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Abstract

I consider generalisations of the Nash equilibrium concept based on the
idea that in equilibrium the players’ beliefs should not be contradicted,
even if they could possibly be incorrect. This possibility depends on the
information about opponents’ behaviour available to the players in equi-
librium. Therefore the players’ information is crucial for this notion of
equilibrium, called Conjectural Equilibrium in general and Rationalizable
Conjectural Equilibrium (Rubinstein-Wolinsky 1994) when the game and
the players’ Bayesian rationality are common knowledge. In this paper I
argue for a refinement of Rationalizable Conjectural Equilibrium showing
by propositions and by examples how this equilibrium notion works and

how the suitable equilibrium concept depends on the players’ information.



1 Introduction

It has always amused me that
what the economist calls an equilibrium of behavior,
psychologists tend to call frustration.

Kenneth E. Boulding, The Welfare Economics of Grants.

The literature on the foundations of solution concepts in game theory has
extensively analysed the possible reasons for Bayesian rational players to play
Nash equilibria. From this literature we have learned that the Nash equilibrium
(or the Correlated equilibrium) behaviour is justified under restrictive common-
knowledge assumptions (see e.g. Aumann-Brandenburger 1995). Alternative
reasons to play Nash equilibria have then been searched for looking at Nash
equilibria as possible steady states of plausible learning models. But if our at-
tention is driven towards this equilibrium notion, then more general equilibrium
concepts become relevant and the crucial aspect becomes the players’ informa-
tion about opponents’ behaviour, since the characterisation of a strategy profile
as an equilibrium depends on the information available to the players in that
state. Therefore to study the notion of equilibrium in game theory, we should
study the role of players’ information in strategic situations.

This analysis can be approached from two point of view: the first is a dy-
namic approach studying how learning leads to different information patterns

in equilibrium, the second is a static approach, which takes as given the infor-



mation partition and characterises the possible steady states of generic learning
processes, analysing how different information patterns lead to different equilib-
rium concepts. In this paper I follow this second strategy showing how the choice
among different equilibrium concepts depends on the information the analyst
thinks the players have. Similarly to what is done by standard economic theory
with market equilibria, a dynamic model is informally in the background and I
allude to it only to motivate definitions and results. The general notion of equi-
librium T use in this analysis is the concept of Conjectural Equilibrium (CE) and
of Rationalizable Conjectural Equilibrium (RCE) (Rubinstein-Wolinsky 1994).
The aim of this paper is to argue for a refinement of RCE and to show the wide
applicability of this approach to the analysis of strategic situation. This allows
to show that Rubinstein-Wolinsky 1994 definition of RCE should be strengthen
and that some of their statements should be fitted to the new context.

The general notion of CE has been defined in the seventies by Hahn for
general equilibrium models (Hahn 1977 and 1978), but only very recently game
theorists have rediscovered this idea in learning models (Fudenberg-Levine 1993
and Kalai-Lehrer 1993) or in the analysis of equilibrium concepts (Rubinstein-
Wolinsky 1994). Earlier game theoretic definition can be found in Battigalli
1987, in Gilli 1987 and in Battigalli-Guaitoli 1988. After a first version of this
paper was written, I became aware of Dekel-Fudenberg-Levine 1996 that studies
a very similar equilibrium notion, even if their focus is on payoff uncertainty.

The rest of this paper is organised as follows. In section 2, I give the basic



game theoretic notions used in section 3 to define Conjectural Equilibrium and
its refinements. Section 4 provides an existence theorem. In section 5, I show the
relations between (Strong Rationalizable) Conjectural Equilibrium and solutions

concepts extensively used in game theory.

2 Imperfect Monitoring Games

First the notation: A(-) is the set of all probability measures on (-), the subscript
1 means that the object refers to player i, if omitted it denotes a complete
profile, —i indicates the players different from ¢, and —%,7 denotes a complete
profile with the ¢ component stressed. 1 will remember the notation and the
interpretations of the basic definitions for extensive games (EGs) as given by
Osborne-Rubinstein 1994, which are slightly more general of that in Kreps-

Wilson 1982. An EXTENSIVE GAME (EG) is defined by:
BG .= (H; ;, Ty w)}, where
e N denotes the set of players and the cardinality of the set itself,

e H is the set of histories h, which are sequences of players’ actions: h =

(a®)E_|, where o is the action taken after the history (al);‘:ll.

e ¢ is the function that assign to each nonterminal history the player whose

turn it is;



e 7, is a partition of {h € H|i(h) = ¢} and is the set of player 1’s information

sets I;;
e 4; is i’s payoff function: %, : A(Z) — R.
From the previous definitions, we can derive the following sets and functions:

e player i’s set of pure strategies S;, the set of player ¢’s mixed strategies
¥, = A(S;), and the set of mixed strategy profiles ¥ = ®;en%;, where

®; indicates the product of measures;

e the outcome function that identifies the terminal histories induced by an

n-tuple of strategies s € 5: (: 95— Z;

e i’s payoll function directly defined of the set of players’ possible strategies:

w; i =U; 0 ¢ Le. u; : A(S) — R.
A STRATEGIC GAME (5G) is then defined by
SG = (Si, ui)fil.

The usual interpretation of SGs is as simultaneous moves games, i.e. games
with a bijective outcome function (it is easy to see that an extensive game has
simultaneous moves if and only if the outcome function is bijective). Rubinstein-
Wolinsky 1994 enrich the environment defined by a SG by means of a signal
function: 1, : 9 — M;, with the following interpretation: 7;(s) =m; € M;
is the signal privately observed by ¢ € N when s € S is played. In other words

the mapping 7); represents player i’s information on opponents’ behaviour,



which by definition could depend on player #’s behaviour itself. Of course the
functional form of 7; must be fitted to the case under analysis: the specification
of n; reflects player ¢’s information partition as seen by the game theorist. An

IMPERFECT MONITORING GAME (IMG) is defined by
G = (Si, wi, m),.

A general analysis of IMGs is in Gilli 1994, while a very similar model for
repeated game is the object of many Lehrer’s papers (see e.g. Lehrer 1989,
1990, 1991, 1992). In Gilli 1994 T have shown that it is possible to define an
outcome function without any direct reference to an EG and that such function
is originated by a “unique” EG (suitably defined). Therefore it is meaningful
to consider the IMG (S;, u;,(), where ¢ is the outcome function of the unique
EG which gives rise to it.

To simplify the analysis I make the following STRUCTURAL ASSUMP-

TIONS:

Assumption 1 The analysis is restricted to the subclass of finite imperfect

monitoring games, that is the sets N, S;, M, are finite.

As usual, this assumption is useful to avoid further complication in the mathe-
matical tools used for the analysis. A first consequence of assumption 1 is the
following. Fix a finite number of player N and their pure strategies S. Then
the space of IMGs over this form is given by G, and I take G = RV*S x RV*S

where for (z,y) € G, (1, s) is the payoff to player ¢ under strategy s and y(i, s)



is the signal to player ¢ under strategy s. If a specific signal function n; for each
player is specified, then the space G(n;) is obtained, and I take G(n;) = RY*#

where for x € G(1;), z(,s) is the payoff to player ¢ under strategy s.

Assumption 2 The signal is defined to contain all of the information player i

receives aboutl opponents’ strategic behaviour. Therefore

Ni(sins-0) =misi,81;) = wilsi,s-4) = wi(si,sLy).

This assumption means that after the game each player receive her payoff and
hence the signal provides non less information than the payofl; each player recalls
her own move in addition to her signal, and given her move and signal, player
1 can compute her payoff.

Using 7); it is possible to define an INFORMATION PARTITION for

player i as follows: let be S;(my, s;|m:) :== {s_; € S_i|m(s;,5_;) = m;}, then

Si(silni) = (Si(mi, 8ilmi))ms e m,- (1)

Thus S;(mg, $;7;) is ¢’s information about opponents’ strategies when she re-
ceives the message m; and plays the strategy s;, S;(s;|n;) is the information
about opponents’ behaviour that player ¢ can possibly collect playing s;. This
expression depends on the strategy played by 7, because she can collect differ-
ent information playing different strategy. If (1) does not depend on s;, the
information is said to be non manipulable, e.g. this is the case of SGs with

one-to-one signal functions, or of EGs with simultaneous moves and 7; = (.



3 The Notion of Equilibrium in Imperfect Mon-

itoring Games
BR;(ay) is player s correspondence of best reply to a; € A(S_,).

Definition 1 The set of Conjectural Equilibrium in pure strategies (CEY)
for an IMG G is indicated by CEY(G). Then an n-tuple s' € S belongs to the

set CEF(G) if and only if in the game G Vi € N, Ja; € A(S_,) :
S; S BRZ'(OQ') (2)

and
ay(Si(ni(s'), si|mi)) = 1. 3)

Remarks:

1. In a CEF the players are Bayesian rational with respect to a conjecture
«;, which in equilibrium is not falsified by the player’s information, i.e.
each player’s conjecture gives probability 1 to the event she actually ob-
serves. Therefore the outcome of strategic interaction does not provide
any information that induces the players to change their behaviour: in
this case I am actually assuming that for each player i all the relevant

information is provided by #7;(-).

2. The concept of CE does not explain why the players choose a strategy

profile s’, but, as usual in static approaches, it says only that if for some



reason a strategy profile s’ € CE” is played, then the players’ ex post

information is such that there is no incentive to change behaviour.

3. No hypothesis about the players’ knowledge of the strategic interaction’s
situation is specified by 7;; therefore this information should be considered
as implicit in the definition of the equilibrium concept: it is possible to
refine the equilibrium notion if common knowledge (CK) of the game and

of rationality is assumed.

The notion of CEF will be explained by means of an example. Consider the

game of figure 1:

Fig. 1 about here

A possible story behind this game is the following: firm 1 may stay out
(O) or enter in a market with either a small (S) or a big (B) investment, while
firm 2 observes only if 1 enters or not and then decides whether to accom-
modate (A) or to fight (F). If 2 decides to accommodate, then it is plausible
to suppose that it can not distinguish between S and B, although they are
different outcomes. Therefore suppose that 1;(s) = I;(((s)), where I;(((s))
is i’s information on the outcome ((s), i.e. it is the last information set for
player ¢ crossed by the outcome path when s is played. Then (O,A) is a CEF:

O is a best reply to oy ({F}) = 1, A is a best reply to a2({O}) = 1 and



(0, F) = L(C(O, F)) = n,(0,A) = L,({(0, A)) = 2. Note that (O,A) is not
a Nash equilibrium (NE), but that (O, A) = 21 is a NE outcome (the relation
between CE and NE outcomes will be explained by theorem 4). This straight-
forward example shows an important characteristic of CE*: it does not assume
CK of rationality (and of the game). Indeed the conjecture of firm 1 in the pre-
vious example is not compatible with CK of rationality: since S is dominated
by B, if firm 2’s information set is reached, then 2 should conjecture that a
rational firm 1 has played B and therefore accommodate. But then if there is
CK of rationality and of the game, a rational firm 1 should know this reasoning
and thus have a({A4}) = 1: therefore 1 should play B and a rational firm 2
should answer with A. So the CE (O,F) is destroyed by CK of rationality, while
(B,A) is a CEY which satisfy CK of rationality. Of course (B,A) is also a NE.
But there is another characteristic of CE¥: consider the version of the game of

figure 1 reported in figure 2

Fig. 2 about here

In this case S is not dominated by B, so the previous argument does not
work. With the same signal function as before (S,A) is a CEY. In fact A is
a best reply to ae({S}) = a2({B}) = 1/2, S is a best reply to ay({A}) =1
and 11(5, 4) = [1(¢(5, 4)) = 22, 12(S5, A) = n2(B, A) = 11(¢(5, A)) = {22, 24}

But if the game is CK, then 1 knows that 2 will observe {22, 24} and 2 knows



that 1 will observe either 2o or 24 and all this is CK. Thus a rational firm 1,
knowing that 2 can’t distinguish between S and B, should play S, but then
because of CK of rationality and of the game a rational firm 2 should have a
conjecture concentrated on S, i.e. @2({S}) =1 and therefore 2 will choose F. So
the CEY (S, A) is destroyed by CK of rationality and of the game, in particular
of opponent’s signal function. Indeed it should be stressed that the CK of the
game implies the CK of the signal functions, although their realisations can be
private information. But the mere CK of the functions is enough to restrict
players’ possible conjectures.

The notion of Strong Rationalizable Conjectural Equilibrium modifies the
definition of CE assuming CK of rationality and of the game. Define M;(5;,m;|n) C
M; as follows:  M;(8;,m4|n) == {my; € M;|n;(8:,5-:) =mj,s_; € Si(5;,mi|m:)}-
Thus M;(s;,m;|n) is the set of signals that j could receive according to ¢’s in-

formation and given the CK of the game. Note that M;(5;, m;|n) = {m,}.

Definition 2 Fiz a game G € G. The set of Strong Rationalizable Con-
jectural Equilibria in pure strategies (SRCEY) of game G is denoted by
SRCEY(G). For anyi € N, let BF(m;,G) C S; be defined as follows:

5, € B (m;,G) if and only if

Elozi[gi] S A(Umﬂ;eri(Ei,mi\n)Bfi(mfivG)) : (4)
S; € BRZ'(OQ' [Ei]) (5)
o [Ei](Si(Ei,mimi)) =1. (6)

10



Then an n-tuple ' € S belongs to the set SRCETY (G) if and only if in the game

G Yie N 3IBFP(mi,G) such that:
st € B (mi(s'),G) and m;=mn(s). (7)
Remarks:

1. The expressions (4) and (5) are conditions of Bayesian rationality under
the assumption of CK of the game and of Bayesian rationality, while ex-

pressions (6) and (7) are the usual equilibrium condition.

2. Note that in some sense there are three fixed points involved in definition
2: two are explicit in conditions (5) and (7), but since the sets B; are
defined through the sets B_;, there is a circularity to be solved either
by means of a fixed point argument or through an equivalent iterative
definition (see definition 6 and theorem 1). Consequently the sets BY and
thus SRCET may easily be empty: existence is proved for mixed SRCE

in theorem 2.

The notion of Rationalizable Conjectural Equilibrium (RCE) has been first pro-
posed by Rubinstein-Wolinsky 1994, but in their paper they do not stress that
under the assumption of CK of the game and of rationality, the players’ conjec-
tures should be functions of the strategy the players themselves choose. RCE

can be defined as follows!:

1The definition given by Rubinstein-Wolinsky 1994 is different, but equivalent.

11



Definition 3 Fiz a game G € G. The set of Rationalizable Conjectural
Equilibria in pure strategies (RCE?Y ) of game G is denoted by RCEF (G).
For anyi € N, let QF(m;,G) CS; be defined as follows: 3; € QF (m;,G)

if and only if

Ja; € AU _,enmr Q% (m—i,G)) (8)
S; € BRZ'(OQ') (9)
ozi(Si(Ei,mimi)) =1. (10)

Then an n-tuple s' € S belongs to the set RCEY(G) if and only if in the game

G Yie N 3QF(mi,G) such that:

st e QP (mi(s"), @) and m;=mn(s). (11)

Therefore RCEF are defined as SRCEY where the players’ conjectures are re-
stricted to be constant, i.e. Vi, Vs; «;[s;] = «;. In general however the rational
behaviour of i’s opponents depends on the signals they receive which in turn
depend on the strategy ¢ has chosen. In other words in general M_;(8;, m;|n)
depends on §; and it is a strict subset of M_;: when G is CK this information
is available to ¢ and can be used to refine i’s conjectures, thus even player i’s
conjecture should depend on ¢’s strategy. If this fact is taken into account, then
the definition of RCE should be refined as in definition 2. Note that SRCEY
coincides with RCE® when a non manipulable information partition is defined,
but in general SRCEY C RCEY . Therefore when SRCE instead of RCE is con-

sidered, the following Rubinstein-Wolinsky 1994 statement should be changed:

12



“when the signal is the actual path being played, in any game any CE outcome
is also RCE outcome ... The reason again is that RCE does not impose any re-
strictions off the equilibrium path and so there is nothing to distinguish it from
a CE when the path is known” (Rubinstein-Wolinsky 1994, p. 306). Actually
according to definition 2 the assumption of CK of the game and of rationality
imposes some restriction even off the equilibrium path, as the following exam-
ple shows. Consider as signal function the outcome function of the well known

Selten game, which is pictured in figure 3.

Fig. 3 about here

If player 1 chooses L, then the outcome for both player is L and thus every
strategy of player 2 is a rational choice and thus ay[L] € A({U, D}). If instead
player 1 chooses F, then player 2 observes it and her rational choice is U, and
this is CK. Therefore a;[R] € A({U}). Consequently L & BRi(ay[L]) since
w (L, 0q[L]) =2 < uy(R,oq[R]) = 3. Thus (L, D) is not a SRCEY | while it is
obviously a CE®” and even a NE. The reason for this result is that in many
cases the assumption of CK of game and rationality is sufficient to refine the set
of possible conjectures even off the equilibrium path, while CE and NE do not
fully exploit this assumption, CE because it does not assume CK of anything
and NE because it is defined on the strategic form and therefore consider any

strategic situation as if it had simultaneous moves and perfect monitoring and

13



thus a non manipulable information partition.

The extension of these definitions to the case of mixed strategies (and thus of
distributions over signals) is easy. Define as follows the probability distribution
induced over M; by a probability measure o € A(S) :  Vm; € M, pi(ms;a) =
Z{S‘m(s):mi} a(s). Denote a generic distribution of probability on M; by p; €
A(M;). Then it is possible to define i’s information partition derived from p;
and 0;:

S04, pilmi) = {o-i € Bi|pi(0i,0-i) = pi} S Xy
Note that player i’s partition is defined through the probability distribution
pi € A(M,), but this does not mean that the players necessarily observe the
distribution of signals induced by the players’ mixed strategy: the fact is that
if the players conjectured distribution is different from the actual one, then in
the long run the players will find that they are wrong adjusting consequently
their conjectures. Moreover note that ¥_; is a simplex in R* for some finite &,
and that S (5, p:|n;) belongs to the Borel sigma-algebra of R since p;(0;,0_;)
is continuous in ¢_;: therefore it is meaningful to write about the probability
of 8™(5;, pi|m:). Define M;”(&i,pi|n) C A(M;) as follows: M;”(&i,pi|n) =
{p; € A(M;)|pj(04,0-4) = pj,0-; € S[*(04, pi|m)}. Thus MI*(64, pi|n) is the
information that j could receive according to ¢’s information and given the CK

of the game.

Definition 4 The set of Conjectural Equilibria in mixed strategies (CF)

of game G is denoted by CE(G). Then an n-tuple 6 € X belongs lo the sel

14



CE(Q) if and only if in the game G Vi € N, FJu; € A(X_;):

61' S BRl(/Ll) (12)

wi(Si (04, pi(0)|n) =1, (13)

with the obvious meaning of the abuse of notation in BR;(-).

Definition 5 Fiz a game G € G. The set of Strong Rationalizable Con-
jectural Equilibria in mixed strategies (SRCE) of game G is denoted
by SRCE(G). For any it € N, let Bi(p;,G) C %;  be defined as follows:

0; € Bi(pi, G) if and only if

3103 € AUy, crrm g Boilp-i:G)) (14)
61' S BRZ(MZ[@]) (15)
wilos] (S (04, pilmi)) = 1. (16)

Then an n-tuple o’ € X belongs to the set SRCE(G) if and only if in the game

G VYie N 3Bi(p;,G) such that:

i € Bi(pi(0"),G)  and p; = pi(0’). (17)

As in definition 2, SRCE are defined through three fixed points, therefore non

emptiness is not trivial to prove, as theorem 2 will show.

15



4 Existence of Strong Rationalizable Conjectural
Equilibria

As shown by the example of figure 3 it is not true that in general NE C SRCE,
while NE C RCE. Therefore it is not possible to use the Nash existence theo-
rem to prove that SRCE is not empty and I should follow an alternative route.
First I prove that the definition of SRCE is equivalent to the requirement that
each player can construct a hierarchy of strategy sets such that each strategy is
rationalised by the next level beliefs, given the signal received and given CK of

the game and of Bayesian rationality. Then I use this alternative definition of

SRCE to show that SRCE # ().

Definition 6 Define:  Bj(pi, ) == ;5 Bi(t,pi, G) where Bj(0,p;,G) =

Y, and Vt>1 o0, € B, pi,G) if and only if
o; € B;(t —1,p:i,G) and Fu;[o;] € A(UpfiGM’fi(&i,pi\n)BLi(t —1,p_4,G)):

0i € BRi(iloi])  and  wi[o3](S7" (03, pilmi)) = 1.

Theorem 1
VG e g, YieN V,Oi S A(MZ) Bi(pi,G) = BZ,(,O“G)

PROOF: fix a G € G and, for every ¢ € N, a p; € A(M;). To simplify the
notation omit G.
First I prove that B;(p) C BJ(1, p). Suppose that o] € B;(p), then Jy;|o}]] €

A(Up,iGM’fi(a'é,pi\n)Bfi(pfi)) . 0} € BR;(1;[}]). Since by definition B;(p;) C

16



¥, and A(Upﬂ;GMTi(o,ﬁ,pi\n)B*i(p*i)) C A(X_,;), then definition 6 implies that
o, € B{(1,p;). Now assume that for alli B;(p) C B.(t,p). Then o} € B;(p;), im-
plies that Ju;[o;] € AU, e o7 ooy B-i(p-i)) © AUy e (07,001 BLi(E, p—i)
such that: o] € BR;(uslo}]) and  pi[o}](S™ (0}, ps|ni)) = 1, where the in-
clusion follows from the induction hypothesis. Therefore o € B/(t + 1, p;) and
thus B;(p;) C Bl(pi).

Now suppose that o] € Bl(p). Note that Vi, Vi’ € N, Bl(p) C B/(t' +
1,p) C Bi(t',p). Therefore o} € Bi(p) implies o, € Bi(t' + 1,p;) C Bi(t', ps).

Then by definition 3u;lo;] € A(U,_, enrm (o7 ,pi ) BL:(t's p—)) such that:
0; € BRi(iloj]) and (o] (S7" (o}, pilmi)) = 1.

But this is equivalent to the definition of B;(p;), with B’ ;(t',p) as B_;(p). O
Remark: from theorem 1 it is immediate that VG € G ¢’ € SROE(G)

if and only if Vie N 3IBj(pi,G): 0 € Bi(pi(o'),G).

Theorem 2

VGeG  SRCE(G)# 0.

PROOF: fix a game G € G and omit G in the notation. The proof is organised
as follows: first I prove that Vi, Vp; BJ(p;) # 0, then I prove that 3o’ such
that o’ € B'(p(c’)). Both results are based on fixed point theorems, therefore
the proof depends on the properties of the opportune correspondences.

Note that Vi Bi(t+1,p) C B/(t,p). Therefore if I prove (by induction) that

V¢ BI(t,p) is nonempty and compact, then B.(p) # 0 would follows from the

17



property of a decreasing succession of nonempty compact sets. By definition
B{(0,p) = %; which is nonempty and compact. Suppose that Vi BJ(t,p) # 0
and compact. Then B(t + 1,p) # 0 iff 0] € Bi(t, p;) (which is nonempty by

the induction hypothesis) such that

Elul[oz,] S A(UpfiGM’fi((ré,pi\n)BLi(up*i)) : (18)
piloi (S (o, pilmi)) = 1 (19)
0; € BR;(pi[o})). (20)

Now if there exists a continuous function p;[o;] satisfying conditions (18) and

(19), then the maximum theorem would imply that the correspondence
BRi(p;) : 3 —— %

is upper hemi-continuous with nonempty convex compact values. Thus Kaku-
tani theorem would imply the existence of the fixed point (20) and thus that
Bl(t+1, p) is nonempty (and compact). Therefore the crucial point is to prove
that the correspondence p; : X; —— A(X_;) satisfying conditions (18) and
(19) has a continuous selection. Now consider the following facts:

1. 8™(oy, pi|n:) is lower hemi-continuous (1.h.c.) in 0; and in p; since p;(0;,0_;)

is continuous in o;, 0_j;
2. {pjlpj(0s,0_;) = p;} is Lh.c. in o_; since p;(0;,0_;) is continuous in o_;;

3. MJ*(0i, piln) can be written as follows:

M (04, piln) = Uo_, c5m (01,01 Ini) 105105 (00, 0-1) = ps}-

18



Therefore facts 1 and 2 and proposition 11.23 in Border 1985 imply that

M;“(Ui,pi|n) is Lh.c. in 0; and in p;;

4. fact 3 and proposition 11.25 in Border 1985 imply that M™ (o, pi|n) is

Lh.c. in 0; and in p;;

5. fact 4 and proposition 11.23 in Border 1985 imply that B](¢, p;) is Lh.c.
in py;
6. facts 4, 5, proposition 11.23 in Border 1985 imply that U,_, e prm (o, p; ) B—i (L, p— i)

is Lh.c. in o;.

Therefore the correspondence y; : ¥; —— A(X_;) satisfying conditions (18)
and (19) is Lh.c. Moreover it has closed convex values: thus by theorem 14.7
in Border 1985 (see also Michael 1956) has a continuous selection. Therefore
Bl(p;) is nonempty and compact. Moreover B'(p) := X;enB](p) is obviously
convex. Finally fact 5, propositions 11.23 and 11.25 in Border 1985 and the

continuity of p;(¢) imply that the correspondence
B'(p): ¥ —-— X%

is Lh.c in 0 and have closed convex values. Therefore theorem 15.4 in Border
1985 implies that it has a fixed point: 3o’ : o’ € B'(p(o’)) and therefore

SRCE # 0. O
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5 Information Partitions and Equilibrium Con-
cepts

In this section I will consider the relationships between the notions of (Strong
Rationalizable) Conjectural Equilibrium and the classic solution concepts, such
as NE and Extensive Form Rationalizability (EFR). These propositions show
the prominent role of players’ information partition when we want to analyse
a strategic situation. It is trivial to see that VG € G, NE(G) C RCE(G) C
CE(G) (Rubinstein-Wolinsky 1994). More complex are the relationship between
SRCE and NE. The previous example of figure 3 shows that in a subclass of
G SRCE is actually a refinement of NE, while the following theorem 3 shows
that when the information partition is non manipulable, e.g. when the signal
function is one-to-one, SRCE and NE coincides.

For fixed NV and S, denote the set of signal functions inducing a non manip-

ulable information partition by NM C RV *¥.

Theorem 3
VG eG(ne NM) NE(G)=SRCE(G)=CE(G).

PROOF: for this class of games it is immediate that NE(G) C SRCE(G) C
CE(Q), since in this case SRCFE(G) = RCE(G). Therefore the result is proved
showing that for this class of games CE(G) C NFE(G). Denote the support of

a probability measure by SUPP[-]. Suppose that 0’ € CE(G). Then Vi €
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N 3u; € A(X_;) such that:
0; € BR;(1;) (21)

pi{o—ilpi(0i,03) =pi(500,0" )} = 1. (22)

Consider condition (21), which implies that Vs, € SUPP[o]], ¥s; € S;

/[;ui(sbsi i(s-i)]pi(do i) /Zuz 8i,5-3)0_i(5_)|i(do ;).

But [[32,  wilsis-i)o—i(s—i)|wi(doi) =3, ~i) Joi(s-i)pi(doi) =

dos, wils{,8-4)0-i(s-;) where

671'(871') = /U,i(S,i)/Li(dU,i). (23)

Therefore the previous inequality can be rewritten as follows: Vs, € SUPPo}], Vs; €

Si Zs,i ui(sé,s,i)ﬁ,i(s,i) Z Zs,i ui(si,s,i)ﬁ,i(s,i) 1.e.
Yo, € ¥ ul(a 671') > ui(ai,ﬁ,i). (24)

Note that relations (22) and (23) imply that p;(-;0/,6_;) = p;(-;0},0" ;). There-
fore assumption 2 implies (o, 0" ;) = wi(o},6_;) > w(o;,6_;) Yo, € Z;
because of inequality (24). Moreover since the information partition is non ma-
nipulable and relations (22) and (23) hold, then p;(-;0:,6_;) = pi(-; 045,00 ,).

;) and thus

. . oy ,
Therefore assumption 2 implies w;(0;,0_;) = w;(0;,0";

Vo, € % ui(o},0,) > w(oi,0",) e o € NE(G).
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The notion of CE requires much less information about opponents’ behaviour
than the notion of NE. It is therefore surprising that both these concepts provide
the same restrictions on observable behaviour for a quite comprehensive class
of games. A version of this theorem is proved for EGs in Battigalli 1990 and
in Fudenberg-Levine 1993, here we provide the opportune version for this more

general setting.

Theorem 4 Let N = {1,2}. Then

VG eGm =) ((NE(G)) =((CE(G))

with the obvious meaning of the abuse of notation.

PROOF: since VG € G: NE(G) C CE(G) then it is immediate that VG € G :
((NE(G)) C ((CE(G)). Therefore I need to prove that under the assumption
of the theorem ((CFE(G)) C ((NE(G)). Let (01,02) € CE(G). Then I should
prove that 3(61,63) € NE(G) :  ((01,02) = ((F1,62). By definition (71,02) €

CE(G) = 3u € A(X3) and Jug € A(X;) such that:

V5, € SUPP[o1] 81 € BRy(11) (25)
m({o2lpi(5;01,02) = pi(01,02)}) =1 (26)
Vss € SUPP[&Q] So € BRQ(/,LQ) (27)
p2({o1|p2(-;02,01) = p2(;02,01)}) = 1. (28)

Now define 69 = fagdul and 61 = foldug. Then (25) and (27) imply:
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01 € BR1(02) and 02 € BRy(61) because
/ Z ui(8iy83-i)03i(83-¢)dpi = Z Ui(8i7837i)/ 03 i(s3_i)dp; =

A Sa; Va—i
by the previous definition = >7¢  ui(si,83 )03 i(s3-:) 7€ {1,2}. But
then &1 € BRy(62) and &2 € BR2(61) since according to (26), (28)
and the hypothesis of the theorem &; differs from &; only out of the equilib-
rium path and the actions out of equilibrium do not affect the expected util-
ity. Therefore (61,52) € NE(G). Moreover by construction d; and &; differ
only out of the equilibrium path and therefore the outcomes should coincide:
¢(61,02) = ((01,02). O

Note that the conditions N = {1,2} and 1; = ¢ are both relevant: the
first guarantees that d3_; is well defined, while if we don’t restrict the possible
information partitions then the theorem is trivially false: think e.g. of 7, =
k. On the other hand these are not the most stringent conditions securing
the realisation equivalence between CE and NE: see Fudenberg-Levine 1993 for
results on EG with perfect monitoring of actions.

When the information available during the game is relevant for the
outcome of strategic interaction situations, these contexts are usually modelled
as EGs. One of the most important solution concept in this case is EFR (see
Pearce 1984 and Battigalli 1997; the version of EFR T use is based on Battigalli’s

paper). I need some terminology:

e an information set I! precedes I iff Vh € I/, Jh e Il h C h. This
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relation is denoted by I < I/
e a conjecture of a player i € N is a probability measure ¢; € A(S_;),
e ¢; reaches I € Z; iff P{I|s;,¢;} > 0 for some s; € S;,

e s is a I-replacement for s; iff s;(I') =s;(I') VI'e T\{I}: I AT,

i.e. s differs from s; only at I and at its followers,

e a consistent updating system for player i, denoted by CUS;, is a

mapping ¢;(-) : Z; — A(S_;) such that VI €7, ¢;(I) reaches I and

vI'.I" eI, I' <I" & ¢;(I') reaches I'" = ¢;(I') = c;(I").

Definition 7 The set of extensive form rationalizable pure strategies
for an extensive game E, denoted by P(E), is defined induclively as follows:
P(F) := x4enPBi(E), PB(E):= ﬂt21Pi(t,E) P(0,F) :=5;, and s €
P(t+1,E) iff

si € B(t, F) (29)

and

E'Ci(') € CUSZ : VI € Ii(Si,t) (30)
@ all) € A(P(t, B))
(it)  wi(si (D) > wi(s,ei(I)) Vs; € Pi(t,E) and I-replacement for s,

where L;(s;,t) is the set of I € T, reached by s;,5_; for some s_; € P_;(t, F).
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Roughly, EFR implies weak sequential rationality since it requires that a strat-
egy specifies a best reply at all information sets that can be reached by that
strategy, given a conjecture consistent with the information sets on the equilib-
rium path. Moreover it is assumed that this procedure is CK and therefore it
is recursively iterated.

Let P(G) be the set of EFR pure strategies of the extensive game F rep-
resented as an IMG G with information partition 7; = (g. I prove that for
this class of games the strategies in SRCE?T coincides with the EFR strategies

which are also part of CEY.

Theorem 5
VG e G(m =() SRCE"(G)= P(G)[CE"(G).

PROOF: fix a game GG € G s.t. 7; = (: this condition implies that the signal is
public, thus if s’ € SRCEY | then Vi,j € N, Ym,, M;(si,m;|¢) = ((s').

I will prove first that SROCEY C PN CE?Y. Since SRCEY C CEF | 1 need
to prove only that SRCE® C P, and this is done by induction. Therefore I

want to show first that SRCET C P(1) and then that
SRCEF C P(t) = SRCEP CP(t+1). (31)

Let define Z({ (s')) as the set of player i’s information sets reached by the

outcome path when s’ is played. If s' € SROEY then Vi € N s} € BF(((s')).

Thus Joy[s!] € A(BE,(¢(s"))) such that si € BR;(a;[s}]) and
ailsi]({s—ilmi(si, s—i) = ¢(s")}) = 1. (32)
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Now construct a consistent updating system for player ¢ ¢;(-) as follows:

a;lst] VI € Zi(¢(s)
) =

ci(-)  otherwise

where ¢} € CUS;. Note that

1. ¢i(-) € CUS; because ¢i(-) is a CUS by definition and oy[s]] satisfies
definition 7 VI € Z({(s’)), since condition (32) implies that VI €
T;(¢(s"))  P{I]s},a[s}]} > 0 and «;[s}] is constant along the equilib-

k3

rium path;
2. Z(g(s’)) C Z;(s},1) because by definition

Ti(si, 1) :={I € Z;|3s_; € S_; : P(I|s{, s_;) > 0}

wi(si,ulsi]) I € Ti(¢(s))

ui(si, ci(1)) =
w;(st,ci(I))  otherwise.

(R

Moreover out of the outcome path the conjectures do not matter for i’s payoff
maximisation: therefore wi(sh,ci(I) > wi(si,ei(I)) Vs; € S; and I-
replacement for s, and thus s, € P(1),ie. SROEY C P(1).

To show implication (31) assume that SRCEY C P(t). Now define B(() as
the set of fixed point of B(((-)): B((¢) := {s' € S|s' € BF(((s'))}. Supposes’ €
SRCEY, then Vi s; € B;(¢). Consequently Ja;[st] € A(B_;(¢)) C A(P_;(t))

such that s; € BR;(as[s}]) and a;[si]({s_i|mi(s},s_i) = ((s')}) = 1, where
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the inclusion follows from the induction hypothesis. Now construct a ¢;(-) in
the following way:

o;lst] VI e T(¢(s")

al) =
cj(-)  otherwise

where ¢, € CUS; is chosen in such a way that s; € P;(¢ + 1). This is possible

because:

1. ¢;i(-) € CUS; because c;(-) is a CUS by definition and o;[s}] satisfies def-
inition 7 VI € Z;(¢(s')), since VI € T;(¢(s")) P{I|s}, s} > 0 and
a;[$]] is constant along the equilibrium path;

2. Z;(C(s")) € Zi(s;,t) because by definition
Ti(si,t) ={I € T;|Fs_; € P_i(t) 2 B_i(¢) 2 {s_;} : P(I]s{,5-4) > 0}

and thus VI € Z;(¢(s)  ei(I) = ay[si] € A(B_i(€)) C A(P_y(1)).
Moreover it is possible to choose ¢/(-) in such a way that VI € Z;(s},t)\

T:(C(s"))  ci(I) € A(P-4(1)), since this choice is arbitrary;

uilsi ailsi]) 1€ Zi(C(s))
uilsy, ei(l)) =
w;(st,ci(I))  otherwise.

Therefore there exists a c/(I) such that w;(s},c;(I)) > wi(si,c:(I)) Vs €
P;(t) and I-replacement for s and thus s; € P(t + 1).
Now I want to prove that P(CEY C SRCEF. Some preliminary remarks

are necessary. First note that the iterative definition 6 of SRCFE can trivially be
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specialised to the case of pure strategies. Therefore by definition s’ € SRCET iff
s € N1 B'(t,((s")); since B'(t,¢(-)) : S —— S is a continuous correspondence
in the discrete topology, then s’ € SRCEY iff vt > 1 s’ € B'(t,((s')). Now
define B'(,¢) as the set of fixed point of B'(¢,¢(-)): B'(t,{) :={s' € S|’ €
B'(t,{(s'))}. Therefore the inclusion that I want to prove is equivalent to
vt>1 P@#)NCEY C B'(t,¢) that I prove by induction.

Note that P(1)CEY C B'(1,() is immediate since CEY = B'(1,().
Moreover note that there are two possibilities: either CEF = SRCEF or
CEY > SRCEP. In the first case the result follows trivially, while in the
second case the thesis is equivalent to prove P C SRCE?® . Therefore I need to
prove that P(t) C B'(t,() = P(t+1) C B'(t+1,(). Suppose that
s’ € P(t+1). Therefore Vi € N Fe;(.) € CUS; : VI € Zi(s,t + 1) the condi-
tions of the definition of EFR hold. In particular VI € Z;(si,t +1) ¢(I) €
A(P_;(t)) € A(B’,(t,{)) and s! is a best reply among I-replacement in

P(t) C Bi(t,¢). Note that
1. by definition Z;(¢(s")) C Zi(s},t +1);

2. VI € T,(¢(s"))  SUPPlei(I)] € B'i(t,¢) C Si(s},¢(s)|¢)  since by
definition any 8; € Bj(¢,¢) should be consistent with the public signal
¢(s');

3. ¢(-) € CUS, is constant along the equilibrium path.

Therefore it is possible to pose ;[s)] = ¢;(I) VI € Z;(¢(s')). Consider the
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first I € Z({(s’))7 i.e. the first information set of player i along the outcome

path: from the previous relations s, € BR;(a;[s}]) because information sets

with probability zero are irrelevant for maximisation. Moreover by construction

a;ls

il € A(B',(t,¢)) and «;[si](Si(s],¢(s')]¢)) = 1. Therefore s; € B/(t +

1,¢(s")) and thus P;(t +1) C B{(t+1,¢). O
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