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Chapter 1

Stability and Efficiency in the General
Priority-based Assignment

1.1 Introduction

A popular and widely used school admissions practice is to allocate school seats taking

into account student preferences. Though such policies are often called school choice,

obvious scarcity constraints arise due to some schools being more demanded than others.

Therefore a well-defined procedure is necessary to decide how the over-demanded schools

are assigned. Abdulkadiroğlu and Sönmez (2003) formulated these concerns in a natural

and appealing way, and their approach has since been at the heart of various school choice

programs. Each school is endowed with a certain number of seats and an exogenous priority

order over the set of students. For a matching of students to schools to be stable, a student i

must not be left envying another student j at school x, while i has higher priority for x than

j. If these priorities are strict orders and interpreted as schools’ preferences over students,

then we are back in Gale and Shapley’s (1962) college admissions model.
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For each school, however, there are several concerns that guide such decisions: (1) Can

siblings attend the same school? (2) Do pupils get schools within their walk-zone? (3)

Does the procedure treat otherwise-equal students equally? (4) Is the student body at a

given school diverse (gender equality or racial balance)? For socio-economic perspectives,

the Office of Educational Research and Improvement explicitly suggests that an assignment

should be based on those concerns, and in the same time the question arises what kind of

priorities can reflect such concerns. To our best knowledge, concerns only for each (1),

(2) or (3) can be captured by the priority rankings over the set of students which allow ties

among them, but a concern for diversity is different from the other three in that it cannot

be necessarily generated by a ranking over the set of students, and it inherently exhibits

indifference relations between some of the subsets of the set of students. Our challenge is

to deal with all those concerns in an unified framework.

Let’s consider the following example: there are six students who want to enter a school

but it has just two seats. Six students are consisted of two white, two black, and two asian

students, and the school wants to make a class as racially diverse as possible. In this case,

every pair of students with different race should be the most preferred, and any of those

pairs is equally preferable. It is clear that the ranking of the school inherently exhibits

indifference relations among every pair of students with different race, and is over the

subsets of the set of students. Note that this kind of priority ranking cannot be generated

by a priority ranking over the students because the school’s priority ranking is affected by

whom you make a pair with.1

1Typically, the priorities are far from strict. For a given school many students are of equal priority, which
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In this paper, we introduce a general class of priority rankings over the subsets of the

set of students, substitutable priorities with ties, which captures indifferences and substi-

tutability. We are able to study natural and appealing priority structures which take into

account both diversity and equal treatment. We show the existence of stable matchings via

a modification of the deferred acceptance algorithm. As in Erdil and Ergin (2008), there

is a multiplicity of constrained efficient assignments, and arbitrarily breaking the ties can

lead to constrained inefficiency. If the latter happens, the stable improvement cycles would

improve upon the assignment to finally return a constrained efficient matching.

While a priority order over the students does not automatically lead to a ranking over

sets of students, there is a simple class of preferences over sets studied widely in the litera-

ture. In a large class of two-sided matching models (see, e.g., Roth and Sotomayor, 1990),

a ranking over sets is assumed to be responsive to a strict preference ranking over individ-

uals. This condition essentially says that for any two sets that differ in only one student,

the set containing the student with higher priority is ranked higher.2 Then, core-stability

is equivalent to pairwise stability. The existence of a stable matching is ensured, and Gale

and Shapley’s deferred acceptance algorithm gives the student optimal stable assignment.

Erdil and Ergin (2008) begins with a model in which priorities can have ties, because many

school choice programs declare large classes of students to be of equal priority. Gale and

Shapley’s algorithm does not necessarily give a student optimal assignment, but the stable

improvement cycles always takes us to a constrained efficient outcome. Though the model

is captured by a model which allows indifferences. See, e.g., Erdil and Ergin (2008).
2Formally, a ranking % over the sets of students is said to be responsive to a ranking %′ over the set of

students if whenever i %′ j, we have {i} ∪ S % {j} ∪ S for any S.
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with ties captures “equal treatment”, it is not possible to “prioritize diversity” via a respon-

sive priority order. If the priorities are responsive, then the ranking between sets S ∪ {i}

and S ∪ {j} should not depend on what S is.3

Kelso and Crawford (1983) introduced a class of rankings over sets significantly larger

than that of responsive rankings. Their generalization of the Gale-Shapley process, the

salary adjustment process ensures that if firms’ preferences over sets of workers satisfy the

gross substitutes condition, then the core of the matching market is non-empty. Related

to a diversity concern, Abdulkadiroğlu (2005) formulates priority rankings in a controlled

school choice problem. Roughly speaking, the part of a school’s seats are reserved for

a specific type of students, and he shows that priority rankings respecting type specific

quotas fall in substitutable priorities. We discuss his formulation and ours carefully in the

next section.

The rest of the paper is organized as follows: we see the leading example in Section 2,

Section 3 introduces a model, we discuss stability and efficiency in Section 4, we consider

the way to find a constrained efficient assignment in Section 5, we demonstrate our class

of priorities in a controlled school choice setting in Section 6.

1.2 Motivating Example

Prior to ours, Abdulkadiroğlu (2005) considers a school choice problem with a diversity

concern in a priority-based assignment problem. In that model, each student is endowed

3An explicit example is in the next section.
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with a certain type, there are type specific quotas for each school and it prioritizes the

subsets of the set of students by two rules. If the subset of the set of students satisfies a type

specific quota constraint, then they are considered to be acceptable, otherwise unacceptable.

Among acceptable subsets of the set of students, they are ranked responsive to a ranking

over the set of students.

Recall the example in the introduction: there are six students, N = W t B t A where

W = {w1, w2}, B = {b1, b2} and A = {a1, a2}, and there is no exogenous priority order

over them. Apart from a race equality policy, they are to be “treated equally”. The approach

of Abdulkadiroğlu (2005) leads to the following priority ranking:

{w1, b1} � {w1, a1} � {w1, b2} � {w1, a2} � {b1, w2} � · · ·

� ∅

� {w1, w2}, {b1, b2}, {a1, a2}︸ ︷︷ ︸
they do not satisfy the constraint

Note that if all students are of equal priority, {w1, b1} and {w1, a1} should be treated equally

in light of a diversity concern. However, the above formulation results in a biased assign-

ment, that is, as long as {w1, b1} are included in applicants a school never chooses any

other pair of students with different race. In this case, white and black students are thought

of as having a higher priority than any asian students. More importantly, an assignment

produced by the above ranking may end up with being wasteful. Suppose only w1 and w2

apply for this school. Even though there are enough seats available, only one of them can
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be admitted.

On the other hand, a natural and desirable priority ranking may be as follows:

{wi, bj} ∼ {wi, ak} ∼ {bj, ak} � {w1, w2} ∼ {b1, b2} ∼ {a1, a2} � · · · , (?)

where i, j, k ∈ {1, 2}. As far as we know this priority order does not fit into any model

previously studied in the literature.

First of all, it allows ties between sets of students. The earlier models which studied

ties in priority orders begin with a weak order (i.e., a complete, transitive binary relation)

on the set of students. Then they impose that the priority order on sets is responsive to that

weak order on students. It is not hard not see that the above priority order % cannot be

generated in that fashion. If % were responsive to an order %′ on {w1, w2, b1, b2, a1, a2},

we would have

{w1, b1} � {w1, w2} =⇒ b1 �′ w2

and

{w2, b2} � {b1, b2} =⇒ w2 �′ b1

a contradiction.

In addition, when all students apply to a school, the allocations obtained by the above

priority structure cannot be generated by splitting a school into sub-schools: each sub-

school prioritizes students with one race over those with the other, since there are only two

seats and the number of race is three, so that there should be students with some race who
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are always ranked lower. This kind of treatment is sometimes called a type specific quota

in the previous literature.

1.3 Preliminaries

Let N be a set of students, and X a set of schools. There are qx seats at school x, for

x ∈ X . These schools are to be assigned to the students such that each student receives

at most one seat, and the allocation has to respect exogeneously given priorities, a notion

formalized below.

Each school has a priority ranking %x over all subsets of N . Formally speaking, %x

is a complete, transitive binary relation over 2N . A priority structure %, is a vector of

priority orders (%x)x∈X . If S %x T and T %x S, then we write S ∼x T , and say S and T

are of equal priority with respect to %x. Clearly, being of equal priority is an equivalence

relation. If S %x T , but not T %x S, then we write S �x T .

When the demand for a school exceeds the supply, one can appeal to priorities to decide

which students are to be assigned to the school. In other words, given a school x with qx

seats and a priority order %x, we have a choice correspondence Cx : 2N ⇒ 2N such that

S ′ ⊆ S and |S ′| ≤ qx for each S ′ ∈ Cx(S)

S ′ ∈ Cx(S) ⇐⇒ S ′ %x S ′′ for all S ′′ ⊆ S with |S ′′| ≤ qx

7



Given a priority rule Cx and a set S, we define the set of definitely chosen students

DCx(S) =
⋂

S′∈Cx(S)

S ′ = {i ∈ S | i ∈ S ′ for all S ′ ∈ Cx(S)}

Note that DCx(S) can be empty.

Definition 1 A priority structure is substitutable if for each x ∈ X , for each S, T ⊆ N

with S ⊆ T ,

(a) for each T ′ ∈ Cx(T ), we have T ′ ∩ S ⊆ S ′ for some S ′ ∈ Cx(S).

(b) for each S ′ ∈ Cx(S), we have T ′ ∩ S ⊆ S ′ for some T ′ ∈ Cx(T ).4

This definition covers various environments studied in the literature. For example, re-

sponsive preferences over sets of doctors (Roth, 1984), the school choice formulation of

Abdulkadiroğlu and Sönmez (2003), and the school priorities with ties (e.g., Erdil and Er-

gin, 2008) are all special cases.5 One contribution of this paper is that our generalization

goes beyond, and covers natural priority structures which are not captured by any of the

aforementioned models:
4It is helpful to define the rejection correspondenceRx, which associates to each S ⊆ N , the family of

subsets of S which can be rejected from among S. That is,

Rx(S) = {T ⊆ S | T = S\S′ for some S′ ∈ Cx(S)}.

The condition (b) of Definition 1 can be rewritten as

(b’) for each S′ ∈ Rx(S), we have S′ ⊆ T ′ for some T ′ ∈ Rx(T ).

5Our definition is easily extended to allow different contracts between a student and a school. Then each
school has a weak ranking over sets of contracts, and we get a generalization of Kelso and Crawford (1982)
and Hatfield and Milgrom (2005).

Note that if Cx is a function for each x ∈ X , then the conditions (a) and (b) in Definition 1 are equivalent.
While Kelso and Crawford (1982) use the formulation (a), Hatfield and Milgrom (2005) use the formulation
(b’). In our generalized environment, these conditions do not imply each other any more.

8



'

&

$

%

'

&

$

%

(strict substitutable)

(strict responsive)

Responsive

Substitutable (our class)

strict orders � weak orders %

Figure 1.1: Substitutability with ties

Example 1 (Race equality) Remember the following priority structure is considered to be

desirable in the previous sections. We see that it in fact falls in our class.

{wi, bj} ∼ {wi, ak} ∼ {bj, ak} � {w1, w2} ∼ {b1, b2} ∼ {a1, a2} � · · · ,

where i, j, k ∈ {1, 2}.

We only need to check cases where the size of a smaller set (a counterpart of S in the

definition) is at least as large as two. If S consists of students with different race, then only

pairs of students with different race are chosen in S, and in any larger set they should also

be chosen. Note that no pair of students with the same race is chosen in both sets. Hence

the conditions (a) and (b) hold. Otherwise, S consists of two students with the same race.

9



The condition (b) automatically holds because there is no student rejected. In a larger set,

there should be a student with different race from S and any pair of students with different

race will be chosen. Therefore, any intersection of a pair of students chosen in a larger set

and S must be one of S and not both. Clearly, the condition (a) is also satisfied.

For the allocation problem, what we really need is a choice correspondence. In the

above example, the ranking over singletons does not matter as long as they are acceptable.6

♦

Let µ be an assignment such that µ : N → X ∪N with the following properties:

∀i ∈ N, µ(i) ∈ X ∪ {i}

∀x ∈ X, |µ−1(x)| ≤ qx

Each student i has a strict preference rankingRi overX∪{i}, where receiving i is inter-

preted as getting one’s outside option. Pi denotes the strict part of Ri. Given a preference

profile R = (Ri)i∈N , we have a Pareto domination relation over all possible allocations.

Definition 2 Given students’ preferences R, an assignment µ respects priorities %, if for

each i ∈ N , µ(i)Rii, and for each x ∈ X , we have µ−1(x) ∈ Cx({i | xRiµ(i)}).

The definition captures the idea that there should not be a set S more deserving of the
6If qx > 1, then a priority order Cx does not necessarily provide a comparison between singletons. For

example, let qx = 2, and consider Cx such that

Cx({1, 2, 3, 4}) = {{1, 3}, {2, 3}, {1, 4}, {2, 4}},

whereas for any S with |S| = 3, all two-element-subsets of S are chosen. This priority order cannot be
generated from a weak order over the set of students using responsiveness.
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school x, than those students currently assigned.

Recall that a matching is called pairwise stable if it is not blocked by an individual

student, or an individual school, or a student-school pair. That is, (1) each student i prefers

her match to being unassigned; (2) each school prefers not to get rid of some of the assigned

students; and (3) there is no student-school pair who are not matched, but would rather be

matched. Formally,

(1) For all i ∈ N , µ(i)Rii

(2) For all x ∈ X , µ−1(x) ∈ Cx(µ−1(x))

(3) There is no (i, x) ∈ N ×X such that xPiµ(i) and i ∈ DC(µ−1(x) ∪ {i})

Clearly, respecting priorities implies pairwise stability. When does the converse hold? The

next proposition gives an answer.

Proposition 1 Let % be a substitutable priority structure.Then an assignment is pairwise

stable if and only if it respects priorities. In other words, the set of pairwise stable assign-

ments is the same as the weak core.

From now on, we say an assignment which respects priorities a stable assignment.

Does there always exist a stable assignment? A natural extension of Gale and Shapley’s

Deferred Acceptance Algorithm shows constructively that it does if the priority structure is

substitutable.

Modified Deferred Acceptance Algorithm (MDA)

11



Round 1: All students apply to their favorite schools. For each school x, if

A1
x is the set of applicants, an element S1

x in Cx(A1
x) is declared the temporary

winners, and the rest of the applicants, denoted Z1
x = A1

x\S1
x are rejected.

...

Round t: Those who were rejected in round t− 1, apply to their next favorite

school. For each school x, if Atx is the set of all students who have applied to

x so far, a set of temporary winners Stx ∈ Cx(Atx) is chosen such that Zt−1
x ⊆

Atx\Stx.

[This ensures that those students that were rejected by x in a previous round

are still rejected.]

When every student is either matched with a school or has been rejected by all

schools in his list, the algorithm ends.

Proposition 2 Given a substitutable priority structure %, the Modified Deferred Accep-

tance Algorithm returns a stable assignment.

The above algorithm is a generalization of the student-proposing deferred acceptance

algorithm to an environment which allows school priority rankings over sets of students to

be substitutable with ties. Note that “monotonicity of the rejection correspondence”, i.e.,

the condition (b) of substitutability is enough for the proposition 2 if an assignment the

MDA returns is pairwise stable, however, without the condition (a) of substitutability, we

might have a pairwise stable outcome which does not respect priorities.

12



Example 2 Suppose there are two schools, {x, y}, and five students, {i1, i2, i3, i4, i5}. Stu-

dents’ preferences are:

Ri1 Ri2 Ri3 Ri4 Ri5

x y x y x

y x

And the priority structures are:

Cx Cy

{i1, i2}, {i3, i4} {i2, i3}, . . .

{i1, i3}, {i1, i4}, {i1, i5}, {i2, i3}, {i2, i4} {i2, i4}, . . .

{i2, i5}, {i3, i5}, {i4, i5}

This priority structure satisfies (b) but not (a). The MDA gives

1. Students i1, i3 and i5 apply to a school x, and {i1, i5} can be chosen. A student i3 is

rejected. A school y tentatively holds {i2, i4}.

2. A student i3 applies to y, and she is tentatively accepted. A student i4 is rejected.

3. A student i4 applies to x, but a school x can hold {i1, i5}, and she is rejected. The

algorithm ends.

The assignment is  i1 i2 i3 i4 i5

x y y ∅ x

 .

13



This is pairwise stable but does not respect priorities since both students 3 and 4 prefer x

rather than their assigned schools, and the school x prefers {i3, i4} to {i1, i5}. ♦

Definition 3 A priority structure % is acceptant if for each x ∈ X , for each S ⊆ N , and

for each S ′ ∈ Cx(S) we have |S ′| = min{|S|, qx}.

This captures the idea that an unused school seat cannot be denied to any student. No-

blocking-pairs (NB) condition together with an acceptant priority structure means that

stability implies non-wastefulness, i.e., if there exists i ∈ N such that aPiµ(i), then

|µ−1(x)| = qx.

As our model generalizes the one studied in Erdil and Ergin (2008), it follows that:

(1) The outcome of the generalized deferred acceptance algorithm is not necessarily con-

strained efficient. (2) The constrained efficient set is not necessarily a singleton.

Given %, define the constrained efficient correspondence f%, which assigns to each

preference profile R, the set of stable assignments which are not Pareto dominated by

another stable assignment.

1.4 Stability vs. efficiency

Let us call a priority structure % efficient if f% is Pareto efficient. Ergin (2002) character-

izes the efficient priority structures under the assumption of responsive priorities without

ties. Ehlers and Erdil (2010) give a more general characterization allowing for ties in pri-

ority orders. Below, we will let the priorities be acceptant substitutable with ties, providing
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the most general statement in a much larger environment. This characterization result, as

the ones before, confirms that f% is Pareto efficient under very restrictive conditions.

Definition 4 Given a priority structure %, a weak cycle is constituted of distinct i, j, k ∈

N , and x, y ∈ X such that there exist Sx, Sy ⊆ N\{i, j, k} with Sx ∩ Sy = ∅ satisfying

(C)

j /∈ DCx(Sx ∪ {i, j})

j ∈ DCx(Sx ∪ {k, j})

k /∈ DCx(Sx ∪ {i, k})

i /∈ DCy(Sy ∪ {k, i})

(S) |Sx| = qx − 1 and |Sy| = qy − 1.

If % does not have any weak cycle, then it is called strongly acyclic.

Proposition 3 Let % be an acceptant substitutable priority structure. f% is efficient if and

only if % is strongly acyclic.

Ergin (2002) characterizes acyclicity as similarity of priorities. However, our acyclicity

requires a much tighter interpretation of priorities.

Example 3 Recall the example of race equality. Students are N = {w1, w2, b1, b2, a1, a2}.

Suppose there are two schools x, y, each with two seats. Consider both schools x and y
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have exactly the same priority structure as in the example.

{wi, bj} ∼ {wi, ak} ∼ {bj, ak} � {w1, w2} ∼ {b1, b2} ∼ {a1, a2} � · · · ,

We see that it is weakly cyclic. Let Sx = {a2} and Sy = {b2}. (S) holds.

Cx({a2, w1︸︷︷︸
i

, b1︸︷︷︸
j

}) = {{a2, w1}, {a2, b1}, {w1, b1}}

Cx({a2, b1, a1︸︷︷︸
k

}) = {{b1, a1}, {b1, a2}}

Cx({a2, w1, a1}) = {{w1, a1}, {w1, a2}}

Cy({b2, w1, a1}) = {{w1, b2}, {w1, a1}, {b2, a1}}

which implies

b1 /∈ DCx(Sx ∪ {w1, b1})

b1 ∈ DCx(Sx ∪ {a1, b1})

a1 /∈ DCx(Sx ∪ {w1, a1})

w1 /∈ DCy(Sy ∪ {a1, w1}).

Note that when preferences are

Rw1 Rw2 Rb1 Rb2 Ra1 Ra2

y x y x x

x y
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µ =

 w1 w2 b1 b2 a1 a2

x w2 b1 y y x

 is constrained efficient, but not efficient. ♦

1.5 Stability Preserving Pareto Improvement

In the absence of ties, we know that f% is singleton valued and reached simply by the

deferred acceptance algorithm. On the other hand, when there are ties, the constrained ef-

ficient correspondence is not necessarily singleton-valued. Moreover, arbitrarily breaking

the ties as we execute the deferred acceptance algorithm may lead to constrained ineffi-

ciency. In the case of responsive priorities the stable improvement cycles algorithm by

Erdil and Ergin (2008) reaches a constrained efficient assignment. We explore whether

such cycles can be used to solve the similar problem when priorities are acceptant and

substitutable.

A special case of our environment is that of responsive priorities with ties. Motivated

by the fact that an arbitrary resolution of ties in implementing the DA algorithm may lead

to an assignment which is not constrained efficient, Erdil and Ergin (2008) explored sta-

bility preserving Pareto improvements. A stable improvement cycle is a cycle of distinct

schools such that for any edge x → y, there is a student ix matched with x, who would

like to be matched with y instead, and is one of the highest y-priority students among those

who would like to move to y. They show that if a stable assignment is not constrained effi-

cient, then it must admit a stable improvement cycle, and therefore by simply searching for

stable improving cycles and implementing them successively, one can reach a constrained
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efficient assignment.

In our more general environment, Erdil and Ergin’s definition does not capture all the

improvement cycles that preserve stability. That is, it is possible that a stable matching µ is

Pareto dominated by another stable matching ν, and µ does not admit a stable improvement

cycle in the sense of Erdil and Ergin (2008).7 This is because in our environment, the

priority of a student is not absolute but relative in a sense that it depends on whom his

colleagues are. Hence, we need to take it into account.

Given a stable assignment µ, who could be replacing, without violating stability, j’s

position at µ(j) if j were to disappear? It must be that when such a student ` replaces j, the

new set of students must be chosen set in the face of those who would like to be replacing

j at µ(j). To formalize this idea in general, let Eµj stand for the set of students who envy j

at assignment µ:

Eµj = {i | µ(j)Piµ(i)}.

Then, the set of students who can replace student j at µ is

Eµ
j = {` | {`} ∪ µ−1(µ(j))\{j} ∈ Cµ(j)(Eµj ∪ µ−1(µ(j))\{j})}

Note that each Eµ
j is not necessarily singleton and any two Eµ

j and Eµ
j′ are not necessarily

distinct. If we find a cycle of students, then it is feasible to exchange their assignments, and

formally,

7An explicit example is in Remarks.
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Definition 5 Given a priority structure %, a preference profile R and a stable assignment

µ, a stable student improving cycle consists of distinct students i0, i1, . . . , in−1, in = i0

such that i` ∈ Eµ
i`+1

for all ` = 0, . . . , n− 1.

The first relation between a constrained efficient assignment and a stable student improving

cycle is the following:

Proposition 4 Given an acceptant and substitutable priority structure %, if a stable as-

signment does not admit a stable student improving cycle then it is constrained efficient.

Unfortunately, the converse does not hold in general.8 We further impose a weak assump-

tion on the priority structure to hold the converse.

Suppose that a priority structure % is acceptant substitutable. We will define a weak

form of “equal treatment of equals” as follows:

Definition 6 Let us say that% satisfies equal treatment of equal students if given {i, j}∪

S ⊆ T , and {i, j} ∪ S ′ ⊆ T ′ such that T ⊆ T ′, |S| = qx − 1 and |S ′| = qx − 1,

S ∪ {i}, S ∪ {j} ∈ Cx(T ) and S ′ ∪ {i} ∈ Cx(T ′) =⇒ S ′ ∪ {j} ∈ Cx(T ′). (ETE)

Which students are to be treated equally can change from one school to the other.9

However, the critical requirement is that if two students are of equal priority in applicants

at some school, then one can be replaced with the other in any larger applicants.

8An explicit example is in Remarks
9Note that our prioritizing diversity as in Section 2 satisfies the above property of equal treatment.
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Proposition 5 Assume an acceptant and substitutable priority structure % satisfies ETE.

Suppose that the stable assignment µ admits a SIC, and let the shortest SIC be

i0 → i1 → · · · → in−1 → i0.

If the assignment ν is obtained by carrying out this cycle, i.e., if

ν(i) =


µ(i`+1) if i = i`

µ(i) otherwise
,

then ν is stable.

Corollary 1 Whenever an acceptant and substitutable priority structure % satisfies ETE,

a stable assignment is constrained efficient if and only if it does not admit a stable student

improving cycle.

1.5.1 An algorithm

The above proposition leads to an algorithm whose outcome is a constrained efficient as-

signment. Starting from a stable assignment µ, one needs to construct a graph whose set of

vertices is the set of students. For any pair (i, j) of vertices, there will be an edge from i to

j if and only if i ∈ Eµ
j . If this graph does not have a cycle which preserves stability, then µ

is constrained efficient. Otherwise, we can let the cycle lead to a Pareto improving cyclic

trade which would preserve stability.
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Step 0:

Run the Modified Deferred Acceptance Mechanism to obtain an initial match-

ing µ0.

Step t ≥ 1:

(t.a) Given µt−1, let the students stand for the vertices of a directed graph,

where for each pair of students i and j, there is an edge i −→ j if and only if

i ∈ Eµt−1

j .

(t.b) If there are any stable student improving cycles in this directed graph,

select a shortest one, and carry out this cycle to obtain µt, and go to step (t +

1.a). If there is no such cycle, then return µt−1 as the outcome of the algorithm.

This algorithm will return a student optimal stable assignment, but when there are more

than one such assignments, the particular outcome will depend on the selections in running

the MDA in Step 0, and the specification of the cycle search in later steps.

On the one hand, the algorithm ensures a constrained efficient outcome. On other hand,

we know from Proposition 3 that if% is acyclical, then any constrained efficient assignment

is Pareto efficient. Thus we have

Corollary 2 If % is acyclical, then the above algorithm Pareto efficient.
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1.6 Application

We demonstrate a natural and practical subclass of our substitutability, called a priority

respecting type-specific quotas. For a socio-economic purpose, a school usually sets a part

of its seats for a specific characteristic, such as students with disability or in minority. For

example, when a school wants to make a class racially balanced, this concern is reflected

by splitting a whole seats into each race. The question is whether such a socio-economic

policy is effective or not, in the sense that each prioritized student is better off by a policy

or not.

Kojima (2010) argues that such a policy does not necessarily achieves that purpose.

He gives the case that even though some group is given a good treatment by setting a

specific quota, every student in the group is worse off, compared to the assignment without

treatment. However, we are anxious about the result since comparison seems to be made

by two different situations, wasteful and non-wasteful priorities.

In this section, we assume that each school initially has a priority ranking over students,

and if it does not employ any specific policy, we assume that its priority follows respon-

siveness. Otherwise, depending on its type-specific quotas, we offer a way of constructing

a priority structure over the sets, which both reflects an initial ranking and respects type-

specific quotas.

A pre-priority, which is a weak order over the students, is denoted by %pre∈ N × N .

(A strict part is denoted by �pre, and indifference is denoted by ∼pre.) Let a type space

T = {τ1, . . . , τn}. Each student is in one of types, and a type function, τ : N → T ,
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indicates it. For every school x, there are type-specific quotas qTx = (qτ1x , . . . , q
τn
x ) such that

1 ≤ qτx ≤ qx, and
∑

τ q
τ
x = qx. Sτ denotes {s ∈ S : τ(s) = τ}.

The set of students is classified into the following families. ∀S ⊆ N with |S| = qx,

D0 =

{
S ⊆ N :

∑
τ∈T

||Sτ | − qτ | = 0

}

D1 =

{
S ⊆ N :

∑
τ∈T

||Sτ | − qτ | = 2

}
...

Da =

{
S ⊆ N :

∑
τ∈T

||Sτ | − qτ | = 2a

}
...

Definition 7 % satisfies a Respecting Constraint (RC) if

S ′ ∈ Da and S
′′ ∈ Da+1 ⇒ S ′ � S ′′

Definition 8 % satisfies a Restricted Responsiveness (RR) if for every T ∪{s′}, T ∪{s′′} ∈

Da, we have

T ∪ {s′} % T ∪ {s′′} ⇔ s′ %pre s′′

We say that the priority structure respects type-specific quotas if a priority structure

constructed from a pre-priority satisfying (RC) and (RR). These notions are similar to Ab-

dulkadiroğlu (2005) but not a generalization. Our definition not only captures indifferences

but also is compatible with non-wastefulness, but Abdulkadiroğlu (2005) is not. The fol-
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lowing claim shows that an acceptant priority satisfying (RC) and (RR) falls in our class.

Claim 1 For every pre-priority %pre, a priority structure % constructed from %pre satisfy-

ing (RC) and (RR) is acceptant and substitutable.

Therefore, when schools employ a priority respecting type-specific quotas, we know

that the MDA always returns the stable assignment. Furthermore, we can directly show the

following:

Claim 2 A stable assignment is constrained efficient if and only if it does not admit a stable

student improving cycle.

Remark that a SIC is not consisted of distinct schools, and we do not apply a stable im-

proving cycle in Erdil and Ergin (2008).

Example 4 (Racial Balance & Walk Zone) Three quotas, (qw, qb, qa) = (1, 1, 1). Stu-

dents are pre-prioritized by within walk zone and out of walk zone, as follows:

{w1} ∼pre {w2} ∼pre {b1} �pre {b2} ∼pre {a1}
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A priority respecting type-specific quotas is

{w1, b1, a1} ∼ {w2, b1, a1} �

{w1, b2, a1} ∼ {w2, b2, a1} �

{w1, w2, b1} �

{w1, w2, b2} ∼ {w1, b1, b2} ∼ {w1, w2, a1} �

{b1, b2, a1} � . . .

Clearly this is not responsive. This example is different from one about gender equality in

that an underlining priority is not necessarily indifferent. ♦

In Kojima (2010), the implication of introducing the affirmative action policy is dis-

cussed. He changes the notion of stability in that an assignment is “stable” if it is feasible,

individually rational, and there is no blocking pair within feasible assignments. The main

result (Theorem 1) is briefly that there is no stable mechanism that an increase of the num-

ber of some type-specific quota makes agents in that type weakly better off. The proof is

by example, and the following example grasps the point.

Example 5 (Compared to the previous literature) Suppose there are two schools {x, y}

and both have 2 seats. There are 4 students, denoted by m1,m2, w1, w2. Preferences and
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pre-priorities are as follows:

Rm1 Rm2 Rw1 Rw2

x x y y

y x

and

%prex %prey

m1 m1

m2 m2

w1 w1

w2 w2

(1) Suppose there is no policy. Then %x and %y are responsive to pre-priorities, and the

stable outcome by the DA is just

µ =

 m1 m2 w1 w2

x x y y


(2) Suppose both schools have a gender equal policy. Then {m1,m2} and {w1, w2} are

unacceptable in Abdulkadiroğlu (2005) or infeasible in Kojima (2010).

Then the DA outcome is

µ′ =

 m1 m2 w1 w2

x ∅ y ∅


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If stability is re-defined as the outcome which does not allow individual or a pairwise

deviation within the feasible outcomes, then the above assignment is “stable” in this sense.

You can see that compared with µ, m2, w2 are worse off, even though a gender equal policy

is employed.

We want to point out here that it comes from wastefulness, but from any specific policy.

Even though there is a vacancy in both schools, they leave it vacant in this formulation.

Even though no woman wants a position at a school x, a gender equal constraint prohibits

m2 from attending a school x.

(3) Alternatively, if both schools construct a priority respecting type-specific quotas (qmx , q
w
x ) =

(qmy , q
w
y ) = (1, 1), and run the DA, then the outcome is trivially

µ′′ =

 m1 m2 w1 w2

x x y y

 = µ

Note that both schools respect gender equality, but if there is no man-woman pair in appli-

cants, then they accept the second best applicants. Furthermore, the notion of stability does

not change. ♦

Remark that non-wastefulness and the formulation of Abdulkadiroğlu (2005) or Kojima

(2010) are incompatible.
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1.7 Discussion

In this paper, we develop a general class of priority rankings which captures indifferences

and substitutability. As our example shows, a complicated but practical concern is well

captured. In this section, we discuss how appropriate our class of priorities is and its

limitation.

As we restrict attention to substitutability, it is because when priority structures are

strict, Hatfield and Kojima (2008) show that substitutability is a maximal domain for the

existence of stable assignments in a sense that

� is substitutable ⇔ ∀R, S�(R) 6= ∅,

where S�( · ) is the set of stable assignment under �. Since our class includes strict

substitutable priorities as a special case, we do not go beyond substitutability.

This restriction excludes some interesting priority structure as follows:

Example 6 Suppose a school has two seats and there are four students, {s1, s2, s3, s4},

with the following attributes:

s1 s2 s3 s4

race black black white white

gender male female male female
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When a school respects both race and gender equality, a natural way of prioritizing them is

{s1, s4} ∼ {s2, s3} � {s1, s2} ∼ {s3, s4} ∼ {s1, s3} ∼ {s2, s4} � · · ·

This priority ranking does not satisfy the condition (a) in the definition 1, whereas the

condition (b) holds. Suppose S = {s1, s2, s3} and T = {s1, s2, s3, s4}. Then C(T ) =

{{s1, s4}, {s2, s3}} but

{s1, s4} ∩ S = {s1} 6⊆ {s2, s3} = C(S).

Therefore, the condition (a) in the definition 1 does not hold. ♦

A critical difference from ours involves two or more dimensions of students’ attributes. We

may conclude that there is another conflict with stability, that is, stability and a general

diversity concern.
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1.8 Appendix

1.8.1 Proof of Proposition 1

Denote U = µ−1(x). If µ is pairwise stable, then it must be that for any ` with xR`µ(`),

we have U ∈ Cx(U ∪{`}). Since students’ preferences over schools are strict, we can write

this in a seemingly stronger way: for any ` with aR`µ(`), we have U ∈ Cx(U ∪ {`}). We

would like to show that if S ⊆ N such that aRiµ(i) for all i ∈ S, then U ∈ Cx(U ∪ S). In

order to conclude via induction on |S|, it is sufficient to show that

[U ∈ Cx(U ∪ S) and U ∈ Cx(U ∪ {k})] ⇒ U ∈ Cx(U ∪ S ∪ {k}).

First, note that Cx being consistent with %x implies

U %x V for all V ⊆ U ∪ S such that |V | ≤ qx, (?)

and

U %x V for all V ⊆ U ∪ {k} such that |V | ≤ qx,

Now, suppose for a contradiction that U /∈ Cx(U ∪ S ∪ {k}). Then for any T ∈

Cx(U ∪ S ∪ {k}), we have

T �x U.

Combining this with the relationship (?) above, we get T �x V for all V ⊆ U ∪S such that
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|V | ≤ qx, and we conclude that T * U ∪ S. Therefore, for any T ∈ Cx(U ∪ S ∪ {k}), we

must have k ∈ T . On the other hand, U ∈ Cx(U ∪ {k}) implies that {k} ∈ Rx(U ∪ {k}),

which implies, due to substitutability, {k} ⊆ (U ∪ S ∪ {k})\T for some T ∈ Cx(U ∪ S ∪

{k}), yielding the desired contradiction. �

1.8.2 Proof of Proposition 2

Atx is the set of students who have applied to school x in some round k ≤ t. Hence

A1
x ⊆ A2

x ⊆ · · ·

The algorithm requires that those students rejected in rounds k ≤ t − 1 would still be

rejected if they were considered to be among the applicant in round t. This can be ensured

thanks to Cx being substitutable, because Zt−1
x = At−1x \S ′x for some S ′x ∈ Cx(At−1x ) and

At−1x ⊆ Atx together imply that there exist Zt
x = Atx\S ′′x such that Zt

x ⊇ Zt−1
x for some

S ′′x ∈ Cx(Atx).

In order to see that the algorithm indeed ends, note that at any round if a student is not

matched, then she applies to her next favorite school in the following round. Therefore,

she either exhausts all her acceptable schools by going down all the way to the end of her

preference list, or ends up being matched with some school.

Suppose that µ is the matching obtained as a result of the algorithm which ends in round
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m. Stability of µ basically means

µ−1(x) ∈ Cx({i | xRiµ(i)})

But of course those who weakly prefer x to their match under µ are either matched with x,

or have applied to x at some round of the algorithm. Thus, we need

µ−1(x) ∈ Cx(Amx ),

which clearly holds by the fact that Amx \µ−1(x) = Zm
x ∈ Rx(A

m
x ). �

1.8.3 Proof of Proposition 3

The main part in proving the proposition is (⇐), i.e., showing that a strongly acyclic %

leads to efficient f%. We will prove this part in two steps.

Given a priority structure %, a generalized weak cycle of size n is constituted of dis-

tinct schools x0, x1, . . . , xn−1 ∈ X and distinct students j, i0, i1, . . . , in−1 ∈ N with n ≥ 2

such that

(1) x` 6= x`+1 for ` ∈ {0, 1, . . . , n− 1} (with xn = x0),

(2) there exist mutually disjoint sets of students Sx0 , . . . , Sxn−1 ⊆ N\{j, i0, i1, . . . , in−1}

32



such that

(C)

j /∈ DCx0(Sx0 ∪ {i0, j})

j ∈ DCx0(Sx0 ∪ {in−1, j})

in−1 /∈ DCx0(Sx0 ∪ {i0, in−1})

in−2 /∈ DCxn−1(Sxn−1 ∪ {in−1, in−2})
...

i1 /∈ DCx2(Sx2 ∪ {i2, i1})

i0 /∈ DCx1(Sx1 ∪ {i1, i0})

(S) |Sx` | = qx` − 1 for ` = 0, 1, . . . , n− 1.

Step 1: If there exists a Pareto inefficient assignment µ ∈ f%(R), then% has a generalized

weak cycle.

Proof of Step 1: Suppose that µ ∈ f%(R) is not Pareto efficient. Of all the Pareto im-

provements over µ, let ν be one which has the least number of students improving over µ.

Denote by N ′ the set of students who are better off under ν compared with µ:

N ′ = {i | ν(i)Piµ(i)}.

Denote by Eµj the set of students who envy the student j under µ:

Eµj = {` ∈ N | µ(j)P`µ(`)}.
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Set E ′j to be the set of students in N ′ who envy j. That is,

E ′j = Eµj ∩N ′ = {` ∈ N ′ | µ(j)P`µ(`)}.

If j ∈ N ′, then by the reshuffling lemma10,we have µ(j) ∈ ν(N ′). In particular, µ(j)

is desired by some student in N ′ under µ, and hence E ′j is nonempty. Because µ respects

priorities, we have

µ−1(µ(j)) ∈ Cµ(j)(Eµj ∪ µ−1(µ(j))).

Furthermore, E ′j ⊆ Eµj and % being substitutable imply that

µ−1(µ(j)) ∈ Cµ(j)(E ′j ∪ µ−1(µ(j))).

Removing j from the choice set, we conclude, again using substitutability, that µ−1(µ(j))\{j}

is a subset of a chosen element from E ′j ∪ µ−1(µ(j))\{j}. In other words

µ−1(µ(j))\{j} ⊆ S ′ for some S ′ ∈ Cµ(j)(E ′j ∪ µ−1(µ(j))\{j}).

Any such S ′ has exactly one element from E ′j , and let E ′j be the set of those elements:

E ′j =

`
∣∣∣∣∣∣∣∣
` ∈ E ′j, and (µ−1(µ(j))\{j}) ∪ {`} = S ′

for some S ′ ∈ Cµ(j)(E ′j ∪ µ−1(µ(j))\{j})


10Lemma 1 of Erdil and Ergin (2008)
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Thus, E ′j is a nonempty subset of N ′ for each j ∈ N ′. Consider a directed graph whose

set of vertices is N ′. For each i ∈ E ′j , let there be a directed edge from i to j. Therefore,

every vertex in this graph has an incoming edge, and since it is a finite graph, there must be

a cycle.

Let the shortest cycle in this graph consist of students i0, i1, . . . , in−1, in = i0, where

n ≥ 2, and there is an edge from i` to i`+1 for ` = 0, 1, . . . , n − 1. Denoting µ(i`) = x`,

since i` envy i`+1, we have x` 6= x`+1 for each `. In fact, these schools x0, . . . , xn−1

must be distinct, for otherwise we would have a shorter cycle, which would give a Pareto

improvement over µ, involving a smaller number of students improving. To be more pre-

cise, if x0 = xk for some k ≤ n − 1, then the cyclic trade which allows i` take x`+1 for

` = 0, . . . , k − 1, and letting ik take x0 would lead to a Pareto improvement over µ. Since

k < n, this would contradict with the assumption that ν was the “smallest” improvement

over µ. Since µ(i`) = x`, the students i0, . . . , in−1 are necessarily distinct.

The fact that µ respects priorities implies that it is non-wasteful. Since each x` is desired

by some student at assignment µ, all seats at these schools must be assigned under µ.

Denoting Sx` = µ−1(x`)\{i`}, we know that Sx0 , . . . , Sxn−1 are mutually disjoint subsets

of N \ {i0, i1, . . . , in−1}, because x0, x1, . . . , xn−1 are distinct schools. Moreover we have

(1) |Sx` | = qx` − 1,

(2) in−1 /∈ DCx0(Sx0 ∪ {i0, in−1})

in−2 /∈ DCxn−1(Sxn−1 ∪ {in−1, in−2})
... (*)
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i1 /∈ DCx2(Sx2 ∪ {i2, i1})

i0 /∈ DCx1(Sx1 ∪ {i1, i0})

because otherwise, if student i` were to be in DCx`+1
(Sx`+1

∪ {i`+1, i`}) for some `, then

we would have Sx`+1
∪ {i`+1} /∈ Cx`+1

(Sx`+1
∪ {i`+1, i`}), contradicting stability of µ.

Let ω be the assignment derived from µ by letting the students i0, i1, . . . , in−1 exchange

their schools along the improvement cycle suggested above. In other words,

ω(i) =


µ(i) i 6= i`

µ(i`+1) i = i`

ω Pareto dominates µ, whereas µ is constrained efficient, so ω must not be stable.

Therefore the cyclic trade letting i` take µ(i`+1) for ` = 0, 1, . . . , n − 1, n ≡ 0 cannot

be respecting priorities. Then we know from Proposition 1 that there must be a blocking

pair involving one of these schools. Suppose that j and x0 form a blocking pair for ω, i.e.,

ω−1(x0) /∈ Cx(ω−1(x0) ∪ {j}). Then x0Pjω(j) and

j ∈ DCx0(ω−1(x0) ∪ {j}) = DCx0(Sx0 ∪ {in−1, j}). (**)

First, note that j 6= in−1, because ω(in−1) = x0Pjω(j). Secondly, j 6= i0, because

ω(i0)Pi0µ(i0) = x0, while x0Pjω(j). And lastly if j = ik for some 1 ≤ k ≤ n − 2}, then

we have an envy cycle

i0 → i1 → · · · → ik → i0

which would allow a Pareto improvement involving only k+1 ≤ n−1 students, contradict-
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ing our earlier choice of a smallest Pareto improvement over µ. Thus j /∈ {i0, . . . , in−1}.

Furthermore, stability of µ implies

j /∈ DCx0(Sx0 ∪ {i0, j}). (***)

Thus, combining (*), (**), and (***), we have a generalized weak cycle

j /∈ DCx0(Sx0 ∪ {i0, j})

j ∈ DCx0(Sx0 ∪ {in−1, j})

in−1 /∈ DCx0(Sx0 ∪ {i0, in−1})

in−2 /∈ DCxn−1(Sxn−1 ∪ {in−1, in−2})
...

i1 /∈ DCx2(Sx2 ∪ {i2, i1})

i0 /∈ DCx1(Sx1 ∪ {i1, i0})

with |Sx` | = qx` − 1 for ` = 0, 1, . . . , n− 1.

Step 2: If % has a generalized weak cycle, then it has a weak cycle.

Proof of Step 2: Suppose that% has a generalized weak cycle and let the size of its shortest

generalized weak cycle be n. We will show that n = 2, which will prove step 2, since

a weak cycle is a generalized weak cycle of size 2. Suppose that x0, x1, . . . , xn−1 ∈ X;

j, i0, i1, . . . , in−1 ∈ N and Sx0 , . . . , Sxn−1 ⊆ N \ {j, i0, . . . , in−1} form a shortest general-

ized weak cycle. We will assume that it is of size n ≥ 3, and reach a contradiction.

Let us look at the the set of definitely chosen students from Sx1 ∪ {i0, i2} according to
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the priorities of x1. Is i0 in this set or not?

If so, i.e., if i0 ∈ DCx1(Sx1 ∪ {i0, i2}), then

i0 /∈ DCx1(Sx1 ∪ {i1, i0})

i0 ∈ DCx1(Sx1 ∪ {i0, i2})

i2 /∈ DCx1(Sx1 ∪ {i1, i2})

i1 /∈ DCx2(Sx2 ∪ {i2, i1}),

which is a weak cycle, i.e., a generalized weak cycle of length 2, contradicting with our

assumption of shortest cycle being of length at least 3.

If on the other hand, i0 /∈ DCx1(Sx1 ∪ {i0, i2}), then we get the following generalized

weak cycle

j /∈ DCx0(Sx0 ∪ {i0, j})

j ∈ DCx0(Sx0 ∪ {in−1, j})

in−1 /∈ DCx0(Sx0 ∪ {i0, in−1})

in−2 /∈ DCxn−1(Sxn−1 ∪ {in−1, in−2})
...

i2 /∈ DCx3(Sx3 ∪ {i3, i2})

i0 /∈ DCx1(Sx1 ∪ {i2, i0})

with |Sx` | = qx` − 1 for ` = 0, 1, 3, . . . , n− 1. This cycle is shorter than the one we started

with, because it does not have x2, hence yields the desired contradiction to our original

cycle being the shortest.
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=⇒: Let N , X , and q and % be given. Assume that % has a weak cycle. Let i, j, k ∈ N ,

and x, y ∈ X such that there exist Sx, Sy ⊆ N\{i, j, k} with Sx ∩ Sy = ∅ satisfying

j /∈ DCx(Sx ∪ {i, j})

j ∈ DCx(Sx ∪ {k, j})

k /∈ DCx(Sx ∪ {k, i})

i /∈ DCy(Sy ∪ {k, i})

with |Sx| = qx − 1 and |Sy| = qy − 1.

Consider the preference profile R where students in Sx and Sy, respectively, rank x

and y as their top choice, and the preferences of i, j, and k are such that yPixPiiPi · · · ,

xPjjPj · · · , and xPkyPkkPk · · · . Finally, let students outside Sx ∪ Sy ∪ {i, j, k} prefer not

to be assigned to any school. Consider the assignment µ such that for each ` ∈ Sx ∪ {i}

one has µ(`) = x, and for each ` ∈ Sy ∪ {k} one has µ(`) = y. Now the only candidates

for blocking pairs are (j, x), (k, x), and (i, y). However, the weak cycle conditions are such

that j /∈ DCx(Sx ∪ {i, j}) k /∈ DCx(Sx ∪ {k, i}), and i /∈ DCy(Sy ∪ {k, i}), ensuring that

µ respects priorities %. Moreover, there is only one assignment that Pareto dominates µ,

namely the assignment ν obtained from µ by letting i and k trade their assigned schools.

Since j ∈ DCx(Sx ∪ {j, k}), xPjν(j) and ν−1(x) = Sx ∪ {k}, the assignment ν does not

respect %. Thus µ is constrained efficient, but not Pareto efficient. �
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1.8.4 Proof of Proposition 4

We will now show that if a stable assignment µ is Pareto dominated by another stable

assignment ν, then µ must admit a SIC. From this, it will follow that if µ does not admit a

SIC, then it must be constrained efficient.

Let N ′ = {i ∈ N | µ(i) 6= ν(i)} and X ′ = {ν(i) | i ∈ N ′}. For any i ∈ N ′, we know

by the reshuffling lemma that µ(i) ∈ X ′.

Let µ(i) = x. Denote

Dµ
x = {j ∈ N | xPjµ(j)}, D′x = {j ∈ N ′ | xPjµ(j)}, D′′x = {j ∈ N\N ′ | xPjµ(j)}

and set

D̄x = D′x tD′′x t µ−1(x) = Dµ
x t µ−1(x).

Stability of µ implies that

µ−1(x) ∈ Cx(D̄x)

Moreover, stability of ν implies that

D′′x ⊆ T ′′ for some T ′′ ∈ Rx(D
ν
x t ν−1(x)) (?).

ν Pareto dominates µ, so those who desire x at ν, desire x at µ as well. Therefore

Dν
x ⊆ Dµ

x . Moreover, if j ∈ ν−1(x), then either j ∈ µ−1(x) or j ∈ D′x. And finally, since
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µ(i) = x and i ∈ N ′, we know that i /∈ ν−1(x), and ν(i)Pix. Therefore i /∈ Dν
x. Thus

Dν
x t ν−1(x) ⊆ Dµ

x ∪ ν−1(x) ⊆ D̄x\{i}. (??)

Now we conclude by using (?), (??), and substitutability that

D′′x ⊆ T ′ for some T ′ ∈ Rx(D̄x\{i}).

Denoting

S ′ = (D̄x\{i})\T ′,

we have

S ′ ∈ Cx(D̄x\{i}) and S ′ ∩D′′x = ∅.

Note that

D̄x\{i} = D′x tD′′x t µ−1(x)\{i},

and |µ−1(x)\{i}| ≤ qx − 1. Since % is acceptant, and |D̄x\{i}| ≥ qx, we must have

|S ′| ≥ qx. Because of |µ−1(x)\{i}| ≤ qx − 1 and that S ′ ∩D′′x = ∅, we have

S ′ ∩D′x 6= ∅.
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Hence, there exists i′ ∈ D′x such that {i′} ∪ µ−1x \{i} ∈ Cx(D̄x\{i}), i.e.,

i′ ∈ Eµ
i .

Now construct a directed graph with N ′ being its set of vertices. For any i ∈ N ′, the

above argument shows that there is i′ ∈ N ′ such that i ∈ Eµ
i , so draw an edge i′ → i. Since

this is a finite graph with every vertex having an incoming edge, there must be cycle. By

construction, this is a SIC. �

1.8.5 Proof of Proposition 5

Denote the assignment obtained by carrying out this SIC by ν, i.e., define matching ν as

ν(j) =


µ(i`+1) if j = i`

µ(j) otherwise

Case 1: If the schools µ(i0), µ(i1), . . . , µ(in−1) are distinct, then it is “straightforwardly

verified” that ν is stable.

Case 2: Now consider the case in which the schools µ(i0), µ(i1), . . . , µ(in−1) are not

distinct. Suppose for a contradiction that ν is not stable. So by Proposition 1 it must admit

a blocking pair (j, x), with j ∈ N , and x ∈ X . That is,

j ∈ DCx(ν−1(x) ∪ {j}).
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Note that such a school xmust appear more than once in the SIC, for otherwise ν−1(x) =

µ−1(x)\{i`+1}∪ {i`} and i` ∈ Ei`+1
, and hence j /∈ DCx((µ−1(x)\{i`+1})∪{i`, j}), con-

tradicting with (j, x) being a blocking pair.

Suppose that the school x is involved in moves ikt → ikt+1 for t = 1, . . . ,m, so the

SIC looks like:

i0 → · · · → ik1 → ik1+1 → · · · → ik2 → ik2+1 → · · · → ikm → ikm+1 → · · · → in−1,

where kt ∈ {0, . . . , n− 1} and µ(ikt+1) = x for all t ∈ {1, 2, . . . ,m}.

Since (j, x) is a blocking pair for ν, we have xPjν(j) and j ∈ DCx(ν
−1(x) ∪ {j}).

Thus xPjν(j)Rjµ(j), and j ∈ Eµkt+1 for all t.

The definition of SIC and substitutability implies that for each t ∈ {1, . . . ,m} there

exists At such that

[µ−1(x)\{ik1+1, . . . ikm+1}] ∪ {ikt} ⊆ At ∈ Cx(ν−1(x) ∪ {j}),

because ikt ∈ Eµikt+1
for all t ∈ {1, 2, . . . ,m}.

Note that j is in At, because j ∈ DCx(ν−1(x) ∪ {j}).

Thus we get

[µ−1(x)\{ik1+1, . . . , ikm+1}] ∪ {ikt} ∪ {j} ⊆ At ∈ Cx(ν−1(x) ∪ {j}).
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Let us write At as the disjoint union

At = Bt t µ−1(x)\{ik1+1, . . . , ikm+1}

Note that, for all t ∈ {1, . . . ,m}:

{ikt , j} ⊆ Bt ⊆ {ik1 , . . . , ikm , j} and |Bt| = m.

There must exist t, t′ such that Bt 6= Bt′ , for otherwise {ik1 , . . . , ikm , j} ⊆ Bt contra-

dicting with |Bt| = m. Let the symmetric difference of Bt and Bt′ be {ikr , iks}, where

r < s, so that

Bt = B̃ ∪ {ikr} and Bt′ = B̃ ∪ {iks},

and hence

At = Ã ∪ {ikr} and At′ = Ã ∪ {iks},

where Ã = B̃ t (µ−1(x)\{ik1 , . . . , ikm}).

Since

At, At′ ∈ Cx(ν−1(x) ∪ {j})

ν−1(x) ∪ {j} ⊆ Eµiks+1
∪ µ−1(x)\{iks+1} and

µ−1(x)\{iks+1} ∪ {iks} ∈ Cx(Eµiks+1
∪ µ−1(x)\{iks+1}),
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ETE11 implies that µ−1(x)\{iks+1} ∪ {ikr} ∈ Cx(Eµiks+1
∪ µ−1(x)\{iks+1}), and therefore

ikr ∈ Eµ
iks+1

.

Hence there is a shorter SIC which looks like

i0 → · · · → ik1 → ik1+1 → · · · → ikr → iks+1 → · · · → ikm → ikm+1 → · · · → in−1,

contradicting with the initial assumption that the original SIC was the shortest such cycle.

�

1.8.6 Proof of Claim 1

It is obvious that % is acceptant by (RR) condition and %pre which is defined over the set

of students. We need to show that % is substitutable.

Lemma 1 For every% constructed from%pre satisfying (RC) and (RR) conditions, if |S| ≥

qx, then S ′ ∈ C(S) if and only if S ′ has the following properties:12

(1) |S ′| = qx

(2) |Sτ | ≤ qτ ⇒ Sτ ⊆ S ′

(3) |Sτ | > qτ ⇒ |S ′τ | ≥ qτ and for all si ∈ S ′τ , si % ŝ for all ŝ ∈ Sτ\S ′τ
11Recall that ETE requires that if ikr can substitute iks to complement some set A, then she can substitute

him to complement any other set B in any larger applicants. See Footnote ??.
12By construction, a priority ordering over single elements are the same between% and%pre, so we use%

for the comparison among single elements.
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(4) |S ′τ | > qτ ⇒ for all si ∈ S ′τ , si % ŝ for all ŝ ∈ S\S ′.

Proof:

(⇒) Let S ′ ∈ C(S) and fix arbitrary. Since % is acceptant and |S| > qx, |S ′| = qx for any

S ′ ∈ C(S). Suppose S ′ ∈ Da.

For (2), if S ′ ∈ D0 then the condition trivially holds, so we assume a ≥ 1 for Da and

suppose for a contradiction. Then there is Sτ ′ such that Sτ ′ 6⊆ S ′. Pick an agent in Sτ ′\S ′,

denoted by s′. Since |S ′| = qx and
∑

τ qτ = qx, there must be τ ′′ such that |S ′τ ′′ | > qτ ′′ . Let

s′′ ∈ S ′τ ′′ .

Consider S ′′ = S ′\{s′′} t {s′}. Since S ′ ∈ Da,

∑
τ

||S ′τ | − qτ | =
∑

τ 6=τ ′,τ ′′
||S ′τ | − qτ |+ ||S ′τ ′| − qτ ′ |+ ||S ′τ ′′ | − qτ ′′ | = 2i.

On the other hand,

∑
τ

||S ′′τ | − qτ | =
∑

τ 6=τ ′,τ ′′
||S ′′τ | − qτ |+ ||S ′′τ ′| − qτ ′ |+ ||S ′′τ ′′ | − qτ ′′ |,

and

||S ′τ ′| − qτ ′ | = ||S ′′τ ′ | − qτ ′|+ 1

||S ′τ ′′ | − qτ ′′ | = ||S ′′τ ′′ | − qτ ′′ |+ 1.

Hence, S ′′ ∈ Da−1 and by (RC), S ′′ � S ′, but S ′ ∈ C(S), a contradiction.
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For (3), suppose that |Sτ | ≥ qτ and the condition does not hold. Then there is ŝ ∈ Sτ\S ′τ

such that ŝ � s′ for some s′ ∈ S ′τ . Since they are in the same type, S ′\{s′} t {ŝ} ∈ Di.

From (RR), S ′\{s′} t {ŝ} � S ′, a contradiction. Suppose |S ′τ | < qτ , then by the similar

argument to the proof of (2), we conclude that it never happens.

For (4), suppose not. Then there is ŝ ∈ S\S ′ such that ŝ � s′ for some s′ ∈ S ′τ . Since

ŝ ∈ S\S ′ and (1) – (3), there is Sτ ′ such that |Sτ ′| > qτ ′ and τ(ŝ) = τ ′. This fact and

|S ′τ\{s′}| ≥ qτ imply S ′\{s′} t {ŝ} ∈ Da. Then (RR) implies S ′\{s′} t {ŝ} � S ′, a

contradiction. �

(⇐) Suppose S ′ satisfies (1) – (4) but S ′ 6∈ C(S). Then there is S ′′ ∈ C(S) such that

S ′′ � S ′. Note that S ′′ satisfies (1) – (4) by (⇒) and S ′ is in Da if and only if S ′′ is in Da.

By induction on |S ′ ∩ S ′′|.

(step 1) |S ′ ∩ S ′′| = qx − 1. Then let s′1 ∈ S ′\S ′′ and s′′1 ∈ S ′′\S ′. Since S ′, S ′′ ∈ Da and

by supposition,

S ′′ � S ′ ⇒ s′′1 � s′1,

by (RR). Since s′′1 ∈ S\S ′ and S ′ satisfies (4),

|Sτ(s′1) ∩ S
′| = qτ(s′1).

Then |Sτ(s′1) ∩ S ′′| < qτ(s′1), even though |Sτ(s′1)| > qτ(s′1). A contradiction.
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(step n) Assume the conclusion holds for the case that |S ′ ∩ S ′′| ≤ qx − (n − 1), and

consider |S ′ ∩S ′′| = qx− n. Let s′1, . . . , s
′
n ∈ S ′\S ′′ and s′′1, . . . , s

′′
n ∈ S ′′\S ′. Without loss

of generality, we assume that s′1 % s′2 % · · · % s′n and s′′1 % s′′2 % · · · % s′′n.

Case 1 (s′1 � s′′1). Then S ′′\{s′′1} t {s′1} ∈ Da and S ′′\{s′′1} t {s′1} � S ′′, a contradiction.

Case 2 (s′1 ∼ s′′1). Then S ′′ ∼ S ′′\{s′′1} t {s′1}. This means that S ′′\{s′′1} t {s′1} � S ′ and

|[S ′′\{s′′1} t {s′1}] ∩ S ′| = qx − (n − 1). This case reduces to n − 1, and by assumption,

the conclusion holds.

Case 3 (s′′1 � s′1). Then s′′1 ∈ S\S ′ and (4) imply that |S ′τ(s′1)| = qτ(s′1). Note that τ(s′1) 6=

τ(s′′1). Then

|Sτ(s′1) ∩ S ′′| < qτ(s′1) if τ(s′′i ) 6= τ(s′1) ∀i ∈ {2, . . . , n}

|Sτ(s′1) ∩ S ′′| = qτ(s′1) if τ(s′′i ) = τ(s′1) ∃i ∈ {2, . . . , n}

Clearly, a case that |Sτ(s′1) ∩ S ′′| < qτ(s′1) leads to a contradiction. When |Sτ(s′1) ∩ S ′′| =

qτ(s′1), since |Sτ(s′1)| > qτ(s′1), s
′
1 % s′′i . Then S ′′\{s′′i } t {s′1} ∈ Da, and

S ′′\{s′′i } t {s′1} % S ′′.
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Since S ′′ ∈ C(S), it must be

S ′′\{s′′i } t {s′1} ∼ S ′′.

Then s′1 ∼ s′′i . Therefore S ′′\{s′′i } t {s′1} ∈ C(S) and S ′′\{s′′i } t {s′1} � S ′. Notice that

|[S ′′\{s′′i } t {s′1}] ∩ S ′| = qx − (n− 1), which reduces to n− 1. �

Proof of Claim 1:

Without loss of generality, we just focus on St{s′′} and S. Since% is acceptant, it suffices

to show a case that |S| ≥ qx + 1.

Proof of the condition (a) Suppose S ′ ∈ C(S t {s′′}) and S ′ ∈ Da. If s′′ 6∈ S ′, then

S ′ ∈ C(S) and the condition (a) trivially holds. So we assume that s′′ ∈ S ′.

Case 1 |Sτ(s′′)| ≤ qτ(s′′). Then since Sτ(s′′) ⊆ S ′, for all ŝ ∈ S\S ′,

S ′\{s′′} t {ŝ} ∈ Da+1.

Then we have ŝ1 % ŝ2 % · · · % ŝn for S\S ′ by (RR).

We claim that S ′′ = S ′\{s′′} t {ŝ1} ∈ C(S). Clearly |S ′′| = qx.

For all S ′′τ with |S ′′τ | ≤ qτ , S ′′τ = S ′τ ⊆ S ′′ if τ 6= τ(s′′). S ′′τ(s′′) = S ′τ(s′′)\{s′′} ⊆ S ′′.
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For all S ′′τ with |S ′′τ | > qτ , since ŝ1 % ŝ for all ŝ ∈ S\S ′ and

qτ(ŝ1) ≤ |S ′τ(ŝ1)| < |S ′′τ(ŝ1)|,

(3) and (4) holds. By the lemma 1, S ′′ ∈ C(S).

Case 2 |Sτ(s′′)| > qτ . If |S ′τ(s′′)| = qτ(s′′), then there is ŝ ∈ S\S ′ such that τ(ŝ) = τ(s′′).

For these ŝ, S ′\{s′′} t {ŝ} ∈ Da. By (RR), we can find ŝ1 who is at least as good as any

other agent who is in Sτ(s′′). It is easy to see that S ′\{s′′} t {ŝ1} satisfies (1) – (4).

Otherwise, |S ′τ(s′′)| > qτ(s′′). Then for all ŝ ∈ S\S ′,

S ′\{s′′} t {ŝ} ∈ Da.

Then we have ŝ1 % ŝ2 % · · · % ŝn for S\S ′ by (RR). It is analogous to see that S ′\{s′′} t

{ŝ1} satisfies (1) – (4).

Hence, the condition (a) holds. �

Proof of the condition (b) Suppose R′ ∈ R(S). By definition, R′ = S\S ′ for some S ′ ∈

C(S). We claim that there is ŝ ∈ (S t {s′′})\R′ such that R′ t {ŝ} ∈ R(S t s′′).

Case 1 |(S t {s′′})τ(s′′)| ≤ qτ(s′′). Then |Sτ(s′′)| < qτ(s′′). This implies that there is τ ′

such that |S ′τ ′ | > qτ ′ . Then for all si ∈ R′τ ′ , ŝ % si for all ŝ ∈ S ′τ ′ . Consider such types
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{τ ′1, · · · , τ ′m}. Take s∗ ∈ ⋃i∈{1,...,m} Sτ ′i in a way that ŝ % s∗ for all ŝ ∈ ⋃i∈{1,...,m} Sτ ′i .

We see that R′ t {s∗} ∈ R(S t {s′′}). Let S ′′ = (S t {s′′})\(R′ t {s∗}). Since |(S t

{s′′})τ(s′′)| ≤ qτ(s′′), (S t{s′′})τ(s′′) ⊆ S ′′. For τ(s∗), |S ′′τ(s∗)| ≥ qτ(s∗) and by construction,

S ′′ satisfies other properties. Hence, S ′′ ∈ C(S t {s′′})⇔ R′ t {s∗} ∈ R(S t {s′′}).

Case 2 |(S t s′′)τ(s′′)| > qτ(s′′). Then we can find ŝ ∈ (S t {s′′})τ(s′′) such that si % ŝ for

all si ∈ (S t {s′′})τ(s′′). Consider τ ′ such that |S ′τ ′ | > qτ ′ and let them be {τ ′1, . . . , τ ′m}

(possibly empty). If for all such τ ′i , s % ŝ, for all s ∈ S ′τ ′i
or there is no such τi, then

S\(R′ t {ŝ}) satisfies (1) – (4) and we are done. Otherwise there is si ∈ S ′τ ′i
such that

ŝ � si for some i ∈ {1, . . . ,m}. Then we can find ŝi such that si % ŝi for all si ∈ S ′τ ′i . Let

s∗ be such that ŝi % s∗ for any i. Then it also easy to see that S ′′ = S\(R′ t {s∗}) satisfies

(1) – (4). Therefore, R′ t {s∗} ∈ R(S t {s′′}).

Hence the condition 2 holds. �

1.8.7 Proof of Claim 2

We only need to show that if a stable assignment admits a SIC, then a new assignment

followed by the SIC is stable.

As the same as the proof of Proposition 4, consider the shortest SIC and denote the

assignment obtained by carrying out the SIC by ν. First of all, if the schools involved in

the SIC, µ(i0), . . . , µ(in−1), are distinct, it is obvious that ν is stable.

We assume that the schools are not distinct. Suppose for a contradiction, that ν is not
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stable. Suppose that there is a blocking pair (j, x) and the school x is involved in moves

ikt → ikt+1 for t = 1, . . . ,m.

Note that τ(ikt) 6= τ(iku), for any t, u ∈ {1, . . . ,m} and t 6= u. Otherwise τ =

τ(ikt) = τ(iku) for some t and u 6= t. Then we can see that iku ∈ Eµ
ikt+1

.

Since ikt ∈ Eµ
ikt+1

and iku ∈ Eµikt+1
,

µ−1(x)\{ikt+1} t {ikt} % µ−1(x)\{ikt+1} t {iku}.

Since ikt and iku are in the same type,

µ−1(x)\{ikt+1} t {ikt} ∈ Da

µ−1(x)\{ikt+1} t {iku} ∈ Da,

which implies by (RR) that

ikt % iku .

Similarly, iku % ikt , and therefore

ikt ∼ iku .

This implies iku ∈ Eµ
ku+1, which is contradicting with the supposition that the SIC is the

shortest.

Consider a blocking pair (j, x) such that j ∈ DCx(ν−1 ∪ {j}).
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Case 1 |(ν−1(x)t{j})τ(j)| ≤ qτ(j). Since µ is stable and j is not in µ−1(x), |(µ−1(x))τ(j)| ≥

qτ(j). If |(µ−1(x))τ(j)| = qτ(j), then there is ikt+1 such that τ(ikt+1) = τ(j). Then

|µ−1(x)\{ikt+1}| = qτ(j) − 1. Since ikt ∈ Eµ
ikt+1

, j ∈ Eµ
ikt+1

and τ(ikt) = τ(j). Since

|(ν−1(x) t {j})τ(j)| ≤ qτ(j), there must be another iku+1 such that τ(iku+1) = τ(j). If

|(µ−1(x))τ(j)| > qτ(j), then we can easily see that there are distinct ikt+1, iku+1 such that

τ(ikt+1) = τ(iku+1) = τ(j).

Therefore, there are at least two agents ikt+1, iku+1 such that τ(ikt+1) = τ(iku+1) =

τ(j) in the SIC. Then

Eµ
ikt+1

= Eµ
iku+1

,

which contradicts that the SIC is the shortest.

Case 2 |(ν−1(x) t {j})τ(j)| > qτ(j). Since j ∈ DCx(ν−1(x) t {j}) and |ν−1(x) t {j}| =

qx + 1, there is ikt such that ikt 6∈ A ∈ Cx(ν−1(x) t {j}). Then |(ν−1(x) t {j})τ(ikt )| >

qτ(ikt ). Note that

j % ikt

because if τ(ikt) = τ(j), then j % ikt by (RR), and otherwise since Cx satisfies substi-

tutability and ν−1(x)\{ikt} t {j} ∈ Cx(ν−1(x)t {j}), (4) of the lemma 1 implies j % ikt .

Suppose j ∼ ikt . Since ν−1(x)\{ikt} t {j}, ν−1(x) ∈ Da for some a,

ν−1(x)\{ikt} t {j} ∼ ν−1(x),

53



implying that j 6∈ DCx(ν−1 t {j}).

Suppose j � ikt . We know that τ(ikt) 6= τ(iku) for all t, u 6= t ∈ {1, . . . ,m}.

∣∣(µ−1(x)\{ikt+1} t {ikt , j})τ(ikt )
∣∣ >

∣∣(µ−1\{ik1+1, . . . , ikm+1} t {ikt , j})τ(ikt )
∣∣

=
∣∣(ν−1(x) t {j})τ(ikt )

∣∣ > qτ(ikt )

Since ikt ∈ Eµ
ikt+1

, ikt % j, a contradiction. �
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Chapter 2

Strategy-proofness and Stability of the
Boston Mechanism: An Almost
Impossibility Results

2.1 Introduction

In many school choice districts in the world, student and school matchings are determined

by using a central clearinghouse. Each student is asked to submit their preference ranking

of schools and each school sets a priority ranking of students, and some mechanism calcu-

lates which student is assigned to which school. There are three competing mechanisms,

the Boston mechanism, the deferred acceptance mechanism and the top trading cycle mech-

anism, which are mainly used for solving school choice problems. In this paper, we focus

on the Boston mechanism, which is used now in Denver and Minneapolis1.

We consider three desiderata for a mechanism in a school choice problem, Pareto ef-

ficiency, strategy-proofness, and stability. A mechanism is Pareto efficient if it returns an
1As we will discuss in Section 1.1, though the Boston mechanism, as named, was used in Boston, the

Boston public school districts abandoned the Boston mechanism since 2005.
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assignment which is not Pareto dominated by any other feasible assignment. A mechanism

is strategy-proof if no student is better off by misrepresenting her true preference. Hence,

there is no room for gaming a mechanism. A mechanism is said to be stable if no student

nor pair of a student and a school has incentive to deviate from an assignment. Each of

the three mechanisms has one or two of those properties, but none of them satisfies all the

three properties simultaneously. The following table summarizes three properties of the

three mechanisms.

DA TTC Boston
Pareto efficiency × X X

Strategy-proofness X X ×
Stability X × ×

Figure 2.1: Properties of three competing mechanisms.

This paper characterizes priority structures for which the Boston mechanism is Pareto effi-

cient, strategy-proof, and stable. We show that the Boston mechanism is strategy-proof if

and only if it is stable if and only if the priority structure is strongly acyclic. For practical

purposes, it is important to see how frequent strongly acyclic priority structure emerges.

The main contribution of this paper is that any practical priority structure is quasi-cyclic.

More formally, if there are at least two schools whose total quota is less than the total num-

ber of students in the school choice problem, then any priority structure is quasi-cyclic. In
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words, the paper shows an impossibility result for the Boston mechanism being strategy-

proof or stable in practice.

There are several prior works on the Boston mechanism. The most related is Hsu

(2011). He proposes a sufficient condition for dominance solvability of the preference

revelation game induced by the Boston mechanism. His sufficient condition is both on a

preference profile and a priority structure, while here we consider only the priority struc-

ture. Since the Boston mechanism is not strategy-proof in general, one research direction

is to explore stability of the outcomes in a weaker solution concept, Nash equilibrium.

Though the Boston mechanism is not stable under the true preferences, Ergin and Sönmez

(2006) show that the set of stable assignments is equivalent to the set of Nash equilibrium

outcoems. That is, the set of stable assignments of the Boston mechanism is Nash imple-

mentable. Note that a stable assignment obtained by a Nash equilibrium is not necessarily

efficient. Haeringer and Klijn (2009) further investigate when a stable assignment induced

by a Nash equilibrium is efficient, and it is characterized by a condition on a priority struc-

ture, called X-acyclicity2.

For other works on the Boston mechanism, with incomplete information on students’

exact utilities, Abdulkadiroğlu, Che and Yasuda (2011) show that when all students’ ordinal

preferences are the same and all schools rank all students equally, the Boston mechanism

ex ante Pareto dominates the deferred acceptance mechanism. As a characterization of

the Boston mechanism, Kojima and Ünver (2011) provide axioms, respecting preference

rankings, consistency, resource monotonicity, and an auxiliary invariance property. They

2We will discuss X-acyclicity in Section 4.
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show that these axioms are equivalent to a mechanism that is the Boston mechanism for

some priority.

2.1.1 The other two mechanisms

The deferred acceptance mechanism was introduced by Gale and Shapley (1962), and is

used in Boston, New York and other cities. In 2005-06, the Boston public schools switched

from a mechanism now called the Boston mechanism to the student-proposing deferred

acceptance mechanism3. The deferred acceptance mechanism is stable, and furthermore is

strategy-proof, as shown by Dubins and Freedman (1981). It is not efficient in general but

is constrained efficient, that is, an assignment obtained by the deferred acceptance mech-

anism is not Pareto dominated by any other stable assignment. Ergin (2002) showed that

the deferred acceptance mechanism is efficient if and only if a priority structure is Ergin-

acyclic4. Roughly speaking, if all schools have similar priority rankings over students, then

a priority structure is Ergin-acyclic.

The top trading cycle mechanism was introduced by Abdulkadiroğlu and Sönmez (2003),

as an adaptation of a trading mechanism proposed by Shapley and Scarf (1974) into the

school choice context. This mechanism is Pareto efficient and strategy-proof, but not sta-

ble. Kesten (2006) characterizes the stable top trading cycle mechanism by imposing a

condition on a priority structure called Kesten-acyclicity5. A part of the main theorem in

3In this paper, we say the student-proposing deferred acceptance mechanism just the deferred acceptance
mechanism.

4We will discuss Ergin-acyclicity in Section 4.
5We will discuss Kesten-acyclicity in Section 4.
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Kesten (2006) says that the top trading cycle mechanism is stable if and only if a priority

structure is Kesten-acyclic. However, Kesten-acyclicity implies Ergin-acyclcity, but not the

converse.

2.2 Model

There are N students and X schools. N and X are finite. Each student i has a strict

preference Ri over X ∪ {i}. A student i ranks not only schools but also herself, {i},

because it is usual in the United States that a student prefers home-schooling rather than

going to some schools. The strict part of Ri is written by Pi. Each school x is endowed

with qx(≥ 1) seats and strict priorities �x over the set of students. We denote a preference

profile by R = (Ri)i∈N and a priority structure by �= (�x)x∈X .

Assignment µ is a mapping from N to N ∪X with (1) for all i ∈ N , µ(i) ∈ X ∪ {i}

and (2) for all x ∈ X , |µ−1(x)| ≤ qx. Denote the set of assignments by M . An assignment

µ is individually rational if for all i ∈ N , µ(i)Rii. A blocking pair is defined by a pair

of a student i and a school x such that xPiµ(i) and i �x j for some j ∈ µ−1(x). An

assignment is said to be non-wasteful if there is no pair of a student, i, and a school x,

such that xPiµ(i) and |µ−1(x)| < qx. An assignment is stable if it is individually rational,

non-wasteful and there is no blocking pair. An assignment µ is said to be Pareto efficient

if there is no ν ∈ M such that for all i, ν(i)Riµ(i) and for some j, ν(i)Pjµ(j). Although

school priority structures play a similar role to preferences, because they are thought of as a

public good, we assume schools are not taken into consideration with respect to efficiency
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in this paper.

Given a priority structure, a mechanism f is a mapping from the set of preference

profiles to an assignment. An assignment of a student i under R is denoted by fi(R).

A mechanism is stable or Pareto efficient if each outcome is stable or Pareto efficient,

respectively. A mechanism f is said to be strategy-proof if there is no R and R′i such that

fi(R
′
i, R−i)Pifi(R). Throughout the paper, we write the Boston mechanism by fB.

2.2.1 Description of the Boston mechanism

Given �, the Boston mechanism fB works as follows:

Step 1: Each student i applies to the top ranked school, if any. Each school x

accepts the most preferred students on the basis of its priority ranking

until the positions are filled, and rejects the others.

...

Step t: Each student who is rejected at the t−1 step applies to the next top ranked

school, if any. Each school x accepts the most preferred students until the

remaining positions are filled, and rejects the other.

The algorithm terminates when no student applies to a school.

Note that once you are accepted at some school, your assignment is finalized.

Observation 1 Given any priority structure �, fB is Pareto efficient.

However, fB is neither stable nor strategy-proof in general.
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Example 7 Suppose there are three students, {i, j, k}, and two schools, {x, y}, with one

seat. Consider the following preferences and priorities6.

Ri : x y �x: i j k

Rj : y x �y: k j i

Rk : x y

Then

fB(R) =

 i j k

x y k

 .

First of all, fB(R) is not stable, since yPkfBk (R) = k and k �y
(
fB(R)

)−1
(y) = j.

Secondly, a student k has an incentive to misreport her true preference. Consider R′k : y.

Then

fB(R′k, R−k) =

 i j k

x j y

 ,

and a student k becomes better off. ♦

The condition on a priority structure in the next section characterizes those properties of

fB hold.
6We abbreviate Ri or �x just by listing schools or students in its order. For each student, only schools

which are preferred to being matched with herself are listed since the ranking of the other schools does not
matter in a mechanism. For example, Ri : xPiyPii is written as Ri : x y.
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2.3 Results

We first introduce our main condition on a priority structure.

Definition 9 We say that � is quasi-cyclic if there are distinct i, j, k ∈ N and x, y ∈ X

such that

(C) i �x j �y k,

(S) there are two distinct sets Sx, Sy ⊆ N\{i, j, k} such that |Sx| = qx − 1 and |Sy| =

qy − 1 and ∀` ∈ Sx, ` �x j and ∀` ∈ Sy, ` �y k.

We say that � is strongly acyclic if it is not quasi-cyclic.

We are ready to state a characterization theorem.

Theorem 2.1 The following are equivalent:

(1) fB is strategy-proof

(2) fB is stable

(3) � is strongly acyclic

Proof : In Appendix.

When a priority structure is strongly acyclic, then no student has incentive to misrepresent

her preferences and furthermore the outcome by the Boston mechanism is Pareto efficient

and stable. One surprising thing is that stability of the Boston mechanism is equivalent to

strategy-proofness of it in our setting.
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2.3.1 Impossibility Result

However, our strong acyclicity condition is extremely strong. In other words, there is

almost no room for the Boston mechanism to be stable or strategy-proof. The following

proposition tells why:

Proposition 6 If |N | ≥ 3, |X| ≥ 2 and there are two schools, x and y, such that qx + qy ≤

|N | − 1, then any � is quasi-cyclic.

Proof : By supposition, there are two schools x and y such that qx + qy ≤ |N | − 1. Fix �

arbitrary. Rename students in each ranking of a school x and y as follows:

�x j1 �x . . . �x jn

�y k1 �y . . . �y kn

where |N | = n. Note that the same student is named differently in those two schools. We

will show that � is quasi-cyclic.

(Case1) jn 6= kn. Since jn is the least ranked at x, kn is ranked better than jn at x. Then

there are the other |N | − 2 students listed at x. Choose one student from |N | − 2 students,

and let her be i. Since qy ≥ 1 and by supposition, qx − 1 ≤ |N | − 3 so that it is possible

to find qx− 1 students who are ranked higher than jn from N\{i, jn, kn} (possibly empty).

Let them be Sx. For a school y, it is possible to choose qy − 1 students who are distinct
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from Sx ∪ {i, jn, kn} because

|N | − 3︸︷︷︸
i,jn,kn

−(qx − 1︸ ︷︷ ︸
Sx

) ≥ |N | − 3− (|N | − qy − 2)

= qy − 1

Therefore, since

i �x jn �y kn,

i, jn, kn satisfy the condition (C), and both Sx and Sy follows the condition (S) of quasi-

cyclicity.

(Case2) jn = kn. At x, there are |N | − 2 students who are ranked higher than jn−1.

Choose i and qx − 1 students distinctly among them. Let the qx − 1 students be Sx. It is

possible because qx ≤ |N | − 3. At y, since jn = kn, i and jn−1 are ranked higher than kn,

furthermore, there are |N | − 3 students other than i and jn−1 who are ranked higher than

kn. As similar to Case 1, it is possible to find qy−1 students who are ranked higher than kn

and distinct from i, jn−1 and Sx. Let them be Sy. Now i �x jn−1 �y kn so that i, jn−1, kn

satisfy the condition of (C), and Sx and Sy satisfy the condition of (S) of quasi-cyclicity. �

Proposition 1 is a new impossibility result: � is strongly acyclic and hence the Boston

mechanism is stable and strategy-proof only if all schools have at least |N |/2 seats. In

practice, no school has |N |/2 or more seats, and therefore the Boston mechanism is always
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neither stable nor strategy-proof7.

2.4 Discussion

2.4.1 On the three mechanisms

We see the relationship among three competing mechanisms, the Boston mechanism, the

deferred acceptance mechanism, the top trading cycle mechanism. As we noted earlier,

none of them satisfies stability, Pareto efficiency, and strategy-proofness in the same time.

We compare three mechanisms which meet three properties in terms of the flexibility of a

priority structure.

The deferred acceptance mechanism, say fDA, is stable and strategy-proof, but not

Pareto efficient. Ergin (2002) characterizes its Pareto efficiency by the following acyclic

condition on �:

Definition 10 Ergin (2002)

� is Ergin-cyclic if there are distinct i, j, k ∈ N and x, y ∈ X such that

(C) i �x j �x k �y i,

(S) there are two distinct sets Sx, Sy ⊆ N\{i, j, k} such that |Sx| = qx − 1 and |Sy| =

qy − 1 and ∀` ∈ Sx, ` �x j and ∀` ∈ Sy, ` �y i.
7Many papers characterize desirable properties of the deferred acceptance mechanism or the top trading

cycle mechanism by Ergin-acyclicity or Kesten-acyclicity, respectively. For instance, Ergin-acyclicity is
equivalent to that the deferred acceptance mechanism is group-strategy-proof, consistent (Ergin (2002)), Nash
implementable (Haeringer and Klijn (2009)) or robustly stable (Kojima (2011)).

However, in case of the boston mechanism, as Proposition 1 states, we have no chance for� being acyclic,
and therefore to explore other additional properties does not convey fruitful insights.
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� is said to be Ergin-acyclic if it is not Ergin-cyclic.

The part of his main theorem tells that the deferred acceptance mechanism is stable, Pareto

efficient, and strategy-proof if and only if � is Ergin-acyclic.

Observation 2 If � is Ergin-cyclic, then it is quasi-cyclic.

If a priority structure is Ergin-cyclic, then j �x k �y i and there is Sy such that |Sy| =

qy − 1 and for all ` ∈ Sy, ` �y i. Furthermore, there is Sx such that |Sx| = qx − 1 and for

all ` ∈ Sx, ` �x j so ` �x k. Hence, it is quasi-cyclic.

Example 8 Suppose there are three students i, j, k and two schools x, y with qx = 1 and

qy = 1. Consider the following priority structure.

�x: i �x j �x k

�y: i �y j �y k

This is Ergin-acyclic but is quasi-cyclic by the proposition 1. ♦

Another mechanism is the top trading cycle mechanism, denoted by fTTC . fTTC is Pareto

efficient and strategy-proof but not stable. Kesten (2006) characterizes when all three con-

ditions meet by the following acyclic condition on �:

Definition 11 Kesten (2006)

� is Kesten-cyclic if there are distinct i, j, k ∈ N and x, y ∈ X such that

(C) i �x j �x k and k �y i �y j
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(S) there is Sx ⊆ N\{i, j, k} such that |Sx| = qx − 1 and Sx ⊆ Ux(i) ∪ [Ux(j)\Uy(k)]

where Uz(`) = {m ∈ N |m �x `}.

� is Kesten-acyclic if it is not Kesten-cyclic.

The part of his main theorem states that the top trading cycle mechanism is stable, Pareto

efficient, and strategy-proof if and only if� is Kesten-acyclic. The relation between Ergin-

and Kesten-acyclicity is the following:

Observation 3 Kesten (2006)

If � is Ergin-cyclic, then it is Kesten-cyclic.

The natural question arises whether there is any relation between Kesten- and our strong

acyclicity. The answer is no.

Example 9 Suppose there are three students i, j, k and two schools x, y with qx = 1 and

qy = 2. A priority structure is as follows:

�x: i �x j �x k

�y: k �y j �y i

This is Kesten-cyclic but is strongly acyclic because the condition (S) never holds. Suppose

instead qy = 1 and the following priority structure.

�x: i �x j �x k

�y: i �y j �y k
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Then this is Kesten-acyclic but is quasi-cyclic as in the previous example. ♦

2.4.2 Relationship to X-acyclicity

The set of stable assignments is Nash implementable in the Boston mechanism (Ergin and

Sönmez (2006)), but a stable assignment is not necessarily efficient. Haeringer and Klijn

(2009) propose strong X-acyclicity and prove that it is equivalent to the stable assignment

induced by some Nash equilibrium is efficient8. On the other hand, we characterize that

an efficient stable assignment is a dominant strategy equilibrium outcome if and only if

� is strongly acyclic. We see the relationship between strong X-acyclicity and our strong

acyclicity.

Definition 12 Haeringer and Klijn (2009)

� is weakly X-cyclic if there are distinct i, j ∈ N and x, y ∈ X such that

(C) i �x j and j �y i

(S) There are distinct Sx ⊆ N\{i} and Sy ⊆ N\{j} such that |Sx| = qx − 1 and

|Sy| = qy − 1 and ∀` ∈ Sx, ` �x j and ∀` ∈ Sy, ` �y i.

� is strongly X-acyclic if it is not weakly X-cyclic.

Similar to Kesten-acyclicity, strong X-acyclicity implies Ergin-acyclicity.

Observation 4 Haeringer and Klijn (2009)

If � is Ergin-cyclic, then it is weakly X-cyclic.
8They also show that strong X-acyclicity ensures the set of stable assignments to be singleton.
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However, there is no inclusion relationship between strong X- and our strong acyclicity, as

the example 3 applies: The first priority structure is weakly X-cyclic and the second one is

strongly X-acyclic9.'

&
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&

$

%
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&

$
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Figure 2.2: Configuration of four acyclic priority structures.

2.5 Appendix

2.5.1 Proof of Theorem 2.1

We prove (1)⇒ (3) and (2)⇒ (3), and then (3)⇒ (2) and (3)⇒ (1).

(1)⇒ (3)&(2)⇒ (3) By way of contradiction. Suppose there is a quasi-cycle. Then con-

sider the following preference profile R: for all ` ∈ Sx, x is their top choice, for all ` ∈ Sy,
9Although we use the same example for Kesten- and strong X-acyclicity, there is no inclusion relation

between them.
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y is their top choice,

Ri : x i

Rj : x y j

Rk : y k

,

and for any others, N\[{i, j, k} ∪ Sx ∪ Sy], their top choice is not being matched. Then

fB(R) =

 i j k

Sx︷ ︸︸ ︷
`1 . . . `qx−1

Sy︷ ︸︸ ︷
`′1 . . . `

′
qy−1

N\[{i,j,k}∪Sx∪Sy ]︷ ︸︸ ︷
`′′1 . . . `

′′
n

x j y x . . . x y . . . y `′′1 . . . `
′′
n



Then yPjfBj (R) and j �y k so that a pair j and y blocks the assignment. Hence fB is not

stable.

If j misrepresents R′j as y is his top choice. Then

fB(R′j, R−j) =

 i j k

Sx︷ ︸︸ ︷
`1 . . . `qx−1

Sy︷ ︸︸ ︷
`′1 . . . `

′
qy−1

N\[{i,j,k}∪Sx∪Sy ]︷ ︸︸ ︷
`′′1 . . . `

′′
n

x y k x . . . x y . . . y `′′1 . . . `
′′
n


Therefore,

y = fBj (R′j, R−j)Pjf
B
j (R) = j,

which contradicts the assumption that fB is strategy-proof.

(3)⇒ (2) Suppose fB is unstable. Then there exists R such that fB(R) is unstable. Let

fB(R) be µ. We will show that there is a quasi-cycle.

Since µ is unstable, Pareto efficiency of fB implies that there is a blocking pair j and
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y such that yPjµ(j) and j �y ` for some ` ∈ µ−1(y). Take k such that ` %y k for all

` ∈ µ−1(y). Then there are qy − 1 students who have higher priority than k in µ−1(y). Let

them be Sy.

Since j is not assigned y under R, when j applies to y, there are already qy students

accepted at y and hence it is not the first step. Because j applies to y under R, j should

be rejected in all the previous steps, especially in the first step. In the first step, j applies

to a school different from y, say x, and j is rejected because there are at least qx students

who are of higher priority than j. Consider the top qx higher ranked students within the

applicants at x in the first step. Let one of them be i and the other of them be Sx. Note that

they are accepted in the first step, so their assignment is x at µ.

Hence, i, j, k, Sx and Sy are distinct and, together with x and y, they consist a quasi-

cycle.

(3)⇒ (1) Suppose a priority structure is strongly acyclic, but fB is not strategy-proof.

Then there are k, R and R′k such that

fBk (R′k, R−k)Pkf
B
k (R).

Let fBk (R′k, R−k) and fB(R) be y and µ, respectively. From (3)⇒ (2), fB is stable so that

for all ` ∈ µ−1(y), ` �y k under R.

Under (R′k, R−k), k is assigned y, which implies, together with the procedure of the

Boston mechanism, that there is a step t > 1 such that a school y is not filled until step

t under R. Otherwise, since R−k is the same across R and (R′k, R−k), if all µ−1(y) apply
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to y in the first step, then it contradicts that k is assigned y under (R′k, R−k). Note that

applications of N\{k} in the first step is exactly the same both under R and (R′k, R−k).

Let j be the student who is assigned y under R and does not apply to y in the first step.

Let µ−1(y)\{j} be Sy. Note that j �y k and ∀` ∈ Sy, ` �y k by stability of fB(R). Then

under R, j should be rejected by some school, say x, in the first step. It is because there are

at least qx students who is of higher priority than j and apply to x in the first step. Choose

the top qx higher ranked students within them, and split those qx students into one student

and the others, and let each of them be i and Sx. Clearly, i �x j and |Sx| = qx − 1 and

∀` ∈ Sx, ` �x j. Overall, i, j, k, Sx and Sy are all distinct, and together with x and y, they

consist a quasi-cycle. �
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Chapter 3

Dominant Strategy Implementation of
Stable Rules

3.1 Introduction

The priority-based assignment problem is the allocation problem in which agents are allo-

cated at most one indivisible object. There are types on each object, and each object type

is endowed with a strict priority ranking over subsets of the set of agents.1 Each agent

has strict preferences over object types and being unassigned. School Choice is the best

example.2

The deferred acceptance algorithm introduced by Gale and Shapley (1962) is the most

widely used method for obtaining the stable assignment in priority-based assignment prob-

lems. An assignment is stable if it is not blocked by any individual agent or any agent-

object pair. Roth and Sotomayor (1990) show that the deferred acceptance algorithm finds

1Coarse priorities may capture real life well, but since there is no strategy-proof and constrained efficient
stable rule under coarse priorities, we restrict our attention to the class of strict priorities. For more reference,
see Abudulkdiroğlu et al. (2009) and Erdil and Ergin (2008).

2In case of school choice, if a school has two seats, then each seat is thought of as an object, and the
school is as their type.
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the agent-optimal stable assignment which is a stable assignment that any agent weakly

prefers to any other stable assignment. We consider the class of priorities called substi-

tutable, first introduced by Kelso and Crawford (1982), which ensures the existence of a

stable assignment in our model.3

This paper discusses whether the agent-optimal stable assignment generated by some

algorithm is implemented in dominant strategies in a preference revelation game. A (single-

valued) algorithm is said to be implementable in dominant strategies if the outcome that the

algorithm generates is the unique dominant strategy equilibrium outcome in the preference

revelation game. Our main result is that when the priority structure satisfies substitutability

and cardinal monotonicity the deferred acceptance algorithm is dominant strategy imple-

mentable, and furthermore it is the unique dominant strategy implementable stable algo-

rithm.

As in a prior work by Kumano and Watabe (2011), they see how untruthful dominant

strategies in the preference revelation game induced by the deferred acceptance algorithm

look under substitutable and quota-filling priority structure that is a strict subclass of our

model. They find that the first k-th ranked objects in any untruthful dominant strategy coin-

cide with those in the truthful dominant strategy, where the k-th object is an assignment un-

der true preferences. From that fact, they directly show dominant strategy implementability

of the deferred acceptance algorithm.

Our results build on Mizukami and Wakayama (2007) and Saijo et al. (2007), who

prove that dominant strategy implementability is equivalent to the combination of strategy-

3See Kelso and Crawford (1982) and Hatfield and Milgrom (2005).
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proofness and weak nonbossiness. Strategy-proofness says that truthful revelation is a dom-

inant strategy. Hatfield and Milgrom (2005) show that the deferred acceptance algorithm

is strategy-proof when the priority structure satisfies substitutability and cardinal mono-

tonicity.4 In their paper, cardinal monotonicity is called the law of aggregate demand. In

addition, Alcalde and Barbera (1994) and Sakai (2010) prove that the deferred acceptance

algorithm is the unique strategy-proof algorithm among stable ones. However, Dasgupta

et al. (1979) and Repullo (1985) provide examples that strategy-proofness does not imply

dominant strategy implementation. The bottom line is, strategy-proofness merely says that

“truthtelling is a dominant strategy” for every agent, and it is not enough to guarantee the

uniqueness of the dominant strategy equilibrium outcome. If there were untruthful dom-

inant strategies for an agent (we will provide an example in which there is an untruthful

equilibrium in the preference revelation game induced by the deferred acceptance algo-

rithm) and he follows his untruthful dominant strategy instead of his truthful one, then

it may affect assignments of others even though there is no effect on his own assignment.

Such an unintended action may make someone worse off in the sense that the corresponding

outcome might end up with a different assignment than one obtained by truthful revelation.

As noted earlier, strategy-proofness implies dominant strategy implementation pro-

vided an additional condition, weak nonbossiness, holds. Standard nonbossiness, which

is introduced by Satterthwaite and Sonnenschein (1981), says that any agent cannot change

the entire assignment unless he changes his own assignment. Weak nonbossiness modifies

4Dubins and Freedman (1981) and Roth (1982) show that it is a dominant strategy for agents to list their
preferred matchings in the deferred acceptance algorithm in a one-to-one assignment problem. Hatfield and
Milgrom (2005) generalize this result to a many-to-one problem.
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this by requiring that if an agent does not change his own assignment in any cases then

the entire assignment stays the same. Kojima (2010) shows that stability and nonbossiness

are incompatible; since the deferred acceptance algorithm is stable, this implies it violates

standard nonbossiness. Our main contribution is that, nevertheless, the deferred accep-

tance algorithm is weakly nonbossy for every substitutable priority structure. Hence, we

conclude that the deferred acceptance algorithm is dominant strategy implementable, and

therefore it is immune to manipulation. This observation supports the use of the deferred

acceptance algorithm as an appropriate candidate among stable assignment procedures.

3.2 Model

We denote by A the finite set of indivisible object types. Let q = (qa)a∈A, where qa ∈ Z++,

be the number of available objects of type a. Denote by N the finite set of agents. A

preference profile is a vector of linear ordersR = (Ri)i∈N , whereRi denotes the preference

of agent i defined over Xi = A ∪ {∅}. The symbol ∅ stands for being assigned to oneself.

The asymmetric part of Ri is denoted by Pi. An object a is acceptable to agent i if aPi ∅.

LetR =
∏

i∈N Ri be the set of all preference profiles.

A priority structure is a vector of linear orders �= (�a)a∈A, where �a is defined over

the power set of N . The asymmetric part of �a is denoted by �a. For each object a, define

Xa = {S ⊆ N | #S 6 qa}. For each object a, denote a choice function of Ca of the

power set of N into Xa such that for every S ⊆ N , Ca(S) ⊆ S and Ca(S) �a T for every

T ⊆ S with T ∈ Xa. A choice function Ca(·) is substitutable if Ca(T ) ∩ S ⊆ Ca(S) for
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every pair (S, T ) of subsets of N with S ⊆ T .5 A priority structure is substitutable is every

object has a substitutable choice function. Substitutability is discussed in a labor market

model by Kelso and Crawford (1982). This condition simply says that if the set of agents

expands and an agent is admitted by an object from a larger set of agents, then he must

be admitted by the same object from any subset of agents including him. The following

notion is discussed in Alkan (2001) and Alkan and Gale (2003). A choice function Ca(·) is

cardinally monotonic if #Ca(S) 6 #Ca(T ) for every pair (S, T ) of subsets ofN with S ⊆

T . A priority structure is cardinally monotonic if every object has a cardinally monotonic

choice function.

3.2.1 The Deferred Acceptance Algorithm and its Strategy-Proofness

An assignment is a function µ : N → A∪{∅} satisfying: (i) for every agent i, µ(i) ∈ Xi and

(ii) for every object a, #{i ∈ N | µ(i) = a} 6 qa. We denote the set of assignments by X .

A rule g is a function ofR into X . If g(R) = µ for some R ∈ R, then denote gi(R) = µ(i)

for every agent i. An assignment µ is stable for R if it satisfies the following conditions: (i)

for every agent i, µ(i)Ri ∅ and (ii) there does not exist (i, a) ∈ N × A such that aPi µ(i)

and i ∈ Ca({k ∈ N | µ(k) = a} ∪ {i}).6 We denote the set of stable assignments for R

by ϕS(R). A rule g is stable if g(R) ∈ ϕS(R) for every R ∈ R. The relation ϕS ofR into

X is referred to as the stable correspondence. In our model, the stable correspondence is

non-empty valued for every substitutable priority structure. A rule g is strategy-proof if for

5A stronger notion of substitutability, called responsiveness, is commonly used in the existing literature.
We focus on substitutable priorities because priorities may be non-responsive but substitutable in applications.

6Condition (i) is the individual rationality and condition (ii) is the pairwise stability.
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every R ∈ R, every agent i and every R′i ∈ Ri, we have gi(R)Rigi(R−i, R
′
i).

Gale and Shapley (1962) propose the following assignment procedure, called the de-

ferred acceptance algorithm. At the first step, each agent applies to his most preferred

acceptable object. The set of agents applying to object a at the first step is N1
a . Object

a tentatively accepts Ca(N1
a ) and rejects the remaining. At the rth step, each agent who

was rejected at step r − 1 applies to his next preferred acceptable object. The set of agents

applying to object a at step r is N r
a . Object a tentatively accepts Ca(Ca(N r−1

a ) ∪N r
a) and

rejects the remaining. The algorithm terminates when every agent is held tentatively by

some object or has been rejected by every object that is acceptable for him. If an agent

is tentatively held by an object at the last step, he is assigned that object. Otherwise he

is assigned nothing.7 It is known that under any substitutable priority structure, the de-

ferred acceptance algorithm produces a unique stable assignment Pareto dominating any

other stable assignment, called the agent-optimal stable assignment. We denote by f the

deferred acceptance algorithm. Abudlkadiroğlu (2005) shows that substitutability of choice

functions itself is not sufficient for the existence of a strategy-proof stable rule. Hatfield

and Milgrom (2005) show that substitutability coupled with cardinal monotonicity (the law

of aggregate demand) are sufficient for strategy-proofness of the deferred acceptance algo-

rithm in our setting. Therefore, the deferred acceptance algorithm is strategy-proof in the

paper.

Remark 1 For every substitutable and cardinally monotonic priority structure, the deferred

7The above explanation can be found in Roth and Sotomayor (1990).
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acceptance algorithm is strategy-proof.

3.2.2 Weak Nonbossiness

The second desirable property of rules is nonbossiness, discussed by Satterthwaite and

Sonnenschein (1981). Intuitively, non-bossiness implies that no agent can change the as-

signments of others without changing his own assignment.8 Kojima (2010) shows that

nonbossiness and stability are incompatible. Our finding is that a weaker notion of non-

bossiness and stability are compatible as long as the agent-optimal stable assignment is

well-defined.9

Definition 13 A rule g is weakly nonbossy if for every agent i, every R ∈ R, and every

R′i ∈ Ri, if gi(R′′−i, Ri) = gi(R
′′
−i, R

′
i) for every R′′−i ∈ R−i, then g(R) = g(R−i, R

′
i).

Theorem 3.1 For every substitutable priority structure, the deferred acceptance algorithm

is weakly nonbossy.

Proof: Consider any preference profile R ∈ R. Consider any agent i and R′i ∈ Ri.

Suppose that fi(R′′−i, Ri) = fi(R
′′
−i, R

′
i) for every R′′−i ∈ R−i. We shall show that f(R) =

f(R−i, R
′
i).

We introduce some notation. Let Yi = {b ∈ Xi | i ∈ Cb({i})}. For each a ∈ Xi and

each R̃i ∈ Ri, denote by Ui(a, R̃i) = {b ∈ Yi | b R̃i a} the upper contour set of agent i at

8Formally, a rule g is nonbossy if for every agent i, every R ∈ R, and every R′i ∈ Ri, if gi(R) =
gi(R−i, R

′
i), then g(R) = g(R−i, R

′
i).

9Mizukami and Wakayama (2007) and Saijo et al. (2007) also discuss weak nonbossiness. Mizukami and
Wakayama (2007) call this quasi-strong nonbossiness.
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a under R̃i restricted to Yi. Since Ri is a linear order over Xi, there exists an element of

R∗−i ∈ R−i such that fi(R′′−i, Ri)Ri fi(R
∗
−i, Ri) for every R′′−i ∈ R−i. In other words, the

preferences R∗−i maximize the size of the upper contour set of agent i at fi(R′′−i, Ri) under

Ri with respect to R′′−i ∈ R−i. By our hypothesis, fi(R∗−i, Ri) = fi(R
∗
−i, R

′
i). We denote

that object by a.

Firstly, note that under any substitutable priority structure, every object a ∈ Xi \ Yi is

redundant for agent i in the sense that he has no chance to be held tentatively by an object

in Xi \ Yi at any step under the deferred acceptance algorithm.10 This fact also yields

that including any object in Xi \ Yi in Ri and R′i does not affect the assignments of other

agents.11

Case 1: Ui(a,Ri) = Ui(a,R
′
i), and the rank orders underRi andR′i are the same within

the two sets.

It suffices to show that Ui(fi(R), Ri) = Ui(fi(R−i, R
′
i), R

′
i). By the construction of

R∗−i, fi(R)Rifi(R
∗
−i, Ri) = a, that is, fi(R) ∈ Ui(a,Ri). The hypothesis in this case

yields that fi(R) ∈ Ui(a,R′i). Then, fi(R−i, R′i) ∈ Ui(a,R′i). We have seen that the two

preferences Ri and R′i have the same rank order, and result in the same object fi(R) =

fi(R−i, R
′
i). Therefore, due to the definition of the deferred acceptance algorithm, both Ri

and R′i produce the same entire assignment, that is, f(R) = f(R−i, R
′
i). This establishes

10We shall show that for every substitutable priority structure, if i 6∈ Ca({i}), then i 6∈ Ca(S ∪ {i}) for
every S ⊆ N . Consider any pair (i, a) ∈ N × A such that i 6∈ Ca({i}). Suppose, by way of contradiction,
that i ∈ Ca(S ∪ {i}) for some S ⊆ N . Since the priority structure is substitutable, it follows from that
Ca(S ∪ {i}) ∩ {i} ⊆ Ca({i}), which implies that i ∈ Ca({i}), a contradiction.

11An intuitive explanation is as follows. Consider any object a ∈ Xi \ Yi and assume that i ∈ N t
a. Divide

step t into two substeps: only agent i applies to object a first and then the remaining agents N t
a \ {i} apply to

object a. At any rate, the deferred acceptance algorithm produces the same assignment.
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the case.

Case 2: Otherwise.

Note that Ui(a,Ri) is non-empty because a ∈ Ui(a,Ri). If Ui(a,Ri) is a proper subset

of Ui(a,R′i), then set Ra
j : b P a

j ∅ for every agent j ∈ {µb | b ∈ Ui(a,Ri)}, and Ra
j : ∅ for

every agent j ∈ N \
(
{µb | b ∈ Ui(a,Ri)} ∪ {i}

)
. In this case, we have fi(Ra

−i, Ri) = a

and fi(Ra
−i, R

′
i) is the top object in Ui(a,R′i) \ Ui(a,Ri) with respect to R′i, distinct from

a. This is a contradiction.

It remains to consider the case that Ui(a,Ri) is not a proper subset of Ui(a,R′i)
12. De-

note Ui(a,Ri) = {b1, · · · , bk, a}, where b1 Pi · · · Pi bk Pi a. Then we take the smallest

index ` ∈ {1, · · · , k} such that Ui(b`, Ri) 6= Ui(b
`, R′i). For every b ∈ Ui(a,Ri) such

that b Pi b`, set Ra
j : b P a

j ∅ for every agent j ∈ µb. For every agent j ∈ N \
(
{µb | b ∈

Ui(a,Ri) and b Pi b`} ∪ {i}
)
, set Ra

j : ∅. Then, since i 6∈ Cb(µb ∪ {i}) for every b ∈

Ui(a,Ri) by stability for (R∗−i, Ri), it follows from the fact b` ∈ Yi that fi(Ra
−i, Ri) = b`.

On the other hand, it is the case that fi(Ra
−i, R

′
i) is the `th element of Ui(a,R′i) from the

top with respect to R′i, distinct from b`. This is a contradiction. This establishes the case.

Cases 1 and 2 establish the theorem. �

3.3 Preference Revelation Game

The mechanism designer aims to achieve socially desirable outcomes but does not know

preferences that are private information of the agents. The task of the mechanism designer

12Note that since a ∈ Ui(a,R
′
i), there must be b ∈ Ui(a,Ri), other than a. Otherwise, it either contradicts

that Ui(a,Ri) is not a proper subset or reduces to case 1.
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is to construct a procedure independent of private information in order to achieve the pre-

scribed desirable assignments. An ordered pair (M,h) is called a mechanism if h is a

function of M into X , and M =
∏

i∈IMi, where Mi is a non-empty set for each agent i.

The Cartesian product M is called the strategy space. Each element m ∈ M is called a

strategy profile. A triplet (M,h,R) is called a game if (M,h) is a mechanism and R ∈ R.

We restrict our attention to the class of mechanisms, where Mi = Ri for every agent i. The

resulting games are referred to as preference revelation games.

An element mi ∈ Mi is a dominant strategy for agent i of (M,h) at Ri if for every

m−i ∈M−i and every m′i ∈Mi, hi(m−i,mi)Rihi(m−i,m
′
i). Denote by Di(M,h)(Ri) the set

of dominant strategies for agent i of (M,h) at Ri. Let D(M,h)(R) =
∏

i∈N Di(M,h)(Ri) the

set of dominant strategy equilibria of (M,h) at R.

Given a mechanism (M,h), we want to identify the composite correspondence h ◦

D(M,h) of R into M as the actual market outcomes, where the solution concept is a domi-

nant strategy equilibrium:

(h ◦ D(M,h))(R) = h(D(M,h)(R)) = {h(m) | m ∈ D(M,h)(R)}.

The following figure depicts this formulation.

Definition 14 A mechanism (M,h) implements the relation ϕ of R into X in dominant

strategy equilibria if h(D(M,h)(R)) = ϕ(R) for every R ∈ R.

In particular, for each rule g, the ordered pair (R, g) is called the associated direct mech-
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R ∈ R
ϕ(R) = (h ◦ D(M,h))(R)

X

m ∈ M

h(m)D(M,h)(R)

Figure 3.1: Implementation of ϕ in dominant strategy equilibria

anism. Given a preference profile R ∈ R, the ordered pair (R, g) induces a preference

revelation game. If a rule g is dominant strategy implementable by (R, g), then we say that

g is dominant strategy implementable by the associated direct mechanism. It is well-known

that the concept of dominant strategy implementation does not preclude agents having un-

truthful dominant strategies. There is no need to rule out untruthful dominant strategies as

long as those lead to the same assignment as the truthful one.

3.3.1 Multiple Equilibria in Dominant Strategies

Under any substitutable and cardinally monotonic priority structure, truth-telling is merely

a dominant strategy equilibrium of the preference revelation game induced by the deferred

acceptance algorithm in our setting, that is, R ∈ D(R,f)(R). Hence f(R) ∈ f(D(R,f)(R)).

The question raised here is whether truth-telling is the unique dominant strategy equilib-

rium. The answer is negative. Long ago, the literature on implementation theory argued

that there is nothing that guarantees that agents always choose the truth-telling dominant

strategies when they have alternative untruthful dominant strategies. Suppose that there are

two agents, N = {1, 2}, and two objects, A = {a, b}. The true preferences and the priority
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structure are the following:

R = (R1, R2)

R1: aP1 b P1 ∅

R2: ∅P2 aP2 b

�= (�a,�b)

�a: {1} �a {2} �a ∅

�b: {1} �b {2} �b ∅

Each agent has 5 possible strategies. We put ui(m1,m2) = r if fi(m1,m2) is the rth ranked

assignment with respect to the true preference Ri. The payoffs (u1(m1,m2), u2(m1,m2))

of the preference revelation game induced by the deferred acceptance algorithm is given by

the following:

M2

M1 aP2bP2∅ aP2∅ bP2aP2∅ bP2∅ ∅
aP1bP1∅ (2, 0) (2, 2) (2, 0) (2, 0) (2, 2)
aP1∅ (2, 0) (2, 2) (2, 0) (2, 0) (2, 2)
bP1aP1∅ (1, 1) (1, 1) (1, 1) (1, 2) (1, 2)
bP1∅ (1, 1) (1, 1) (1, 1) (1, 2) (1, 2)
∅ (0, 1) (0, 1) (0, 0) (0, 0) (0, 2)

Figure 3.2: Preference revelation game.

Agent 2 does not care how he ranks unacceptable objects.13 On the other hand, agent 1
13Precisely speaking, agent 2 has two dominant strategies: ∅ P2 a P2 b and ∅ P2 b P2 a.
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has two non-trivial dominant strategies at R1, aP1 b P1 ∅ and aP1 ∅. In addition to the

true preferences, there is another dominant strategy equilibrium. One remark is that even

though there are multiple dominant strategy equilibria, any dominant strategy equilibrium

leads to the unique stable assignment with respect to the true preferences in this example.

In the next subsection, we will prove this observation. However, it must be emphasized

that, in general, the implementability of strategy-proof rules in dominant strategies is not

straightforward because it might end up with f(R′) 6= f(R) for some untruthful equilib-

rium R′ ∈ D(R,f)(R).14

3.3.2 Dominant Strategy Implementation of the Deferred Acceptance

Algorithm

Restricting the class of mechanisms, Mizukami and Wakayama (2007) and Saijo et al.

(2007) show that any rule or any social choice function is dominant strategy implementable

by the associated direct mechanism if and only if it is strategy-proof and weakly nonbossy.

Remark 2 The deferred acceptance algorithm is dominant strategy implementable by the

associated direct mechanism if and only if it is strategy-proof and weakly nonbossy.

We obtain the following observation.

Corollary 3 For every substitutable and cardinally monotonic priority structure, the de-

ferred acceptance algorithm f is dominant strategy implementable by the associated direct

14It is possible to construct a strategy-proof rule that is not dominant strategy implementable by the asso-
ciated direct mechanism in the context of social choice. An example is available upon request.
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mechanism (R, f).

Proof: Immediate from Remarks 1 and 2, and Theorem 1. �

Proposition 7 For every substitutable priority structure, the deferred acceptance algo-

rithm is dominant strategy implementable if and only if it is strategy-proof.

Proof: Immediate from the fact that weak nonbossiness is automatically satisfied for every

substitutable priority structure. �

Let us go back to Figure 3.2. The possibility of multiple equilibria implies that the

equilibrium correspondence D(R,f) is set-valued. Strategy-proofness merely guarantees

that the equilibrium correspondence is non-empty-valued. We have verified that the com-

posite f ◦D(R,f) is eventually single-valued, which is identical with the deferred acceptance

algorithm itself. If the society wants to achieve the agent-optimal stable assignment with

respect to the true preferences, it suffices to use the deferred acceptance algorithm as the

actual matching procedure.

3.3.3 Uniqueness of Dominant Strategy Implementable Stable Rule

Among stable rules, Alcalde and Barbera (1994) show that only the (agent-proposing) de-

ferred acceptance algorithm is strategy-proof for a special case of substitutable and cardi-

nally monotonic priority structure. Sakai (2010) shows their result for substitutable and

cardinally monotonic priority structures.
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Remark 3 For every substitutable and cardinally monotonic priority structure, the deferred

acceptance algorithm is the unique strategy-proof stable rule.

This observation, together with the fact that strategy-proofness is a necessary condition

for dominant strategy implementation, yields the following.

Corollary 4 For every substitutable and cardinally monotonic priority structure, the de-

ferred acceptance algorithm is the unique dominant strategy implementable stable rule.

Proof: By Remark 3, any other stable rules are not dominant strategy implementable by

any mechanisms by Theorem 4.1.1 in Dasgupta et al (1979). The assertion is immediate

from Corollary 1. �

3.4 Discussion

The literature has paid attention only to strategy-proofness or dominant strategy incentive

compatibility of the deferred acceptance algorithm. Hatfield and Milgrom (2005) show

that the combination of substitutability and cardinal monotonicity (the law of aggregate de-

mand) is sufficient and almost necessary for strategy-proofness of the deferred acceptance

algorithm. We can interpret strategy-proofness as the existence of a dominant strategy

equilibrium in the preference revelation game induced by the deferred acceptance algo-

rithm. We showed that it is possible to identify the set of equilibrium outcomes, without

imposing any further restriction to priority structures. There is no need to eliminate un-

truthful equilibria in dominant strategies to implement the agent-optimal stable matching
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with respect to the true preferences.

In order to obtain our result, priorities of objects cannot be private information. In the

context of two-sided matching problems, in which both preferences of agents and priorities

of objects are private information, strategy-proof stable mechanisms do not exist due to the

results by Roth (1982) and Sönmez (1999). Alcalde and Barbera (1994) study some pref-

erence domain restrictions to guarantee the existence of strategy-proof stable mechanism.

We argued the existence of multiple equilibria in dominant strategies. The literature

on implementation theory often drops the requirement that agents adopt dominant strate-

gies, as it seems natural that we need to check all equilibrium outcomes in Nash equilib-

ria. Haeringer and Klijn (2009) show that a further restriction on priorities, the so-called

Ergin-acyclicity, is necessary and sufficient for Nash implementation of the stable corre-

spondence by the deferred acceptance algorithm in a special case of our model. Finally,

Sönmez (1999) and Kara and Sönmez (1997) show that it is possible to implement the

stable correspondence in Nash equilibria by some indirect mechanism.
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[21] T. Saijo, T. Yamato, T. Sjöström, Secure implementation, Theoretical Econ., 2 (2007),
203–229.

[22] T. Sakai, Strategy-proofness from the doctor side in matching with contracts, Rev.
Econ. Design, 11 (2010), 1–6.

[23] M. A. Satterthwaite, H. Sonnenschein, Strategy-proof allocation mechanisms at dif-
ferentiable points, Rev. Econ. Stud., 48 (1981), 587–597.

[24] T. Sönmez, Strategy-proofness and essentially single-valued cores, Econometrica, 67
(1999), 677–690.

94


