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ABSTRACT

In mating competition, the Truthful Signalling Hypothesis (TSH), or handicap principle, asserts
that higher-quality (H) males signal while lower-quality (L) males do not (or else emit smaller signals).
Also, the signals are “believed” (females mate preferentially with higher-signalling males). Our analysis
employs specific functional forms to generate equilibrium solutions that validate the TSH. Numerical
simulations illustrate how the equilibrium responds to changes in the exogenous parameters.

“Net” male quality is what remains after deducting signalling costs from intrinsic or “endowed”
quality. Following Grafen (1990b) in dealing with endowed quality that is non-heritable, we introduce
several crucial analytic innovations: (1) A Mating Success Function (MSF) indicates how female mating
choices respond to higher and lower signalling levels. (2) A “congestion” function rules out corer
solutions in which females would mate exclusively with H males. (3) In addition, for biological
equilibrium a Malthusian condition is employed to balance population size and resources.

Equilibria validating the TSH are achieved over a wide range of parameters, though not
universally. Contra some statements in the literature, for TSH equilibria it is not a strictly necessary
condition that the high-quality males have an advantage in terms of lower per-unit signalling costs,
although any cost difference in favor of the L-type males cannot be too great. TSH equilibria may also
fail if the proportion of H-type males in the population is too large.

Signalling can start up from a no-signalling equilibrium only if the trait used for signalling is not
initially a handicap, but instead is functionally useful at low levels. Selection for this trait sets in motion
a bandwagon whereby the initially useful indicator is pushed by male-male competition into the domain
- where it does indeed become a handicap.
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This model of mating competition is aimed at determining the conditions needed to support the
Truthful Signalling Hypothesis (TSH). (Sometimes known as “the handicap principle”.) Dealing for
simplicity with just two distinct male types, in a TSH equilibrium the high-quality (H) males signal
(exhibit highly visible yet disfunctional traits) while the low-quality (L) males do not signal (or else emit
smaller signals). Also, the signals are “believed” by the females, meaning that the females mate
preferentially (though in general not exclusively) with the higher-signalling males.”

1. Introduction
To explain the evolutionary survival of disfunctional traits such as the peacock’s tail, there have
been two main analytical approaches. The first, due to R.A. Fisher,’ proposes that a runaway or
disequilibrium process is involved - rather like a stockmarket bubble. Males are selected to have big
tails because females prefer mates with big tails. And females continue to prefer such mates only
because, in the next generation, their own big-tailed male offspring will similarly be preferred (for the
same reason) by the females of the following generation:

... plumage development in the male, and sexual preference for such developments in the
female, must thus advance together, and so long as the process is unchecked by severe
counterselection, will advance with ever-increasing speed. (Fisher, 1958 [1929], p. 152)

The second approach, the one pursued here, postulates instead an equilibrium process. The
disfunctional trait is evolutionarily stable because, as a handicap, it serves a signalling function (Zahavi,
1975). Ability to bear the cost of the disfunctional trait indicates that a male is a superior consort. The
handicap trait can survive in equilibrium (under suitable conditions) because it represents a balance of
forces: a disadvantage in terms of ordinary natural selection, versus a countervailing advantage on the
score of sexual selection.® The question is whether an evolutionary equilibrium (ESS)’ can be attained.

Formalizing the indicated equilibrium has turned out to be no easy task. The best-known model
supporting the evolutionary validity of the TSH, Grafen (1990a,b), is at a high level of abstraction. The
model here, which we believe complements Grafen’s work, is more explicit. By making use of credible

! We thank David Hirshleifer for many helpful comments and suggestions. Thanks also to Alan
Grafen for responding patiently to repeated inquiries.

2 Signalling occurs in non-mating contexts as well, for example in threat displays aimed at over-
awing hostile competitors. The fullest description is Zahavi and Zahavi (1997). In the economics
literature, the standard exemplar of signalling is the acquisition of educational credentials, assumed to be

costly but non-productive (Spence [1974]).
3 Fisher (1958 [1929)]), pp. 146-156.

* Zahavi and Zahavi (1997, p. 40) propose the more genral terminology: utilitarian selection
versus singal selection (p. 40).

5 ESS signifies “evolutionarily stable strategy” (Maynard Smith, 1976). The terminology is
imprecise because (apart from the special case of a homogeneous population) a set of strategies may be
involved, one for each type of player in a stratified population.
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specific functional forms, we produce a variety of exact analytical and/or numerical solutions. In return
for the sacrifice of generality, such a successful specification demonstrates that at least the minimal
standard of internal consistency has been achieved. In addition, we claim, the particular functional forms
serve to illuminate the working of signalling interactions. (In economics, Cobb-Douglas or CES
production functions -- although involving special assumptions about the functional relations between
inputs and outputs — have proved to be extremely useful for advancing understanding of productive
processes.) Instantiating the model may be suggestive in other ways as well, for example we will be
exploring ranges of parameter values within which a TSH equilibrium can or cannot be obtained. And
finally, the need for logical completeness may turn up issues not hitherto noticed. Thus, to achieve
closure our equation system required “congestion” restrictions to limit females’ ability to mate
preferentially with high-signalling males. And again, equilibrium requirements indicated a need to
satisfy a Malthusian condition, that population numbers be in balance with resources.

As outsiders we have found the modelling achievements of biologists to rate very highly on the
scores of imagination, analytic power, and sensitivity to real-world implications. Yet even in highly
impressive instances such as the Grafen papers referred to, it is difficult to figure out just what is going
on. What are the assumptions? What are the constraints? Who is competing against whom, and what are
the determinants of success? Which are the dependent variables, and which are parameters subject to
exogenous variation? What are the conditions of equilibrium? Here is where the economic modelling
tradition has something to offer. Economists have developed a logical procedure, under the heading of
general equilibrium analysis, that organizes all the necessary elements in a structured and transparent
way. We hope to show that a corresponding general equilibrium analysis of the signalling problem will

help resolve a number of unsettled questions.® ’

Here is the paradox of signalling equilibrium models, as applied to mating choices. If females
are attending to truthful signals, then higher-intrinsic-quality (hence higher-signalling) male contenders
must necessarily win disproportionate mating success. So, assuming quality is heritable, in the next
generation high-quality high-signalling males must increase in representation in the population. This
process, continuing over the generations, leads inexorably to extinction of the low-quality males. But if
signalling is to persist in evolutionary equilibrium, both low-quality and high-quality males must remain
represented! So on the one hand the high-quality high-signalling males are always gaining ground, yet on
the other hand the low-signalling low-quality males do not go extinct. (This seeming contradiction was
presumably what led R.A. Fisher to postulate a runaway disequilibrium process instead.)

¢ But we will not be simply translating economic signalling models into biological terminology:
Our presentation, although consistent with the principles of economic equilibrium analysis, is not
actually very closely related to current signalling models in the economic literature.

7 Representing a somewhat different economic approach, the valuable paper by Noldeke and
Samuelson (2001) came to our attention only after our work was substantially completed. Several of our
key themes appear also in N&S, in particular the distinction between (what we call) endowed versus net
male quality. N&S were primarily concerned to find formal conditions upon the distribution of endowed
male quality (treated as a continuum) that make a TSH equilibrium possible. Our analysis, in contrast,
dichotomized male quality (High versus Low). This simplification allowed us to generate explicit
equilibrium solutions and to study detailed conditions on a number of parameters — among them the costs
of signalling and the population proportions of the H and L types — required for achievement of a TSH

equilibrium.
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A way out, following Grafen (1990b), is to postulate that male quality is non-heritable:

In the first stage, males are randomly assigned a quality independently of their genotype ...
— Grafen (1990a), p. 475.

Male quality not being heritable,® what is inherited instead is a “signalling rule”.? ILe., a scaled-
response gene that in effect instructs its (male) bearer: “If you find yourself in a (non-heritably) high-
quality body or with ample external resources, emit a big signal. If the opposite, emit a small signal (or
no signal at all).”*® The heritable rule specifies the tuning of this gene so as to quantify the males’ scaled
signalling responses to their higher or lower quality endowments.

The measure of quality, reproductive success (RS), is defined here in terms of female offspring
only. A male’s quality is the number of viable daughters that, if chosen as a mate, he can father and help
rear into the next generation. (Of course the mother’s quality is also involved in determining RS, but in
this analysis all the females are assumed identical.) The non-heritable variations themselves — bodily
features or external resources that contribute to reproductive success — constitute what we will term the
male’s endowed quality. However, the individual male will be dissipating some or all of his endowment
in order to generate signals. So endowed quality represents only potential RS. The male’s net quality,
which is the trait of interest to females, is what remains after deducting signalling cost.

The analysis that follows employs a number of simplifying assumptions, among them: (i) There
are only two male types, high-quality (H) and low-quality (L), constituting the respective fractions =
and 1-n of the population. (ii) Within each quality type, all males are identical. (iii) Also, all females
(F) are identical. (iv) The H and L male types summed together equal the females in number.

Following the standard procedures of economic general equilibrium analysis, the various agents
optimize, that is, each individual is viewed as maximizing reproductive success subject to the relevant
constraints. (A process leading presumably to the same result as evolutionary selection for maximum -

¥ Although Grafen did note that his analytical model dealt with non-heritable quality, that point
did not receive much emphasis in his paper. And indeed, some influential biologists seem to believe that
Grafen has proved the existence of signalling equilibria for heritable quality variations. Thus Dawkins:
“Quality, for Grafen, means that ... females would benefit genetically [sic!] if they mated with good
males ...” (Dawkins, 1989, p. 310). And similarly Zahavi and Zahavi (1997), though claiming support
from Grafen’s demonstration (p. 58), associate handicap signals with a huge range of male quality traits,
many of them clearly heritable. Noldeke and Samuelson (2001), however, have noticed the limitation of
Grafen’s analysis to non-heritable quality variation.

? “All the signalling models assumed that the signalling rule is heritable.” (Grafen, private
communication to one of the authors, emphasis added.)

' Thus, consistent with the Zahavi and Zahavi (1997), instead of selection for quality there is
selection for signals. Note the analogy with the hypothesis of Trivers and Willard(1973), which deals
with the sex ratio of offspring as a scaled-response function of non-heritable parental quality.
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fitness.)!! All the separate individual optimizing choices are brought into consistency with one another
in equilibrium, characterized by a balance among the signalling efforts of the two male types and the
willingness of the females to allocate mating capacity in response to those signals.

In this analysis we tentatively assume that the Truthful Signalling Hypothesis is valid. Then the
high-endowed-quality and low-endowed-quality types H,L are also respectively the bigger-signal and
smaller-signal types (indexed as 1,2). Signalling types 1 and 2 will therefore be represented in the same
population proportions m,1-n as the H and L quality types. In accordance with the TSH, the model
must also incorporate the fact that females “believe” the signals. Thus, letting m and 1- m denote the
proportions of the typical female’s mating capacity devoted to the big-signal and small-signal types

respectively, it must be that in equilibrium m > .

If the analysis of the TSH works out without contradiction, we can at least infer that the
hypothesis and the model are internally consistent. In addition, the analytic solutions and numerical
simulations that follow will illuminate various aspects of the signalling problem. As one example, it has
been said that the validity of the TSH depends upon the higher-quality (and therefore bigger-signalling)
male type having lower per-unit signalling cost.'> We will show that this condition is not actually
necessary. As another example, our simulations will indicate that, for a TSH equilibrium to exist, the H-
type cannot represent too large a proportion of the male population.

. Section 2 that follows sets forth and explains an initial version of the model, and Section 3
provides a baseline numerical instantiation. After noticing that under the baseline condition population
size is not in equilibrium, Section 4 extends the analysis to incorporate a Malthusian equilibrium
condition. Using this extended model, Section 5 numerically simulates variations in a number of the
determining parameters -- among them relative signalling costs and the proportions of the Hand L
endowment types in the population. Section 6 addresses the question of how, starting from an initial no-
signalling situation, a pattern of signalling can ever emerge. Section 7 covers possible extensions of the
analysis, and Section 8 concludes.

2. The Model (Initial version)

Male choices
Let us start with the constraints. Subscripts 1 and 2 refer to the male types that emit big and

small signals, which by hypothesis are respectively the high and low endowed-quality types H and L.
Each male’s (non-heritable) endowed quality e; (i = 1,2) — his available resources, external or internal --
can be employed either to generate signals of magnitude s; or else to generate net quality »; as a mate:

e=n+bs, fori=12 (1)

'! An approach sometimes called “methodological individualism”. In biological terminology, we
are eschewing group-selection arguments. An equilibrium is defined by the property that no 1nd1v1dua1
can profitably deviate, regardless of the interests of the group as a whole.

'2 Thus: “... the marginal cost of advertizing must be lower for the better male.” (Grafen 1990b,
p. 522). Also: “ ... signalling of quality can be evolutionarily stable, as long as the costs of signalling are
less for better quality individuals.” (Godfray 1991, p. 329).
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Here the b, represent the conversion coefficients (assumed constant) between resources and
levels of signalling, i.e., the per-unit or marginal costs of signalling, which will in general differ as
between the two male types. Since the coefficient of n, is unity, endowed quality e, and net quality n;
are denominated in the same “currency”. And since all offspring (daughters) are of equivalent quality,
only numbers matter. So n, can be interpreted simply as the number of daughters per mating surviving

into the next generation, for each male type.

Let m be the proportion of the females’ aggregate mating capacity going to the H male type, the
remainder of course going to the L type. When the TSH is valid, these will also be the proportions going
respectively to the big-signallers and small-signallers. Since n,1-nt are the population proportions of the
two types, the H and L per-capita mating success rates will be m/n and (1-m)/(1-n) respectively.

A male of either type will choose' the signalling level that maximizes his reproductive success
RS, for which we will usually be using the economic term “utility” U, — the product of his per-capita
mating success, his net quality, and the female’s mating capacity K (to be described below):

U =K (-—”l) n,
/4
1—m Male Utilities (2)
U,=K|—
2 ( -7 )nz

If the females “believe” the signal, then m/n >1: the H males will have more than one mating per capita
and the L males less.

Female choices:
With the aim of maximizing her reproductive success, each female will be choosing the

probabilities m and 1-m of mating with a high-signalling or low-signalling male. To begin with, her
RS will therefore be the average of the net qualities of the two male types, with weights m and 1-m.
However, there must be a constraint upon her range of choice, else she would devote 100% of her mating
capacity to the bigger-signalling type (since she “believes” that to be also the male type of higher net
quality). By assumption here, this limitation is interpreted as due to congestion. In attempting to mate

~ disproportionately with the high-signalling males, i.e, to raise her chosen m above T, a female must

accept some reduction of her mating capacity K .'

A specific formulation of the congestion constraint on female mating capacity is:

K=1-h(m-r)’ - Female Mating Capacity (3)

1* “Males will choose ...” is of course a short-cut expression for “males will be selected as if they
were choosing ...”

14 Females may have to wait in line for the preferred males, or else expend time and effort
searching for them.



where A is a positive constant.

Let M denote the weighted average quality of the typical female’s mates:
M =mn, +(1-m)n, Average Net Quality of Female’s Mates (4)

Then the payoff to the female, her reproductive success in terms of number of daughters surviving into
the next generation, is:

U F= KM Utility of Female (5)

Optimization and equilibrium:

Each female will be balancing the marginal cost against the marginal benefit of shifting a unit of
her mating capacity from the smaller-signalling type-2 males to the bigger-signalling type-1 males. The
marginal benefit is the difference in net qualities n, - n, weighted by her mating capacity K. The
marginal cost is the loss of mating capacity due to congestion, multiplied by the average net quality of the
males she would otherwise have mated with.

» Differentiating utility U, with respect to m leads by straightforward steps to the female first-
order condition:

K (n,—n,)=-DM Female F.O.C. (6)

where D = dK/dm is the marginal congestion effect:

D =-2h(m -1x) Congestion Effect (7)

The left-hand side of (6) is the marginal benefit, and the right-hand side the marginal cost.

As a crucial and the most novel step in our development, we now introduce a Mating Success
Function (MSF)."* If type-H and type-L males are signalling at the respective levels s, and s, , the MSF
tells us how the signals translate into mating success. Or put another way, the MSF specifies the degree
to which a female attends to the signals in choosing her mating fractions m and 1-m.

Following our methodological program of instantiating the TSH with specific functional forms,
we postulate that females will respond to the male signals in accordance with:

'* The MSF is analogous to the Contest Success Function (CSF) employed in the economic
conflict literature (see Hirshleifer 1989, 1991, Skaperdas, 1996). Such a function is perhaps implicit in
some of the biological literature, but we have not seen it used explicitly.



m___T |5 : Mating Success Function (8)
l-m 1-7 s, v

Thus, the ratio in which females distribute their mating capacity between the two male types reflects the
proportionate representation of the latter in the population (the first factor on the RHS) augmented by a
signalling factor — expressed as the ratio of the signalling efforts raised to a power r > 0.' Here r,
which scales the extent to which differing signalling intensities translate into mating success, is the
“signalling decisiveness parameter”. If r=0 there is no effect at all: the females pay no attention to
signals and mate at random, in which case m =m. The higher is » the more decisive are the signals in
bringing about mating success.'” Although r is parametric from the point of view of each and every
male and female acting singly, for the analytic system as a whole the magnitude of r is an endogenous
variable. More specifically, it is the equilibriating variable that glues together the male and female
decisions. As an analogy, in economic models of perfect competition, each and every supplier and
demander takes the market price as given - yet the equilibrium price is endogenous to the system as a
whole, determined by the overall balance of market conditions. Similarly the equilibrium level of the
signalling decisiveness parameter r reflects the overall “market conditions” in the signalling process —
the willingness of the different types of males to emit signals, and of the females to attend to them.'®

Given the females’ choice of m, on the male side there will be a pair of signalling levels s, and
s, for the H and L types respectively. At equilibrium no individual male can advantageously deviate
from the specified pattern of scaled responses. For the two types of males, this no-deviation condition
together with the Mating Success Function lead to the first-order conditions:'?

bs, =r(e -bs,) Male F.O.C.’s (9)
bzsz = r(ez - b2s2)

So, apart from the fixed parameters, the male signalling levels depend only upon the intermediating
“decisiveness” parameter r that signifies the extent to which the females attend to the signals.

Taking stock at this point, leaving aside the utility variables for the moment, the core equation

' In the economic literature there has been some discussion of alternative versions of the Contest
Success Function. For example, proportionate success might respond to the difference rather than the
ratio of the inputs. See Hirshleifer (1989), Skaperdas (1996), Neary (1997).

'7 Similarly in the economic conflict literature, » scales the decisiveness of force disparities in
determining conflictual outcomes (Hirshleifer, 1991).

'* The MSF is also somewhat analogous to a “contract” that the female might be regarded as
offering to indicate her promised response to different signalling levels. However, the contract
terminology is perhaps misleading, because in the model here females are just as constrained as the
males. An individual female is not in a position to unilaterally offer contracts, but can only respond to

the “market conditions” reflected in the equilibrium value of r.

1% For the derivation, see Appendix 1.
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system has 9 variables: sy, 5., n,, n,, m, M, K, and D, and r. Condition (1) provides 2 equations, and there
are one each for conditions (3) and (4) and (6) through (8). With the two equations of (9), the numbers
of variables and equations correspond.?® An analytic solution of this model is provided in Appendix 2.

The utility variables are easily derived from the core solution. U, and U, are specified by
equations (2) and Uy by equation (5). As a check, note that female utility is the average of the male
utilities, weighted of course by the mating fractions m and 1-m.

U, =KM = Kmn +K(1-m)n, =zU, +(1~-x)U,  Female Utility (10)

“For purposes of comparison it will also be convenient to define “no-signalling utilities” (signiﬁed
here by asterisks) — the payoffs that would have been earned in the absence of any signalling at all, so
that the females mate at random: ’

*

U, =¢
£ 3
U,=e¢,

U, =ne,+(1-7)e,

No-signalling utilities (11)

3. Baseline Numerical Results — Initial Model
A numerical solution will be illuminating at this point. For this initial Model 1, the first column
of Table 1 shows specified values of the underlying constants and the associated solution values of the
variables. There are 8 core variables tabulated (we have omitted D, which is only an intermediate

variable):

5. Signalling level of H-type males

S5 Ditto for L-type males

Net quality of H-type males

Ditto for L-type males

Proportion of female mating capacity going to H-type males
Average net quality of mated males

Female mating capacity

Signalling decisiveness parameter

TRARESE.

From the solution for these variables, 6 associated utility variables can easily be calculated:
U, RS of H-type males ’

U, RS of L-type males

Us: RS of females _

U*: RS of H-type males under random mating (in absence of signalling)

U,*: Ditto for L-type males -

Us*: Ditto for females

20 That the numbers of equations and variables match up does not of course demonstrate that the
system is internally consistent and complete. But our numerical simulations provide such a test.



The following are the settings of the fixed parameters in the “baseline” numerical solution:
n= 0.5 Proportion of H-type males

e, =2.0 Resource endowment of H-type males

e,= 1.0 Ditto for L-type males

b, =0.5 Signalling costs per unit for H-type males

b,=1.0 Ditto for L-type males

One additional parameter will be held constant throughout:
h = 1.0 Congestion effect coefficient
(Higher values of this parameter would increase the female’s loss of mating capacity in the attempt to

mate preferentially with the H-type males.)

[Table 1 about here]

Table 1 shows, in the column labeled “Initial Model 17, the solution values for the eight core
variables (omitting D) of the initial system plus the six utility variables. Ability to obtain such a solution
confirms the internal consistency of the model. Apart from that, a number of aspects of the numerical
baseline solution are worthy of note:

1. At this baseline solution the TSH is validated. The H-type males, characterized by higher endowed
quality (e, > e, ), do indeed signal more heavily than the L-type males (s, > 5,). And the signal is

believed, that is, the higher-quality males capture a disproportionate share of the matings (m > 7).

2. The parameters used here are such that the H type is not only of higher intrinsic quality (e, > e,) but
also benefits from lower per-unit signalling cost (b, < b,). So it is not yet clear whether the observed
validation of the TSH depends upon one or the other, or both, of these inequalities holding.

3. All three utility levels - U, , U, , and Ur — of the signalling solution are respectively less than the no-
signalling utilities U,*, U,*, and Uz*. In other words, the signalling process is a losing enterprise for all

concerned.

This last point suggests the question of how the process might have gotten started, a topic that
will be taken up in Section 5. First, however, we will be addressing a somewhat different problem: to
wit, that the baseline solution represents a result inconsistent with a stable population size, hence falls

short of being a true equilibrium.

4. Extended Model — Malthusian Condition
In equation (5) female utility U, was defined as equal to KM, where K is her congestion-
constrained mating capacity and M is the mean net quality of her male consorts (weighted by the mating
fractions m and 1-m). But male net quality was defined in terms of the number of daughters per
mating. In a Malthusian equilibrium, on average there must be exactly one surviving daughter per
female, else population numbers would be rising or falling. So, for the population to be in balance it

must be that:
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U F= 1 Malthusian stability condition (12)

But Table 1 indicates that, at the baseline solution, U, < 1. Thus, the population would have to
be falling. (Different parameter settings could equally well have led to the opposite result, in which
population would be rising instead of falling.) To satisfy the conditions of equilibrium, the model has to
be extended to provide for stable population numbers.

Let the total population be 2, so that the number of females equals N. It is the variation of N
that will make condition (12) hold. More explicitly, the endowed qualities e, and e, previously taken
to be constants, now become declining functions of N.

The enlarged equation system has three more variables: e, e,, and N. The conditional equality
(12) 1s one new equation. The other two equations are the relations between the quality endowments and
population size, which we specify as taking the simple form:

e=E/N" and e, =E,/N”,w>0 Population and quality (13)

The new constants £, and E, will be termed the “underlying” quality parameters. The “endowed”
qualities e, and e, previously defined as constants, now become variables responding to population
size. Reflecting the effect of crowding, the value of the diminishing-returns parameter w indicates the
degree to which the endowed qualities of both male types fall off as N increases .2'

Appendix 3 provides an analytic solution of the extended system.

5. Parametric Variations of the Extended Model

We will now be using the extended Malthusian model to explore:
(1) Over what ranges of parameters will a TSH equilibrium — a handicap equilibrium involving truthful
signalling — exist?
(2) Does a TSH equilibrium depend upon the higher-quality male type having lower unit signalling cost
(b, < b,)? Or upon differences in the underlying qualities (E, > E,) -- which, for given population size N,
always imply corresponding differences in the endowed qualities (e, > e, )? Or some combination
thereof?
(3) For a TSH equilibrium to exist, must the male population fractions 7,1—7 fall within certain

bounds?

A baseline solution for the extended model incorporating the Malthusian condition is shown in
the second column of Table 1. New constants E, and E, are shown for the underlying male qualities,
while the endowed qualities e, and e, have been shifted from among the constants to the variables.
Associated with these changes is the crucial new variable N representing population size . The baseline
parameters of the extended system have been selected so that the solution values for e, and e, as

2! At the “nominal” population size N =1, the endowed qualitis as variables ¢qual the
respective underlying quality parameters. (N can be interpreted as measured in units of hundreds or
thousands or whatever.)
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variables, 2.250 and 1.125 respectively, end up quite close to the previous constant values ¢, =2 and e,
=1 of the initial system before the Malthusian condition was imposed. As a result, most of the tabulated
solution values are very similar to those of the initial system. As for the new variable N, the equilibrium
population size (N = 0.444) is the “nominal” N= 1.

That some of the solution values remain exactly the same is due essentially to the fact that the
postulated ratio of the underlying quality constants E,/E, = 2 in this extended model remains the same
as the previously assumed endowed quality ratio e,/e, =2 in the initial model.

We will be selectively varying only a few among the many parameters, in particular those whose
variations suggest answers to the questions listed above. And in particular we will be considering
variations of: (1) the underlying quality E, of the L-type males (relative to the fixed E,=1 of the H-
type males), (2) unit signalling cost b, for the L-type males (relative to a fixed b, = 0.5 for the H-type

males), and (3) the fraction © of the population represented by the H-type males.

1) Parametric variation of underlying quality

Figure 1 show the effects, in equilibrium, of parametrically varying E, — the underlying quality
of the L-type males —relative to a fixed E, =1.0. All the other parameters are held at their baseline
values, while the underlying quality for the L-type males is allowed to vary both upward and downward
from its baseline value E,=0.5.

<< Figure 1 about here >>

Starting with the bottom panel, note that U, - female utility (reproductive success) — remains
equal to unity throughout. This is of course the feature of the extended model that was imposed to satisfy
the Maithusian condition of population stability. In the middle panel the curve for N shows that the
level of the population is greatest (reaches its nominal value N = 1) at the right edge of the diagram,
where E, has attained equality with E, = 1.0.

The most interesting action takes place in the top panel. (For labelling convenience the variables
m,1-m have been re-named m,,m,.) Taking the upward variation of E, first,as E, nears E,= 1.0 from
below, the signalling levels s, and s, both fall off toward zero. As an intuitive explanation, when the
underlying qualities £, and E, do not differ very much, the females have less need to respond
sensitively to the emitted signals. (In the middle panel, the signalling decisiveness parameter r falls off
toward zero as E, nears E, = 1.0.) This of course reduces the male incentive to signal. As a further
consequence of the decline in signalling levels, the mating fractions m, and m, in the top panel
converge toward equality at 0.5 when E,=E, = 1.0.

Now letting the underlying quality E, move downward from its baseline value E, =0.5, the
associated signalling level s, goes to zero as E, = 0. (At the limit E, =0, the L-type males simply
have no resources for paying out signalling costs.) And the decline of s, reduces the need for the high-
quality type to signal heavily, so s, also falls as E£,=0 is approached. Thus the signalling levels
approach zero at either extreme: as the underlying quality of the L-type males, E,, either moves upward
toward equivalence with the quality level of the H-type males or else moves downward toward zero.

TSH equilibria exist here over the entire range of values 0 < E, < E, = 1. (Except at the lower
limit £,=0 itself, where the Mating Success Function involves a factor of the form 0/0.)
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(2) Parametric variation of signalling cost

Holding the other parameters at their baseline values, and in particular restoring the L-type
underlying-quality parameter to E, = 0.5, the upper panel of Figure 2 shows what happens as the
signalling-cost parameter for the L-type male moves away from its baseline value b, = 1.0 -- holding
constant the H-type signalling-cost parameter b, =0.5. Figure 2 brings to light a number of remarkable
features of TSH solutions that have hardly been appreciated in the literature.

<<Figure 2 about here >>

The interesting range is from b, = 1 downward, where the L-type males’ per-unit signalling cost
is parametrically falling toward -- and possibly even beyond! -- equality with b, = 0.5. First, as unit
signalling cost b, declines, for evident reasons the signalling level s, rises. And then, to maintain their
mating representation, the H-type males respond with rising s, (though not in the same proportion).
Thus, moving toward the left in the upper panel, the curves for s, and s, both rise sharply, quickly
going off-scale in the diagram. Thus, as unit signalling cost for the low-quality males decreases, a
“signalling arms race” is occurring.

One might wonder how the males can afford to engage in such extreme levels of signalling. The
explanation is that, as shown in the middle panel, moving toward the left population size N is falling,
thus raising the endowed qualities e, and e, relative to the underlying quality parameters E, and E, —
in accordance with equation (13). As population numbers fall, for Malthusian reasons both male types
gain increased per-capita endowment to expend in signalling. And in fact, as b, moves downward, e,
and e, rise without limit until the population size N hits zero at around b, = 0.25. At that point the

analytic system breaks down.

That brings us to a second important feature brought out by the simulations: TSH solutions exist
only over part of the range of signaling-cost variation. Furthermore, the range of TSH solutions is not
defined by the condition b,> b, —- despite assertions to that effect in the literature (see earlier footnote).
Perfectly good solutions exist for which the L-type males have lower per-unit signalling costs than the H-
type males. And these solutions are still TSH equilibria: the high-signalling males remain of higher net
quality (that is, n, > n,), and the females continue to (correctly) “believe” the signals (they set m > 7).
So, as indicated in our opening discussion, a unit signalling-cost advantage for the high-quality male type
is not a necessary condition for the TSH to hold. Without a positive advantage in terms of unit signalling
cost, or even at some disadvantage in that respect (if not too great), the superior endowed quality e, of
the high-type males permits them to profitably generate a positive and “truthful ’signalling discrepancy s,
> 5,2 '

2 In economic jargon, an “income effect” and a “substitution effect” are involved. A rich person
might purchase more of good X than a poor person, even at a higher price, simply because he can afford
to do so. Similarly here, an H-type male can sometimes want to signal more heavily, even when
incurring a higher per-unit cost than an L-type male. Owing to this ambiguity Maynard Smith (2001) is
committing no error in saying ‘‘signals are a reliable indicator ... because they ... would be too expensive
for. a low-quality individual.” That signals are “too expensive” may not be a matter of their per-unit price
but simply that the low-quality individual is not well-enough endowed to afford them. On the other hand,
Grafen (1990b) refers explicitly to marginal cost, and hence is incorrect when he indicates that for a TSH
equilibrium it must be that (in our notation) b, < b, .
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Another possibly surprising feature in the top panel of Figure 2 is that the equilibrium mating
fractions m, and m, remain unchanged as b, varies relative to b, This result was shown analytically
in Appendices 2 and 3. We know from the MSF equation (8) that m,/m, is a function of the signalling
ratio s,/s, raised to the power r (the signalling decisiveness parameter). It follows from equation (E) of
Appendix 3 that as b, falls the signalling-level ratio declines. But we see in the middle panel of the
diagram that the signalling decisiveness parameter r is rising correspondingly. Thus, although the
differences in signalling levels are diminishing, the females are attending to these differences more.

Conclusion: It is not a necessary condition for a truthful signalling equilibrium that the higher-
quality males have a per-unit signalling cost advantage. TSH equilibria are possible even at a cost
disadvantage, although that disadvantage must not be too great.

(3) Parametric variation of the population fraction 7:

Figure 3 illustrates variations around the baseline value 7=0.5 of the population fraction
represented by the H-type males. The most notable feature is that the s, and s, curves are both
markedly U-shaped — a result that, so far as we know, has not been remarked in the literature. Signalling
efforts are near their minima at the baseline value 7= 0.5 (actually, a little below, at around = = 0.41).
Moving toward either extreme signalling levels rise quite rapidly, the proximate reason being the
correspondingly rising signalling decisiveness parameter r. (Whenever females are attending more to
signals, other things equal the males will respond with increasing s, and s..)

<<Figure 3 about here >>

But what determines the U-shape for »? Here the answer is somewhat subtle. Equation (B) of
Appendix 2 (repeated in Appendix 3) is:

m(l-7) :
In —m)
—-m)z
po—tl=mm] | (14)
bZel
In| =—
bleZ

From this equation the U-shape of the r curve in Figure 3 follows directly. First of all, the
denominator is a constant, hence does not affect the shape. -In the numerator, from the TSH property (m
>mt) it is evident that as = = O the ratio m/z and therefore the bracketed numerator as a whole must rise
without limit. That explains the why the left-hand branch of the curve nearer the vertical axis has
negative slope. Moving in the opposite direction, as © =~ 1 we see that m approaches the limit of unity
when = is still only around n=0.75. Thus once again, the numerator rises without limit.

So as m, the fractional representation of the H-type males, moves toward either limiting value 0
or 1, the signalling decisiveness coefficient r rises sharply. The greater decisiveness of signalling
induces higher levels of signalling as either extreme is approached. In the upward direction this “arms
race” leads to failure of the equation system at some interior value 7 < 1. But there is no such failure
toward the low end (apart from the actual limiting value = = 0), since both the H and the L types remain

represented as © = 0.
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Summing up at this point:
1. For the TSH to be valid it is not necessary that the high-quality males have per-unit lower signalling
costs. By definition the H-type males have larger endowed resources, and over some range their resource
advantage may permit them to obtain disproportionate mating success even at a unit-cost disadvantage.
(However, any signalling-cost advantage favoring the L-type males cannot be too great, else a signalling

equilibrium may not exist.)

2. Failure of the equation system typically stems, in our simulations, from an “arms race” -- intensified
signalling -- that (so to speak) eventually puts at least one side out of business. This failure occurs when:
(i) The L-type males have an excessive unit-signalling-cost advantage. (ii) The H-type males represent
too large a fraction of the population.

Time and space do not permit exploration here of other types of parametric variations that might
be considerable interest. One example: rising signalling costs for both male types together — higher b,
and b, as well —will surely lead to lower signalling levels s, and s...

We have not emphasized utility comparisons so far, except for commenting that at the initial
parameter baseline values all three utility levels U, , U, , and U, of the signalling solution were
respectively less than the no-signalling utilities U,*, U,*, and Uc*. And indeed, this condition holds
almost throughout the range of all the simulations. The one exception is visible in the bottom panel of
Figure 3. When = (the population fraction represented by the H-type males) is sufficiently low the now-
scarce H-type males do indeed come out ahead, per capita, as compared with the no-signalling
equilibrium. Even then, however, this improvement does not hold for the females (or, a fortiori, for the

L-type males).

As has been emphasized, despite the unprofitability in aggregate, no individual male can
profitably refrain from signalling, nor can any individual female advantageously refrain from attending to
signals. These considerations naturally lead to the question of how the process might have started.

6. A Signalling Start-up Model
If males are not emitting signals, there is no force at work leading females to attend to signals.
And if females are not attending to signals, and generating signals is costly, there is no reason for the
males to emit them. This “chicken and egg” problem means that the no-signalling solution is an ESS.?
To break such an equilibrium, the model has to be revised so as to overcome the disadvantage of

signalling — at least at initially low levels.

2 This is not quite rigorously true. If the females are not heeding signals, it is indeed a strongly
superior strategy for males not to emit them (if, as has heretofore been assumed, doing so is always
costly). But if the males are not emitting signals, then in our model the females are merely indifferent as
to having the capability of attending to them. I.e., no cost has been attached to female development of
signal-recognition ability. Thus, holding literally to our assumptions, females might acquire, merely by
random drift, enough signal-recognition ability to make it eventually become profitable for males to
begin emitting signals. Of course, it is highly unrealistic to say that developing signal-recognition
capability involves no cost. Without attempting to explicitly allow for that factor, we will allow
ourselves the liberty of presuming that some such cost does exist. If so, the no-signalling outcome would

indeed be an ESS.
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The disadvantages of signalling are two-fold: (1) the direct costs to the males, and (2) the loss of
female mating capacity due to congestion.” On the other hand, signalling permits the females to mate
disproportionately with higher-quality males. So it is possible in equilibrium to have U, > U,* for the H-
type males (as indeed occurs over part of the range in the bottom panel of Figure 3). On the other hand,
for the L-type males U, can never exceed U.*. Since female utility Uy is always the mean of the
males’ utilities, when U, > U,* it may or may not be the case that U exceeds Ug*. Buteven when
the parameters are such that U, > U,* and U, > U;* both hold, it does not follow that signalling can
ever get started. From an initial no-signalling situation, there would have to be a utility gain to
individuals who deviate in the direction of signalling.

Apart from possible group-selection considerations, to escape the no-signalling equilibrium there
is always the possibility of a matched pair of simultaneous (or near-simultaneous) mutations -- one
dictating signalling on the part of H-type males, the other dictating that females heed the signals.” A
more attractive explanation is that the trait that constitutes the signal, even though it is on balance costly
(i.e., disfunctional) at the eventual signalling equilibrium, might have been functionally advantageous

when expressed at low levels. Conceivably, in early evolutionary stages a moderately large tail might
well be useful to the peacock for flight or for temperature control. If so, from an initial no-signalling

equilibrium the males will be positively selected for that trait, in which case it would pay females to
develop an ability to attend and respond to it.

The interesting analytic question is whether the assumptions allowing signalling to start up from
a no-signalling equilibrium can set the population on the path to a signalling equilibrium in which the
signal ends up as a handicap rather than a benefit.

As usual, we provide a specific instantiation, a revision of equation (1) for the two male types (i
=1,2):

n=e+g>s, - aisiz (15)

Here the constant coefficient g, is a “gain parameter”, entering linearly with s,. It is counterbalanced
by a “cost parameter” a; entering quadratically. The equation indicates that, for sufficiently small values
of t,, the signal is indeed functional rather than a handicap.

By straightforward steps, the first-order conditions for the males now can be written:
,e 5,(2a;5,— &)

= 2

€+ 85— &S5 ) e
Revised Male F.O.C.’s (16)

_ 5,(2a,3, -g,) '

= 2
€, + 8,5, ~ 4,5,

These replacements for equations (1) and (9) are the only revisions needed.

24 Plus, if the interpretation in the preceding footnote is adopted, the un-modelled cost to females
of developing signal-recognition capability.

% This would be a “green-beard effect” as described in Dawkins (1976).
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A numerical baseline solution for the Start-up Model is shown in Table 1. The parameter values
have been chosen to be generally similar to the baseline values used before. The baseline solution turns
out to be in the handicap range. That is, despite the fact that the indicator is actually functional at
sufficiently low values of s, , at equilibrium there is a net loss of quality for both types of males: n, is
less than e, for the type-H males, and similarly 7, is less than e, for the type-L males. So, in this case
the signalling equilibrium is an improvement for the high-quality males as against the no-signalling
outcome (U, > U,*), although for the females it is not (U< U*). For different parameter values, on the
other hand, it would be possible to have the H-type males and the females both gain or both lose. Of
course, in all signalling equilibria the low-quality males must lose out relative to the no-signalling

equilibrium (U, < U,*).

7. Extensions of the Analysis
Our purpose here was to generate the simplest possible model consistent with the main observed
features of a world of where handicaps serve as signals. Methodologically, our analysis employed
specific functional forms and plausible ranges of parameter values to instantiate the existence of
equilibria. This procedure, although we hope illuminating, has the defect among other thmgs of non-
generality. So it is natural to think of directions of generalization, among them:

1. Extending the analysis to multiple levels of quality, or even to a contmuum
2. Allowing for several dimensions of quality.

3. Allowing for heritable quality.
4. Dynamic issues, and in particular what happens if the parameter values are such that no TSH

equilibrium exists.

Another kind of extension would be to adapt the model to signalling contexts other than mating
competitions, for example to threat displays and their converse -- displays of cooperativeness.

Going somewhat farther afield, it would be of great interest to integrate the analysis of signalling
with the analysis of mimicry. In the signalling problem, messages are truthful but costly to emit. In the
mimicry problem, there is a trade-off between intrinsic quality and intensity of signalling. In particular,
the cheater type invests less in quality but more in signalling effort. Whereas in the signalling problem
the issue is the survival of truthful messages, in the mimicry problem it is the survival of untruthful

messages.

8: Summary and Conclusions
We sought to determine the conditions needed to support the Truthful Signalling Hypothesis
(TSH), sometimes known as the handicap principle. Dealing for simplicity with just two distinct male
types, in a TSH equilibrium the high-quality (H) males signal while the low-quality (L) males do not
signal (or else emit smaller signals). Also, the signals are “believed” by the females, meaning that the
females mate preferentially (but in general not exclusively) with the higher-signalling males.

A seemingly intractable paradox troubles the modelling of signalling equilibrium. If the females
are attending to truthful signals, then the higher-intrinsic-quality (hence higher-signalling) males must

% As in Noldeke and Samuelson (2001).
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necessarily win disproportionate mating success. But then, if quality is heritable, in the next generation
the high-quality high-signalling male type will increase its representation in the population -- a process
that must lead inexorably to ultimate fixation. So how can there be an evolutionary equilibrium in which
low-quality and high-quality males are both represented, so that a need for signalling persists? Following
Grafen (1990b), we postulated that male quality is non-heritable. (Surprisingly, although Grafen’s
contribution is widely cited, this crucial limitation is hardly ever noticed in the literature.) What is
heritable is a signalling rule: a scaled-response gene instructing its (male) bearer: “If you find yourself in
a (non-heritably) high-quality body or with ample external resources, emit a big signal; if the opposite,
emit a small signal (or no signal at all).” )

Methodologically, we attempted to show the usefulness of specifying credible functional forms
to fill in the blanks of highly abstract models such as Grafen’s. These specifications allowed us to
actually solve the models analytically. A next step was to use these solutions for generating what we
believe were illuminating numerical simulations of how equilibrium values of the endogenous variables —
e.g., the signalling levels of high-quality and low-quality males and their relative mating success—
respond to changes in several of the exogenous parameters. :

We also tried to show how the framework of economic general equilibrium analysis — in
particular, the explicit provision for optimization on the individual choice level and equilibriating
balance conditions on the global level -- allows the elements of the signalling problem to be woven
together in an understandable way.

Still under the methodological heading, the attempt to generate a complete and internally
consistent equilibrium model turned up logical gaps that have hardly been noticed inthe literature.
Filling those gaps required the specification of somewhat unfamiliar analytic conditions. Among them
are what we termed the congestion function, the Mating Success Function, and the Malthusian condition.

To summarize the main lines of the analysis, males of each non-heritable quality type attempt
individually to optimize by maximizing reproductive success, the product of number of matings times
offspring per mating (for given female mating capacity). Mating success is influenced by the males’
chosen levels of signalling, and also by the degree to which females attend to the signals emitted.
Offspring per mating is determined by the male’s net quality, after expending some of his initial endowed
quality by investing in signalling effort. So signalling has both favorable and unfavorable effects upon
reproductive success, possibly leading to an interior optimum in which each type of male remains

represented.

Females, since by hypothesis signalling is truthful, attempt to tilt their matings toward the high-
quality males. Here is where a “congestion” function is needed, a kind of friction that prevents females
from mating exclusively with the high-quality males. Loss of mating capacity in the process of
disproportionately tilting her mating choices is what guarantees an interior optimum on the female side.

The Mating Success Function (MSF) specifies how the females respond to higher and lower
signalling levels. In the specific formulation used here, the MSF is indexed by a single “signalling
decisiveness parameter”. This parameter, specifying the degree to which the females attend to signals,
plays a role somewhat similar to market price in a supply-demand system. It signifies the “market
conditions” that guide and link the choices of the females on the one side and of the H and L males on

the other side.
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And finally in full biological equilibrium population numbers must be constant. This Malthusian
effect is achieved by stipulating that the resources constituting male quality erode as population

increases.

In our numerical simulations, the parameters allowed to vary were: (i) The endowed quality of
the L-type males in comparison with H-type males. (ii) The unit or marginal cost of signalling for the L-
type males, again in comparison with H-type males. (iii) The population proportions of the two male

types.

Among the substantive results worth noting are:
1. Equilibria validating the TSH can be achieved over a wide range of parameters, though not
universally. The equation system fails to generate such an equilibrium (a) when the unit-cost parameter
for the L-type males falls to very low levels, and/or (b) when the fraction of the population represented
by the H-type males rise to very high levels. (TSH equilibria might well fail for other parameter
variations not explored here, for example if signalling costs rise sufficiently for both H and L type males

together.)

2. Contra some statements in the literature, within the ranges where equilibria were achieved it was not a
strictly necessary condition that the high-quality males have an advantage in terms of lower per-unit
signalling costs. By definition H males always retain an initial advantage in terms of higher endowed
quality. So even at a unit-cost disadvantage they are (over some ranges of parameter values) able to

signal more heavily.

3. Although the equilibria arrived at were always robust with regard to possible individual deviations, it
is a separate question whether the process is “profitable” to the (male or female) population as a whole.
For the low-quality males the answer is clear: comparing signalling with the non-signalling equilibrium,
they are always worse off. The H-type males can sometimes come out ahead, since their gain in terms of
. mating success may outweigh the net cost of the handicap. And, if so, it may also be the case that the
females do better as well — since their RS is necessarily the average of the success of the male types,
weighted by the mating proportions. This might plausibly occur, we conjecture, when: (a) the intrinsic
quality difference between the male types is large, or (b) the high-quality males represent only a small
fraction of the male population. In either of these cases, being able to tilt toward the high-quality males
has a big payoff for the females, in comparison with random mating.

We also looked into the problem of how costly signalling can ever get started from an initial no-
signalling equilibrium. The answer seems to be that it cannot, if signalling is always disfunctional (a
handicap) For signalling to take off, the trait that serves as a signal must initially (i.e., when expressed at
very low levels) be functional rather than a handicap. But a mutation generating such a trait can start a
bandwagon away from the no-signalling equilibrium, possibly ending up at equilibrium in the
hypertrophy range where the signal is on net a handicap rather than a benefit.

Moving to the bottom line, our analysis shows that it is possible to construct an analytical system
for the signalling-handicap problem, on the lines of economic general equilibrium analysis, which shows
how the optimizing decisions of the various agents are glued together by the overall “market conditions”
that determine the success of males’ signals in influencing females’ mating decisions.
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APPENDIX 1: Male First-Order Conditions

Let the equilibrium signalling levels be denoted s, and s, and the levels chosen by possibly
deviant males s,' and s, The condition for equilibrium is that the optimizing choices of possible type-1
deviants are such that s, is equal to s,, and similarly for possibly deviating type-2 males.

Consider first potentially deviant type-1 males who constitute a small proportion € of the overall
male population. Then the utility functions for the deviating and non-deviating type-1 males become:
U,'= K(ﬂ—)n, ' where n'=e-bs,’

£
(App. 1.A)

Ul_—_K( z )nl where n =e¢ -bs,
T—&

To find the optimum for the deviating type-1 males, our formula for signalling competition now
must allow for three possible signal levels: the original s, and s, at their candidate equilibrium values
and the s,' representing the optimum for the type-1 deviants. So it is necessary to generalize the MSF
equation (8) to allow the female to respond to three levels of signalling.

For convenience let the symbols «, B, y index any three population fractions summing to unity.
Then in a somewhat old-fashioned but self-evident notation we can write:

m m m
/ : % : / =5, 188 (App. 1.B)
7, /7

where the m; as well as the w; sum to unity.

Making the indicated substitutions for the m; and n, and carrying out the maximization leads,
after some tedious steps, to:

rs;[(m—¢€)s] +(1-7)s]]

=bs’ (App. 1.0)
rs) +(1-7)s, ik

(e, —bs)

Letting € go to 0 leads to the First-Order Condition in the text for the type-1 males, and of course the
development for the type-2 males corresponds exactly.
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APPENDIX 2: Analytic Solution of Initial Version
The equations described here solve for 9 “core variables” and then the 6 “utility variables”. The

solution strategy involves the following steps:

m is solved as a function of the exogenous constants only.

r is solved in terms of m and exogenous constants.

s, and s, are solved in terms of r and exogenous constants.
n, and n, are solved in terms of » and exogenous constants.
D is solved in terms of m and exogenous constants.

M is solved in terms of m, n,, and n..

K is solved in terms of D, M, nl, and n2.

NoUwEWLN -~

(The solutions for the utility variables then follow trivially.)
[In the interests of saving space, the parameter /4 that entered into the definition of the marginal
congestion effect (7) is here taken as numerically equal to 1 and dropped from the equations.}

Detailing the steps:
1. (This is the crucial step in the analysis.) Inserting (1), (3),(4),(7), and (9)) into (6) provides a second-
order equation for m, a reduced form expressed in terms of the exogenous constants only:

e e, - @r+1)+B—(1-7)’ - 2(e, /e, )3~ (- M)7) + (e, /€, (B+77)

3(e,/e,-1)
(App. 2.A)

One of the interesting implications of (A) is that m, the proportion of female matings going to the high-
quality high-signalling males, is (in equilibrium) entirely independent of the signalling cost parameters
b, and b,. Also, the equilibrium value of m does not depend upon the absolute endowed qualities e,
and e, but only upon their ratio e /e, .

2. Inserting the ratio s,/s, derived from the Male First-Order Conditions (9) into the Mating Success
Function (8), and then solving for r, yields: '

m[m(,l—n)] |
(A-m)x
r= (App. 2.B)
In ?ﬁ
be,

3. (9) can then be easily solved for the signalling levels s, and s,

er er
§=——— and s, =—"—— (App. 2.C)
b (r+1) b,(r+1)
4. Inserting (C) into (1) yields the net qualities of the two male types:

€ €, ,
= and n, = App. 2D
™ (r+1) 2 (r+1) (App )
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Note that the ratios n,/n, and e,/e, are equal, and both also equal s,b,/s,b,

5. Entering the solution value of m into equation (7) directly yields the marginal congestion effect D.
6. Similarly, inserting the solution values of m, n,, and n, into (4) yields the average male quality M .
7. And entering the solution values of n, n,, D, and M into (6) yields the female mating capacity K.

These 9 equations taken together express the equilibrium values of the 9 core variables as
functions of the exogenous constants only.

APPENDIX 3: Analytic Solution of Extended (Malthusian) Version
In the Malthusian extension the endowed qualities e, and e, are no longer constants but appear
as variables, together with the new variable for population size N. The new equations are the Malthusian
- stability condition KM = 1 plus the definitions of the new variables e, and e, as functions of E,, E,,

and N.

Building on the previous Appendix, the solution for the extended model can be spelled out in
more cursory fashion. (Only equations with significant changes will be shown.)

1. First, equation (A) is identical with that in the previous Appendix, except for the substitution of the
ratio E/E, for e/e,. (The equivalence of these ratios follows immediately from equations (14) in the
text.) As before, the revised equation (A) expresses m as a function of the exogenous parameters only.

2. Equation (B), expressing r in terms of m and the exogenous parameters, is unchanged.

Note: It follows from the above that in numerical simulations for which the assumed ratio E,/E,
in the extended model equals the previously assumed ratio e, /e, of the initial model, the solution
values for m and r remain unchanged. (As can be seen by inspection of Table 1.)

From here on the equations are different, however.
3. Equation (C) here represents the solutions for the “net” qualities #, and n,. Inserting the Malthusian
condition KM = 1 into the female F.O.C. (6) yields as an intermediate step:

-D

n—n, =—-
17 % 2
K

Making use of the result from the previous Appendix that n,/n, = e,/e,, which therefore now also equal
E//E, , the above can be solved for n, andn,: .

-DE, -DE,

n=————— and n,=-— App.3.C
'~ K*(E, - E,) T KAE - E,) “op36

4. Combining (C) with equation (D) of the previous Appendix yields the solution for the endowed
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qualities as variables:

e = n = App. 3D
l Kz(El_Ez) ? KZ(El—Ez) op )

5. The solutions for the signalling variables can be obtained by inserting these expressions for e, and e,
into equation (C) of the previous Appendix, so that:

' K*(E,-E,)b, ?  K(E,-E,)b,

(App. 3.E)

6. Finally, since E/E, = e,/e,, we can solve from (D) for the Malthusian population size variable N in
equation (13):

_ Kz(El _Ez)
"~ -D(r+))

N (App. 3.F)

As before, the solutions for the utility variables follow straightforwardly.
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Table 1 ~ BASELINE SIMULATION RESULTS, MODEL 1

Initial Model Extended Model Start-up Model
(Malthusian)

Constants

T 0.5 0.5 0.5

el or E1 e1=2.0 El=1 - El=10

e2orE2 e2=1.0 E2=0.5 E2=05 -

b1 or al bl1=0.5 b1 =05 al=05

b2 or a2 b2=1.0 b2=1.0 a2=10

gl - - 0.8

g2 - - 02

Variables

el (constant - see above) ' 2.250 1.446

e2 ‘ (constant - see above) 1.125 0.723 l

m 0.764 : 0.764 0.822
sl 1.834 2.063 1.807

's2 0.458 0.516 0.626

nl 1.083 1.219 v 1.259

n2 0.542 0.609 0.456

K 0.930 0.930 _ 0.896

0.955 : 1.075 1.116

r 0.846 0.846 1.446

N - 0.444 0.692

L8] 1.539 1.732 1.855

U2 0.238 -0.268 0.145

UF 0.889 1.0 1.0

[9) & 2.0 2.250 1.446

u2* 1.0 1.125 0.723

UF* 1.5 1.689 1.084
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Fig 1. ENDOGENOUS VARIABLES AS FUNCTIONS OF THE L MALE’S ENDOWED
QUALITY (E;), when E;=1,b;=0.5,b,=1,n=0.5,h=1,w=1.
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Fig 2. ENDOGENOUS VARIABLES AS FUNCTIONS OF THE L MALE’S UNIT
SIGNALLING COST (b;), when E|=1,E;=0.5,61=0.5,7=0.5,h=1,w=1.
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