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In many dynamic economic applications, the appropriate game theoretic
structure is that of a stochastic game. A folk theorem for such games is presented.
The result subsumes a number of results obtained earlier and applies to a wide
range of games studied in the economics literature. The result further establishes an
underlying unity between stochastic and purely repeated games from the point of
view of asymptotic analysis, even though stochastic games offer a much richer set
of deviation possibilities. Jowrnal of Economic Literature Classification Number:
C73, D90. 1995 Academic Press. Inc.

1. INTRODUCTION

In recent years dynamic strategic interaction has been extensively
studied, particularly within the context of repeated games. See, for instance,
Aumann and Shapley [3], Rubinstein [26], Abreu [1], and Fudenberg
and Maskin [13] for analyses of the basic repeated game model with
complete information and perfect monitoring. A drawback of the repeated
game paradigm is that it is premised upon a completely unchanging environ-
ment. In many applications, such an assumption is not even approximately
correct. For instance, in economic models with stock variables, current and
future action possibilities and payoffs are directly a function of the
available stocks. Cases in point are growth models, in which capital or
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human and natural resources are the relevant productive assets,' financial
models with price competition, in which accumulated wealth or historical
prices are determinants of current and future action possibilities and
payofls.? Intertemporal links may also be present through other payoff rele-
vant factors as demand and cost conditions or level of innovations,
representing “shocks” to the system (which may persist across periods).
The appropriate model in these cases is a stochustic game in which a state
variable represents the environment of the game and its evolution is deter-
mined by the initial conditions, player’s actions, and the transition law. The
abstract model of a stochastic game is, of course, very general. In par-
ticular, the transition rule from the current state to the subsequent state(s)
may be either probabilistic or deterministic. The purely deterministic case
is sometimes referred to as a dynamic game and a special case of it is the
repeated game.

Earlier work on stochastic games has focused on the issue of existence of
(perfect) equilibria in Markovian strategies (see, for example, [ 16, 22-247.°
This paper provides instead a characterization of equilibrium payoffs when
players are very patient, dropping the assumption of Markovian behaviour.
The latter restriction appears to be arbitrary; indeed in the strictly repeated
context, it is seldom suggested that Markovian behaviour is strategically
salient (see, however, Maskin and Tirole [ 19]). Recently, the folk theorem
question in non-repeated settings has been also investigated by Friedman
[12] and Lockwood [18]. Their results are discussed in Section 8. The
approach to folk theorem analysis that is taken in this paper has some
implications for the purely repeated game case as well; these implications
are developed in detail in Abreu, ef al. [ 2] and briefly discussed in Section
8 of this paper.

A major difficulty in analysing stochastic games is that deviations not
only alter current payofls but also change the distribution over future
states. A central observation of this paper is that for a variety of cases this
difficulty does have a resolution, at least asymptotically. Indeed, it is shown
that for games ranging from completely communicating stochastic games
to deterministic capital accumulation games, both immediate gain and
state manipulation incentives may be deterred as the discount factor goes
to 1. The folk theorems for repeated games with perfect monitoring may
be extended to this setting. These include the theorems of Aumann
and Shapley [13], Rubinstein [26], and Fudenberg and Maskin [13].

! Strategic formulations include Benhabib and Radner [4], Bernheim and Ray [5], Dutta
and Sundaram {11]. and Sundaram [27].

* For instance, see Maskin and Tirole [19], Holden and Subrahmanyam [17] and Dutta
and Madhavan [10].

* Mertens and Partharasarathy {213 have shown the existence of perfect equilibria in a
more general class of strategies.
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I provide an analog of the last result, which is suitable for the applications
discussed.

Section 2 describes the model. Preliminary results on feasible payoffs and
min-max levels are contained in Sections 3 and 4. Section S presents and
discusses the assumptions. Section 6 contains the main theorem and related
results while Section 7 presents two examples which illustrate the necessity
of the hypotheses. The concluding section, Section §, contains a discussion
of some applications and the relationship of the theorem to other available
results.

2. THE MODEL

This paper considers infinite horizon stochastic games with perfect
monitoring. These games are defined by a quintuple (S, A4, r; q.9J;
i=1, .., n>, where i is the player index, S is the set of states, and A, is the
ith player’s set of actions. The sets S, A,, i=1, .., n are assumed to be finite.
Assume also, without loss of generality and only to save on notation, that
each player has available to him the same set of actions in every state.*
Denote A =[1;_,4,. The ith player’s one-period reward is r;; Sx 4 - R. It
associates with every vector of player’s actions @ and the current state s an
immediate reward r.(s,a). g is the law of motion of the system—it
associates with each (s, a) in period t a distribution over the (¢ + 1) period’s
state, ¢(-1s, a). If the game is in state s and the players choose the action
a, then the game moves to state s’ next period with probability g(s' | s, a).
Further, é <1 is the common discount factor which the players employ in
evaluating payoff streams. Finally, all past states, the current state, and all
players’ past actions are assumed to be observable.

The following notation will be used: s will refer to a generic state and s,
will be the state in period ¢ while (the generic) player /’s action in that
period will be denoted a,,. a, will describe the action vector (a,,, ..., a,,). In
all statements pertaining to 7, j will index “another” player while —i will
refer to the group of players other than i. At various points I will talk of
a “punishment regime” for player i during which regime player j's action
will be denoted a}. Finally, ||.| will denote any one of the equivalent norms
in R".

A behaviour strategy for player i is denoted [I7,. It is sequence of
maps, 1,4, I1;,, ..., IT,, .., where IT,, selects a distribution, in period ¢, over
the set of actions A4; as a function of the previous history A, =
(80> gy s Se— 1>, _1,8,). If the distribution depends only on the current

*If this requirement is violated, one can define “dummy” action variables and add these to
the available set of actions appropriately in order to arrive at a problem in which this condi-
tion is met. For a more detailed discussion of this issue, see [23].
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state and further if this choice is independent of ¢, then the strategy is said
to be Markov. If the distributions are degenerate we have a pure Markov
strategy.® Player i’s randomization device is assumed to be unobservable to
other players, ie., I analyse a game with wnobservable (private) mixed
strategies. However, players can coordinate on a public randomisation
device.

Note that although the games are called stochastic, there is no require-
ment that the transition probabilities g( -|s, @) be non-degenerate. The class
of games in which the transitions are deterministic are sometimes called
dynamic games. In particular, complete information repeated games are tri-
vial examples of stochastic games (under the restrictions that g(s|s, ¢) =1,
for all s, « and r; is independent of ).

A strategy for each player, and the initial state, determines a distribution
over finite period histories and by extension a distribution over infinite
histories. Let r,(t; I1, s) denote the expected returns of player 1 at period t
under the strategy vector /T=11I,, .., 11, and initial state s,=s. The dis-
counted average (expected) return vector, if the initial state is s and the
players employ strategy /7 and the discount factor is < 1, is

{( Wi, Wy W) Wiss 116y =(1—8) Y d'r(1: 11, s)} (1

- (4]

A long-run average expected return vector, again for initial state s and
strategy vector /1, is

1 T-1
{( Wi, Wy, o W) T pst. Wiss Ty= lim — Y ri(t; 11, s)}." (2)

Ti— ko

For a given initial state s and discount factor J < 1, a strategy choice /7
is a Nash equilibrium if no player profits from unilateral deviation, i.e.,
Wis; IT,0)=W,(s; I, I1;,,0) for all IT! and all /. A (subgame) perfect
equilibrium is a strategy choice such that after every history, the strategy
continuations constitute a Nash equilibrium.

*In the literature such strategies have sometimes been called stationary (for example, see
[ 6, 16, 23]. whereas more recent usage has called them Markov (for example, [ 19]). I adopt
the latter convention.

¢ Note that in the above definition of a feasible long-run average payoff vector there is a
requirement that there exists some (common) subsequence of finite horizons, T, T\, T, .,
along which the per period payoff of each player has a limit; hence, every such subsequential
limit is admissible as a long-run average payofl. When n =1, this is a more permissive defini-
tion than the standard one which takes the smallest such limit as the long-run average payoft.
On the other hand, for n>1 the definition is more restrictive than an alternative one which
would allow the horizon subsequences to differ across players. Of course, all of this is an issue
only because the finite horizon averages need not have a limit along the sequence
T=0,12 ..
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The min-max level’ of player i, for initial state s and discount factor 9§,
will be denoted m,(s, 4) and is defined by

m(s, 6)=1inf sup W, (s; IT,, IT _,, 5). (3)

n_; I
For the long-run average criterion the min—max level, m,(s), is defined as

m,(s,8) =inf sup inf W(s; 1, IT_,, 8).° (4)

I 1 (T

Note that, in general, min—max levels will vary with the initial state and the
discount factor. Max-min levels can be defined analogously.

3. FEASIBLE PAYOFFS IN THE GAME

Since there is no stage game, the relevant set of feasible payoffs is the set
of (discounted or long-run) average expected returns in the infinite horizon
game. Unlike a repeated game, however, not all feasible payoffs can be
achieved by (convexifying over) strategies which repeatedly play a constant
action (and hence yield a constant payoff every period). Indeed, the set of
strategies in a stochastic game is very large; for example, there are
strategies which condition on history in arbitrarily complex ways. Further-
more, there is no unique set of (average) payoffs which can be achieved at
every discount factor and from every initial state. In this section I conse-
quently investigate two issues: (a) the existence of a set of simple strategies
whose payoffs “span” the set of feasible payoffs and (b) the relation
between the sets of feasible payoffs at different discount factors.

3.1. Pure, Markov Strategies Suffice

Let Fls,d) denote the set of publicly randomised discounted average
returns that are feasible in the stochastic game, ie., let F(s, J) be the convex
hull of the set of discounted average payoffs that can be realised by
behaviour strategy tuples:

s, )= {we R™": 3420, p/=1,
~ i

and 17/ s.t. w,::Z/)’—"W,.(s; I, 8),i=1, .. n}
J

" Since there is no stage game, min -max levels are naturally defined according to the
returns over the entire game.

® Recall, from (2) above, that a long-run average payoff is any subsequential limit of per
period payoffs. The min-max payoff then is defined with respect to the smallest such limit.
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Similarly we can define the set of long-run average returns that are
feasible; denote this set F(s).” Let ¢(s, ) (respectively ¢(s)) denote the dis-
counted (respectively long-run) average expected returns when only pure
Markov strategies are used. The extreme points of the (convex) set of
feasible payoffs F(s, &) are clearly the solutions to Max 3, A4, W,, where W
is the payoff (vector) to some behavior strategy and 2, e R, A#0. From
[7] it then follows that the solution to such an optimization problem is
realized by a pure Markov strategy. ie., all of the extreme points of
Fls, 0) are generated by pure Markov strategies. It readily follows from
the above observation that public randomization over pure Markov
strategies recovers al/ feasible payoffs in the discounted game. For the
undiscounted stochastic game, a limiting argument yields the same
spanning result.

LEMMA 1. All feasible payoffs, in the discounted as well as the undis-
counted game, can be realised by one-shot public randomization over pure
Markov strategies:

(i) Fl(s, d)=co ¢(s,0), VseS, o<1

(if)  F(s)=co ¢(s)

Proof. In the appendix. e

The lemma simplifies the analysis in the rest of the paper considerably.
The restriction, without loss of generality, to pure (publicly randomized)
strategies will make the detection of deviation from such strategies
immediate. Further, this result makes possible a simple resolution of the
related question {which is important for asymptotic analysis): is the set of
feasible payoffs continuous in the discount factor at § =1?

3.2. Continuity of Feasible Payoffs

Since the set of feasible payoffs is spanned by public randomization over
pure Markov strategies and since the payoff to such strategies can be
shown to be continuous at d =1 (under the finiteness of state and action
spaces assumed here), it follows that:

® From (4) it may seem that the only time players are allowed to publicly randomise their
actions is at date 0. However, it can be shown by standard arguments that the set of feasible
payoffs when players publicly randomise their actions after any number of arbitrary histories
is also F(s, d).
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LEMMA 2. The set of feasible payoffs is continuous at é=1, ie.,
Fls, 0)— F(s), as 6 — 1, for every s€ S; the convergence is to be understood
to be in the Hausdorff metric."°

Proof. In the Appendix. o

4. INDIVIDUAL RATIONALITY

As discussed above, the min-max level in a stochastic game varies with
the discount factor and the initial state. What then is the relevant security
level which should be the benchmark for folk theorem analysis? Since
the folk theorem is an asymptotic result, a natural benchmark would be the
limit of the (state-dependent) discounted average min-max payoffs, as the
discount factor goes to 1. It follows from results of Bewley and Kohlberg
[6] and Mertens and Neyman [207] that this limits exists and furthermore
equals the long-run average min-max.

4.1. Continuity of Min—-Max

For two-person zero-sum games, Bewley and Kohlberg [6, Theorem 3.1]
show that lim m,(s, d)(as & 11) exists for all / and s in S. For this same
class of games, Mertens and Neyman [20] then showed that this limit is,
in fact, the long-run average min—max level. If we think of player / and the
group of players —i as constituting a “two-person” game, the Mertens-
Neyman theorem yields'":

ProposITION 3. For all 5> 0, there is a strategy of plavers other than i,
say IT* ., and N >0, s.t. for all o =2 T>= N and every strategy I1,,

Wis; O, IT*,, TYy<limm,(s, o) +n,

511

where W (s; 11, T) is the T-period time average of expected returns from
strategy IT and initial state s (T = o refers to the limsup of such finite
period averages).

' For any two closed sets B and C in R”. the HausdorfT distance between the sets is defined
as d(B, C)=max(sup, p(x, C),sup, p(y, B)), where p(x, C)=inf |x—z|; xe B, z € C. likewise
for p(y, B).

"' The game with i and the group —i as “two players” is different from a standard two-
person game in that the players — 7 may not have “ability to act as one™. [n particular they
may not have access to (n— 1) player randomisation. However, the Mertens—Neyman result
is valid in this context as well.
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m;(s, 0) is both the min—max and max-min level of player i, by a result of
Partharasarathy [23]. From Proposition 3, it is clear that the limit of
m;(s,0)(as d11) denoted m;(s), is the long-run average min-max and
max-min level for player /. This will be the relevant security level of player
i in the analysis that follows.

4.2. Individually Rational Payoffs

An appropriate definition of an individually rational payoff is a some-
what delicate matter for stochastic games. This is because the continuation
payofls to any strategy are, typically, different for different histories and, in
particular, are different from the lifetime payoff computed at period zero.
Hence, the comparison with a min—max level can be made at several dif-
ferent time points and after different histories. In this subsection I present
two alternative definitions for a payoff to be deemed individually rational:
the first definition is with respect to the payoff computed at period zero
alone whereas the second definition incorporates the continuation payoffs
after all histories.

Fix a discount factor ¢ <1 and consider any initial state s. [ will say that
a discounted average payoff w(s, J) (respectively, a long-run average payoff
w(s)) is individually rational in the ex ante sense if w,(s, d = m,(s, ) for all
i (respectively w,(s) = m{s) for all i), where s is the period zero state. Let
F*(s,8) (respectively F*(s)) denote the discounted {respectively long-run)
average strictly individually rational (ex ante sense) payoffs sets, ie.,

F*(s,0)={weF(s,d):w,>mls,d),i=1, .., n}

(and similarly F*(s)). On the other hand a payoff vector w is said to be
individually rational in the ex post sense if it is generated by a strategy /7
such that, after all histories, continuation payoffs are individually rational
in the ex ante sense, ie., the inequalities above hold for all states s, and
periods ¢. I return to the connection between these concepts in Section 5.
From the continuity of the min-max levels (Proposition 3} and the con-
vergence of feasible payoff sets (Lemma 2) it clearly follows that the set of
strictly individually rational payoffs (in the ex ante sense) converge.

LEMMA 4. The set of ex ante individually rational payoffs is continuous
at §=1; for all £>0, there is § <1, s.t. for § =9,

d(F*(s,0), F*(s))<e, VseS,

where d is the Hausdorff distance.

An implication of such continuity is, of course, that if a payoff vector is
strictly individually rational in the long-run average sense, then it can be
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arbitrarily closely approximated by strictly individually rational discounted
average payoffs. Since equilibrium payoffs are ex ante individually rational
we also have the following corollary, which applies to the set of equilibrium
pavoffs, Vis, é):

COROLLARY 5. For all £>0, there is 6 <1 s.t. for 6 =9,
B (F*(s))> V(s,0) Vs.
where B (F*(s)) is the e-neighbourhood of F*(s).

The folk theorem, to be proved shortly, will assert that all strictly
individually rational long-run average payoffs can be approximated by an
equilibrium discounted average payoff, for sufficiently large discount fac-
tors. Evidently, the theorem and Corollary 5 together provide a complete
characterisation of the equilibrium payoff set when the discount factor is
close to 1.

5. ASSUMPTIONS AND IMPLICATIONS

In the next two sections the following (folk theorem) question is
investigated: under what conditions on the stochastic game will any strictly
individually rational payoff (in the ex-post sense) arise as a subgame
perfect equilibrium payoff for sufficiently high discount factors? Two types
of assumptions will be made: First, asymptotic state independence:

(Al) The set of feasible long-run average payoffs F(s) is independent
of s, says Fls)=F.

(A2) The long-run average min—-max m;,(s) is independent of s, for all
1, say m(s)=m,.

Second, I will make one of the following two assumptions on the set of
feasible long-run average payoffs F.

Payoff Asymmetry (PA). There are n payoff vectors 0'e F,i=1, .., n,
such that player ’s payofl is the least under &, ie., & <&/, Vi, j, i #/.

Full Dimensionality (FD). The dimension of the set of feasible payofls is
the same as the number of players, e, dim (F)=n.

The two conditions are obviously related; full dimensionality (FD)
clearly implies pairwise asymmetry (PA) but the converse is not true. The
main theorem below will be proved under (FD) but for an interesting
special case which has been much discussed in the literature, the weaker
condition (PA) will be seen to suffice.

The assumptions above, and especially (Al1)-(A2), are not expressed in
terms of primitives. A statement based on primitives would be unwieldy
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because the variety of conditions under which the assumptions are satisfied
could not be succinctly encompassed in a single theorem. I briefly discuss
these assumptions and their implications now and return in Section 8 to a
fuller discussion of primitive models in which they are satisfied.

5.1. Asymptotic State Independence

Future feasible (and hence, equilibrium payoffs) in a stochastic game
depend on the current state. Therefore, for a folk theorem to hold, there
must be some similarity in the possibilities from different states.'? The issue
then is how restrictive must these conditions be? (Al) is a mild requirement
as Section 8 will make clear. (A2) is stronger and I defer to Section 8 a dis-
cussion of primitive conditions on the game which guarantee this assump-
tion. If one or the other of these assumptions is not satisfied, the method
of proof will illustrate the appropriate subset of the feasible payoff space on
which state manipulation incentives can be deterred (see Corollaries 9.1
and 9.2 below).

From Lemma | we know that an initial one-shot public randomisation
over pure Markov strategies realises all feasible long-run average payofls.
Such a scheme does not guarantee that the expected long-run average after
all histories is, approximately, the same (and this will be seen to be impor-
tant for a player’s ex post incentives). However, in the presence of (Al),
any one-shot randomisation can be replicated by the following “time-
averaged” strategy: its components are pure Markov strategies and it cycles
repeatedly between these pure strategies with the cycle lengths consistent
with the one-shot convexification. Furthermore, the cycle lengths are chosen
in such a way that the continuation payofls are approximately the same
after all histories. Therefore, we get:

LEMMA 6. Under (Al), for any we F and ¢> 0, there is a pure strategy
whose long-run average payoff is within ¢ of w, after all histories.

Proof. In the Appendix.

Given Lemma 6, the asymptotic state independence min-max assump-
tion (A2) then implies:

LemMma 7. Under (A1)(A2), a long-run average payoff we F is strictly
individually rational in the ex post sense if and only if it is strictly ex ante
individually rational.

>In Section 7. 1 present two examples which demonstrates the necessity of these
asymptotic state invariance assumptions.
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Given the continuity, at d = 1, of the min-max levels ( Proposition 3) and
the feasible payoff set (Lemma 2), the construction of the proof of Lemma
6 yields:

LemMMa 8. Under (Al) and (A2), for any we F* and ¢>0, there is a
pure strategy and § < 1, s.t. for all 6 2 ¢ and all initial states s, its discounted
average payoff is within ¢ of w after all histories. Consequently such a payoff
is strictly individually rational in the ex-post sense, for all 3 =3 and all s.

5.2. Payoff Asymmetry and Full Dimensionality

Fudenberg and Maskin [13] have shown in a repeated game that if
there 1s perfect congruence of interests among the players, punishments to
deter deviations from individually rational paths may not be credible.
Hence, some asymmetry in payoff possibilities is required for a discounted
folk theorem to hold for repeated games, and, by implications, for
stochastic games. The appropriate expression of this asymmetry are the
two conditions PA and FD. Payoff asymmetry is an easy condition to
check; it is guaranteed by the existence, in all states, of an action tuple a'(s)
which 1s strictly worse for player / than any other action tuple. This condi-
tion may be interesting not so much because it is weaker than full dimen-
sionality’® but because it can be shown that within the class of strategies
analysed in this paper and Fudenberg and Maskin [13] it is additionally
almost a necessary condition for the folk theorem.™ If mixed strategies are
unobservable, I will need to strengthen (PA) to (FD).

6. RESULTS

THEOREM 9. Under (Al), (A2), and (FD), any we F* can be arbitrarily
approximated as an equilibrium payoff, for sufficiently high discounting; for
all €>0, there is d <1 s.t. for any 8 =9, there is a perfect equilibrium
strategy whose payoff, after all histories that are reached with positive
probability, is within ¢ of w.

If either asymptotic state independence condition, (A1) or (A2), does not
hold, the following results still hold {(and are immediate corollaries of the
proof of the theorem):

3 1t might be worth noting that for n > 3 it can be shown that it is even weaker than » — 1
dimensionality of the feasible payoff set. Examples can be constructed for higher dimensions
where the payoff set is simply a two-dimensional plane.

' The necessary condition allows weak inequalities in (PA), with an additional restriction
in case of an equality. See also Abreu er /. [ 2] which shows that in repeated games payoff
asymmetry is in fact an almost necessary condition for the folk theorem. That paper also con-
tains a further discussion of the relationship between (PA) and (FD).
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COROLLARY 9.1. Suppose that (Al) and (FD) hold. Then the conclusions
of Theorem 9 hold for any long-run average payoff that is strictly
individually rational from all states, ie., for any weF such that w,>
m (s} Vi, s.

In the absence of (Al), define F={), F(s).

COROLLARY 9.2.  Suppose that (FD) is satisfied by F=\, F(s). Then the
conclusions of Theorem 9 hold for any long-run average payoff that is
feasible and strictly individually rational from dall states, ie., for any we F
such that w,>m,(s) Vi, s.

The full dimensionality condition can be weakened in a interesting
special case that has been widely studied in the literature (see Section 8
for a discussion). I report the analog of Theorem 9 in this case and note
that the analogs of Corollaries 9.1 and 9.2 also hold (but are not reported ).
This is the simpler model in which mixed strategies are observable. In that
context [ show:

ProPOSITION 9.3. Suppose that (Al), (A2} and (PA) hold and suppose
Sfurther that mixed strategies are observable. Then the conclusions of
Theorem 9 are valid for any we F*.

Remark. Abreu, et al. [2] have shown that Proposition 9.3 can be
generalised to allow for unobservable mixed strategies provided we restrict
attention to repeated games. Since their general approach is very similar to
one critical step in the proof of the main theorem here, 1 report, without
proof, their result:*®

PrROPOSITION 94. In a repeated game, (PA) implies that for any we F*,
there is 8 <1, s.t. for all 6 = 0 there is a perfect equilibrium whose discounted
average payoff is w.

6.1 An Overview and An Informal Discussion of the Proof

The presence of a state variable makes folk theorem analysis difficult
because a deviation by any player now has two consequences: (i) it yields,
as in a repeated game, one-shot gains but, and more importantly, (ii) it
changes the distribution of the state in the next period and therefore, in all
future periods). The second effect has several implications; first, the effect
need not vanish even when players are very patient if the strategic
possibilities differ markedly across states—since it can then linger for an

1% Since there is no distinction between ex ante and ex post payofls in a repeated game, the
payoff w can be realised exactly.



A FOLK THEOREM FOR STOCHASTIC GAMES 13

infinite future. Thus one necessary condition for a folk theorem to hold in
stochastic games is that strategic possibilities should be, at least asymptoti-
cally, state-invariant. The results demonstrate that this additional incentive
can be deterred—globally, if (Al1)-(A2) hold (Theorem 9 and Proposition
9.3), or locally. if one or the other assumption does not hold (Corollaries
9.1 and 9.2)—as players become patient.'®

A second implication is that a player may deviate only to “improve” the
state distribution {and this will be true whenever continuation payoffs differ
across states). Imagine that, in the play of a particular strategy vector, the
continuation payoffs are higher for player i from state s, than from state ;.
Then player i has every incentive, in period 7 —1, to choose a current
action which make s, more likely (even if it involves some immediate
loss).!” Note, furthermore, that this incentive is stronger the more patient
are the players (unlike the incentive to deviate for immediate gain alone).
Hence, in the method of proof, it will be important that strategies be
constructed which have very similar continuation payoffs after all histories.

It turns out that the folk theorem proof is much simpler when deviations
are observable (or equivalently, all mixed strategies are observable).
Thus I separate the proof into two parts in order to address separately
observable and unobservable deviations. The proof when deviations are
observable is presented in what follows whereas the proof for the unobserv-
able deviation case is presented in the Appendix. Furthermore, to clarify
the somewhat technical arguments, in each case I first present an informal
discussion of the proof and then the details. The assumptions (Al), (A2), and
(FD) (or their local versions) will allow a logic of proof that is similar to
that for the purely repeated case as in Fudenberg and Maskin [13] except
for two additional sets of arguments necessitated by the state manipulation
possibility. (See Steps 1 and 2 below and Steps 3 and 4 in the Appendix).

An Informal Discussion of the Proof When Mixed Strategies Are Observ-
able. The proof is as follows: [ construct a strategy whose components are
(n+ 1) pure strategies /7, IT', i =1, .., n. Play starts with IT and proceeds
according to this strategy till player i deviates. Then play proceeds to 7T,
periods of min-maxing i, in the long-run average sense, followed by 77°.

' Of course, even under (A1)-(A2) it is still the case that the discounted feasible payoff set
F(s, 8) and the discounted min-max level m(s. §) will be state dependent. From the proof it
will be clear that in order to deter deviations in order to effect state manipulation, one needs
not just the fact that these sets and security levels converge but additional arguments that they
can be made to converge al appropriate rates.

'7Of course, this incentive for deviating from a proposed strategy can be deterred if the
deviation can be detected immediately (i.ec., a pure strategy is being played) and punished
severely. In other words this cause for deviation will be problematical whenever (a)} mixed
strategies are being played or (b) the worst equilibrium strategy is being played (and hence
no more severe a punishment can be imposed than that which is currently in play).
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During the min-max phase, player / plays a (dynamic) best response.
Every unilateral deviation by a player j immediately initiates 7', periods of
min-maxing j followed by I7/. In order to deter deviations for the purpose
of improving the state distribution, the strategies f1, I1',i=1,..,n are
constructed in the following manner:

Step 1. The strategies are cyclic (e.g., 11’ involves playing pure Markov
strategies g}.g5,...g,. for T\, TS, .. T periods respectively and then
restarting the same sequence again and again). Denote the length of each
cycle 7', ie, T'=3%,T,. Evidently, the lifetime payoffs and deviation
possibilities for any player in the play of /7' are the same, for a fixed state,
at period t { <T') as at period 1+ NT* (where N is any positive integar).
Furthermore, the cycle lengths are so chosen that, for sufficiently high
discount factors, the associated payoffs, say [w(s,,d) V'(s,.d8), i=
1,...n, t<T"), are, uniformly across states and periods, (i) asymmetric,
(ii) strictly individually rational and (iii) fI-dominated, ie., Vi(s, )<
Vi(s,, d) and m(s,, §) < Vi{s,, §) <w(s?, d), in each case for all 5,, 5,5,
and for all 4 j. Further, {w(s, 8) —w| <eg, Vs.

Remark. [I1' is part of player i’s “punishment regime.” For a punish-
ment strategy to be credible, an obvious necessary condition is that
punishing a deviant must not take the game into a state which is
unfavorable for the players doing the punishing (hence (7)). Furthermore,
a deviant player must be unable to take the game into states from which
his worst individually rational payofl is better than continuation payoffs to
non-deviation (hence (ii)).

The incentive for player / to deviate solely to improve the state is
particularly strong when i’s worst strategy /7' in play (since play will even-
tually return to /7’ itself but possibly at a more favourable state). Suppose,
for example, that the continuation payoff at some period ¢, within the cycle
0, .., T', is such that Vi(s,, ) is less than E[ V'(s,, §)]. Deviation, which
involves a finite min—max period followed by E[ V!(sy, )] may then be
profitable, especially since the finite min-max period is increasingly irrele-
vant as d goes to 1."* Step 2 deals with this ex post incentives problem.

Step 2. Let g’ be the pure Markov strategy that maximises player i’s
long-run average payoffs. The strategy I7T* can be modified to make the
payoffs over a cycle independent of the initial state: at the beginning of
each T' cycle, play proceeds to (g{,, p =1, .., P) with probability z'(s,) and

" In a repeated game this problem is avoided since there exist (publicly randomised) con-
stant actions in each period which realise any feasible payoff. In fact, even if public randomisa-
tion is not allowed. one can construct a strategy such that continuation payoffs are always
monotonically increasing in time. In the presence of a state variable it is not possible to ensure
that continuation payoffs are constant or (almost surely) greater at r + | than at ¢.
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to g’ with the remaining probability. The probabilities are chosen in a way
such that i) player i’s payoffs over the cycle are independent of s, and ii)
are asymmetric, i.e., are strictly less than i’s payoffs under the strategy
which represents a similar modification of 71/. I retain notation and call
these strategies [7°,i=1, .., n, as well.

Now consider exactly the strategy defined by 7, 7T°,i=1, .., n above.
Call this strategy IT*. I show, first, that it is possible to construct such a
strategy (given (A1)-(A2) and (PA) and, second, that it is a subgame per-
fect equilibrium (for sufficiently) high discount factors); hence, Proposition
9.3 holds.

6.2. The Details of the Proof When Mixed Strategies Are Observable

Proof of Step 1. Let I’ (respectively, ') denote the long-run average
payoff vector in which player i’s payoff is the /least (respectively, the
best), ie. I'=min{v;: (v_,, v;) € F} (respectively, bi=max{v;: (v_,, v,)€F}).
Recall that w is the given strictly individually rational long-run average
payoff and the asymmetric payoffs (whose existence is asserted by (PA))
are denoted &, i=1, .., n. Further, let m,=0. Pick convexification weights
S, >0, f,>0, and define'’

Vi= B+ Bot' + (1= By — Ba)w. (5)

Clearly one can pick the convexification weights appropriately to prove:

Lemma 10. There are feasible long-run average payoffs V',i=1, .., n,
satisfying Vi, j
(a) strict individual rationality V'> 0,
(b) asymmetry V/ < V/i#j
(c) target payoff domination V' <w,.
From Lemma 1 it follows that each of the payoffs /', &', and w is itself
a convex combination of payoffs to pure Markov strategies. Hence (and
this is made precise in the proof of Lemma 6), it then follows that
that there is a pure cyclic strategy [7° which approximates V' let it be
defined by pure Markov strategies g, g5, .., g,, played successively for
T\, T, .., T;, periods and then repeated infinitely many times. The ratio
T/, T, reflects the convexification weights induced by (5), and the
bigger is T;,, the closer is the approximation. Now we can appeal to the

1° Since /, <m, < w,, the two payoff vectors, /' and w are distinct. Also note that the con-
vexification weights do not depend on the player index i.

642 66 1-2
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continuity of payoffs to pure cyclic strategies at d =1 (this is made precise
in Lemma 2).
Step 1 has been proved. o

Proof of Step 2. For any Markov strategy g, let W(s; T) denote the
T-period discounted average from initial state s, W, (s; T)=[(1—-4)/
(1= 8r(t; g, 5). (When T= oo, the notation will be W,(s)).
Let 7(¢) be a period length and d(¢) be a discount factor such that for all
pure Markov strategies g and all initial states s, |W(s; T)— W(s)| <e¢
whenever 7> T(¢), é = d(¢). Denote similarly the payoffs to f7° over the 7"
cycle as V'(s; T).

LEMMA 11.  There are probabilities u'(s),i=1,..,n and se S, such that
Jor all 6= 6(¢), s, 5,

p(s) Viss T+ [1—pu(s)] bids; T
=p'(sY VIS T+ [1—p'(s)] bis's T). (6)
Further, writing v!(s; T )=u/(s) VI(s; T7Y+ [1 — p/(5)] bi(s; T),

vi(s; T <uvi(s', T, i#j,s,5¢€S. (7)

Proof. Pick any ¢>0 with the property that Vi+e< V/—e Take
TI",> T(¢), for all i and p. Hence, we have |V'(s; T')— V| <e, for all
8, i, 0 = d(e) or equivalently, max, Vi(s; T') <min, b'(s; T'). Thus we can
find probabilities x'(s) as defined in (6), with, in fact, the added property
that max, Vi{s; T =p'(s) Vi(s: T+ [1 —p'(s)] bi(s; T, for all 5. As &
goes to 0, u'(s) clearly goes to 1. For sufficiently small £ (7) holds. The
lemma follows. o

For future reference, let v'(s; ) denote the infinite horizon discounted
average payoffs to the strategy /7’ (with public randomisation according to
u' at the end of every T’ periods), if the state at the beginning of I7° is s.
In particular, player i’s payoffs within each T’ cycle are independent of the
state at the beginning of that cycle, ie., vi(s; T')=vi(s’; T') = vi(J).

Step 2 has been proved. e

Proof of proposition 9.3. Let the best (respectively, the least) one-shot
payoff of player i be denoted b, (respectively /,).”' Pick 0 <5 < V' —¢. From

** Note that | suppress the arguments (g, d) in the notation for the average payoffs, ie.,
instead of writing W{(s; g.d, T) (as would be suggested by Eq. (1) for example). [ am simply
writing W(s;T).

31[ use this notation since it is suggestive of the notation employed for the best and least
long-run average payoffs, b! and /..
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Proposition 3 it follows that there is 6, <1 and 7’ such that upon min-
maxing for at least 7' periods, player i’s 7'-period discounted average
payoffs can be held below #. Let T, > T’ satisfy for é =, > max(d,, d(¢)),

(1—=87)1,4+8Tvi(8)> (1 - 8)b, + [ (1 =™y +3™vi(5)].  (8)

Equation (8) can clearly be satisfied by choosing 7, to be large relative
to T'. Let us first check the i’s punishment regime, T,, periods of min—
maxing followed by I7°, is a subgame perfect equilibrium. Note that the
left-hand side of eq. (8) is a lower bound on the lifetime payoffs of player
i from the play of IT’ (since /, is a lower bound on the flow payoffs during
any cycle). Likewise, the right-hand side of (8) is an upper bound on the
lifetime payoffs of player i from deviating against I7* since by Proposition
3 his average payoffs during a min—max phase is at most #. Hence, (8)
implies that player i has no profitable deviation once the play of I7° is
initiated. By definition, he has no incentives to deviate during the min-max
phase. From (7) it follows that, for sufficiently high J, players j # i have no
profitable deviation after any history, either during the min—-max phase or
during the play of J7°; this is because, as & goes to 1, player j's payofls from
not deviating are at least (approximately) min, v;(s; T') which is strictly
greater than his lifetime payoffs from deviating since this is at most
(approximately) max, v/(s; T;). Hence, i’s punishment regime is a perfect
equilibrium in the subgame after any deviation of player i.

Deviation from [T is unprofitable for any player, for sufficiently high
discount factors, given Step 1 iii) (again since the lifetime payoffs from
not deviating are (arbitrarily close to) min, w,(s, §), whereas the payoffs
to deviation are bounded above by max, ui(s; T'). Proposition 9.3 is
proved. e

The only part of the above strategy where players take privately obser-
ved random actions is in the phase where players j# i min-max player i.
Since these players may not be indifferent between the pure actions in the
support of their mixed strategies, the difficulty now, in moving to the unob-
servable mixed strategies case, is to induce these players to play the pure
actions with the appropriate probabilities. As noted by Fudenberg and
Maskin [13], the only way to do so is to make them indifferent across
their pure actions.

This is done by modifying the strategy I7* in the following way: |
construct strategies /7%, j# i, which are “close” to I7’. The strategy /7% can
be interpreted as player j’s “punishment” within the punishment regime of
player i; he gets a payoff from it that is smaller than his payoff from I7°.
After min-maxing player i, play proceeds to IT' “most of the time,” but
with a small probability it goes to /77, for every j#i. Furthermore, the
probabilities are so chosen that every player j# is indifferent, in expected



18 PRAJIT K. DUTTA

terms, between each pure action in the support of his mixed min-maxing
strategy.?? Note, finally, that deviations outside the support of the mixed
strategies that min-max player i can be deterred by the same considera-
tions as those used above for the observable deviations case. All of these
arguments are made precise, and Theorem 9 is proved, in the Appendix.

7. EXAMPLES

In this section I present two examples which illustrate the necessity of
the asymptotic state-invariance conditions, (Al) and (A2), in order for a
stochastic game folk theorem to hold. The first counter-example violates
(A2).

ExampLE 1. The set of long-run average feasible payoffs are invariant
across states, i.e., (Al) holds, but the long-run average min—-max levels are
state-dependent, ie., (A2) does not hold. Consequently, there are ex post
individually rational payoffs which are not equilibrium payoffs.

Details. Suppose there are two states, s and o, two players, 1 and 2,
and each player has two actions (in both states); player 1’s actions (respec-
tively, player 2’s actions) are denoted (a,, a,) (respectively, (b, b,}). The
law of motion is such that {«,, b,) takes the game from state s today to ¢
tomorrow and likewise from state ¢ today to s tomorrow. Every other
action vector leaves the state unchanged. The one-shot payoffs are defined
as follows:

State s b, b, State ¢ b, b,
a, (0,1 (0, —1)* a,  (2,2) (0, 1)*
a, (2,2) (—=1,0) a, (—=1,0) (0,-1)

(Note that * signifies the fact that when this action vector is played, the
game moves with probability 1 to the other state).

Since there is an action vector, (a,, b,), by use of which we can go
between the states, it is immediate that F(s) = F(o). However (the column)
player 2’s long-run average min—-max level is state-dependent; m,(s)=1#
0=m,(o).

Consider now any pair of long-run average payoffs, [ W (s), W(s)],
[ W,(o), W4(a)], feasible from states s and o respectively, that give player

*? For repeated games, Fudenberg and Maskin [13] induce the required indifference by
constructing continuation payoffs such that every sample path during the min-max phase has
the same lifetime reward, i.e., a player is indifferent with probability one (rather than in expec-
tation alone). Continuation payoffs satisfying such a (strong) condition appear to be
impossible to construct for stochastic games.
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2 a payoftf from state s, Wy(s)e(1,2) and from state o a payoff,
Wiya)e(0,1). (This is possible to do; e.g., the strategy which publicly
randomizes between (a,, b,) and (a,, b,) in both states, with appropriate
probabilities, yields such payoff vectors). Evidently these payoffs are ex
post strictly individually rational.?*

However, these payoffs cannot be equilibrium payoffs if the game starts
from o. To see this note that in order to give player 2 a strictly positive
payoff, player 1 must (occassionally) play a,. If he does so player 2 can
guarantee himself a long-run average payoff of 1 by playing (the deviant
action) b, in state ¢ and with probability 1 (eventually) taking the game
into state s. Evidently the same argument works for high discount factors.
Hence, not all individually rational payoffs are subgame perfect equilibria
even at discount factors close to 1.

Remark . Note that Corollary 9.1 holds in this example. Hence, any
(long-run average) feasible payoffs in which player 2’s payoffs are strictly
greater than | are indeed equilibrium payoffs for patient players.*

I now turn to a counter-example in which (Al) is violated (although not
(A2)).

ExampLE 2. The long-run average min—max levels are invariant across
states, i.e., (A2) holds, but the set of long-run average feasible payoffs is
state-dependent, ie., (Al) does not hold. Consequently, there are ex post
individually rational payoffs which are not equilibrium payofls.

Details.  As in Example | there are two states, s and o, two players, 1
and 2, and each player has two actions (in both states); again, player 1’s
actions (respectively, player 2’s actions) are denoted a,, a,) (respectively,
(b, b5)). The law of motion is such that (a,, b,) takes the game from state
o today to s tomorrow. State s is an absorbing state; no action vector takes
the game out of state s once it is reached. The one-shot payoffs are defined
as follows:

State s b, b, State ¢ b, b,
al (0’2) (333) al (3’0) (0’ _I)
a, (—1,0) (—1,0) a, (1,0)* (0, 1)

(Note that, as before, * signifies the fact that when this action vector is
played, the game moves with probability 1 to state s).

“*In the payoffs W{(s) and W{a) suppose that player 1's payoffs are strictly positive, ie.,
W (s)>0, W (o)>0. We can find such feasible payoffs; e.g.. the strategy described above
does, in fact, yield player 1 strictly positive payoffs. Note that these payoffs are strictly
individually rational for player | as well since his state-independent min-max level is easily
verified to be 0.

** Again player 1's payofls need to be strictly positive, of course.
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It is straightforward to check that m,(s)=m,(c)=0, for players i=
1,2; hence, (A2) is satisfied. Evidently, F(s)=co ¢(s), where ¢(s)=
{00, 2),(3,3), (—1,0)}. But, since the game can transit from state ¢ to s,
Flo)=co (F(s)uG) where G=co{(3,0),(0, —1),(0,1)}. In particular,
F(s) # F(o).

Now consider any feasible pair of strictly positive long-run average
payoffs, [ W,(s), W,(s)], [ W,(o), W,(a)], where [ W (a), W,(o)] is addi-
tionally a vector which belongs to G but not to F(s) and W,(g) <3/4; in
other words, the payoff is generated by some public randomisation over
(a,, b)), (a,, b,) and (a,, b,) (which ensures that play never proceeds to
state s). Evidently these payoffs are ex post strictly individually rational.

However, any such payoff vector necessarily involves the play of a, with
positive probability. But then player 2 can (deviate and) play b, thereby
taking the game to state s. From state s, his payoffs cannot be any less than
3/4, in equilibrium; else, player 1 makes less than his min-max level 0.
Thus player 2 will find it profitable to deviate. Evidently the same argu-
ment works for high discount factors. Hence, not all individually rational
payoffs are subgame perfect equilibria even at discount factors close to 1.

Remark. Note that Corollary 9.2 holds in this example. Hence, any
(long-run average) payoff that is feasible from all states (and strictly
individually rational), ie., any strictly positive payoff vector in F(s), is an
equilibrium payoff for patient players.

8. APPLICATIONS AND DISCUSSION

The principal structural restriction that was imposed was the finiteness of
state and action sets. I believe that this restriction can be dispensed with,
at the expense of a more technical analysis. Finiteness was critically used
in establishing continuity of payoff sets and min-max levels at é = 1. Dutta
[8] (and Mertens and Neyman [20]) give conditions under which such
continuity of feasible payoffs sets {and min—-max levels) would hold under
general specifications of state and action spaces. Finiteness was also used
in the asymmetry and state independence arguments of Lemmas 10 and
A .2; the modifications here would be in the nature of uniformity conditions.
In discussing whether the other hypotheses of our game are satisfied by
various economic models, I will momentarily ignore the fact that the
state—action spaces there are typically non-finite.

8.1. Asymptotic State Independence of Payoffs

There are two general conditions, special cases of which are satisfied by
many economic models, which imply that feasible long-run average payoff
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sets are state independent. It is useful to remember, incidentally, that the
long-run average criterion ignores all finite period returns and thus condi-
tion (Al) is equivalent to a requirement that payoff possibilities from any
two states are eventually the same.

By analogy with the theory of Markov chains let us define:

DEFINITION. A stochastic game 1s said to be communicating if for each
pair of states (s, §'), there is some strategy I7 and an integar N such that
the probability of going from s to s" in N steps, gn(s, s') > 0.

LemMma 12. In a communicating stochastic game, the set of feasible
long-run average payoffs is independent of the initial state.

Proof. 1In the Appendix. e

Cyclic or fully communicating games [15] ie, games in which
g(s'|s,a)>0 for all s, s, a, are immediate examples of communicating
games. So are dynamic games in which any one state can eventually (deter-
ministically) transit to any other state, through some appropriate strategy.
In economic structures like growth or oligopoly capital accumulation
models, investment models in macroeconomics, or financial models, pure
accumulation strategies (which involve zero consumption) typically allow
the appropriate state to increase, and eventually to any desired level. Con-
versely, free disposal ensures that the state can also decrease. Communica-
tion is a consequence in such models. In models with sticky prices or other
historical variables, typically the full communication condition is met.**
Models in which there are exhaustible resources are examples of non-
communicating systems.

A second general class of models in which asymptotic state independence
holds are strictly stochastic games, i.e., those with “noisy” transition laws.
The noise ensures that eventually the effect of the initial state disappears.
There are many ways in which to formalise this idea. 1 report here a class
of structures called scrambling models which have been recently studied by
Lockwood [ 18].

DEFINITION. A stochastic game 1s called scrambling if the transition
probabilities defined by any pure Markov strategy g have the following
property: for all pairs of states s, s’ there is a state s” such that g(s, 5"} >0
and g.(s",s") > 0.

LEMMA 13.  Scrambling games satisfv (Al).

Proof. See [18].

% The references in Footnotes 1 and 2 are covered by these remarks.
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8.2. Min—Max State Invariance

Long-run average min-max levels will be independent of the initial
state from which the game starts if the system communicates independ-
ently of the actions of any one player. Gillette [15], e.g., shows that in
a cyclic game min-max values in the long-run average sense are state
independent. Clearly, a weaker requirement is that there be some
strategy choice of (n—1) players, which generates a communicating
system, regardless of the ith player’s strategy. Such (n—1) state con-
trollability is exhibited by many common state resource games, in which
players extract simultaneously from some common property resource and
there is an upper bound on feasible extraction levels. (n — 1) players can
make the resource grow or shrink by appropriately altering their own
extraction rates. A somewhat different reason for long-run average min-
—max values to be state invariant is (n — 1) eventual payoff controllability,
that similar returns be enforceable, eventually, from a number of alter-
native states and that one theses states be reachable by (n— 1) players.
As an example, consider separate-state games, where the state s=
$yy .., 8,, 18 n-dimensional and each player controls his own dimension.
Although the ith player controls his own state, his worst payoff may be
realised by the (n— 1) players (eventually) achieving some s _, and play-
ing some catastrophic action (for i) thereafter. Capital accumulation
games offer an example, where above critical capital levels (n—1)
players can continuously drive the ith player’s profits to zero by over-
production.

Payoff asymmetry of long-run average payoffs (or even full dimen-
sionality) are satisfied in many of the economic models mentioned
above. A simple sufficient condition is that there is some steady state of the
system in which players have asymmetric (or full dimensional) one-shot
rewards.

8.3. Other Results

The two papers closest to this one are Friedman [12] and Lockwood
[18].%° Friedman studies a class of non-repeated games in which there are
no explicit state variables and period ¢ returns depend on current and
immediately preceding action, in his notation P;(a,_,,a,). This set-up
is formally a dynamic game as can be seen by writing s,=q,_, and
ri{s,,a)=Pia,_, a,). Define V(ia)={v:3a’ st v;=Pa,a')} and V=
N V(a). It is immediate that (), F{s)2 V. Friedman then defines a
notion of (state-independent) min-max, call it v, which has the property

** ] am also aware of a result of Neyman, but so far have been unable to get a copy of his
paper.
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that m,(s)<v?.*” With a full-dimensionality assumption on ¥, he then
proves the asymptotic equilibrium sustainability of all ve ¥ such that v > v,
This result follows then from Corollary 9.2 (indeed with payoff asymmetry,
since mixed strategies are inadmissible in the Friedman analysis).

Lockwood [ 18] analyses a stochastic game in which the transition matrix
has the scrambling property defined above. Consequently (Al) and (A2)
follow (see Lemmas 2.1 and 2.2 in his paper).”® He imposes full-dimen-
sionality on the (state-independent) long-run average payoff set™® and
establishes a folk theorem. All mixed strategies are observable in his
framework. Thus his result is implied by Theorem 9 (and indeed can be
strengthened to admit unobservable mixed strategies). Alternatively,
maintaining observability of mixed strategies, his result is true under payofl
asymmetry (Proposition 9.3)*

Recently Abreu et al. [ 12] by using a logic of proof similar to that employed
in this paper, have proved the folk theorem for discounted repeated games
under the payoff asymmetry condition (PA). Furthermore, they show that in
repeated games, (PA) is also (almost) a necessary condition for the theorem.

There is also an extensive literature in non-repeated models, especially
for specific applications, which investigates the sustainability of first-best or
collusive outcomes alone (for example, Benhabib and Radner [4]). Dutta
(9] shows that on this question, the predictions of repeated and non-
repeated games may be dramatically different (in contrast to the above folk
theorem conclusions).

APPENDIX

Proof of Lenwna 1. The number of pure Markov strategies is finite
and hence co ¢(s,d) is a closed convex set. Suppose we F(s,d) and

" The inequality is driven by the facts that (a) Friedman restricts himself to pure strategies
and (b) that the state-independent min--max level is defined by taking the supremum over the
state-dependent levels. Note also that the model considers action sets that are convex, com-
pact subsets of R" and thus our results do not immediately apply. The comments that follow
should be interpreted as applying to either the infinite version of our model or the finite
version of Friedman's.

** The scrambling assumption has the strong implication that finite period state distribu-
tions converge to an initial-state independent invariant distribution at a geometric rate that
is uniform over all strategies.

* Actually Lockwood assumes the stronger condition that the payoff set formed by cycling
over pure Markov strategies is full-dimensional.

¥ For repeated games, Fudenberg and Maskin [ 14] have a demonstrated the dispensability
of public randomization in folk theorem analysis. The critical issue in deriving a similar con-
clusion for stochastic games is: can any feasible correlated long-run average payoff be exactly
generated by high discount factors? Without full dimensionality, the answer is no. It remains
an open question whether, given (FD), public randomization is inessential.
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wé¢cod(s,d). Then, by the strong separating hyperplane theorem [25,
Corollary 11.4.27, w and co ¢(s, J) lie in opposite open half-spaces of some
hyperplane. But Blackwell [7, Theorem 7b] shows that for any extreme
point of F(s,d) there is a pure Markov strategy that generates it. We
clearly have a contradiction.

Let us now show that the extreme points of F(s) are also generated by
pure Markov strategies. In other word, 1 prove:

LemMMa A.l. For all A,,i=1,..,n, and initial state s, there is a pure
Markov strategy g* s.t.

Y AWis;g*) 2y A W,s ). (A1)

Sfor any feasible strategy II.

Proof. Consider any pure Markov strategy, say g, and let
(ri(t; g, 5)),5 0 be the sequence of ¢-period expected returns for initial state
s. Let p, be the associated probability distribution, ie., r/(t;g,s)=
> rids,, g(s,)s) p,(s). For notational simplicity let me suppress all indices
except time; consequently, the expected flow payoff in period ¢ will be
written as r,.

I first show that 1/73.7-) r, has a limit as 7 - oo. Since the dynamic
system formed by the strategy g is a finite Markov chain, we can partition
the state space into a subset of transient states, say B, and a finite number
of closed sets, C,, C,, .., C,. If se C, for some closed set, then a standard
argument establishes the existence of a limit to 1/7%.7 " r,. On the other
hand, if se B, then W,(5;2) =3, g PASY W (s 8)+ DX pls) Wils'; g).
Since p,(s') — 0 for all transient states, as ¢ 1 oo, it then follows that a limit
exists for 1/T X[ r, even when the initial state is transient.

It then follows by Abel’s theorem?® that the sequence of discounted
average returns generated by the Markov strategy g also has a limit and
indeed that the two limits are equal:

17‘)1 o0
lim — =1 1 — o'r,. .
im 7 T r=lim(1-) 3, o, (A2

=

Now pick an arbitrary strategy I1. Recall that its period ¢ expected
returns are denoted r.(r; 7). Let T be a sequence such that
lim ey, 1/T* }:,7*:5' ri(t; IT)y = W (s; IT), for all i. It is well known that we
can find a particular sequence (J,,),,5o and &, 11 with the property
that limpu,, /75750 r(6 ) =limg,, (1 —6,,) X%, 8r,(1; IT), for

3! Abel's theorem: for any sequence (b, ), 50, lims_ (1 —=3) 3% 6%, =lim,_ ., /TYI} b,
if either limit exists.
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all i=1, .., n Since the number of pure Markov strategies is finite, for
any d,11, there is some pure Markov strategy g which maximises
> A Ws; IT, 6), over all feasible strategies 77', along a subsequence of 4,,,.
It then follows that

Tk

S

, . 1
;}.,Wi(s, m =Zi: /.,[ Tllgnx TF

—Zi[hm s Zém,tﬂ)]

mll

=lim (1 -9, Z (5,,,2 At IT)

mitl
<lim (1-4, Z ,,,ZA,,rg) (A.3)
mil _
—Z) {llm (1-4,,) Z ol rit; g)} (A4)
m11 (=0

-1
—ZA [ hm ! Z r,-(t;g)] =Y LW,(s:8). (AS)

t=0 i
Equation (A.3) follows from the optimality of g, in the discounted
problems, while (A.4) and (A.5) follow from the arguments in the preceding
paragraphs. Lemma A.1l is therefore proved. The remaining arguments left
in order to establish Lemma 1 (ii) are identical to those used in proving
Lemma 1 (i}). |

Proof of Lemma 2. It is necessary and sufficient to show that

(a) Vw for which there is a sequence J,— 1, and w, € F(s, §,) with
w, — w, we F(s)

(b) Yw in F(s), as d — 1, there is w; — w, w, € F(s, 9).

Invoking Lemma 1, all of these statements can be made for co ¢(s, o)
and co ¢(s). Then, both (a) and (b) follow from the continuity of the
returns to pure Markov strategies, at 6 =1, and that has been proved
within the proof of Lemma A.1 ||

Proof of Lemma 6. Let w be a payoff in F. By Lemma 1, it follows that
w= Zj_l 4;w;, where w; is the long-run average return to some pure
Markov strategy g,." Consider the following strategy tuple: the strategy g,

32 Strictly speaking for two different initial states s and s', w; may be generated by different
pure Markov strategies g(s) and g{s’). The argument that follows can be modified in the
obvious way to account for this.
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1s used for T, periods, followed by g, for 7, periods and so on. After
T=37%_, T, periods, the cycle is repeated. T, are chosen such that (a) 7,/T
is arbitrarily close to 4, and (by W.g, s T,)>w,—e for all s and i

Clearly, this strategy suffices to prove the lemma. [J

Proof of Theorem 9. 1 have already proved the result under the
simplification that mixed strategies are observable (Proposition 9.3).
Hence, all that remains to be done is to extend that proof to accommodate
unobservable mixed strategies.

From the arguments in Section 6 leading up to the proof of Proposition
9.3 it is clear that mixed strategies are only employed when players j# i
min-max player /; the issue then is how to deter these players from
deviating (unobserved) within the support of their mixed min-maxing
strategies. To repeat the discussion at the end of Section 6, I ensure that
players j # i are indifferent between all available pure actions by modifying
the strategy I7* in the following way: I construct strategies I7", j # i, which
are “close” to [7'; each player j#i prefers /1’ to IT. After min-maxing
player i, play proceeds to [T' “most of the time”, but with a small proba-
bility it goes to 17, and this is true for every j#i Furthermore, the
probabilities are so chosen that every player j#1i is indifferent, in expected
terms, between each pure action in the support of his mixed min-maxing
strategy. The argument will be carried out in two steps:

Step 3. There exist pure cyclic strategies I7YVj+#i (with associated
payoffs U%(s, §}) which have the following properties for sufficiently high
discount factors and for any two initial states of a cycle, s and s': (i) player
i is indifferent between the strategies /77 and IT', ie., U¥(s, 0)=Vi(s', d),
(ii) player j # i prefers that strategy [T’ be initiated rather than strategy I77,
ie., UJ‘?(S, o)< Vj’ﬁ(s’, J), (iii) all players k # i prefer 177 to their punishment
strategy [1*, ie., Uls, ) > V’A‘f(s’, J), and (iv) all payoffs are strictly
individually rational.

Condition (it) will allow the required probabilistic construction; since
player j prefers IT' to ITY he will be deterred from taking pure actions that
he prefers (in terms of one-shot payoffs) by the fact that doing so will
increase the likelihood of /7% being initiated. Moreover, in order to selec-
tively affect player j’s incentives, the probability that play proceeds to 777,
say P?, will be conditioned directly only on his (observed) actions (and the
states visited during the min-maxing phase). Despite this targeting, there is
a further source of trouble; a player k #j can manipulate PY, and therefore
his own continuation payoffs, by influencing (in an unobserved manner)
the distribution of the state at the end of the min-maxing phase. To deter
this we need to ensure that:
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Step 4. The strategies /7' and /77 can be chosen in such a way that in
the component cycles of 77° and 177 (of length T* and TY) the payoffs of
each player is independent of the initial state of the cycle {(and continues to
satisfy (1)-(iv) of Step 3).

Steps 3 and 4 are then used to complete the proof of Theorem 9 by
showing that there exist probabilities PY under which every player j #, at
each node of the min—-maxing phase, has the same expected reward from all
actions.

Proof of Step 3. From (FD) and Lemma 6, it follows that there are
pure strategies I77, i, j= 1, ..., n, i #j (which are in fact cycles over finite sets
of pure Markov strategies) such that their associated long-run average
payoffs UY satisfy: for all 7, j, k, i #k, i #J,

(a) strict individual rationality UY>0

(b) asymmetry Vi< U (A.6)
(c) differential incentives for j U;f <V (A7)
(d) indifference for i Vi=U? (A.8)

For appropriately high discount factors, Step 3 (iii) (asymmetry) follows
straightforwardly from (A.6), whereas Step 3 (ii) (player ; has different
incentives under IT' and I7Y) follows from (A.7). Step 3 (i) (player i is indif-
ferent across the strategies) follows from (A.8).** Finally, Step 3 (iv) is
immediate from (a) (and Proposition 3). Thus Step 3 has been proved. |

Proof of Step 4. The proof of Step 4 is somewhat involved and will be
accomplished by way of proving two lemmas (Lemmas A.2 and A.3). Let
B,( W) denote the fl-neighbourhood of a payoff We R".

LemMMa A2, Fix an integar Q=1 and a set of (n+ 1) vectors, We R",
i=0,1,...n and suppose that dim co(W°, .., W"Y=n. Then, for all ¢>0,
there is 0>0 such that for any finite collection of (n+1) vectors,
(W oq), Wiq), ... W q)].q=1, ... Q which satisfy the condition that
Wilg)e B,( W', Yi, q, it follows that

B (W ) nco W), .., W' (1)l nco[ W), .., WH(Q)]# . (A9)

33 Strictly speaking it follows by an argument identical to that used in proving Step 2 in the
text (and that argument is also implicit in (A.8)).
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Proof. If the lemma were untrue, then there would exist an ¢> 0 and
sequences [ W°(q; p), .. W'(q:p)],q=1, .., Q,p>0(withlim, ., , Wig;p)
=W for all i g), such that B(W')nco[ W1;p), .. W'(l;p)]n
< co[ WU QO p), ... W(Q;p)] =, for all p. This is impossible given the
full dimensionality of co(W?, ., W").

In what follows, Lemma A.2 will be used as follows: the primitive set
of vectors will be W°, .., W”" where W' is the long-run average payoff
to a cyclic strategy f7I°. The collection of (n+1) vectors will be
WOs; T), .., W'(s; T), where each vector, say W'(s; T), is a T-period
discounted average payoff to 7%, when the initial state of the cycle is 5. As
this initial state s varies, we get different T-period average payoff vectors;
the number of such state-dependent vectors is exactly the same as the
number of states and that number has been denoted Q in the lemma.

Consider first the (n+ 1) long-run average payoff vectors, V', b', V7, j#i
(recall that b’ is the best long-run average payoff for / and the asymmetric
payoffs V/, j=1, ..., n are defined in Eq. (5}). Suppose, after invoking (FD),
that dim co( V', b', V/, j#i)=n. Let ¢ be defined by the requirement that
Vit e< V{—¢ By arguments preceding Lemma 11, there is 6, <1 and
cycle length 7' such that the T7'-period discounted averages satisfy:
W Vis; TY= V| <@, |bs; T)—b'l| <0 and ||V/(s; T)— V”/| < whenever
T>=T and d = 4,, j#i and for all initial states s. Evidently, the collection
[Vis; T), b'(s; T), V/s; T), j#i, s€S] together with the long-run average
payofls [ V7, &', V/, j#i] satisfy the hypothesis of Lemma A.2. Hence, it
follows that there are probabilities pi(s), s€ S,j=1, ..., n, such that for al
s, and k=1, ..,n

pis)bi(s: TY+ Y, pils) Vilsi T+ [ 1-y p)}(s)j| Vis: T)
J

Ve

=pis)V DU T+ Y, pis) VIs's T) +{ | —Zp_;(s’)] Vi(s's T).
i j

(A.10)

To repeat, there is a public randomisation at the beginning of every T*
cycle, over the strategies yielding &°, V', .., V" (as long-run average
payoffs), such that each player’s T' period discounted average payoffs are
independent of the initial state of the cycle. Let this constant payoff vector
be denoted P7(J). Furthermore, | V() — V'j <e.

Identical arguments apply to the (n+1) long-run average vectors
[UY, b", ¥/, j#i]. Let the implied (state-independent) payoff vector, in
this case, be denoted U%(d),j#i The vectors P/(8) and UY(5) are
(almost) the vectors whose existence is asserted by Step 4. They satisfy all
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the requirements, asserted in Steps 3 (i)-(iv) except for the fact that player
i’s payoffs may not be the same under F/(5) and U%(38). To fix that let
B'(6) be any state-independent payoff with the property that B!(d)>
max[ Vi(8), U7(8)] (such a payoff can be constructed by arguments
similar to those above). Let #’ and x” be convexifications such that a ran-
domisation with B’ leaves player i appropriately indifferent, i.e.,

VS + [1—p']1 BUS) =p70 )+ [1 —u”] Bi(S).  (A.1D)

Collecting all of the above arguments we can define the strategy I1°
(retaining notation) as a publicly randomised cyclic strategy in which at
the beginning of a cycle the players randomize between the strategies which
yield V', b, V/, and B’, using the probabilities defined by (A.10) and
(A.11). Likewise we can define a cyclic strategy /77 as one that randomises
appropriately between the strategies that yield UY, »', ¥/, and B’. Hence,
I have proved:

LeMMAa A.3.  There are publicly randomised cyclic strategies II', ITV, j#1i
with associated payoffs, at the beginning of each cycle, v'(5) and u%(6)
and there is a cycle length T' and a discount factor 6,<1 st for
020,k k#i,j#Ii,

(a) asymmerry vﬁﬁ((s) <u¥(d) (A.12)

(b) differential incentives for j l:’»(6)>uj'3f((5‘) (A.13)

i

(¢} indifference fori vi(d) = u(d) (A.14)
Thus Step 4 has been proved. e

The Construction of Probabilistic Punishments

For simplicity let us normalise the period of player i’s deviation to 0.
Min-maxing will take place for 7, periods (and for notational simplicity
I drop the subscript on T,,). The probability with which play proceeds to
ITY_ if history s has been observed, will be denoted P%(h;) (and for nota-
tional simplicity, 1 will write that as P/(h;)). In fact, I will construct
the probability as a sum of component probabilities p/(a,); P/(hs) =
>, <rp’la,), t<T. Furthermore, as the notation suggest, p/ will depend
only on the action of player ; at period ¢

Some additional notation is, unfortunately, required. Let #(a,,; A,) denote
the conditional expectation of player j's rth period return (where < 7) if
all players other than j play the correct mixed actions, in min-maxing
player i, while player j plays the pure action a,. Let g4, , .|a, denote the
distribution over histories 4, ., for >0, if the action at ¢ by player j is a;,)
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and all other players (and j himself after period t) use the correct min-max-
ing probabilities. Finally, I will use R(a,; h,) to denote the expected returns
of player j from period ¢ till the end of the min-maxing phase 7, if he plays
a, in period t and according to the correct min-maxing probabilities
thereafter; ie., R(a;h)=ra,;h)+63 h, qth, fa,)rth )+ -

oT '3 hglhylay) h,) {where r(h, ) is player j’s condmondl expected
reward in period ¢ + t of the min—maxing phase).

In particular, the gain to player j over the periods r+ 1, ..., T from using
the pure action «, rather than &, is simply (1 —68)[R(a;; h,)—R(a;: h,)].
The probabilities of going to j’s less-preferred strategy 177, p(a;) and p'(a;),
will be chosen such that player j is indifferent between the two actions: if
(1 =8)[R(a;; h,)]1>0, then we shall ensure that p’(a;)>p’(a;). The
existence of such probabilities will be established by way of a bdckward
induction argument.

In fact, suppose for a moment that the probabilities p/(a,,, for 7> ¢ have
been determined (and we would like to determine p’(({,,). Let ¢/(h,;) =
Y. P(a;, the probability of play eventually proceeding to 77 if the
sample path during the min-max phase is 4,. Hence, the conditional prob-
ability that player j will in fact be penalised at the end of the min-max
phase, if he plays action @, in period ¢, is [Y,, ¢/(hy) glhrla; h,)]. Thus
the lifetime difference in payoffs from using actions @; and &, is 0 only if

(1 =) Rla;; h,)— R(a;; h,]

407 Y [u}’«'(é)—u‘;(é {Z[q (helagh)—qlhela; h, ] ¢ hr}

k#i hy

+07 ' Lpag h) = pa; h)1(u(8) —0(8)] =0. (A-13)

The equations (A.15), one for every pair of actions a, and &; and every
time-period ¢, can be solved by backward induction. When t—T the
second term in (A.15) drops out to yield the equdtion (1-3)[Rla;; hy)—

Ra;; hy)]1+ [ p/ta, hp)— pl ][u" (6) —1;(3)]=0. There is evndently
a solution to this equation for every pair of actions «; and 4, and
moreover, as 6 T 1, the solutions p‘(a;; h;) and p/(a; T) £o to 0 and hence
define probabilities (in that their sum is less than 1)

We can then proceed to period T — 1 and thus on back to period 0. For
sufficiently high & we do, in fact, create probabilities which also satisfy
(A.15). Since player ; is indifferent between all of his actions, provided
other players continue to min-max / and play proceeds after the min-
maxing phase to /7% or IT' with these probabilities, player j has a best
response which is to min-max player i1 with the correct probabilities.

™ The residual probability is attached to the option “go to the strategy /1”; this probability
goes to 1, as 0 goes to 1.
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The arguments that remain to show that the grand strategy IT* is a
subgame effect equilibrium are identical to the observable mixed strategy
case. The proof of Theorem 9 is complete. |

Remark. The idea of constructing probabilities punishments to deter
unobserved deviations is also used in Abreu, ef af. [2] in their study of folk
theorems for repeated games. Since there is no state variable in those
games, Steps 3 and 4 of the proof above are not required. Hence, the full
dimensionality condition, which is only used in these two steps, is dispen-
sable and the corresponding result can be proved with only (PA).

Proof of Lemma 12. It is not difficult to see that a consequence of the
definition is the (ostensibly) stronger condition: there is a (possibly mixed)
Markov strategy f7 s.t. for all (s, s') there is N s.t. ¢™(s, s') >0, i.e., that we
have a stationary Markov chain. Since the number of states is finite, by
standard results they are all persistent. Let v(s’) be a feasible long-run
average payofl from initial state s’. By Lemma 2, it is realised by ex ante
randomization over Markov strategies. Starting from s#s', a strategy,
which follows I7 until the first time s’ is reached and then follows the
Markov strategies that generate v(s'), clearly generates the same long-run
average payoff. ||
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