
xi 6= BRi(a�i)) Gi(BRi(a�i); a�i) > Gi(xi; a�i)

� Seriality of best reply: BRi(a�i) = BRi(~aj; a�ij) for any ~aj � BRi(a�i)

Theorem 8 Generalized serial games are O-solvable.

Proof: Since the O operator is monotonic, the iteration process must converge to
a nontrivial �xed point. Let this �xed point of O be denoted by I = (I1; I2; : : : ; In)

with ?i denoting the minimal element of Ii and >i denoting the maximal element of

Ii, and ? and > denoting the vectors of these extremal elements. Let MAXi(xi) =
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maxa�i2I�iGi(xi; a�i), and MINi(xi) = mina�i2I�iGi(xi; a�i). For any a 2 I and for

any xi 2 Ii, Gi(xi;>�i) � Gi(xi; a�i) � Gi(xi;?�i) so MAXi(xi) = Gi(xi;?�i) and

MINi(x) = Gi(xi;>�i). Assume that I is not a singleton, so the set fij?i < >ig is
nonempty. We can de�ne i as the element in this set with the smallest?i: ?j < >j )
?j � ?i. In particular, Gi(?i;>�i) = Gi(?), so MINi(?i) = MAXi(?i). If there

exists some xi 2 Ii�?i such that Gi(xi;?�i) < Gi(?), then MAXi(xi) < MIN(?i)

and so ?i overwhelms xi. If there exists some xi 2 Ii � ?i such that Gi(xi;>�i) >

Gi(?i;>�i) = Gi(?), then MINi(xi) > MAX(?i) and so xi overwhelms ?i. Thus,

we must have Gi(xi;>�i) � Gi(?i;>�i) = Gi(?) and Gi(xi;?�i) � Gi(?) for all
xi 2 Ii � ?i. Consequently, BRi(>�i) = ?i and BRi(?�i) 6= ?i. This contradicts

the seriality of the function BRi.2

In Section 4.3 we will encounter examples of such generalized serial games.

Another solvable game arises when rationing a �xed amount C of some good when
all utilities are single-peaked (see, for example, Sprumont 1991). Let pi be the location
of agent i's peak. The uniform game can be de�ned as follows. Each agent announces
a request ai. If

P
i ai � C then the allocations qi are given by qi = min[�; ai] where

� is the unique value such that
P

i qi = C. If
P

i ai � C then the allocations qi are
given by qi = ai + � where � is the unique value such that

P
i qi = C. In the case

where ai = pi, the resulting allocation reduces to the uniform mechanism.

Theorem 9 The uniform game is S-solvable but not O-solvable.

Proof: First, we prove that the uniform game is D-solvable. Let D1 = I1 � I2 : : : IP
with Ii = [li; ui] denote the result of iterated elimination of dominated actions. Note

that li � pi � ui since each agents gets the highest payo� by announcing pi. Assume
k is such that li < lk ) li = ui. If lk � C then each action vector in D1 results in
the same allocation with each agent getting qi =

C

P
. Assume, to the contrary, that

lk < C. If lk < pk then pk dominates lk (the allocations are monotonic in rk and are
strictly monotonic in the vicinity of lk). If lk < C and lk = pk then pk dominates uk
(the allocations are monotonic in rk and are strictly monotonic in the vicinity of lk).
Therefore, by contradiction, there can be no such k, and so all sets Ii are merely the
singleton pi.

Note that this proof show that if we held some of the actions �xed (not necessarily

at their peak), then the D1 set of the game among the remaining players converges

to the singleton (with each player's peak pi the only remaining action). Since on each

subgame the set D1 converges to the same singleton, the construction used in the
Stackelberg undominated set also reduces to that singleton.

Next, we show that the uniform game is not O-solvable. Denote by [l(ri); u(ri)]

the set of player i's allocations (not payo�s) resulting from announcing action ri,
and letting the other actions vary from 0 to 1. Both l and u are monotonically

increasing in ri, and l(0) = 0, u(0) = C

P
, l(1) = C

P
, u(1) = C. Because u(0) = l(1),

[l(ri); u(ri)]\[l(r0i); u(r0i)] 6= ; for all ri, r0i. The allocation intervals always overlap, and
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so the payo� sets for any two actions overlap, so there are no overwhelmed actions:

O1(A) = A.2

Our �nal example is that of ordered externality games (Friedman 1996). These

are nonatomic games where agents, labelled by a parameter �, decide to participate

(setting a(�) = 1) or not (setting a(�) = 0); if they participate, their payo� depends

only on the size � of the participating population (and if they don't participate,

their payo� is zero). Thus, for a given vector of actions, the payo�s are of the form

U�(a(�); �(a)) which is nondecreasing in � , and U�(0; �(a)) = 0. It is shown in

Friedman (1995) that this game is O-solvable if and only if it converges under best-

reply dynamics.

For example, consider the congestion game discussed in the introduction played

by a large number of players. Each player decides whether to send a packet of in-

formation. Let �(a) be the total number (measure) of players who decide to send a
packet. The delay to a player is D�(�) which is nondecreasing in �, where � is the
capacity of the link. (For an M/M/1 FIFO queue, D�(�) = �=(� � �) for � < � and
1 otherwise.) Thus the payo� to a player who sends a packet is v� c(D�(�)) where

v is the personal value of the packet and c(�) is the delay cost, which is assumed to
be nondecreasing. The payo� is 0 if the player does not send a packet. For many
typical stochastic processes and known queues, this game converges under best reply
dynamics if the capacity of the queue, �, is su�ciently large. (See Friedman and
Landsberg 1993 for details.) Thus, in this case the game is O-solvable. These results
also apply to similar congestion games with multiple links and players at di�erent

locations, so � becomes a vector depending on the type and location of player.

4.2 Implications for Mechanism Design

So far, in our discussions of learning and convergence, we have implicitly assumed that

the game is a given. However, in the Internet, and in other distributed contexts, one
would want to design the game in order to shape the nature of the resulting play and
thereby achieve certain social goals. This is the mechanismdesign, or implementation,
paradigm. To �x notation, consider an allocation problem with n agents. Let U
denote the domain of utility functions (assumed, for the sake of simplicity, to be the

same for each agent), and let O denote the set of possible outcomes. A social choice
function is a mapping F : Un 7! O. A mechanism is a set of action or action spaces
Ai and a mapping M : A 7! O. Associated with each mechanism < M;A > and a
utility pro�le U is a game G : A 7! <n de�ned by Gi(a) = Ui(M(a)).

We now ask, assuming Conjecture 1 is correct: which social choice functions can

be implemented in a distributed setting? To be more precise, denote by C(U) � A the
solution concept for a mechanismat a particular utility pro�le U . We are exploring for

which F 's is there a mechanism < M;A > such that M(a) = F (U) for all a 2 C(U).
If a social choice function is implementable with the Stackelberg undominated

solution concept we will call it S-implementable; similarly, social choice functions
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implementable with the serially unoverwhelmed solution concept will be called O-

implementable. Theorem 10 states that only strictly coalitionally strategyproof social

choice functions are S-implementable. Our result is a slight extension of the original

observation due to d'Aspremont and G�erard-Varet (1980) on Stackelberg-Solvable

games. We �rst need the following de�nition:

De�nition 11 A social choice function F is strictly coalitionally strategyproof (SCSP)

if, whenever F (~U) 6= F (~V ), there exists j with Uj 6= Vj such that Uj(F (~V )) <

Uj(F (~U)).

SCSP requires that there is no other outcome that is equivalent or superior, in the eyes

of the deviating coalition, to the truthful outcome. Strategyproofness merely requires

that the truth be a Nash equilibrium; SCSP requires that the truth be a strict (no

other equivalent payo�s) and strong (invulnerable to coalitions) equilibrium.

Theorem 10 If a social choice function F is S-implementable then it must be SCSP.

Proof: Consider some mechanism M : A 7! O that implements F . Assume, to
the contrary, that F is not SCSP. Then, there exists two utility pro�les U and V

such that F (U) 6= F (V ) but Ui(F (U)) � Ui(F (V )) for all i such that Ui 6= Vi. Let
E = fijUi 6= Vig. Since M implements F , there must be two action vectors u and
v in A such that M(u) = F (U) and M(v) = F (V ) and each are in the solution

concepts at the respective utility pro�les U and V ; i.e., u 2 S1(U) and v 2 S1(V ).
Since F (U) 6= F (V ), we have v 62 S1(U) and u 62 S1(V ). At the utility pro�le U ,
consider the Stackelberg ordering with elements in E leading. The allocations that
result from this Stackelberg game must be the allocation F (U), but the allocation
F (V ) is di�erent from F (U) yet gives all the elements in E at least as good outcomes.

Since Stackelberg leaders (when there is a Nash equilibrium) do at least as well as
in the simultaneous game, the point v must be included in the solution set S1(U),
which contradicts our earlier result. 2

This result also applies to O-implementability.

Corollary 5 If a social choice function F can be implemented with any solution
concept that contains the Stackelberg undominated set, then F must be SCSP. In

particular, if a social choice function is O-implementable then F must be SCSP.

Proof: The proof of the preceding theorem required only the fact that the set S1

be included in the solution concept.2
Note that the coalitional aspects of the S1 and O1 solution concepts, and hence

the coalitional requirements of SCSP, did not arise because of some explicit notion of

collusion among agents in our distributed setting. It arose because of the asynchrony
where there could be multiple agents with long timescales, even though there was no

explicit collusion.
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4.3 Examples

Note that many of the most notable strategyproof mechanisms do not satisfy the

SCSP criterion. For instance, the Clarke-Groves mechanisms are not, in general,

coalitionally strategyproof. We now discuss a few S and/or O-implementable social

choice functions and their implementing mechanisms.

The �rst example is the uniform mechanism, and its S-implementability follows

trivially from Theorem 9. Since the uniform mechanism relies only on the peaks

of the preferences, there is no real distinction between the uniform game and the

uniform social choice function. Thus, Theorem 9 implies that the uniform social

choice function is S-implementable, because the direct mechanism is itself S-solvable.

While we have shown that the direct mechanism is not itself O-solvable, it remains on

an open question as to whether the uniform social choice function is O-implementable

through some other mechanism.
The second example comes from the congestion game with strictly monotonic (in-

creasing in ri, decreasing in ci) and concave utilities U and a strictly convex constraint

function f . The serial mechanism (see Moulin and Shenker 1992 for a description)
can be described as follows. When the agents are labelled so that ri � ri+1 for all i,
the congestions ci are recursively determined by the equation:

(
k�1X
i

ci) + (n� k + 1)ck = f(
X
i

min[ri; rk])

We have the following theorem:

Theorem 11 The serial mechanism, with strictly monotonic and concave utilities U

and a strictly convex constraint function f , is a generalized serial game.

Proof: Consider some i and some j 6= i. The payo� Gi(r) = Ui(ri; ci(r)) is monotonic
in rj since ci(r) is monotonic in rj and Ui is monotonic in ci. Moreover, from the
construction it is clear that ci(r) = ci(rjir̂j) for all rj; r̂j � ri, so the same holds for
the payo�s Gi(r). Consider the function g(x) = Gi(rjix) = Ui(x; ci(rjx)). Since Ui is

convex, and the opportunity set (x; ci(rjx)) is strictly concave, there is a unique point
of tangency, and so the game has unique best replies BRi(r�i). Lastly, consider some

agent j such that rj � BRi(r�i). Varying rj changes the opportunity set (x; ci(rjx)),
but the tangent at x = BRi(r�i) remains unchanged. Therefore, the best reply

remains unchanged.2

Therefore, the serial mechanism is O-solvable in this setting. De�ne the serial
social choice function as the allocation resulting from the (unique) Nash equilibrium

of this game. This social choice function is obviously O-implementable.

4.4 Discussion

One might ask why, if one can only implement strategyproof social choice functions,

does one bother with the mechanism design paradigm at all. Why not always use
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the direct method { asking for utilities to be revealed and then applying F { in-

stead of using an indirect mechanismM . In the former case you can utilize the focal

point nature of truthful revelation, and can implement all strategyproof social choice

functions, whereas in the indirect method we have a much weaker notion of conver-

gence, namely that of the set O1 or S1, and can only implement SCSP social choice

functions.14

While in many case it is obviously preferable to use direct methods, there are

occasions where indirect mechanisms are preferable. In some contexts the utility

functions are very complex, and revealing them involves signi�cant communication

overhead. For instance, the performance of a video application is not a simple func-

tion of, say, the average and variance of the packet delays; instead, the performance

depends on the exact string of packet delays.15 In such cases, the ability to use

indirect mechanisms with their substantially less complex signaling is a signi�cant
advantage.

In addition, in many network situations the agents do not know their exact utility
functions. Agents can compare two di�erent levels of service and decide for which

they are happier, but they cannot abstractly represent these trade-o�s without ac-
tively experiencing them. For instance, the optimal trade-o� between bandwidth and
delay in a video stream for an agent will depend on many details of the particular
instance; the particular scene being transmitted, the exact delay distribution, the
clarity of speech, etc. In many cases specifying the exact utility function of an on-
going network application is much like trying to specify the optimal contrast setting

on a television set. Since the optimal contrast setting depends on the details of the
lighting in the room, the darkness of the scene, etc., most users could not articulate
the underlying utility function; most of us merely turn the contrast knob until we
notice that any deviation from that setting produces worse results. Similarly, in many
networking situations, users can compare their satisfaction at two di�erent levels of

service that they have actually experienced, but they typically cannot provide a for-
mal expression of their utility function. Users should be given an ability to adjust
parameters (controlling bandwidth-delay trade-o�s, or resolution-loss trade-o�s, etc.)

instead of having to specify a utility function directly. That means that we are forced
to use indirect methods whereby users both `learn' the equilibrium but also learn

about their own preferences.

5 Related Work

The notion of learning through repeated play has a long history, starting with Robin-

son (1951) and Brown (1951). The subsequent literature is vast and far beyond our

14There are perhaps reasons to insist on coalitional strategyproofness, not just strategyproofness,
so the restriction in the class of implementable social choice functions is not so severe.

15Video applications adapt their playback point in response to the observed delays, and the per-
formance of the application depends on the behavior of this playback point.
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capability to summarize in this section. We refer interested readers to the set of notes

by Fudenberg and Levine (1996) for a comprehensive survey. As we discussed in Sec-

tion 1, much of the recent work has focused on such learning algorithms that predict

the actions of opponents, and then myopically optimize { perhaps approximately as

in stochastic �ctitious play { with respect to those predictions. These prediction

methods investigated can take on a particular form (e.g., Bayesian, as in Kalai and

Lehrer 1993 and Foster and Vohra 1996) or consistency (Fudenberg and Levine ).

The overwhelming forecast of this line of research is that such learners end up play-

ing in either correlated equilibria or Nash equilibria. This branch of the literature is

appropriate to situations where players can observe the actions of others, and know

the payo� function, and thus do not apply to the more distributed situations we are

concerned with here.

There is another branch of the literature that deals with \low-rationality" ap-
proaches to learning. Relevant work along this line includes Roth and Erev 1995,
Erev and Roth 1996, Borgers and Sarin 1995, 1996, Mookerji and Sopher 1994, Van
Huyck et al. 1996. The information assumed to be available to the players is roughly

consistent with what we assume for our distributed systems; users are not given any
information beyond the payo�s they receive. The reinforcement, or stimulus-response
learning algorithms discussed in this literature are quite similar in spirit to the exam-
ples we give here. The main technical di�erence is that we impose the requirement of
responsiveness, which usually does not arise in this literature, although the algorithm
of Roth and Erev (1996), for certain parameter values, is an exception. However, a

more important distinction is that this much of this literature is focused on comparing
the behavior of particular learning algorithms to experimental results. We make no
claim for a special role for any particular member of the class of reasonable learners.
On the Internet, learning algorithms, rather than being the product of some inherent
mental processes which may have some universal properties, are typically manually

constructed and embedded in programs and thus can change over time and di�er
between machines. As a result, in this paper we instead have identi�ed a basic rea-
sonableness criterion that would apply to all such learning algorithms in such games,

and focus on the resulting solution concept.
The nonstandard nature of these solution concepts is due to the combination

of responsiveness and asynchrony, by which we mean that the timescales on which
di�erent agents adjust their actions can vary widely. While the responsiveness re-

quirement is somewhat foreign to the learning literature, it has long be known that
various forms of asynchrony { such as the existence of \patient players" (see Fuden-

berg and Levine 1989), the ability to make commitments (see Rosenthal 1991), and

the capacity to establish reputations (Watson 1993) { can all disrupt more traditional

forms of equilibria. In the previous analyses, these \patient" players, or leaders, were

seen as manipulating the system. Here, the asynchrony arises quite naturally out of
the di�erent time scales players have. There has been some analysis of games that are

resilient to this form of manipulation. In particular, d'Aspremont and G�erard-Varet
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(1980) introduced the notion of \Stackelberg-Solvable" to refer to equilibria that

were robust against the one agent committing to a action; they showed that only

strategyproof social choice functions could be implemented with Stackelberg-Solvable

equilibria. However, such work has not focused on the general solution concept that

incorporates arbitrary forms of such asynchrony.

6 Open Questions

The design of the modern Internet is clearly an extremely important problem which

will have important economic rami�cations in many arenas. It is becoming increas-

ingly clear that incentive properties are an important aspect of network design. In

order to achieve socially desirable allocations of the Internet's resources, we will need

to know the appropriate solution concept, and than will require an understanding of
learning in convergence in such distributed systems. This has been our focus in this
paper. We freely admit that our treatment is far from complete, and many important
questions still remain open.

The most obvious, and most compelling, open question is that of the validity of
Conjecture 1. Is this conjecture true and, if not, what is the tight solution concept
for this class of learning algorithms? A closely related open question is how to tightly
characterize the set of social choice functions that are implementablewith this solution
concept. While Theorem 10 gives a necessary condition, we suspect it is far from

su�cient.
However, the necessary condition of Theorem 10 already severely limits the class

of implementable social choice functions. While it is of academic interest to precisely
describe the class in question, it is of more practical importance to broaden this
class. Perhaps the ideas of virtual implementation, following the ideas of Abreu and

Matsushima (1992), could allow us to virtually implement a much wider class of
social choice functions with this solution concept. A complementary approach would
be to attempt to design the internet in a way that mitigates the learning di�culties,
perhaps by supplying learners with more information about the structure of the game

and the play of other players. It is not clear that this is feasible in a network setting.
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