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Abstract

We argue that standard models of voting do a bad job explaining the frequency
of very close mass elections with high turnout. We instead model head-to-
head elections as a competition between incentive schemes to turn out voters
and elucidate conditions under which parties might prefer close elections in
which voters are motivated by pivotality rather than providing voters with costly
incentives to turn out in an election that is not close. When this is the case, we
show that better targeting of voters results in closer votes and higher turnouts
and that the smaller of the two parties has a strong incentive to engage in
commitment that will drive a close election.
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1. Introduction

This paper is motivated by two consecutive presidential runo� elections in
2016 and 2021 in Peru, a country with a population of about 35 million. In these
elections the margin between the two candidates was 41,057 and 44,263 voters,
respectively, out of 17.1 and 17.6 million valid votes.3 In other words in a large
mass election with millions of voters there was high turnout and a razor thin
margin deciding the result. There are other examples: the 2004 Washington
state governor's race was decided by 129 votes out of 2.9 million votes cast and
the 2008 Minnesota senate race was decided by 225 votes out of 2.4 million.

We will argue that standard models of pivotal, ethical, peer pressure, voter
mobilization, and expressive voters have a hard time explaining the conjunction
of large turnout and razor thin margins in mass elections. We suggest that
instead close outcomes might be the deliberate result of political parties' choices.
We introduce a model in which pivotality is a substitute for costly peer pressure
and show that indeed parties may prefer close elections.

Speci�cally we introduce a model in which a political party might prefer
a close election to turning out a few extra voters at minimal cost to win the
election. Our model explicitly models elections as competition between incen-
tive schemes. One way of turning out voters is through costly monitoring and
peer pressure, as discussed in Levine and Mattozzi (2020). Alternatively voters
may turn out because they are pivotal, as in Palfrey and Rosenthal (1985).
Our central contention is that these are substitutes. While turning out a few
extra voters may guarantee a win it also assures that voters are not pivotal
and increases costs substantially by requiring costly monitoring and peer pres-
sure: hence�depending on circumstances in a way which we elucidate�a close
election may be preferable.

An important conclusion from this analysis is that when close elections are
preferred better targeting of voters that reduces the noise in election outcomes
results in closer votes and higher turnouts. This potentially can explain why
close outcomes seem to have become more common in recent decades. A second
conclusion from the analysis is that the smaller of the two parties has a strong
incentive to make a credible commitment that will drive a close election.

Are existing models adequate?

Models of pivotality, such as that of Palfrey and Rosenthal (1985), have
fallen into disfavor as an explanation of participation in large mass elections.
Although they do predict close elections, they do not contend well with high
turnout: this is the conclusion of the literature on the paradox of voting start-
ing with Downs (1957). This literature argues that models of pivotality cannot
generate the large turnouts seen if practice, or if large turnout is due to com-
mitted or expressive voters, then pivotality ceases to matter and close margins
are merely a coincidence of both parties having equal strength. Speci�cally,

3The o�cial tally is available at https://www.onpe.gob.pe/elecciones/historico-elecciones/
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Mulligan and Hunter (2003) use a coin toss model to argue that empirically
pivotality is too small to matter. While Coate, Conlin and Moro (2008) argue
that pivotality predicts much closer election results than are observed in the
data.

As pivotal voter models cannot contend with high turnout, attention has
turned to models of voter mobilization such as Shachar and Nalebu� (1999),
ethical voters such as Feddersen and Sandroni (2006) or Coate and Conlin
(2004) or the related model of peer pressure such as Levine and Mattozzi (2020).
However, these models either have pure strategies due to noise that makes close
elections unlikely or if noise is small mixed strategy equilibria that also makes
close elections unlikely. In the �nal section of the paper we argue that these
models do a poor job empirically of explaining the frequency of close elections.

An alternative type of model are spatial models of platform convergence
such as those of Hotelling (1929) and Downs (1957). These predict that
parties should be of equal size. They also counterfactually predict platform
convergence. Morever, these models are not designed to predict voter turnout,
the usual assumption being that all voters turn out, which is not only coun-
terfactual but should result in a tie every time. We also question whether the
adjustments taking place in the runup to an election are really due to platform
adjustment rather than electoral e�ort. For example, in Peru 2021 the �rst
preelection polls initially indicated 41.5% for Castillo and 21.5% for Fujimori.
During the following two months, up to the election, the voting intention for
Castillo hovered around 41% while the voting intention for Fujimori, remark-
ably, crawled to tie that of Castillo, who ended up winning the election.4 It
seems highly implausible that the parties adjusted their platforms up to the
last minute until they converged to the median voter's ideal policy.

Our model also has implications for the likelihood of winning when elections
are close: it predicts that each party should have an equal chance of winning.
There is an empirical debate, for example, Vogl (2014) and De la Cuesta and
Imai 2016, about whether this is the case and the model gives theoretical reason
to believe that there should be no bias.5

We begin with a stark sequential move model in which one party commits
�rst to a turnout target and the other observing that target responds with its
own turnout: our goal is to elucidate when the second mover might prefer a close
election. Subsequently we extend this result to the standard model where both
parties simultaneously choose turnout targets. Finally, we examine empirically
whether non-pivotal models of turnout are consistent with the number of close
elections. To do this we need data on a substantial number of broadly compa-
rable elections. We chose US gubernatorial and senatorial elections since 1995
as satisfying these criteria and show that indeed there are more close elections

4IEP Informes de Opinión, https://iep.org.pe/noticias/informes-de-opinion/
5There is also a literature using close elections for regression discontinuity analysis, dis-

cussed, for example, in Caughey and Sekhon (2011) but while relevant to the issue of biases
it does not address the issue of how frequent are close elections.
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than predicted by non-pivotal turnout models.

2. The Model

Voters are divided into two parties k = {1, 2}. There are N individuals and
party k has ηkN members where ηk ≥ 0 and η1 + η2 = 1. The parties compete
for a common prize worth 1 per capita by turning out their members. This
turnout is determined by targets set by the parties, by random noise, and by
the individual decisions of members. The party that turns out the most voters
wins the prize.

Party turnout is set in two stages. Each party chooses a target fraction of
voters to turn out. One party, chosen at random, which without loss of generality
we may designate as party 1, or the �rst mover, becomes committed to its target
fraction 1 ≥ φ1 ≥ 0 �rst. The other party denoted as party 2 and not yet
committed is the second mover. The second mover observes the commitment
of the �rst mover and chooses a target number of additional members γh2 to
turn out, aiming for a total of η1φ1N +γh2 voters. Here h2 is an integer chosen
by the second mover and γ is a positive integer called the granularity. This
re�ects the idea that while the second mover can attempt to turn out more or
less voters than the �rst mover, they can only choose between discrete levels of
e�ort. For example, if γ = 12 then the second mover can choose to match the
�rst party with h2 = 0, or overmatch them with γh2 = 12, 24... but cannot be
so precise as to try to overmatch them by exactly 6 votes. The actual turnout
of each party k is equal to targeted turnout plus a random fraction of additional
voters ζk exponentially distributed with mean σ.

There are two costs of turning out a fraction of voters: participation costs,
such as time and inconvenience, and the incentive costs of getting voters to
turn out. Both parties face the same participation costs. We order members
so that higher numbered members have a higher participation cost and assume
that member ik in party k faces a participation cost that increases linearly with
their percentile in the party ik/(ηkN) so is given by cik/(ηkN), where c is a
positive constant.

Our core assumption is that each party is able to design a mechanism pro-
viding incentives to individual members by using social pressure to punish those
who fail to do their duty. When the turnout target is φk the mechanism speci�es
that members with the lowest costs should vote: that is, member ik should vote
if ik/(ηkN) ≤ φk. Whether the rule was complied with or not is only imper-
fectly observed, however. Whether or not a party member voted is perfectly
observed, and for those who voted it is perfectly observed whether or not they
did what they were supposed to do so. However, there is imperfect information
about whether non-voters were supposed to vote. Speci�cally, for some µ > 0 we
assume that it is impossible to determine if a member with ik/(ηkN) ≤ φk + µ
was supposed to vote or not. In order for voting to be incentive compatible,
all these members are punished with an endogenous utility penalty Pk. Pun-
ishment takes place before the results of the election are known. The incentive
cost to the party of issuing the punishment Pk is ψPk where ψ > 0.
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To re�ect the incentives of members, we require that the punishment schemes
used by the parties satisfy the interim incentive compatibility constraints that
party members who are supposed to vote are willing to do so. Given this, parties
attempt to maximize the per capita expected value of winning the prize less the
expected per capita costs of turning out voters. Our solution concept is subgame
perfect Nash equilibrium.

3. The Main Result

Our main result gives simple su�cient conditions under which these equilib-
ria have high turnout and thin margins: this is in answer to the main question
of the paper.

De�ne h1 = −h2 and observe that that the actual vote di�erential is the
intended di�erential γhk minus the di�erence in added voters ξk = ζ−k − ζk.
Because the added voters ζk are independent exponentially distributed with
mean σ, their di�erence has the Laplace distribution with cumulative distribu-
tion function symmetric around zero given by F (ξ) = 1− (1/2)e−ξ/σ for ξ ≥ 0
and F (ξ) = (1/2)eξ/σ for ξ ≤ 0. Hence the probability that k wins the elec-
tion is F (γhk) and the pivotality, the probability that a voter in party k who
is supposed to vote but does not will tip the election from a win to a loss, is
π(γhk) = F (γhk)− F (γhk − 1).

Theorem: High Turnouts and Razor Thin Margins. For given ηk, µ, σ
and γ ≥ 2 there exists c, ψ such that for c ≥ c, ψ ≥ ψ there exists an N such

that for N ≥ N the �rst mover commits to a target φ̂1 and the second mover

responds with h2 = 0. Moreover as N →∞

η1φ̂1 =
F (γ)− F (0)

µψc
+
π(γ)

c
,

the distribution of vote margins in proportion to turned out voters converges

in probability to zero, and pivotality π(γ) and F (γ) − F (0) are decreasing and

absolute vote margins are increasing in σ.

Proof. We prove the �nal two statements with the main proof coming subse-
quently. With h2 = 0, the vote margin is distributed as Laplacean with scale
σ. This immediately implies that absolute vote margins are increasing in σ.
Expected turnout converges to(

F (γ)− F (0)

µψc
+
π(γ)

c

)
N,

so dividing the Laplacean random variable by this we see that the resulting
distribution converges in probability to zero.

We have π(γ) = F (γ) − F (γ − 1) which like F (γ) − F (0) must decrease as
the scale parameter σ increases.
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The �rst key point is that the turnout in percentage terms is at least π(γ)/η1c
for both groups even for very large N : this is the sense in which turnout is high.
The second key point is that in large populations vote margins in proportion
to turned out voters are very small. The third key point is that as σ decreases,
meaning better targeting, turnout increases and the vote margins grow thinner.
This is our �rst key comparative static result.

Before turning to the proof, we brie�y discuss the role of the parameters.
There are (apparently) two measures of targeting: γ the granularity and σ the
noise and two measures of the social cost of punishment µ the fraction who
are punished wrongly and ψ the direct social cost of punishment. Why this
apparent redundancy?

Granularity is introduced because the proof of the main theorem fails with
granularity γ = 1, otherwise, despite the plausibility, we would not have intro-
duced it. The reason is this: due to a slight asymmetry between pivotality for
small positive and small negative vote di�erentials the optimal target di�eren-
tial is one not zero. If we allowed this when the second mover reduced incentive
costs to zero the �rst mover would still face positive incentive costs and when
ψ was large would prefer to opt out. If granularity is as small as γ = 2 this
cannot happen: zero is better than two. As this seems plausible we adopt this
assumption. Note that larger granularity makes no di�erence: it is the noise σ
that is important.

In the incentive cost the parameters µ and ψ always appear as a product,
so there seems to be a redundancy. However, the two parameters play quite a
di�erent role in the analysis. The parameter µ, the fraction who are wrongly
punished, is taken to be reasonably small so as not to overlap with the upper
boundary on the population. This greatly simpli�es computations. However,
we cannot then assert �µ is large� hence we introduce also the direct cost ψ
which can be large.

We turn now to proving the main theorem. The problem of �nding equi-
librium can be divided into two steps: �rst, punishments should be chosen
optimally. Once this is done we are left with reduced form objective functions.
The second step is to use these reduced form objective functions to �nd the
equilibrium. First we �nd the reduced form objective functions. To provide
a symmetric de�nition, de�ne the fraction turned out by the second mover
φ2 = (η1Nφ1 + γh2)/(η2N).

Reduced Form Theorem. For given ηk, µ there exists c such that for any

c ≥ c the reduced form objective functions are given by

Uk = F (γhk)− (1/2)cηk(φk)2 − µψmax {0, cηkφk − π(γhk)} .

Proof. The direct cost of turning out a fraction φk of voters for party k in per

capita terms is (1/N)
´ ηkNφk

0
(ci/(ηkN))di = (1/2)ηkcφ

2
k. Observe that it is

never optimal for party to incur a per capita cost greater than ηk which is the
per capita value of the prize to each party member. Denote by S,L the small
and the large party, respectively. Hence, if c > 2/

(
ηS(1− µ)2

)
then no party
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chooses a turnout target φk > 1−µ. If c > 2ηL/η
2
S then the large party will not

choose a turnout target with more voters than the small party has. It follows
that the incentive cost per party member is µψPk. Consequently, the per capita
objective function of party k is the probability of winning minus the direct cost,
minus the incentive cost of punishment:

F (γhk)− (1/2)cηk(φk)2 − ηkµψPk.

Now we examine optimal punishments. Party k's marginal voter receives
−cφk for voting and −Pk − π(hk)/ηk for not voting, so the incentive constraint
is

Pk ≥ cφk − π(hk)/ηk.

Optimal punishment must be as small as possible. However, we must take
account of the fact that the lower bound on punishment might be negative due
to pivotality. Hence we solve the incentive constraints with equality to get P k
and with the actual punishment being Pk = max{0, P k}. Substituting this back
into the objective function gives the reduced form objective function shown.

Hereafter it is assumed that c is su�ciently large that the Reduced Form
Theorem holds. The steps below complete the proof of Theorem: High Turnouts
and Razor Thin Margins.

Proof. Since N is picked last, we assume it is su�ciently large in all steps.
First: The reduced form objective function of the second mover can be

written as

F (γh2)− (1/2)cη2

(
η1Nφ1 + γh2

η2N

)2

− µψmax

{
0, c(η1φ1 +

γh2
N

)− π(γh2)

}
.

(3.1)
Di�erentiate this with respect to h2 to �nd

(1/γ)dU2/dh2 =

F ′(γh2)− c

N

η1Nφ1 + γh2
η2N

− µψ1
(
c(η1φ1 +

γh2
N

) ≥ π(γh2)

)( c
N
− π′(γh2)

)
.

(3.2)

Second: For γh2 ≥ 1 we calculate the needed derivative in the �nal expres-
sion above

π′(γh2) = −(1/(2σ))e−γh2/σ
(
e1/σ − 1

)
.

It follows that if

φ1 ≤ φ̃1 =
π(0)

cη1
,



8

there is a unique solution denoted by ĥ2 in h2 ≥ 0 to

c(η1φ1 +
γh2
N

)− π(γh2) = 0.

From

c

(
η1φ1 +

γĥ2
N

)
− π(γĥ2) = 0, (3.3)

we see that the LHS is increasing in both ĥ2 and φ1 so it follows that as φ1 rises
ĥ2 must fall. That is, ĥ2 is decreasing in φ1.

Third: If φ1 ≤ φ̃1, then the optimal choice h∗2 in the region h2 ≥ 0 satis�es

h∗2 ∈
{
bĥ2c, dĥ2e

}
. For 0 ≤ h2 < ĥ2 we have

(1/γ)dU2/dh2 = (1/(2σ))e−γh2/σ − c

N
(
φ1η1
η2

+
γh2
η2N

)

≥ (1/(2σ))e−γĥ2/σ − c

N
(
φ1η1
η2

+
γĥ2
η2N

).

From equation 3.3 and using π(γhk) = (1/2)e−γhk/σ
(
e1/σ − 1

)
, the right-hand

side of the inequality is equal to

(1/(2σ))e−γĥ2/σ − 1

η2N
(1/2)e−γĥ2/σ

(
e1/σ − 1

)
,

which is positive for su�ciently large N : it follows that the optimum is at least
bĥ2c.

For h2 ≥ ĥ2 we have

(1/γ)dU2/dh2 = (1/(2σ))e−γh2/σ− c

N
(
φ1η1
η2

+
γh2
η2N

)−µψ
( c
N

+ (1/(2σ))e−γh2/σ
(
e1/σ − 1

))
≤ (1/(2σ))e−γh2/σ − µψ

(
(1/(2σ))e−γh2/σ

(
e1/σ − 1

))
= (1/(2σ))e−γh2/σ

(
1− µψ

(
e1/σ − 1

))
.

This is negative for µψ
(
e1/σ − 1

)
> 1; hence, the optimum is at most dĥ2e for

ψ > 1/(µ(e1/σ − 1)).
Finally, utility from h∗2 is

F (γ)− (1/2)cη2

(
η1φ1
η2

+
γh∗2
η2N

)2
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while utility from h2 = 0 is

F (0)− (1/2)cη2

(
η1φ1
η2

)2

,

so that for su�ciently large N the choice h∗2 is better except when h∗2 = 0.

Fourth: The optimum in 0 ≥ γh2 ≥ log(1/ logN) is h2 = 0. For h2 ≤ 0 we
have π(γh2) = (1/2)eγh2/σ(1− e−1/σ). Hence

c

N
− π′(γh2) =

c

N
− (1/(2σ))eγh2/σ(1− e−1/σ)

so for γh2 ≥ log(1/ logN) and su�ciently large N this is negative so from 3.2
U2 is increasing in h2 for su�ciently large N .

Fifth: De�ne φ̂1 by

η1φ̂1 =
F (γ)− F (0)− (1/2) cγ2

η2N2 − µψc γN + µψπ(γ)
cγ
η2N

+ µψc
.

Then at φ̂1 and h2 = 0 both parties get at least F (log(1/ logN)) in utility.

Utility at φ̂1 and h2 = 0 is given by

U1 = 1/2− (1/2)cη1φ̂
2
1

U2 = 1/2− (1/2)c

(
η1
η2

)
η1φ̂

2
1,

for large enough ψ, since incentive costs are zero at φ̂1 and h2 = 0 for large
enough ψ. Let ν = max{ηk/η−k}: we must show

1/2− (1/2)cνη1φ̂
2
1 > F (log(1/ logN))

For N large this means showing that

1/2− (1/2)
1

c
νη1

(
F (γ)− F (0)

η1µψ
+
π(γ)

η1

)2

> 0

which is true for large enough c.

Sixth: When the �rst mover sets φ1 ≥ φ̂1 and the second mover chooses
h2 ≤ F (log(1/ logN)) the �rst mover gets less utility than at φ̂1 and h2 = 0.

If the second mover chooses h2 ≤ F (log(1/ logN)) and φ1 ≥ φ̂1 the greatest
possible utility for the �rst mover is

1− (1/2)cη1φ̂
2
1 − µψ

(
cη1φ̂1 − π((γ/2)(1/ logN)1/σ)

)
(3.4)

as against
1/2− (1/2)cη1φ̂

2
1. (3.5)
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Observe that for large enough N and for ψ ≥ 1,

φ̂1 ≥
π(γ)

c
(
η1
η2

)(
γ
µ

)
+ η1c

.

Hence for su�ciently large ψ and N the former utility 3.4 is less than the latter
3.5

1− (1/2)cη1φ̂
2
1 − µψ

(
cηK φ̂1 − π((γ/2)(1/ logN)1/σ)

)
< 1/2− (1/2)cη1φ̂

2
1.

Seventh: For φ1 ≤ φ̂1 the best response satis�es h2 ≥ 0. From four if
h2 < 0 then it is also no greater than (1/γ) log(1/ logN)) yielding the second
mover no more utility than F (log(1/ logN)). Since for �xed h2 the second
mover utility strictly decreases in φ1, the same is true for the optimal h2. Hence
the second mover utility is bigger at φ1 than at φ̂1, but from five the second
mover utility at φ̂1 is greater than F (log(1/ logN)), so the optimum cannot be
h2 ≤ (1/γ) log(1/ logN)).

Summary: We know from six that the optimal commitment of the �rst
mover φ1 ≤ φ̂1 and from seven that the best response of the second mover in
this range satis�es h2 ≥ 0. We now examine the best response h2 of the second
mover in this range showing that it weakly declines with φ1 until h2 = 1. It
then remains constant until φ̂1 is reached at which point it is h2 = 0.

Eighth: As φ1 increases from zero ĥ2 decreases until ĥ2 = 0 and h∗2 is

optimal in this range. We know from two that ĥ2 is decreasing in φ1. At
φ1 = 0 for large N ,

c
γ

N
− π(γ) < 0

implies that ĥ2 > 1. As φ1 rises from 0, then, ĥ2 decreases until it eventually
reaches 0. We know from three that as long as ĥ2 ≥ 0, h∗2 ≥ 0 is optimal.

Ninth: Denote the point φ
1
where ĥ2 = 1. In the range φ

1
≤ φ1 < φ̂1 the

best response is h2 = 1. At φ̂1, h2 = 0 is also a best response: since it is the
unique best response for slighly higher φ1 we assume that it must be chosen as
well at φ̂1.

At h2 = 1 the second mover utility is given by

F (γ)− (1/2)cη2

(
η1Nφ1 + γ

η2N

)2

− µψcη1Nφ1 + γ

N
+ µψπ(γ).

As long as cη1φ1 − π(0) ≤ 0, the utility bene�t over h2 = 0 is given by
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F (γ)−F (0)−(1/2)cη2

(
η1Nφ1 + γ

η2N

)2

+(1/2)cη2

(
η1Nφ1
η2N

)2

−µψcη1Nφ1 + γ

N
+µψπ(γ)

= F (γ)− F (0)− (1/2)
c

η2N2

(
2η1Nφ1γ + γ2

)
− µψcη1Nφ1 + γ

N
+ µψπ(γ),

which is decreasing in φ1 and equal to zero at φ̂1.
As N →∞

φ̂1 →
F (γ)− F (0)

η1µψc
+
π(γ)

cη1
,

so φ̂1 < φ̃1 for big enough ψ and the utility bene�t calculation is exact.

Tenth: From eight, the best response of the second mover is h∗2 ≥ 1 for
φ1 ≤ φ1. Hence the utility of the �rst mover is given by

U1 = (1/2)e−γh
∗
2/σ − (1/2)cη1(φ1)2 − µψmax(0, cη1φ1 − π(−γh∗2)).

Let
Û1 = (1/2)e−γĥ2/σ − (1/2)cη1(φ1)2

and

Ū1 = (1/2)e−γbĥ2c/σ − (1/2)cη1(φ1)2.

Note that U1 ≤ Ū1 for φ1 ≤ φ1 with equality if h
∗
2 = ĥ2 and cη1φ1−π(−γh∗2) ≤ 0,

and Ū1 = Û1 for φ1 ≤ φ
1
if h∗2 = ĥ2. Moreover, choosing φ1 such that h∗2 6= ĥ2

cannot be a best response, since choosing a slightly smaller φ1 reduces partici-
pation and incentive costs for the �rst mover without changing the probabililty
of winning and pivotality. We claim that Û1 is strictly increasing in φ1 for
0 ≤ φ1 < φ̂1. To see this, di�erentiating Û1 with respect to φ1 we �nd

dÛ1/dφ1 = −(1/2)(γ/σ)e−γĥ2/σdĥ2/dφ1 − cη1φ1.

From the implicit function theorem and c(η1φ1 + γĥ2

N )− π(γĥ2) = 0,

dĥ2/dφ1 = − cη1

γc/N + (γ/(2σ))(e1/σ − 1)e−γĥ2/σ
.

Hence,

dÛ1/dφ1 = (γ/(2σ))e−γĥ2/σ
cη1

γc/N + (γ/σ)(e1/σ − 1)e−γĥ2/σ
− cη1φ1.

This is strictly positive for large N if
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φ1 <
1

(γ/σ)(e1/σ − 1)e−γ/σ
.

Since for large N we have

φ̂1 →
F (γ)− F (0)

η1µψc
+
π(γ)

η1c
,

we see that this is true for su�ciently large c.
Eleventh: We know that the optimal commitment satis�es φ1 ≤ φ̂1, and

for every φ1 ≤ φ
1
that may be a best response the utility is bounded above by

Û1 which is strictly increasing in φ1. The last step is to note that the utility at
φ̂1 is equal to Û1.

4. Simultaneous Moves

We turn now to the situation where rather than one party committing both
parties move simultaneously. Our goal is to establish that the smaller of the
two parties has strong reason to avoid the simultaneous move game by making
a credible commitment to φ̂S .

Our simultaneous move results are driven by the proof of Theorem: High
Turnouts and Razor Thin Margins. There we computed the best responses of
the two parties. By intersecting these best responses we can use those results to
establish the important fact that if the game is played simultaneous move, that
is, both parties simultaneously choose a commitment φk, then there are pure
strategy equilibria with high turnout and razor thin margins. After presenting
this result we will discuss the connection to the sequential move case, implica-
tions for the e�ciency of equilibrium and the incentives to commit. Recall that
we use the subscripts S,L to refer to the small and large party respectively.

Theorem: Simultaneous Pure Strategy Equilibria. For given ηk, µ, σ and

γ ≥ 2 there exists c, ψ such that for c ≥ c, ψ ≥ ψ there exists an N such that

for N ≥ N there exists φ̂L, the same as in Theorem: High Turnouts and Razor

Thin Margins, and φ > φ̂L such that there is a pure strategy equilibrium of the

simultaneous move game if and only if η1φ1 = η2φ2 ∈ [ηLφ̂L, ηLφ].

In the proof we observe that ηSφ̂S < ηLφ̂L so that we have the following
picture. If the small party moves �rst the equilibrium is ηSφ̂S while if the large
party moves �rst the equilibrium is ηLφ̂L and this is also a simultaneous move
game equilibrium. However, there are also simultaneous move equilibrium for
larger values of η1φ1 = η2φ2. These equilibria (with both parties aiming to
turn out the same number of voters) are Pareto ranked, as lower ηkφk reduces
costs for both parties and does not change the chances of winning. Hence, as
some coordination is needed in the simultaneous move case to hit the exact
same target, it seems that the two parties might agree on ηLφ̂L. However, they
would both do even better if the small party moved �rst, so indeed if they could
coordinate on this they would.
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Notice that the theorem characterizes pure strategy equilibria and does not
address the existence of other mixed equilibria. We can get a handle on mixed
equilibria by considering the limiting case N =∞ where there are a continuum
of voters. With a continuum of voters there is a sense in which no voter is
pivotal, so the analysis is that of an all-pay auction: these auctions have been
extensively studied�see Levine, Mattozzi and Modica (2024) for a review of
the literature and a detailed set of results that include the cost functions studied
here. The upshot is that there is a unique equilibrium in which the larger party
mixes continuously while the smaller party has an atom at zero turnout and
mixes continuously above that point.

A curious point is that this limit model fails upper hemi-continuity. That
is, the �nite N models for the parameters in Theorem: Simultaneous Pure
Strategy Equilibria converge to pure strategies in the limit game, but these are
not equilibria. The problem, however, is that the limit game is not properly
de�ned. In the �nite population games if φS 6= φL it is true that pivotality
converges to zero, but if φS = φL is remains �xed at π(0). Hence the correct
limit game should assume pivotality is π(0) when there is an exact tie. With
this modi�cation upper hemi-continuity is restored: a small upward deviation
from the tie increases the chances of winning by 1/2 but increases the incentive
cost by µψπ(0) so that for ψ ≥ 1/(2µπ(0)) we have an equilibrium.

Notice, however, that the all-pay auction strategies remain a mixed equilib-
rium: since the probability of a tie is zero pivotality is in fact zero, so the all-pay
auction calculations under the assumption of zero pivotality remain correct. We
can also say a bit about the possibility of other mixed equilibria. The unique
all-pay auction equilibrium is the only possibility if pivotality is zero. For piv-
otality to be non-zero with mixing there must be a positive probability of a tie
at more than one point. This means that there is a possibility of miscoordi-
nation in which one party chooses one mass point and the other party chooses
the other: and indeed for one of the two parties conditional on the choice of
mass point the probability of miscoordination is at least 1/2. This means that
this choice results in pivotality of at most π(0)/2 so that if ψ < 1/(µπ(0)) it is
pro�table to deviate. In other words, in the range 1/(µπ(0)) > ψ ≥ 1/(2µπ(0))
the pure strategy and all-pay auction equilibria constitute all equilibria.

We can now say something about the incentive of the small party to commit:
in the all-pay auction equilibrium they receive utility of zero, while if they make
the optimal commitment they get positive utility so they would clearly like to
commit. Moreover, if the size of the two parties is equal, the other party strictly
agrees this is a good idea, and so would also agree provided the two parties are
of su�ciently similar size.

To what extent do these results about mixed strategy equilibria extend to the
�nite case? Because the equilibrium correspondence is upper hemi-continuous
there cannot be equilibria substantially di�erent than those in the limit case -
but is there an equilibrium that resembles the all-pay auction equilibrium? This
question of lower hemi-continuity is mathematically far more di�cult than that
of upper hemi-continuity and we do not know the answer. From a practical point
of view, however, approximate equilibria, that is equilibria in which deviations
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yield at most trivial gains, are no less descriptive of reality than exact equilibria.
For approximate equilibria lower hemi-continuity is easy. In particular, �xing
the equilibrium strategies of the limit game when population N is large, the
probability of being pivotal with those strategies is trivially small, so the loss
to an individual in ignoring it is also trivially small.

Hence our second main conclusion is that the smaller party has strong reason
to try to make a credible commitment turning the game into a sequential rather
than simultaneous move game: and indeed for a range of ψ the larger party has
no reason to try to prevent this.

Proof. The exact value of φ̂k was established in the proof of Theorem: Simul-
taneous Pure Strategy Equilibria as

η1φ̂1 =
F (γ)− F (0)− (1/2) cγ2

η2N2 − µψc γN + µψπ(γ)
cγ
η2N

+ µψc
.

This is decreasing in η2 so largest at ηS , that is when the large party is �rst
mover.

From the summary we know that for φ1 ≤ φ̂1 and the best response h2 of
the second mover declines with φ1 until h2 = 1. It then remains constant until
φ̂1 is reached at which point it is h2 = 0. From third and fourth and fifth

we know that for larger φ1 the best response is h2 = 0 provided that

1/2− (1/2)cνη1φ
2
1 > F (log(1/ logN)).

We showed that by choosing c large enough we can satisfy

1/2− (1/2)cνη1φ̂
2
1 > 2F (log(1/ logN))

so that there is a φ′ > φ̂1 independent of N (for N large enough) for which the

best response to φ1 ∈ [φ̂1, φ
′] is h2 = 0.

Consider that for N large enough ηSφ̂S and ηLφ̂L are arbitrarily close to-
gether, so in particular ηLφ̂L < min{ηSφ′S , ηLφ′L}. In particular if

η1φ1 = η2φ2 ∈ [ηLφ̂L,min{ηSφ′S , ηLφ′L}

both are playing a best response to each other so this is a pure strategy Nash
equilibrium.

As we try to increase ηkφk above this range utility for both parties decreases
until one becomes indi�erent to choosing some h2 less than log(1/ logN)) at
which point (and above) we no longer have an equilibrium. This de�nes φ.

If hk 6= 0 for some k this cannot be a pure strategy equilibrium by the
argument in eleventh that for large ψ one party must be getting negative
utility so would be better o� at 0.

Finally, if η1φ1 = η2φ2 < ηLφ̂L then the best response of the small party is
h2 ≥ 1 by eighth, so this is not be an equilibrium either.
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5. Are Elections Close?

We have proposed a novel model of razor thin margins with high turnout.
We argued in the introduction that such a model is needed because existing
models cannot explain such narrow margins along with high turnout. Here we
elaborate on that by examining existing models of voter turnout.

The most obvious source of close elections is the standard pivotal voter
model of Palfrey and Rosenthal (1985). The well known problem with this
model is that while it is consistent with narrow margins and is consistent with
high turnout (if there are many committed voters) it is not consistent with both:
indeed the di�cult with explaining strategic high turnout by the model is the
main reason for the subsequent development of ethical voter and peer pressure
models. The empirical point was made strongly in Coate, Conlin and Moro
(2008)

As there are no existing models that combine random turnout with pivotality,
we examine random turnout ethical voter/peer pressure models. Recall that
if parties set targets φ1, φ2 then ζk is the random vote added to ηkφkN to
determine the outcome of the election. The standard model (see for example
Coate and Conlin (2004)) is a simultaneous move version of the targeted model
in which pivotality plays no role: we simply assume that parties provide e�ort
with some cost Ck(φk) which is continuous and increasing when positive. It is
presumed that ζk has a continuous density and the work of Levine and Mattozzi
(2022) shows that there is an equilibrium. However, as shown there and in the
work of Ewerhart (2017) if the noise is relatively small then the equilibrium
involves mixed strategies providing a second source of noise.

To analyze the closeness of elections in a non-parametric way, we compute
two bounds for this model, one for larger noise and one for smaller noise. The
�rst is computed from the fact that when noise is large close elections cannot
be that common. The second is computed by approximating the equilibrium by
a mixed strategy Tullock equilibrium and showing that the endogenous noise is
su�ciently great that close elections cannot be that common. Subsequently we
apply both bounds to election data to show that razor thin elections with high
turnout are indeed di�cult to reconcile with existing models.

Larger Noise Bound

Let f denote the common continuous density of ζk/N .Key to our results
is the assumption of regular noise. We say that a positive random variable χ
with Eχ = 1 is regular if it has a continuous decreasing density function and
R ≡

´
[f(χ)]

2
dχ ≤ 1/2. A wide variety of distributions satisfy this assumption:

the uniform, the triangular, the gamma, the exponential and the squared nor-
mal (chi-squared with two degrees of freedom). Noise is regular if ζk has the
distribution of sχ for some regular χ and s > 0.

To understand why we require noise to be regular, observe that ξ1 = ζ1−ζ2 is
the random component of the vote fraction di�erential and that varξ1 = 2varζ1.
If this variance is small then there can be close elections. However, large variance
does not rule out close elections: For example we could have a substantial point



16

mass at the origin and tails that are Pareto like so that the variance is quite
large, indeed in�nite. This would result in close elections, but also makes no
sense as a model of noise. The assumption of regularity rules out this kind of
clustering at the origin. Observe that R/s is the height of the density function
of ξ1 at zero: the assumption of regularity imposes the requirement that this
not be too large.

As we know that an equilibrium exists, let ν denote the equilibrium vote
di�erential as a fraction of the population - conditional on the realization of
randomization if the parties are using mixed strategies. Note that the expected
number of added random voters is sN .

Theorem 5.1. For any w > 0 we have Pr(|ν| ≤ w) ≤ w/s.

Notice that this bound is not very useful for small s and in particular com-
pletely useless if 2s ≤ w.

Proof. Observe that the highest probability of |ν| ≤ w occurs if both parties

choose the same target turnout, in which case ν = ξ1. Clearly ξ
0

kξ1 is symmetric
around zero and from the convolution we see that it is single peaked with a
maximum at zero. Since χ is regular the maximum of the density f(ξ1) ≤ 1/(2s).
Since ξ1 is single peaked the greatest probability of |ν| ≤ w occurs when ξ1 is
uniformly of height 1/(2s) and multiplying the width of the interval 2w gives
the stated bound on the probability.

Small Noise Bound

We approximate the case of small noise with an all-pay auction. In the
Appendix we argue this is a good approximation for s < 0.16. We know from
Levine and Mattozzi (2022) that for small s the equilibrium probability of ties
will be small regardless of the presence of the noise. We study the benchmark
case of constant direct marginal cost used in empirical studies such as Shachar
and Nalebu� (1999) and Coate and Conlin (2004).

Let υ denote the equilibrium vote di�erential as a fraction of votes cast.
(Note that the denominator of υ is di�erent than the large noise ν.)

Theorem 5.2. In an all pay auction with the standard assumption of constant

marginal direct cost of participation Pr(|υ| ≤ ω) ≤ ω.

Proof. Greater convexity of the cost function results in more ties, so we are
safe to disgard the monitoring cost as this decreases convexity. With constant
marginal cost the greatest probability of a tie is when the two parties are equal,
so we compute the symmetric equilibrium.

We may normalize so that total direct cost is equal to 1 at φ = 1. Hence
marginal cost cφ integrated from 0 to 1 which is c/2 should be equal to the per
capital value of the prize which is one, so c = 2. Then the equilibrium cdf is φ2

and the density is 2φ.
Since we are dealing with near ties, we may assume that the vote di�erential

relative to votes cast by a single party is ω/2. Suppose 1 is the winning party:
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conditional on φ1 the probability that the winning margin is less than or equal
to ω/2 is given by

ˆ φ1

(1−ω/2)φ1

2φdφ = (1− (1− ω/2)2)φ21 = (1− ω/4)ωφ21.

This is slight overestimate because it does not account for the upper boundary.
To get the overall probability we integrate with respect to φ1 to �nd

ˆ 1

0

(1− ω/4)ω2φ31dφ1 = (1− ω/4)ω/2 ≤ ω/2.

We double this to account for the equal chance that 2 is the winning party to
�nd the stated result.

6. Are Razor Thin Elections Common?

In this section, we argue that if elections are simultaneous contests, as in
existing models, electoral margins as tight as those in the motivating examples
are too unlikely. This motivates our interest in the possibility of targeting
ocurring during the election cycle.

Peruvian Elections

We take as our starting point the year 2000 when Fujimori resigned: elections
cannot be considered free and fair during his term in o�ce. Since that time there
have been �ve elections in Peru. Two of them have razor thin vote margins
relative to votes cast of 0.0024 and 0.0025. Turnout in 2016 was 82% so the
corresponding margin as a fraction of the (voting) population is 0.0020.

From Theorem 5.1 Pr(|ν| ≤ 0.0020) ≤ 0.0010/s. We observe that 40% of
elections were this close and this probability is attained when s = 0.25%. As
this is more than an order of magnitude less than the critical cuto� of 16 as can
be seen in Figure 7.1 in the Appendix the relevant model is one of small noise.

From Theorem 5.2 we see that the probability Pr(|υ| ≤ .0025) ≤ .0025. With
a probability of 0.25% it is extremely unlikely we would see one of these events
in �ve elections, let alone two.

US Gubernatorial Elections

In the US we take our starting point as 1995 when the election of Newt
Gingrich as speaker of the House of Representatives indicates the culmination
of the historical realignment of the two parties: the Republicans, historically the
party of the north and Democrats, historically the party of the south, shifting
regions and platforms.

During this period there were 329 gubernatorial elections. One of these
elections, the 2004 Washington state election, was extremely close, being decided
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by 129 votes out of 2.9 million votes cast.6 There were approximately 4 million
registered voters for that election.

From Theorem 5.1 Pr(|ν| ≤ 0.00003) ≤ 0.000016/s. We observe that 0.3%
of the elections were this close and this probability is attained when s = 0.5%,
like Peru's, more than an order of magnitude less than the critical cuto� of 16%.

From Theorem 5.2 we see that the probability Pr(|υ| ≤ 0.000044) ≤ 0.000044.
With a probability of 0.0044% there is less than a 1.5% chance of seeing one
such event in 329 trials.

US Senatorial Elections

During the 27 years between 1995 and 2022 there were 453 senatorial elec-
tions. One of these elections, the 2008 Minnesota election, was extremely close
being decided by 225 votes out of 2,424,946 votes cast for one of the two leading
candidates.7 We �gure turnout at about 75%.

From Theorem 5.1 Pr(|ν| ≤ 0.00007) ≤ 0.000035/s. We observe that 0.2%
of the elections were this close and this probability is attained when s = 1.6%
larger than Peru or for gubernatorial elections, but still an order of magnitude
less than the critical cuto� of 16%.

From Theorem 5.2 we see that the probability Pr(|υ| ≤ 0.00009) ≤ 0.00009.
With a probability of 0.009% there is less than a 4% chance of seeing one such
event in 453 trials.

7. Conclusion

We propose a dynamic model of electoral competition to explain the apparent
abundance of knife-edge elections. If the cost of monitoring (ψ) and turning out
(c) voters are high, there is a knife-edge election in the sequential move case,
and in the simultaneous move case there are also equilibria of this sort. In
addition, the smaller group prefers to commit, and for a range of parameter
values the larger group will not object. When moves are sequential we �nd that
as the targeting of voters becomes more precise (σ declines) turnout increases
and elections become tighter.

It is worth looking at the four close elections in Peru, Washington and Min-
nesota to see if they �t the narrative of targeting by one party, while the other
remains committed. Of course targeting can happen at any time, but if the
signal is received early in the electoral cycle we ought to see one party main-
taining stable support while if the small party targets the large it has support
that creeps up to the large party level, while if the large party targets the small
it has support that creeps down to the small party level. Two of our elections
follow this narrative. As indicated in the introduction: the small party creeping

6https://www.nytimes.com/2004/12/31/us/governorelect-declared-in-washington-
recounts.html

7There was a third candidate on the ballot; it seems most relevant to the theory not to
count those votes as belonging to either party.
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up to a stable large political group is exactly what happened in Peru in 2021.
The opposite occurred in Minnesota in 2008. There support for Franken re-
mained relatively stable while support for the front-runner Coleman gradually
declined. We should mention as well that prior to the election it was expected
to be close: all of the major polling organizations rated the election a toss-up.

Our model of targeting provides a stylized, tractable view of changes in
political support during the election campaign. As illustrated by the examples,
the consideration of those changes seems extremely useful for understanding
close elections.
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Appendix: When Is The Tullock Approximation Good?

We have approximated elections with small values of s by an all-pay auction.
But how small we need s to be for this to be a reasonable approximation? As in
other contests, equilibrium strategies depend upon random turnout only through
the contest success function: the probability that a party wins as a function of its
intended turnout. We know from Levine and Mattozzi (2022) if contest success
functions are close in the sense of pointwise convergence then the equilibrium
strategies will be close in the sense of weak convergence. To get an idea of what
constitutes small s we turn our attention here to contest success functions.

We start by considering our benchmark case in which χ is a standard expo-
nential. In this case the vote di�erential follows a Laplace distribution, and the
probability of a draw greater than x is given by (1/2)e−x/s. Let S,L denote the
smaller and larger parties respectively. Then if both parties turn out all their
voters then the probability the smaller party wins is the probability

ξk > ηL − ηS = (1− ηS)− ηS = 1− 2ηS

and is
PeS = (1/2)e−(1−2ηS)/s.

Contrast this to the widely used Tullock (1967) contest, for which good
quantitative results are known. Given the Tullock contest success function
ηβS/(η

β
S + ηβL), the probability the small party wins is

PtS =
1

1 + ((1/ηS)− 1)β
.

Continuing to take the benchmark case of linear marginal cost Ewerhart
(2017) and Levine and Mattozzi (2022) show that in the Tullock model for
β < 4 there is a unique pure strategy equilibrium, while for β > 4 all equilibria
require mixing and the payo�s to both parties are exactly the same as for the all
pay auction. If the small party is half the size of the large party so ηS = 1/3 at
the critical cuto� β = 4 we �nd using the expression above PtS = 1/17. Solving

PeS = (1/2)e−(1−2ηS)/s = 1/17

for s with ηS = 1/3 we �nd

(1/2)e−(1/3)/s = 1/17

s =
1/3

log(17/2)
= 16%.

In other words, with noise even as large as s = 0.16 the equilibrium already
resembles that of the all-pay auction.

To better visualize the contest success functions�the functions from which
equilibria are derived�we plot both the Tullock and exponential for di�erent
values of s. The values of s = 0.016, 0.005, 0.0025 correspond to those derived
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Figure 7.1: Probability of Small Party Winning

The horizontal axis represents ηS and the vertical axis the probability of the
small party winning.
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above for speci�c elections: as can be seen they are quite close to an all-pay
auction.

We should comment brie�y on the fact that the Tullock (1967) model is
derived from a multiplicative random turnout while we have assumed additive
random turnout. We have done so in order to enable a tractable model of
targeting. There are not great di�erences, however, between the multiplicative
and additive models as can be seen from the blue Tullock line and orange s =
0.16 line in Figure 7.1.

We should add that the additive case �ts the Hirshleifer (1989) model, which
in turn is compatible with our exponential assumption. Unfortunately, unlike
the Tullock model, good quantitative results about mixed equilibrium are not
known for the Hirshleifer model. A key point is this: the Hirshleifer model leads
to more randomization by parties than the Tullock model�in particular, pure
strategy equilibria are possible only when one party makes no e�ort at all.8 In
this sense we think that computing the critical cuto� for the Tullock model is
relatively conservative.

Approximate Equilibrium

Nash equilibrium in a parametric model is at best an approximation to
reality. It says that equilibrium strategies are such that no player can gain by
deviating. Theorists have weakened this to the notion of ε-equilibrium which
asserts that strategies are such that no player can gain more than ε by deviating.
From an applied point of view an ε-equilibrium with small ε is as valid a theory
as exact equilibrium. This leads us to ask: suppose that the parties employ
their equilibrium strategies for the all-pay auction when in fact there is small
noise measured by s? In particular, how great is the loss ε? Before computing
a bound, observe that the probability of a tie if parties use their all-pay auction
equilibrium strategies and there is noise is lower than in the all-pay auction
itself, so those bounds remain valid.

To get a bound on the greatest possible loss given the other player is em-
ploying their all-pay auction equilibrium strategy we can simply bound the
di�erence between the approximate (all-pay) and true (s > 0) objective func-
tions: the greatest gain to deviating can be no greater than this. Since costs
of intended turnout are the same in the approximate and true model, we need
only consider the di�erences between the winning probabilities.

Continuing to normalize players equilibrium choices to run between 0 and 1
the probability the opponent bids less than or equal to φk is φ2k. That is the
probability of winning in the all pay model with a bid of φk is simply φ2k. For
small φk this understates the chances of winning since a good draw could bring
a win, but the probability the opponent is bidding there is only 2φk which is
not large. For intermediate φk there are extra chances of winning due to good
draws, but extra chances of losing due to bad draws and these tend to cancel
out. We see, then, that the worst case is high φk since there are extra chances

8Levine and Mattozzi (2022).
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of losing and the opponent is likely to bid there. Hence we may bound the loss
by computing the loss to the bid φk = 1. For the exponential/Laplace model
the added chance of losing when the opponent bids φ−k is (1/2)e−(1−φ−k)/s and
to get a bound we integrate over all opponent bids from 0 to 1.

ε =

ˆ 1

0

2φ−k(1/2)e−(1−φ−k)/sdφ−k = e−1/s
ˆ 1

0

φ−ke
φ−k/sdφ−k.

With change of variable this becomes

ε = e−1/s
ˆ 1/s

0

(sy)eysdy,

which we may integrate by parts to �nd

ε = s(1− s) ≤ s.

In conclusion s measures the maximum loss from employing the all-pay auc-
tion strategy against an opponent who does the same when the noise is given by
s > 0. The values of s = 0.016, 0.005, 0.0025 correspond to those derived above
for speci�c elections. In particular, we may wonder if, given all the practical
di�culties of organizing a party, it would engage in elaborate strategizing in
order to increase the chances of winning by at most a quarter to one and half
percent.
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