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Abstract

An adversarial forecaster representation sums an expected utility function

and a measure of surprise that depends on an adversary’s forecast. These rep-

resentations are concave and satisfy a smoothness condition, and any concave

preference relation that satisfies the smoothness condition has an adversarial

forecaster representation. Because of concavity, the agent typically prefers to

randomize. We characterize the support size of optimally chosen lotteries, and

how it depends on preferences for surprise. The preferences induced by an ar-

bitrary sequential zero-sum game have an adversarial forecaster representation

if and only if the adversary has a unique best response to each lottery.
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1 Introduction

Consider an agent who must choose one of their local sports team’s matches to watch.

They care only about whether their team wins or loses, and prefer to watch their

team win for sure than lose for sure. Some theories of preferences over lotteries

assume stochastic dominance or monotonicity, which implies that the agent’s most

preferred match is one where their team is guaranteed to win. But that would be a

rather boring match, and the agent might prefer to watch a match where their team

is favored but not guaranteed to win. For this reason, we might wish to reject the

axiom of monotonicity. Similar considerations arise in political economy in the theory

of expressive voting, in which people get utility from watching a political contest, and

their utility is enhanced by participation. Just as with sports matches, some may

prefer a more exciting contest, so even without strategic considerations turnout is

likely to be higher when the polls show a close race (see for example Levine, Modica,

and Sun [2021]).

Suppose, then, that the agent has a preference for being surprised, and that their

overall utility is the sum of a function of which team wins and a measure of how

surprising the outcome is. An outcome is surprising if it is difficult to forecast in

advance, where a forecast is a probability distribution over outcomes that is chosen

by an adversary who attempts to minimize the forecast error. We refer to this as the

adversarial forecaster representation.

We say that a preference has continuous local expected utility if there is a linear

functional, i.e. an expected utility, that continuously varies with the distribution

considered and that “supports” the preference at each lottery. We show that ad-

versarial forecaster representations generate preferences that have continuous local

expected utility. This is the only restriction the adversarial forecaster representation

imposes: Any preference relation that has continuous local utility can be generated

by an adversarial forecaster representation.

Preferences with local expected utility are concave in probabilities, so our model

of preference for surprise rationalizes randomization. The idea that stochastic choices

observed in the data may come from a deliberate desire to randomize was first ad-

vanced by Machina [1985] and has been empirically supported by the findings in

Agranov and Ortoleva [2017]. In this paper, we argue that one important channel

that induces a deliberate desire for randomization, hence a stochastic choice pattern,
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is a preference for surprise. Moreover, the adversarial forecaster representation lets

us impose additional restrictions on preferences in a natural way through the spec-

ification of how the forecast error is measured. One class of examples is when the

forecast error corresponds to the method of moments. We show that this results in

a quadratic - hence easy to analyze - utility function. This specification is strictly

concave in probabilities, implying that randomization is strictly optimal.1

We apply our model to the question of how to write a suspenseful novel. Our

model of an exciting story is a more general version of Ely, Frankel, and Kamenica

[2015], where the agent cared about a particular kind of surprise and did not care

about the outcome. In our model, the agent also cares about the state, and the sender

designs the initial distribution over states as well as how information is revealed. As

in Ely, Frankel, and Kamenica [2015] we find that the optimal information policy for

a given distribution over states does not depend on preferences over states. However,

the optimal distribution over states does depend on the receiver’s state preferences,

and thus so does the chosen information policy.

This information-design problem is a particular case of more general optimization

problems where an agent has adversarial forecaster preferences and the set of feasible

lotteries is described by moment restrictions such as Bayes plausibility (in the story-

telling example) or that the lottery’s expected value equals the endowment. To better

understand preferences for surprise and the extent of deliberate randomization, we

study optimal lotteries given these feasibility constraints.

One tractable case is where the forecast error has a finite-dimensional parameteri-

zation. Here we show that if the forecast error is a function of k parameters and there

are m moment restrictions, there is an optimal lottery with support of no more than

pk ` 1qpm ` 1q points. For example, in the sports case, suppose that preferences are

not merely over which team wins or loses, but also over the score, where the latter

can take on a continuum of values. If the forecaster is limited to predicting the mean

score and there are no moment constraints, then one most preferred choice is a binary

lottery between the two most extreme scores.

We then consider another tractable class of adversarial forecaster preferences,

those which arise when the agent trades off the interests of different potential selves.

We show that these preferences can also arise as the solution to optimal transport

1See Cerreia-Vioglio, Dillenberger, Ortoleva, and Riella, 2019 for the role of strict concavity on
deliberate randomization.
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problems, so we call them “transport preferences.” We show that optimal lotteries

for these preferences can be computed by assigning to each outcome the weight of the

types whose bliss points coincide with that outcome, so when the selves’ preferences

are more diverse, more outcomes are included in the support of the optimal lottery.2

Transport preferences do not always admit an adversarial forecaster representation

because sometimes the optimal assignment of outcomes to selves is not continuous

with respect to the lottery evaluated. Moreover, there are other natural cases where

the expected local utility is not continuous in the lottery, for example, if the forecast

error is given by absolute error rather than squared error. This leads us to extend our

model by weakening its continuity assumption. This relaxation identifies the class

of adversarial expected utility preferences, where the adversary acts to minimize the

agent’s utility, but has actions other than forecasts, and the agent and adversary’s

utility functions have a more general form. We also show that adversarial expected

utility preferences admit an adversarial forecaster representation if and only if the

adversary has a unique best response to each lottery.

We conclude our analysis by studying the monotonicity properties of these more

general preferences with respect to stochastic orders. First we show that these pref-

erences preserve a stochastic order if and only if, for every lottery, there is a best

response of the adversary that induces a utility over outcomes that reflects the stochas-

tic order. We then apply this result to stochastic orders capturing risk aversion (i.e.,

the mean-preserving spread order) and higher-order risk aversion. In particular, we

show how preferences for surprise may lead an agent with a risk-averse expected util-

ity component to have preferences that are overall risk loving. We then show how

the adversarial expected utility model can be used to capture correlation aversion.

Intuitively, the agent optimally chooses distributions that minimize the correlation

between outcomes to maximize the residual uncertainty of an adversary who observes

one of them.

Related Work Our paper is related to three distinct classes of risk preference mod-

els. It is closest to other models of agents with “as-if” adversaries, e.g. Maccheroni

[2002], Cerreia-Vioglio [2009], Chatterjee and Krishna [2011], Cerreia-Vioglio, Dillen-

berger, and Ortoleva [2015], and Fudenberg, Iijima, and Strzalecki [2015], as well as

2In the one-dimensional case, monotone transport preferences correspond to a case of the ordi-
nally independent preferences introduced by Green and Jullien [1988].
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to Ely, Frankel, and Kamenica [2015], where the adversary is left implicit. It is also

related to models of agents with dual selves that are not directly opposed, as in Gul

and Pesendorfer [2001] and Fudenberg and Levine [2006].

The ordinally independent preferences studied in Green and Jullien [1988] have an

adversarial forecaster representation provided that a supermodularity condition holds,

which allows us to apply our results on optimality and monotonicity to them. The

induced preferences due to temporal risk in Machina [1984] are similar to adversarial

forecaster preferences, but have a convex representation instead of a concave one and

so do not generate a preference for randomization.

Finally, our analysis of monotonicity is related to the work on stochastic orders and

preferences over lotteries in e.g. Cerreia-Vioglio [2009], Cerreia-Vioglio, Maccheroni,

and Marinacci [2017], and Sarver [2018]. Unlike the previous results, we do not assume

differentiability or finite-dimensional outcomes, and characterize monotonicity with

respect to stochastic orders given a representation rather than constructing one.3

2 Adversarial Forecasters

This section introduces the adversarial forecaster representation, in which the agent

has preferences over lotteries that depend on both the expected utility of the lottery’s

outcome and a measure of surprise. The section also introduces the idea of continuous

local utility and relates it to the adversarial forecaster representation.

2.1 The Adversarial Forecaster Representation

The agent plays a sequential move game against an adversarial forecaster. The agent

moves first, and chooses a lottery F P F , the set of Borel measures on a compact

metric space X of outcomes, or a compact subset of them. We endow F with the

topology of weak convergence, which makes it metrizable and compact. Then the

adversary observes F and chooses a forecast F̂ P F , that is, a probabilistic statement

about how likely different outcomes are. We study the preferences (i.e. complete

transitive orders) Á that are induced by backward induction in this sequential game.

Let δx denote the Dirac measure on x.

3See Section 7 for a more detailed discussion of these and other related results.
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Definition 1. (i) We say that σ : X ˆ F Ñ R is a forecast error if σpx, δxq “ 0

for all x P X, σ is continuous, and
ş

σpx, F qdF pxq ď
ş

σpx, F̂ qdF pxq for all

F, F̂ P F .

(ii) The suspense of lottery F given the forecast error σ is ΣpF q “ minF̂PF
ş

σpx, F̂ qdF pxq “
ş

σpx, F qdF pxq, and the realized surprise of outcome x is σpx, F q.

Definition 1 requires that forecast error is 0 when the realized outcome was pre-

dicted to have probability 1, and that the forecast F minimizes the expected forecast

error when the true lottery is F , but it does not require that this is the only minimizer.

Observe that the forecast error is always non-negative, since σpx, F q ě σpx, δxq “ 0

for all F P F and x P X. One example is X “ t0, 1u and σpx, F q “
`

x ´
ş

xdF pxq
˘2
,

so the forecast error is measured by mean-squared error. We illustrate this functional

form in Example 1 below. Note also that because Σ is the minimum over a collection

of linear functionals it is concave, and that Σpδxq “ 0 for any x.4

Let CpXq denote the space of continuous real functions over X, endowed with the

topology induced by the sup norm.

Definition 2. Preference Á is an adversarial forecaster preference if it can be repre-

sented by a function V satisfying

V pF q “

ż

vpxqdF pxq ` min
F̂PF

ż

σpx, F̂ qdF pxq “

ż

vpxqdF pxq ` ΣpF q, (1)

where σ is a forecast error and v P CpXq. In this case, we call V the adversarial

forecaster representation of Á.

This representation can be interpreted as follows: The agent has a baseline pref-

erence over outcomes described by the expected utility function v, and a preference

for surprise captured by the forecast error σ. Given a forecast F̂ of the adversary,

the agent’s total utility is the sum of their expected baseline utility and the expected

forecast error.

Equation 1 shows that V is continuous and concave, and that V pδxq “ vpxq. Note

that while adversarial forecaster preferences can depart from expected utility, they

do satisfy the independence axiom for comparisons of lotteries that induce the same

suspense.

4Frankel and Kamenica [2019] show that these are the two properties characterizing a “valid mea-
sure of uncertainty.” But Frankel and Kamenica [2019] mistakenly suggests that that the minimum
value is necessarily attained, see Corrao, Fudenberg, and Levine [2023].
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V ppq

V ppq “ p ` γpp1 ´ pq

Example 1. In a sports match, the outcome is x “ 1 if the preferred team wins

and x “ 0 if it looses. Let p be the probability of winning, F̂ be the forecast, and

let γpx ´
ş

x̃dF̂ px̃qq2 measure the realized forecast error given the forecast F̂ . The

decision maker gets utility vpxq “ x plus γ times the squared error of the forecast,

and the adversary’s optimal choice is to forecast p, variance pp1 ´ pq, so the agent’s

preference over lotteries is represented by V ppq “ p ` γpp1 ´ pq. If γ ą 1 and the

agent can choose any value of p, the best lottery is p “ p1` γq{p2γq, so the preferred

team might lose, while if 0 ď γ ď 1 the best lottery is p “ 1. △

2.2 Local Expected Utility

Suppose that preferences can be represented by a continuous utility function V . We

say that w P CpXq is a local expected utility of V at F if it is a supporting hyperplane:

that is
ş

wpxqdF̃ pxq ě V pF̃ q for every F̃ P F , and
ş

wpxqdF pxq “ V pF q. The function

V has a local expected utility if there is at least one local expected utility at each F .

Any function that has a local expected utility is concave, and a local expected utility

at F is a supergradient of V at F .5 Moreover, when V has a local expected utility w

5See e.g. Aliprantis and Border [2006] p. 264. Local utility, unlike concavity, requires there
are supporting hyperplanes at boundary points. Machina [1982] uses a different definition that is
neither weaker nor stronger than ours; see Online Appendix V.
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at F , if
ş

wpxqdF pxq ě
ş

wpxqdF̃ pxq (resp. ą), then V pF q ě V pF̃ q (resp. ą), which

explains the name we adopt for this supporting hyperplane.6

We say that V has continuous local expected utility if there is a continuous function

wV : X ˆ F Ñ R such that wp¨, F q is a local expected utility of V at F . This is

our main “differentiability” condition for arbitrary representations V . In fact, as we

show in Online Appendix V, V has a continuous local expected utility if and only if

it is concave and Gâteaux differentiable with continuous Gâteaux derivative.7 This

differentiability condition exactly characterizes adversarial forecaster representations.

Theorem 1. Let Á be a preference over F . The following are equivalent:

(i) Á is an adversarial forecaster preference.

(ii) Preference Á has a representation V with a continuous local expected utility.

The formal proofs of this and all other results are in the appendix except where

otherwise noted.8 Theorem 1 can be proved directly by noting that if V is an adver-

sarial forecaster representation, then V pF q “
ş

vpxqdF pxq `
ş

σpx, F qdF pxq for every

F , which implies that wV p¨, F q “ v` σp¨, F q is a local expected utility of V . In turn,

the continuity of σ implies that w is continuous, yielding that V has a continuous local

expected utility. Conversely, given a representation V with continuous local expected

utility w, we can set vpxq “ V pδxq and σpx, F q “ wV px, F q ´ vpxq. Because w is

continuous,
ş

wpxqdF̃ pxq ě V pF̃ q, and
ş

wpxqdF pxq “ V pF q, it follows that σpx, F q is

a valid forecast error: It is continuous, minimized at F̂ “ F , and is 0 on deterministic

lotteries. Thus V admits a representation as in equation 1.

Continuous local expected utility implies the following fixed-point characterization

of optimal lotteries that we use in the analysis below.

Proposition 1. If V is an adversarial forecaster representation, then for any convex

and compact set F Ď F ,

F ˚
P argmax

FPF
V pF q ðñ F ˚

P argmax
FPF

ż

pvpxq ` σpx, F ˚
qq dF pxq. (2)

6This follows from the concavity of V . See Online Appendix V for a formal proof.
7Note that continuous local utility does not imply that there is a unique local expected utility

at every point; generally there will be a continuum of local expected utilities at boundary points.
Boundary points are especially important in the infinite-dimensional case since with the topology of
weak convergence all points are on the boundary.

8The appendix proves Theorem 1 as part of Theorem 6, which also provides an additional
characterization of adversarial forecaster preferences that we defer to Section 6.
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The discussion before Theorem 1 shows maximizing local expected utility is a

sufficient condition for a maximum, whether or not the local utility is continuous.

The proof of necessity relies on the fact that if V has a continuous local expected

utility, the directional derivative of V at any lottery F in direction F̂ is well defined

and given by
ş

vpxq ` σpx, F qdF̂ pxq: F ˚ is optimal only if the directional derivative

of V at F ˚ in any direction is non-positive. The necessity result fails when the

local utility is not continuous. For example, suppose that X “ r´1, 1s and V pF q “

minyPr´1,1s

ş1

´1
p2y´ 1qxdF pxq, which is an example of the adversarial expected utility

representation analyzed in Section 6. Then F ˚ “ δ0 is uniquely optimal over F for

V . However, wV px, yq “ p2y ´ 1qx is a local expected utility for V at F ˚ for every

y P r´1, 1s, yet F ˚ is strictly suboptimal for all of these local utility functions except

for the one corresponding to y “ 0.

The fixed-point condition characterizing the optimal lotteries in Proposition 1

has a clear equilibrium interpretation: The adversary chooses a forecast F̂ given the

equilibrium choice of the agent, and the agent maximizes the resulting local expected

utility. The adversary’s forecast is a best response if it induces the agent to choose

the forecasted lottery. In particular, when F “ F , F ˚ is optimal if and only if

supppF ˚q Ď argmaxxPX vpxq ` σpx, F ˚q. In the sports example above (Example 1), it

is easy to see that the two degenerate lotteries δ0 and δ1 do not satisfy this fixed-point

condition when γ ą 1. Instead, each optimal lottery p must assign strictly positive

probability to both outcomes and, by Proposition 1, the local expected utility at p

is the same for both outcomes. Some simple algebra shows that the only lottery

satisfying this indifference condition is p “ p1 ` γq{p2γq.

2.3 Stochastic Choice

The adversarial forecaster representation is concave, and often leads to randomization;

a deterministic lottery is never optimal when the representation is strictly concave.9

When X is an interval of real numbers, Cerreia-Vioglio, Dillenberger, Ortoleva, and

Riella [2019] introduce a weakening of expected utility that allows optimal choices to

be strictly mixed. Adversarial forecaster preferences satisfy their axioms if the local

utilities are strictly increasing.10 Also, Theorem 1 implies that any choice function in-

9See Proposition 3 for a class of strictly concave adversarial forecaster representations.
10Point (i) of their definition is satisfied because V is concave. The same argument we use in the

proof of Theorem 5 below shows that point (ii) is satisfied when each wV p¨, F q is strictly increasing.
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duced by the Additive Perturbed Utility (APU) preferences of Fudenberg, Iijima, and

Strzalecki [2015] (which are only defined for finite menus, which corresponds to finite

X here) is also induced by an adversarial forecaster representation. In particular,

this is true for the APU preference generated when the suspense function is entropy,

V pF q “
ř

xPX vpxqfpxq ´
ř

xPX fpxq lnpfpxqq, which generate logit choice. However,

adversarial forecaster representations are not necessarily APU. Indeed, choices gen-

erated by APU preferences satisfy the regularity property that enlarging the choice

set cannot increase the probability of pre-existing alternatives.11 The next example

shows how a preference for surprise reduces the agent’s local risk aversion and leads

regularity to fail.12

Example 2. Suppose that X Ď R, that the agent’s baseline utility v is concave

and twice continuously differentiable, and that the agent’s preference for surprise is

given by σpx, F q “
`

x ´
ş

x̃dF px̃q
˘2
. Thus any forecast F̂ with the same mean as

F minimizes the expected forecast error and is a best response for the adversary.

The proof of Theorem 1 implies that this generates local utility wV px, F q “ vpxq `
´

x ´
ş1

0
x̃dF px̃q

¯2

. Observe that the agent’s ranking of two lotteries with the same

expected value x is the same as that of an expected utility agent with utility function

wpxq “ vpxq ` px ´ xq2, which is less risk averse than v. Moreover, the stochastic

choice rule induced by these preferences need not satisfy Regularity. For example, if

vpxq “ x, the uniquely optimal choice for the agent from ∆
`

t´1, 0u
˘

is δ0, so there is

no suspense. In contrast, when ∆
`

t´1, 0, 1u
˘

, the optimal lottery is 1{4δ´1 ` 3{4δ1:

the agent tolerates the risk of the bad outcome ´1 when it can be accompanied by

a larger chance of outcome 1.13 For general v that are not too concave, i.e. when

v2 ě ´2, the local utility is convex in x for all forecasts F . Theorem 5 below shows

this implies the agent weakly prefers any mean-preserving spread F̃ of F to F itself.

We say more about the effect of suspense on risk aversion in Section 7. △
11The stochastic choice function P satisfies Regularity if P px|Xq ď P px|X

1
q for all x P X

1
Ď X.

12Moreover, Theorem 2 in Cerreia-Vioglio, Dillenberger, Ortoleva, and Riella [2019] implies that
whenever each v`σp¨, F q is strictly increasing and there are two lotteries F, F̃ and λ P p0, 1q such that

V pλF ` p1 ´ λqF̃ q ą max
!

V pF q, V pF̃ q

)

, the induced stochastic choice does not satisfy Regularity.

This is the case for the transport preferences studied in Section 5.
13Note that any lottery with 3{4δ1 ą δ´1 is preferred to a point mass at 0.
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3 Writing a Suspenseful Novel

Ely, Frankel, and Kamenica [2015] consider how the writer of a novel can best reveal

information about the novel’s ending over time. The writer’s objective is to maximize

the utility of the reader, who likes to be surprised. Here we show that the preferences

Ely, Frankel, and Kamenica [2015] consider have an adversarial forecaster representa-

tion. 14 We also extend their analysis to let the reader have preferences over realized

outcomes, and let the writer design both the initial distribution over states and the

information revealed over time.

Let Ω “ t0, 1u be a binary state space, p P ∆pΩq “ r0, 1s denote the probability

that s “ 1, and let x “ pω, pq be the outcome. There are three time periods and

two agents, a reader (R) and a writer (W). In Period 0, W chooses a distribution

over S from a closed interval ∆ Ď r0, 1s (i.e., the ending of the story under some

constraints) and commits to an information structure about s for Period 1 (i.e., how

the story unfolds). In Period 1, R observes the signal realization, forms a posterior

belief p P r0, 1s, and their first-period surprise is realized. In Period 2, R observes the

state s and their second-period surprise is realized.

Instead of working directly with the signals, we represent them with distributions

over posteriors: W chooses a joint distribution F P F over states and conditional

beliefs of R. The feasible joint distributions are those such that, conditional on the

realization of the belief p, the induced conditional belief over Ω is equal to p itself:

F “
␣

F P F : margSF P ∆, @p P ∆pΩq, F p¨|pq “ p
(

.

For every F P F , we let pF P ∆ denote the induced probability that ω “ 1 and let

F∆ P ∆pr0, 1sq denote the induced distribution over beliefs.

In both periods, the agent likes suspense. Let

V L
1 pF q “

ż

1

2
||p ´ pF ||

2dF∆ppq “

ż 1

0

p2dF∆ppq ´ p2F .

Following Ely, Frankel, and Kamenica [2015], we assume that the preference for

first-period suspense is V1pF q “ gpV L
1 pF qq increasing, and concave, with gp0q “ 0.

The resulting utility function V1 has continuous local utility, so it is an adversarial

14To simplify notation we only show this for a binary state space, but it is true for any finite
state space.
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forecaster representation by Theorem 1. The suspense in period 2 given by F P F is

V2pF q “

ż

g

˜

ÿ

ωPΩ

1

2
||δω ´ p||

2ppωq

¸

dF∆ppq “

ż 1

0

gpp ´ p2qdF∆ppq

where δω represents the degenerate belief over ω. Finally, R gets direct utility equal

to ṽ P R when the realized state is ω “ 1 and direct utility 0 when ω “ 0; the case

ṽ “ 0 yields the preferences in Ely, Frankel, and Kamenica [2015].15

The writer wants to maximize the total utility of the reader. Because the total

payoff of the reader depends only on the marginals of F , we can suppose W chooses

pF and F∆ given the consistency constraint. So W’s objective

max
FPF

pF ṽ ` p1 ´ βqg

ˆ
ż 1

0

p2dF∆ppq ´ p2F

˙

` β

ż 1

0

gpp ´ p2qdF∆ppq. (3)

where β P r0, 1s captures the relative importance of suspense across periods. Let

VβpF q denote the total utility ofW defined in equation 3. The discussion above shows

Vβ has a continuous local expected utility, so by Theorem 1 it admits an adversarial

forecaster representation. The local utilities of Vβ are:

wβppω, pq, F q “ ωṽ ` p1 ´ βqg1
pD2pF qqpp2 ´ p2F q ` βgpp ´ p2q, (4)

where D2pF q “
ş

p̃2dF∆pp̃q´p2F , and the baseline utility of R is vβpω, pq “ Vβpδpω,pqq “

sṽ ` βgpp ´ p2q yielding a forecast error σβpω, p, F q “ p1 ´ βqg1pD2pF qqpp2 ´ p2F q.

Now we describe how the optimal marginals pp˚
F , F

˚
∆q depend on β.

Proposition 2. For every β P r0, 1s, there exists an optimal distribution F ˚
∆ supported

on no more than three beliefs. Moreover, there exist β, β P p0, 1q with β ď β such that

1. When β ě β, no disclosure is uniquely optimal (i.e., F ˚
∆ “ δp˚

F
) and p˚

F is

optimal if and only if it solves maxpP∆ tpṽ ` βgpp ´ p2qu.

2. When β ď β, full disclosure is uniquely optimal (i.e., F ˚
∆ “ p1 ´ p˚

F qδ0 ` p˚
F δ1)

and p˚
F is optimal if and only if it solves maxpP∆ tpṽ ` p1 ´ βqg1pp ´ p2qpp ´ p2qu.

The proof of this result computes the local expected utility of Vβ at the candi-

date solution pp˚
F , F

˚
∆q and verifies that F ˚

∆ is optimal for that local expected utility.

15In Ely, Frankel, and Kamenica [2015], p is fixed, so ∆ “ tp0u, and flow utility at each period
depends on the expected surprise for the next period given the current belief.
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Because the state is binary, each local utility is a linear combination of g1pD2pF qqp2

and gpp ´ p2q, where the first term is strictly convex and the second is strictly con-

cave. For example, if gpdq “
?
d, then g1pD2pF qq is very high for F such that F∆

is concentrated around pF , since in this case D2pF q is close to 0. Thus revealing no

information cannot maximize Vβ, since the local expected utility wβ is strictly convex

in p. More generally, because W has nonlinear preferences over F∆, W might want

to induce more than 2 posteriors, unlike in Bayesian persuasion with a binary state.

Section 4.2 derives a more general result on the support size of optimal distributions,

and Online Appendix IV.A gives the complete solution for the case of linear g.

4 Moment restrictions and optimal randomization

We turn now to the study of optimization problems with support restrictions and

moment constraints, e.g. that the expected outcome must be constant across lotteries,

as is the case with fair insurance. We are mostly interested in the extent of optimal

randomization, that is, in the size of the supports of optimal distributions. We first

introduce a class of adversarial forecaster representations where the forecaster’s loss

function is parametrized by a set of moments.

4.1 Generalized Method of Moments

The generalized method of moments provides a tractable and useful class of adversarial

forecaster representations. To define it, suppose X is a closed bounded subset of an

Euclidean space, and let S be a compact metric space of parameters with the Borel

sigma algebra. Given any integrable function h : X ˆ S Ñ R, define hpF, sq “
ş

hpx, sqdF pxq for all s P S and F P F . For a given h, we call the set thp¨, squsPS Ď

CpXq the generalized moments. We assume here that the forecaster’s objective is to

choose a forecast F̂ that minimizes a weighted sum of these generalized moments.

Definition 3. The forecast error σ is based on the generalized method of moments

(GMM)16 if there is a Borel probability space pS, µq and a continuous function h :

16We abuse terminology here; in econometrics, the generalized method of moments minimizes
a quadratic loss function on the data under the constraint that a number of generalized moment
restrictions are satisfied.
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X ˆ S Ñ R such that

σpx, F̂ q “

ż

´

hpx, sq ´ hpF̂ , sq
¯2

dµpsq. (5)

Proposition 3. Any σ based on the generalized methods of moments is a forecast

error, and the suspense is quadratic

ΣpF q “

ż

Hpx, xqdF pxq ´

ż ż

Hpx, x̃qdF pxqdF px̃q

where Hpx, x̃q “
ş

hpx, sqhpx̃, sqdµpsq. If µ has full support and F ÞÑ hpF, ¨q is one-

to-one, then Σ and V are strictly concave.

This shows that GMM forecast errors can generate quadratic utilities V (Machina

[1982]) that are strictly concave, and so have a strict preference for randomization.

Chew, Epstein, and Segal [1991] show that strictly concave quadratic utilities do

not satisfy betweenness but satisfy mixture symmetry, a weakening of both inde-

pendence and betweenness that is more consistent with some experimental findings

such as Hong and Waller [1986]. Proposition 3 in Dillenberger [2010] shows that

preferences represented by quadratic utilities satisfy negative certainty independence

(NCI) only if they are expected utility preferences. Therefore, when V is induced by

a GMM forecast error and is strictly concave, as in Proposition 3, the corresponding

preference does not satisfy NCI. This is intuitive because NCI supposes the agent has

a preference for deterministic outcomes.

Here are three classes of GMM forecast errors.

Finite Moments If S “ ts1, ..., smu is a finite set of non-negative integers, we can

take hpx, sq “
śm

i“1 x
si
i , the standard method of moments.17 The simplest case is the

one with only the first moment, S “ t1u, as in Examples 1 and 2.

Moment Generating Function If for some τ ą 0 the parameter space is S “

r´τ, τ sm we may take hpx, sq “ es¨x. Here hpF, sq is the moment generating function

of F , where the map F ÞÑ hpF, ¨q is one-to-one so that the forecaster aims to match

the entire distribution chosen by the agent. Proposition 3 shows that when µ has full

support, the representation induced by this class of forecast error is strictly concave.

17See for example Chapter 18 in Greene [2003].
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Writing a Suspenseful Novel: The Linear Case If the function g in the

model of Section 3 is the identity function, W’s preferences admit a GMM adver-

sarial forecaster representation where the forecast error is σβppω, pq, F̂ q “ p1´βqpp´
ş

p̃dF̂∆pp̃qq2 ` βpω ´ p̂F q2 . This is a GMM representation with S “ t0, 1u, where the

adversary wants to match both the realized state and W’s realized posterior.18

4.2 Parametric Representations and Optimal Randomization

For GMM preferences, we can view the space of moments as the image of the map

defined as P pF q ” hpF, ¨q, that is, Y ” P pFq Ď RS. When S is finite, Y is a

subset of a Euclidean space, hence the vector y “ phpF, sqqsPS can be interpreted as

a finite-dimensional parameter for F . If we then define a parametric forecast error

on Y by σ̂px, yq “
ş

phpx, sq ´ ypsqq
2 dµpsq, we see that the GMM forecast error

σpx, F q “ σ̂px, P pF qq depends on F only through P pF q. This lets us work with the

function σ̂px, yq instead of σpx, F q, which is easier to study since it is strictly concave

and differentiable in y. Parametric adversarial forecaster representations generalize

these properties to settings where the forecast error depends on the lottery only

through a space Y of parameters.

Definition 4. A forecast error σ is parametric if there exist a set Y Ď Rm, a contin-

uous map P : F Ñ Rm, and a continuous function σ̂ : X ˆ Y Ñ R` that is strictly

concave and differentiable in y, such that Y “ P pFq and σpx, F q “ σ̂ px, P pF qq for

all px, F q P X ˆ F .

When Á is an adversarial forecaster preference with a parametric forecast error

σ, we say that it has a parametric representation. In this case

V pF q “ min
yPY

ż

vpxq ` σ̂px, yqdF pxq.

Moreover, for any compact and convex set F Ď F of feasible lotteries,

max
FPF

V pF q “ max
FPF

ż

vpxq ` σ̂px, P pF qqdF pxq (6)

“ max
θPY

max
FPF :P pF q“θ

ż

vpxq ` σ̂px, θqdF pxq, (7)

18The generalized moments here are hppω, pq, 0q “ p and hppω, pq, 1q “ ω, and the weight µ
assigned to s “ 0 corresponds to β.
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where the first equality follows from the fact that the expected forecast error given

F is minimized at F , and the second equality follows by splitting the choice of the

lottery in two parts: the agent chooses the desired value for the parameter θ P Y

and then chooses among the feasible distributions that are consistent with θ. This

program is linear in F and strictly concave in the finite-dimensional parameter θ,

which makes it more tractable than the original problem.

We now show that when the adversarial preferences are parametric and the feasible

set is defined by a number of moment conditions, there is an optimal lottery whose

support is a finite set of outcomes, and that the upper bound on this finite number of

outcomes only depends on the dimension of the parameter space and on the number

of moment restrictions defining the feasible set of lotteries. This result links the

extent of optimal randomization, which is observable, to the parametric structure of

the adversary’s loss function. In addition, the result simplifies the computation of

optimal lotteries in applications such as the one discussed in Section 3.19

Fix a closed subset X Ď X and a finite collection of k continuous functions

Γ “ tg1, ..., gku Ď C pXq together with the feasibility set

FΓ

`

X
˘

“

"

F P ∆
`

X
˘

: @gi P Γ,

ż

gi pxq dF pxq ď 0

*

,

which we assume is non-empty. For example, if x is money, then
ş

xdF pxq “ 0 is the

budget constraint that the agent may choose any fair lottery.

Theorem 2. Fix a closed set X Ď X, tg1, ..., gku Ď C pXq, and let F “ FΓ

`

X
˘

.

Then there is a solution to (6) that assigns positive probability to no more than pk `

1qpm ` 1q points of X.

When Á has a GMM representation with finitely many moments m and Γ “ H,

the theorem implies the optimal lottery puts positive probability on at most m ` 1

points. In this case the proof is relatively simple: Because P pF q “ phpF, sqqsPS and

F “ ∆pXq, equation 7 becomes

max
θPY

max
FP∆pXq:hpF,¨q“y

ż

vpxq ` σ̂px, yqdF pxq

19See Example 6 in Online Appendix IV.B for an application of Theorem 2 to asymmetric para-
metric adversarial preferences that are not GMM.
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Fix a θ˚ P Y that solves the outer maximization problem. Then F ˚ solves the original

problem if and only if it solves

max
FP∆pXq:hpF,¨q“θ˚

ż

pvpxq ` σ̂px, θ˚
qq dF pxq (8)

which is linear in F : The agent behaves as if they were maximizing expected utility

over all lotteries that have the optimal values of the relevant moments. Because

the objective in (8) is linear in F , there is a solution in the set of extreme points

of the set
␣

F P ∆pXq : hpF, ¨q “ θ˚
(

. This set is obtained by adding the m linear

restrictions given by θ˚ to the set of probabilities over X, and Winkler [1988] shows

that the extreme points of this set are supported on at most m ` 1 points of X.

When there are k exogenous moment restrictions, we replace ∆pXq with FΓ

`

X
˘

in

the definition of the set above and use Winkler’s theorem to show that the extreme

points of this new set are convex linear combinations of no more than m` 1 extreme

points of FΓ

`

X
˘

. By a further application of Winkler’s theorem, the extreme points

of FΓ

`

X
˘

are supported on no more than k ` 1 points in X, yielding the desired

upper bound.20

This proof strategy relies on the fact that P is linear in F , and does not hold

for general parametric representations.21 The first step of the proof of the general

result (Theorem 8 in the appendix) uses the parametric transversality theorem to

show that, whenever X is finite, the bound stated in Theorem 2 holds generically for

every optimal lottery.22 We conclude the proof with an approximation argument on

both the baseline utility v and the set of feasible outcomes to show that, for arbitrary

X, there always exists a solution with the same bound on the support.

When Y is infinite dimensional, every optimal distribution can have thicker sup-

port. We next derive this property for a class of GMM preferences with infinitely

many relevant moments. Given preferences as in Definition 3, we call H the kernel

of the GMM representation.

20In a context of information design, Doval and Skreta [2018] study finite-dimensional constrained
linear problems and find similar upper bounds on the cardinality of the support of optimal distri-
butions. Their techniques rely on Carathéodory’s theorem, and do not apply to the general case
considered in Theorem 2 where the parametric map P can be nonlinear.

21Because for GMM preferences the parametric map P is linear in F , directly applying Winkler’s
theorem to the set defined by the k exogenous moment restrictions and the m linear restrictions for
θ˚ gives the sharper bound of k ` m ` 1.

22This bound applies to stochastic choices from finite sets and can be empirically tested. Online
Appendix III.C provides an extension to the case of infinite X.
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Proposition 4. Assume that X “ r0, 1s, Γ “ H, the kernel of the GMM represen-

tation Hpx, x̃q “
ş

hpx, sqhpx̃, sqdµpsq “ Gpx ´ x̃q is positive definite, and Hp0, x̃q is

non-negative, strictly decreasing (when positive), and strictly convex in x̃. Then there

is a unique solution to (6), and it has full support over X.

For the hypotheses of the theorem to be satisfied, the GMM adversary must have

a sufficiently large set of forecasts, as in Example 5 in Online Appendix IV.B.23 The

proof uses Proposition 3 to obtain strict concavity of the function V , which implies

that the unique optimal distribution F for V over F is characterized by first-order

conditions which, together with the assumptions on H, imply that there cannot be

an open set in X to which F assigns probability zero.

We close this section with a corollary of Theorem 2 and Proposition 4; its proof

is in Online Appendix II.B.

Corollary 1. Maintain the assumptions of Proposition 4, and let F denote the unique

fully supported solution. There exists a sequence of GMM representations V n with

|Sn| P N, and a sequence of lotteries F n such that each F n is optimal for V n, is

supported on up to |Sn| `1 points, and F n Ñ F weakly, with suppF n Ñ suppF “ X

in the Hausdorff topology.

Intuitively, as the number of moments that the adversary matches increases, the

agent randomizes over more and more outcomes, up to the point that each outcome

is in the support of the optimal lottery.24

5 Multiple Selves and Transport Preferences

5.1 Transport Preferences

This section considers a tractable class of adversarial forecaster preferences that arise

when the agent trades off the (potentially diverging) interests of multiple selves. The

multiple selves have potentially heterogeneous intrinsic preferences for surprise. These

are modeled as in Section 2: there is an adversarial forecaster that tries to minimize

the suspense. However, the adversary is uncertain about the self that is going to pre-

vail. Given this uncertainty, the adversary minimizes the average suspense obtained

23Example 3 below shows how thick support arises with a different sort of adversarial forecaster
preference.

24Note that weak convergence does not imply Hausdorff convergence of the supports.
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by aggregating the suspense of each self. The agent’s uncertainty about the self that

is going to prevail generates preferences for randomization both from preferences for

surprise within each self and the desire to hedge against the uncertainty about the pre-

vailing self. The first channel corresponds to the general model of surprise preferences

introduced in Section 2; the second is similar to, but less extreme than, the cautious

expected utility model of Cerreia-Vioglio, Dillenberger, and Ortoleva [2015], where

the agent aggregates multiple certainty equivalent evaluation by considering the worst

case. We call these “transport preferences” because, as we show, the representation

can be equivalently expressed as the solution of an optimal transport problem.

As a simple example, suppose X “ r´1, 1s is a normalized sports score, where 1

corresponds to a blowout win by the agent’s team, and ´1 corresponds to a blowout

loss. Suppose first that the agent is of two minds about the game: one part (5{8 to be

exact) would like to see the other team get a good thumping (x “ 1), while the part

(3{8) feels the home team has been pretty uppity lately and wouldn’t mind seeing

it get a good thumping (x “ ´1). Then the best lottery for the agent balances the

preferences of the selves: it is probability 3{8 probability that x “ ´1 and probability

5{8 that x “ 1. In contrast, if the agent has a continuum of selves, each of which

prefers a different score x P X, and weights all the selves equally, then as we show in

Example 3 the agent’s preferred lottery has full support over all the scores.

Now we formally describe the game between an agent with multiple selves against

an adversarial forecaster. Let the space of outcomes X be a compact convex subset

of a Euclidean space with a nonempty interior, let θ P Θ “ r0, 1s index the different

selves, and suppose that each self has a baseline utility function ϕpθ, xq for outcomes.

We will assume that the agent’s choice of lottery is made to maximize the sum of the

average expected utility of the selves and their average individual surprise, with the

average computed using the uniform distribution U .25

Let Y Ď CpXq denote the set of continuous functions on X that are normalized

so that
ş

exp p´ypxqq dx “ 1.26 We interpret each y P Y as a probabilistic forecast

of the outcome in the form of the negative log-likelihood: for any strictly positive

continuous density f on X, y defined by ypxq “ ´ logpfpxqq is in Y and conversely

any y P Y corresponds to a unique strictly positive continuous density.

25Any non-uniform distribution over selves can be replicated by having more selves with the same
utility function. All results in this section hold when selves have any distribution that has a density.

26Here we are considering the integral over X with respect to the Lebesgue measure.
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The timing of the game against the adversary is the same as in Section 1. First, the

agent chooses a lottery F without knowing which self will be experiencing the realized

payoff. Then the adversary observes F and chooses a forecast y P Y , without knowing

the realized outcome x or the agent’s θ. Finally, the realized self gets terminal payoff

ϕpθ, xq ` σϕpθ, x, yq, where σϕpθ, x, yq ” maxξPX tϕpθ, ξq ` ypξqu ´ rϕpθ, xq ` ypxqs is

the individual forecast error for θ given the adversarial forecast y and outcome x.

To understand σϕpθ, x, yq, consider the distorted baseline utility ϕpθ, xq ` ypxq for

self θ, which combines the quality of the outcome ϕpθ, xq and the measure of how

unlikely the outcome was according to the adversary’s forecast ypxq. The individual

forecast error is then the difference between the highest possible distorted baseline

utility and the realized one.27 With transport preferences, the adversary minimizes

the expectation of the individual forecast error given the chosen lottery F , and the

agent chooses lotteries to maximize the expected sum of their baseline utility ϕ and

suspense ΣϕpF q ” minyPY

ş ş1

0
σϕpθ, x, yqdθdF pxq.

Definition 5. A preference Á over F is a transport preference if can be represented

by

V pF q “

ż ż 1

0

ϕpx, θqdθdF pxq ` ΣϕpF q (9)

for some bounded measurable function ϕpθ, xq.

Example 3. Let X “ r´1, 1s represent the possible scores of a game, and consider

GMM preferences as in Example 1 (which was on a different domain):

V pF q “

ż 1

´1

xdF pxq ` γ

˜

ż 1

´1

x2dF pxq ´

ˆ
ż 1

´1

xdF pxq

˙2
¸

.

Here when γ “ 0 so the agent doesn’t care about surprise, the optimal lottery is a

point mass on x “ 1. When γ “ 2, Theorem 2 implies there is an optimal lottery

with two-point support, and the fixed-point condition of Proposition 1 shows that the

agent’s most preferred lottery is to give probability 5{8 to 1 (i.e., landslide win for

the favorite team) and probability 3{8 to 0 (i.e., landslide loss for the favorite team),

as in the two-selves example at the start of this section. However, we suspect that

few people would prefer seeing a blowout by the opposing team to a close match.

27Note that this is necessarily non-negative.
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If instead the agent has transport preferences with ϕpθ, xq “ θx´ p1`xq2{12, the

unique optimal distribution over F is given by the CDF F pxq “
`

1`x
2

˘2
over r´1, 1s.

To see this, observe that we can recast the problem by maximizing over quantile

functions F r´1s rather than CDFs: 28

max
F

V pF q “ max
F r´1s

ż 1

0

ptF r´1s
pθq ´

`

1 ` F r´1s
pθq

˘2
{12dθ,

which is uniquely solved by F r´1spθq “ 2
?
θ ´ 1 that is, the quantile function of the

distribution F above. Thus as in Proposition 4, this representation induces optimal

distributions with thick support. △

We will generalize the quantile representation above to the entire class of differ-

entiable transport preferences in the next two sections.

5.2 Continuously Differentiable Transport Preferences

The next result gives a sufficient condition for transport preferences to be adversarial

forecaster.

Theorem 3. If Á is a transport preference with a continuously differentiable ϕ, then

Á is an adversarial forecaster preference with

vpxq “

ż 1

0

ϕpx, θqdθ and σpx, F q “

ż 1

0

σϕpθ, x, ŷpF qqdθ

where ŷpF q ” argminyPY

ş ş1

0
σϕpθ, x, yqdθdF pxq for every F P F .

The proof of this result (Online Appendix I.A) proceeds as follows: First, equation

9 can be rewritten as

V pF q “ min
yPY

"
ż 1

0

max
ξPX

tϕpθ, ξq ` ypξqu dθ ´

ż

ypxqdF pxq

*

. (10)

This expression is equivalent to the dual problem of the Kantorovich optimal trans-

portation problem, and under the assumptions of Theorem 3 there exists a unique

solution ŷpF q P Y that attains this minimum. As we show in Theorem 6 in the

28Recall that F r´1spθq ” inf tx P X : F pxq ě θu.
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appendix, this uniqueness property implies that Á is an adversarial forecaster prefer-

ence.

Even without the additional assumptions of Theorem 3, we can rewrite V as

V pF q “ max
TP∆pU,F q

ż

ϕpθ, xqdT pθ, xq (11)

where ∆pU, F q Ď ∆pΘˆXq is the set of joint distributions over ΘˆX with marginals

respectively given by U and F . This corresponds to the primal optimal transportation

problem, and allows us to interpret transport preferences as if induced by an optimal

assignment problem where a fictitious planner distributes F to the multiple selves.

We use this alternative representation to analyze the 1-dimensional case in the next

section and to derive the properties of optimal lotteries in Online Appendix III.D.

5.3 Rank Dependence and Ordinal independence

When X “ r0, 1s and the individual utilities of the multiple selves can be ordered

with respect to their marginal utility, we obtain a (non-separable) rank-dependent

utility representation for transport preferences.

Proposition 5. Let Á be a transport preference where ϕ is continuously differentiable

with ϕxpθ, xq increasing in θ. Then Á can be represented by

V pF q “

ż 1

0

ϕpθ, F r´1s
pθqqdθ. (12)

This result is proved in Online Appendix I.A. To see why it holds, note that

when ϕxpθ, xq is increasing in θ one maximizer in equation 11 is to assign each x to

θ “ F r´1spxq.29

The quantile representation of Proposition 5 allows us to relate the taste for sur-

prise to the class of ordinal independent preferences introduced by Green and Jullien

[1988]. Ordinal independence requires that if two distributions have the same tail, this

tail can be modified without altering the preference between the distributions. Green

and Julien show that the standard expected utility axioms with ordinal indepen-

dence in place of the independence axiom along with monotonicity imply preferences

29We used this representation in Example 3 where the optimal distribution over scores assigns
score 2

?
θ ´ 1 to self θ.
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have the representation in equation 12 for some continuous real-valued utility function

ϕpθ, xq that is nondecreasing.30 Proposition 5 implies that if a differentiable transport

preference Á is such that ϕ is nondecreasing in x, so that monotonicity is satisfied,

then it belongs to the class of ordinal independent preferences. Conversely, if Á is

ordinal independent with ϕxpθ, xq increasing in θ, then it is a differentiable transport

preference. This implies that if ϕpθ, xq is differentiable and ϕxpθ, xq is weakly increas-

ing in θ, Green-Julien preferences have a continuous local expected utility, so they

admit an adversarial forecasting representation and have a preference for surprise;

monotonicity with respect to x is not needed. Example 3 above has a differentiable

transport preference that does not satisfy monotonicity, and induces lotteries with

full support over r0, 1s. In Online Appendix III.D, we generalize this example to the

entire class of transport preferences without restricting to one-dimensional outcomes.

6 Adversarial expected utility

We now generalize the adversarial forecaster representation to adversaries with other

objectives than minimizing the forecast error. This lets us deal with preferences that

are not consistent with continuous local utility representations, such as in Example

4 below where the loss function of the adversary is the absolute value of the error.

It also clarifies the relation of adversarial preferences to other risk preferences that

admit a maxmin representation, such as those in Maccheroni [2002], Cerreia-Vioglio

[2009], and Cerreia-Vioglio, Dillenberger, and Ortoleva [2015].

We suppose that the agent has expected utility preferences and the adversary has

the opposite preferences: it prefers what is least liked by the agent.

Definition 6. Preference Á over F has an adversarial expected utility representation

if there is a compact metric space Y and a continuous utility function u : XˆY Ñ R
such that Á is represented by

V pF q “ min
yPY

ż

upx, yqdF pxq. (13)

Adversarial expected utility is similar to Maccheroni [2002]’s maxmin model under

30This generalizes the rank-dependent representations of Quiggin [1982] and Yaari [1987], where
ϕpθ, xq “ φpθqvpxq. This separability rules out the Friedman-Savage paradox where risk preferences
depend on the status-quo wealth level.
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risk, although that model assumes there is always a deterministic outcome that is

preferred to all non-deterministic ones, and that Maccheroni [2002] does not assume

that Y is compact.31 The envelope representation of Chatterjee and Krishna [2011] is

a particular case of adversarial expected utility representation where X “ r0, 1s and

V satisfies stronger continuity properties.

Next we link the adversarial expected utility preferences to adversarial forecaster

preferences. First, we relax the continuity requirement in the definition of forecast

errors.

Definition 7. We say that σ̃ : X ˆ F Ñ R` is a weak forecast error if the family

of functions tσ̃p¨, F quFPF is equicontinuous over X, σ̃px, δxq “ 0 for all x P X, and if
ş

σ̃px, F qdF pxq ď
ş

σ̃px, F̂ qdF pxq for all F, F̂ P F .

When a preference Á can be represented as in equation 1 by using a weak forecast

error σ̃, we say that it is a weak adversarial forecaster preference. Adversarial expected

utility preferences and weak adversarial forecaster preferences are equivalent.

Proposition 6. Let Á be a preference over F . The following conditions are equivalent

(i) Á is a weak adversarial forecaster preference.

(ii) Á is an adversarial expected utility preference.

The proof of this result is in Online Appendix I.B. The intuition is similar to that

for Theorem 1, with continuity of the local expected utility function in both arguments

replaced by equicontinuity: Given an adversarial expected utility representation of Á

with associated utility function u over XˆY , we can define the local expected utility

of V as wV px, F q “ upx, ŷpF qq for some (not necessarily continuous) selection ŷpF q

from Ŷ pF q ” argminyPY

ş

upx, yqdF pxq. Similarly, the corresponding weak forecast

error can be defined by σ̃px, F q “ wV px, F q ´ vpxq where vpxq “ V pδxq.

In the next example, the agent’s preferences are adversarial expected utility but

not adversarial forecaster.

31The paper incorrectly claims the resulting representation involves a minimum that is always
attained. Machina [1984] and Frankel and Kamenica [2019] make the same mistake, see Corrao,
Fudenberg, and Levine [2023].
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Example 4. Consider the setting of Example 1, but suppose the adversary’s objective

is to minimize the absolute deviation, so

V pF q “

ż 1

0

vpxqdF pxq ` min
cPr0,1s

ż

|x ´ c|dF pxq.

Here, the relevant statistic for the adversary is the median of the chosen distribution,

which need not be unique for some F . For example, consider the class of distributions

F ϵ “ p1{2´ ϵqδ0 ` p1{2` ϵqδ1 for ϵ P p´1{2, 1{2q, and observe that every number c in

r0, 1s is a valid median for F ϵ at ϵ “ 0. If we let ĉpF q be an arbitrary selection from

the correspondence mapping distributions to medians, then σ̃px, F q “ |x ´ ĉpF q| is

a weak forecast error. However, every selection ĉpF q from the sets of medians of the

F ϵ will be discontinuous at ϵ “ 0. △

We have established that the adversarial expected utility representation can be

obtained by weakening the continuity properties of the forecast error in the adversarial

forecaster representation. Conversely, we next show that when in an adversarial

expected utility representation the adversary has always a unique best response, the

preferences admit an adversarial forecaster representation. Moreover, this uniqueness

property fully characterizes the adversarial forecaster model.

Definition 8. An adversarial representation satisfies uniqueness if Ŷ pF q is a singleton

for all F P F .

Theorem 4. A preference Á over F has an adversarial expected utility representation

that satisfies uniqueness if and only if it has an adversarial forecaster representation.

This result corresponds to the equivalence of conditions (ii) and (iii) in Theorem

6 in the appendix. There, to show that Á has an adversarial forecaster representation

if it has an adversarial expected utility representation that satisfies uniqueness, we

define vpxq “ V pδxq and σpx, F q “ upx, ŷpF qq ´ vpxq, where the uniqueness of ŷpF q

implies it is continuous. To prove that an adversarial forecaster preference also has

an adversarial expected utility preference that satisfies uniqueness, we start from the

adversarial forecaster representation and consider a modified minimization problem

for the adversary that lets them pick an expected utility (i.e., a hyperplane) that

supports V at F . The continuity of σ implies that there is a unique supporting

expected utility for every F . Thus the adversary has a unique best response in the

modified problem, yielding the result.
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7 Monotonicity and behavior

This section characterizes monotonicity with respect to stochastic orders (e.g. first-

order stochastic dominance, second-order stochastic dominance, and the mean-preserving

spread order) in terms of the properties of the adversary’s best response in the ad-

versarial expected utility representation, and uses the characterization to analyze

(higher-order) risk aversion and correlation aversion. These applications use the suf-

ficient condition for monotonicity that we give in our characterization. The necessary

condition shows the properties that the adversarial representation must have when

the preferences of the agent are assumed to be monotone to begin with.

7.1 Stochastic orders and monotonicity

We start with the definition of the stochastic order induced by a set of continuous

real-valued functions.

Definition 9. Fix a set W Ď CpXq.

(i) The stochastic order ÁW is defined as:

F ÁW F̃ ðñ

ż

wpxqdF pxq ě

ż

wpxqdF̃ pxq @w P W . (14)

(ii) A preference Á preserves ÁW if for all F, F̃ P F , F ÁW F̃ implies F Á F̃ .

Stochastic orders have been extensively used in decision theory to capture some

monotonicity properties of behavior. For example, when x P R represents monetary

outcomes, the class of increasing functions generates the first-order stochastic dom-

inance relation, and a preference that preserves this order is monotone increasing

with respect to the realized wealth. Similarly, the class of convex functions generates

the MPS order, and a preference that preserves this order is monotone increasing

with respect to mean-preserving spreads. Conversely, a preference that preserves the

stochastic order generated by concave functions would exhibit risk aversion.

Given an adversarial expected utility representation pY, uq, letHpŶ pF qq denote the

space of Borel probability measures over Ŷ pF q, that is, the set of mixed best responses

of the adversary given F .32 Moreover, define up¨, Hq “
ş

up¨, yqdHpyq P CpXq for ev-

ery probability measure H P H. In an adversarial expected utility representation, we

32Recall that Ŷ pF q is the set of pure best responses of the adversary given F .
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can associate the utility function u with the set Wu,Y “ tup¨, yq : y P Ŷ pF q, F P Fu

and a stochastic order Áu,Y on F . It is clear that the expected utility preference Á

represented by u preserves Áu,Y , and more generally, preserves any stochastic order

ÁW̃ generated by a set W̃ Ě Wu,Y . Theorem 5 provides a converse to this. Unlike

other monotonicity results on preferences with concave representations, it character-

izes monotonicity for a given representation, instead of constructing a representation

with the desired monotonicity properties.33 Notice that if Á preserves ÁW then it

also does so for any larger set W̃ Ě W . For every set W Ď CpXq, let xWy denote the

smallest closed convex cone containing W and all the constant functions.

Theorem 5 (Monotonicity Theorem). Let Á have an adversarial expected utility rep-

resentation pY, uq and fix a set W Ď CpXq. The following conditions are equivalent:

(i) The preference Á preserves ÁW .

(ii) For all F P F , there exists H P HpŶ pF qq such that up¨, Hq P xWy.

An expected utility representation preserves a given stochastic order if and only

if there always exists a (mixed) best response of the adversary such that the utility

induced by that best response belongs to the convex cone generated by the stochastic

order. The proof that (ii) implies (i) only formalizes the discussion before the theorem;

the fact that (ii) implies (i) is more involved. To show this, we first observe that the

preference Á preserves ÁW if and only if for all F,G, Ĝ P F such that G ÁW Ĝ, there

existsH P HpŶ pF qq such that
ş

upx,HqdGpxq ě
ş

upx,HqdĜpxq. By the Sion minmax

theorem, this assertion is equivalent to the statement that there exists H P HpŶ pF qq

such that Áup¨,Hq preserves ÁW . Finally, because up¨, ŷpF qq is continuous, Theorem 2

in Castagnoli and Maccheroni [1998] shows that up¨, ŷpF qq P xWy.34

Corollary 2. Let Á have an adversarial forecaster representation pv, σq and fix a set

W Ď CpXq. Then Á preserves ÁW if and only if v ` σp¨, F q P xWy for all F P F .35

33For example, Proposition 22 in Cerreia-Vioglio [2009] (for preferences with a quasiconcave
representation), Theorem 4.2 in Chatterjee and Krishna [2011] (for preferences with a concave and
Lipschitz continuous representation), and Theorem S.1 in Sarver [2018] (for preferences with a
concave representation) all assume that the underlying preference preserves a stochastic order.

34See Online Appendix I.C for the formal proof.
35WhenX is a compact interval of real numbers, this follows from Proposition 1 in Cerreia-Vioglio,

Maccheroni, and Marinacci [2017] because, as we show in Proposition 10 in Online Appendix V, if V
is an adversarial forecaster representation then it is Gâteaux differentiable with derivative v`σp¨, F q.
However, Theorem 5 also applies to preferences that are not Gâteaux differentiable.
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Corollary 2 underlies Section 3’s characterizations of the optimal distributions in

the application to writing a novel (Proposition 2) and the application to risk aversion

in the next section. In these applications, preferences are monotone with respect to

the MPS order via Corollary 2, and so the optima are the feasible distributions that

are maximal in the MPS order. Similarly, we can apply Theorem 5 to the transport

preferences introduced in Section 5. Given X “ r0, 1s, let F˚ Ď F denote the set of

full-support and absolutely continuous probability measures on X.

Corollary 3. Let X “ r0, 1s and let Á be a transport preference such that ϕ is

continuously differentiable with ϕxpθ, xq increasing in θ, and fix a set W Ď CpXq.

The preference Á preserves ÁW if and only if w0px, F q “
şx

0
ϕxpF pzq, zqdz is an

element of xWy for all F P F˚.

Under the assumptions on ϕ, standard results in optimal transport theory show

that the local expected utility of V is wV px, F q “ w0px, F q`cF at all full-support and

absolutely continuous F , where cF P R is a lottery-dependent constant. Corollary 2

then yields Corollary 3, where the restriction to the dense set F˚ is sufficient because

the local expected utility of V is continuous. The corollary implies that supermodular

ordinally independent preferences are monotone with respect to the MPS order if ϕ

is convex in x. It also shows how higher-order risk aversion depends on the particular

lottery F at which we are evaluating the local utility.

Online Appendix IV.D applies our monotonicity results to correlation aversion by

examining the case where the adversary can observe the realization of one dimension

of the outcome before choosing their action. Intuitively, this leads the agent to avoid

lotteries with a high correlation between dimensions, because higher correlation makes

it easier for the adversary to make accurate forecasts.

7.2 Risk aversion and adversarial forecasters

Now we use the monotonicity result to show how a preference for surprise can alter

the agent’s higher-order risk preference. We consider an asymmetric version of the

method of moments representation, where the forecaster is asymmetrically concerned

about the direction of deviations of the realized moment from the forecast. For

simplicity, we let X “ r0, 1s and consider only the first moment.36

36It is easy to generalize this to finite or infinitely many moments as in Section 4.1.
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Fix a strictly convex and twice continuously differentiable function ρ : r´1, 1s Ñ

R` such that ρp0q “ 0, ρ1pzq ă 0 if z ă 0, and ρ1pzq ą 0 if z ą 0, and consider the

preferences induced by

V pF q “

ż 1

0

vpxqdF pxq ` min
yPY

ż 1

0

ρpx ´ yqdF pxq,

where the space of parameters coincides with the space of outcomes, i.e. Y “ X.

These preferences arise from the parametric adversarial forecaster representation with

forecast error σpx, F̂ q “ ρpx ´ ŷpF̂ qq where ŷpF̂ q is the unique minimizer of
ş

ρpx ´

yqdF̂ pxq, and
ş

ρpx ´ ŷpF qqdF pxq can be interpreted as an index of the dispersion of

F , without requiring symmetry.

Theorem 2 shows there are optimal lotteries in F that are supported on at most

two points. Moreover, because the local expected utility of the agent is wV px, F q “

vpxq`ρ px ´ ŷpF qq , with second derivative w2px, F q “ v2pxq`ρ2px´ ŷpF qq, Corollary

2 implies that V preserves the MPS order when v is not too concave. This implies

that the optimal distributions have the form p˚δ1 ` p1 ´ p˚qδ0 for some p˚ P r0, 1s.

And then the fixed-point characterization of optimality in Proposition 1 can be used

to explicitly compute p˚, as we show in Online Appendix IV.B.

Consider the asymmetric loss function ρpzq “ λpexppzq ´ zq, λ ě 0. The rel-

evant statistic is ŷpF q “ log
´

ş1

0
exppxqdF pxq

¯

, that is, the (normalized) cumulant

generating function evaluated at 1. With this loss function the agent prefers a

positive surprise x ą ŷpF q to a negative surprise x ă ŷpF q of the same absolute

value. The second derivative of the local expected utility at an arbitrary lottery F is

w2px, F q “ v2pxq ` λ exppx ´ ŷpF qq, so the agent is more risk averse over outcomes

that are concentrated around ŷpF q. The n-th order derivative of each local utility is

wpnqpx, F q “ vpnqpxq ` λ exppx ´ ŷpF qq, so for λ high enough, wpnq ą 0. From The-

orem 5, this implies that higher enjoyment for surprise induces preferences that are

monotone with respect to the stochastic orders induced by smooth functions whose

derivatives are positive. For example, as formalized in Menezes, Geiss, and Tressler

[1980], aversion to downside risk, that is prudence, is equivalent to preserving the or-

der ÁW`
3
induced by the smooth functions with positive third derivative W`

3 , which

is the case whenever λ is high.37 Here asymmetric preference for surprise is crucial:

37A sufficient condition for all the local expected utilities to have strictly positive n-th derivative
is that λ ą ṽpnqexpp1q, where ṽpnq “ maxxPX |vpnqpxq|.
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if the third derivatives of all the local expected utilities of V coincide with those of

v, preference for surprise does not affect higher-order risk aversion. As an example,

suppose vpxq “ 1 ´ expp´axq{a for a ą 0. If there is no preference for surprise,

the agent has standard CARA EU preferences. As λ increases, the sign of the even

derivatives of the local expected utilities switches from negative to positive, while the

signs of the odd derivatives remain positive, so the agent shifts from risk averse to

risk loving, while increasing their degree of prudence.38

8 Conclusion

Adversarial forecaster preferences arise naturally in many settings. It allows the

interpretation of random choice as a preference for surprise, and also allows sharp

characterizations of the optimal “amount” (i.e., support size) of randomization and

of various monotonicity properties. The more general adversarial expected utility

representation inherits many of the optimality and monotonicity properties of the

adversarial forecaster representation, with the advantage of not requiring differentia-

bility. This allows us to consider cases where the adversary has only finitely many

actions or where the loss function has kinks, as in Example 4.

Online Appendix III extends some of the results on the adversarial forecaster

model to adversarial expected utility. Specifically, Proposition 7 characterizes optimal

lotteries by a fixed-point property that extends Proposition 1. Theorem 11 shows that,

whenever the adversary has only k many actions, there is an optimal lottery that is a

convex combination of no more than k extreme points of the set of feasible lotteries.

Theorem 12 leverages this result to improve on the bound on randomization provided

in Theorem 2 to k ` m when the adversary has k many actions.

In addition to the applications in this paper, the adversarial forecaster and adver-

sarial expected utility representations can be applied to settings where the agent first

chooses a distribution of qualities or outcomes and then chooses an allocation rule

or an information-revelation policy. In ongoing work, we show that standard design

problems of optimal allocation and Bayesian persuasion naturally induce adversarial

expected utility preferences, so that our results can be applied there.39

38In Online Appendix IV.C, we use this CARA example to analyze the effect of preferences for
surprise on risk-aversion of order n ą 3.

39One can also consider an adversary that tries to maximize forecast error to model agents who
dislike uncertainty, as they do in Caplin and Leahy [2001] and Battigalli, Corrao, and Dufwenberg
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Appendix A: Sections 2, 3, 4, and 6

First, we prove Theorem 6 which combines Theorems 1 and 4. We then prove the

other main results in Sections 2, 3, and 4. The omitted proofs from these and all the

other sections are in Online Appendix II.A. The proofs of the ancillary results that

are first stated in this section are in Online Appendix II.B.

Lemma 1. Let V have a continuous local expected utility w. For all F, F̃ , F P F such

that there exists µ ą 0 with F ` µpF̃ ´ F q P F ,

DV pF̃´F q :“

ż

wV px, F qdF̃ pxq´

ż

wV px, F qdF pxq “ lim
λÓ0

V pF ` λpF̃ ´ F qq ´ V pF q

λ
.

The next result implies Theorem 6, which asserts the equivalence of conditions (i)

and (ii), and Theorem 4, which asserts the equivalence of conditions (i) and (iii).

Theorem 6. Consider a preference Á over F . The following are equivalent:

(i) Á is an adversarial forecaster preference;

(ii) Á can be represented by a function V with continuous local expected utility;

(iii) Á is an adversarial expected utility preference that satisfies uniqueness.

Proof of Theorem 6. (i) implies (ii). Let v and σ correspond to the adversarial

forecaster representation of Á. The map wV : F Ñ CpXq given by wV px, F q “

vpxq ` σpx, F q is a continuous local utility of V pF q “ minF̃PF
ş

wV px, F̃ qdF pxq, so

that V represents Á and has a continuous local expected utility.

(ii) implies (iii). Let wV px, F q denote the continuous local expected utility of V ,

and define Y “ twV p¨, F quFPF Ď CpXq. SinceX,F are compact and wV is continuous,

it follows that Y is closed, bounded, and equicontinuous, so it is compact. For all

y “ wV p¨, F q and x P X, define upx, yq “ wV px, F q and observe that it is continuous.

For all F P F and for all ỹ P Y ,

V pF q “

ż

wV px, F qdF pxq ď

ż

upx, ỹqdF pxq,

where both the equality and the inequality follow becauseWV p¨, F q is a local expected

utility of V at F and the definition of Y . This implies that V pF q “ minyPY

ş

upx, yqdF pxq.

[2019]. We leave the analysis of this extension to future research.
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It remains to show that
ş

upx, yqdF pxq has a unique minimum over y. Suppose

that for some F there is a F̃ ‰ F such that V pF q “
ş

wV px, F̃ qdF pxq. For every

λ P p0, 1q, define Fλ “ λF̃ ` p1 ´ λqF . Then because V is concave and the wV are

local expected utility functions, for all λ P r0, 1s

λV pF̃ q ` p1 ´ λqV pF q ď V pFλq ď λ

ż

wV px, F̃ qdF̃ pxq ` p1 ´ λq

ż

wV px, F̃ qdF pxq

“ λV pF̃ q ` p1 ´ λqV pF q,

so that

V pFλq “

ż

wV px, F̃ qdFλpxq (15)

Next, fix µ P p0, 1q. By the properties of wV , V pF̃ q ď
ş

wV px, FµqdF̃ pxq, so

λV pF̃ q ` p1 ´ µqV pF q “ V pFµq “

ż

wV px, FµqdFµpxq

“ µ

ż

wV px, FµqdF̃ pxq ` p1 ´ µq

ż

wV px, FµqdF pxq

so that, by rearranging the terms,

V pF̃ q “

ż

wV px, FµqdF̃ pxq`
p1 ´ µq

µ

ˆ
ż

wV px, FµqdF pxq ´ V pF q

˙

ě

ż

wV px, FµqdF̃ pxq

where the last inequality follows because µ P p0, 1q and
ş

wV px, FµqdF pxq ě V pF q.

With this,

V pF̃ q “

ż

wV px, FµqdF̃ pxq. (16)

Fix x̃ P X. Since µ ą 0, there exists λ P p0, µq such that Fµ ` λpδx̃ ´ F̃ q P F .

Therefore,

wV px̃, Fµq ´ V pF̃ q “ wV px̃, Fµq ´

ż

wV px, FµqdF̃ pxq “ lim
λÓ0

V pFµ ` λpδx̃ ´ F̃ qq ´ V pFµq

λ

ď lim
λÓ0

ş

wV px, F̃ qd
´

Fµ ` λpδx̃ ´ F̃ q

¯

pxq ´ V pFµq

λ

“

ż

wV px, F̃ qd
´

δx̃ ´ F̃
¯

pxq “ wV px̃, F̃ q ´ V pF̃ q,

where the first equality follows by (16), the second equality by Lemma 1, the inequality
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by the properties of wV , the third equality by (15), and the last equality by the

properties of wV again. This implies that wV px̃, Fµq ď wV px̃, F̃ q. Similarly,

wV px̃, F̃ q ´ V pF̃ q “ wV px̃, F̃ q ´

ż

wV px, F̃ qdF̃ pxq “ lim
λÓ0

V pF̃ ` λpδx̃ ´ F̃ qq ´ V pF̃ q

λ

ď lim
λÓ0

ş

wV px, Fµqd
´

F̃ ` λpδx̃ ´ F̃ q

¯

pxq ´ V pF̃ q

λ

“

ż

wV px, Fµqd
´

δx̃ ´ F̃
¯

pxq “ wV px̃, Fµq ´ V pF̃ q,

where the first equality follows by the properties of wV , the second equality follows by

Lemma 1, the inequality by the properties of wV , and the third and the last equality by

(16). This implies that wV px̃, F̃ q ď wV px̃, Fµq , so wV px̃, Fµq “ wV px̃, F̃ q. Since this is

true for all µ ą 0 and wV is continuous it holds also in the limit: wV px̃, F q “ wV px̃, F̃ q.

Given that x̃ was arbitrary, the minimizer is unique, which proves that V is an

adversarial expected utility representation that satisfies uniqueness.

(iii) implies (i). We next show that if Á has an adversarial expected utility rep-

resentation that satisfies uniqueness, then it has an adversarial forecaster represen-

tation. Let Y and u denote the adversarial expected utility representation of Á.

For all F P F , let ŷpF q P Y denote the unique minimizer of
ş

upx, ỹqdF pxq. De-

fine vpxq “ minyPY upx, yq, σpx, F q “ upx, ypF qq ´ vpxq, and V pF q “
ş

vpxqdF pxq `
ş

σpx, F qdF pxq. Observe that, by construction V pF q “ minyPY

ş

upx, yqdF pxq, hence

V represents Á. Finally, fix F, F̃ P F and observe that

ż

σpx, F qdF pxq “

ż

upx, ypF qqdF pxq ´

ż

vpxqdF pxq

ď

ż

upx, ypF̃ qqdF pxq ´

ż

vpxqdF pxq “

ż

σpx, F̃ qdF pxq

showing that σ is a forecast error.

Proof of Proposition 1. (If). This direction follows immediately from the discus-

sion before the proposition.40 (Only if). Fix an optimal lottery F ˚ for V over F
and assume that there exists F̂ that is strictly better than F ˚ for an expected utility

agent with utility v` σp¨, F ˚q. Due to convexity of F , F ˚ is also optimal for V when

40See Propositions 7 in Online Appendix III.A and 9 in Online Appendix V for alternative proofs
that can also be applied to the more general adversarial expected utility model.
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restricted on the segment between F ˚ and F̂ , implying that the directional derivative

of V at F ˚ in direction F̂ is negative, which contradicts F̂ strictly preferred to F ˚

for the expected utility v ` σp¨, F q.

Before proving Proposition 2 we introduce some additional notation. For every

F P F , define ξβ,F : r0, 1s Ñ R as ξβ,F pp̃q “ p1 ´ βqg1 pD2pF qq p̃2 ` βgpp̃´ p̃2q and let

cavpξβ,F q denote its concavification.

Proof of Proposition 2. First, observe that Proposition 1 implies that that F ˚ P

argmaxFPF VβpF q if and only if F ˚ P argmaxFPF
ş

wβpx, F ˚qdF pxq.

We now prove the first part of the statement. Let β P r0, 1s, fix an arbitrary

optimal distribution F ˚ with marginals pp˚
F , F

˚
∆q, and denote q˚ “

ş

p2dF ˚
∆ppq. Define

∆pp˚
F , q

˚
q “

"

F∆ P ∆r0, 1sq :

ż

p2dF∆ppq “ p˚
F ,

ż

p2dF∆ppq “ q˚

*

.

Consider the maximization problem:

max
F∆P∆pp˚

F ,q˚q

ż

gpp ´ p2qdF∆ppq. (17)

If F∆ is feasible for Problem 3, it yields a weakly higher utility than F ˚
∆ because

F∆ has the same second moment as F ˚
∆ and the latter is feasible for Problem 17, so

any solution F∆ of Problem 17 is also a solution of Problem 3. Finally, observe that

∆pp˚
F , q

˚q is a moment set with k “ 2 moment conditions. The objective function of

Problem 17 is linear in F∆, so it follows from Theorem 2.1. in Winkler [1988] that

there is solution of Problem 17, and hence of Problem 3, that is supported on no more

than three points of ∆pr0, 1sq, concluding the proof of the first statement.

Next, assume that there exists an optimal F ˚ P F whose marginals are given by

pp˚
F , F

˚
∆q. By the initial claim and equation 4, pp˚

F , F
˚
∆q solve

max
pP∆,F∆P∆pr0,1sq:

ş

p̃dF pp̃q“p

"

pṽ ` p1 ´ βqg1
pD2pF

˚
qq

ż

pp̃2 ´ p2qdF∆pp̃q ` β

ż

gpp̃ ´ p̃2qdF∆ppq

*

“ max
pP∆

"

pṽ ´ p1 ´ βqg1
pD2pF ˚

qq p2 ` max
F∆:

ş

p̃dF pp̃q“p

„
ż

p1 ´ βqg1
pD2pF

˚
qq p̃2 ` βgpp̃ ´ p̃2qdF∆pp̃q

ȷ*

(18)

“ max
pP∆

␣

pṽ ´ p1 ´ βqg1
pD2pF ˚

qq p2 ` cavpξβ,F˚qppq
(
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Given the assumptions on g and given that ∆ is compact, there exist β, β P p0, 1q

with β ď β such that ξβ,F˚ is strictly concave over ∆ for all β ě β and ξβ,F˚ is strictly

convex over ∆ for all β ď β. We now prove points 1 and 2.

1. When β ě β, ξβ,F˚ is strictly concave so that cavpξβ,F˚q “ ξβ,F˚ . By Corollary

2 in Kamenica and Gentzkow [2011], the inner maximization problem in equation 18

is uniquely solved by F∆ “ δp, that is, no disclosure is uniquely optimal. This implies

that F ˚
∆ “ δp˚

F
. Because pṽ ´ p1 ´ βqg1 pD2pF

˚qq p2 ` ξβ,F˚ppq “ pṽ ` βgpp ´ p2q and

the optimal pp˚
F , F

˚
∆q are arbitrary, the statement follows.

2. When β ď β, ξβ,F˚ is strictly convex. By Corollary 2 in Kamenica and

Gentzkow [2011], the inner maximization problem in equation 18 is uniquely solved by

F∆ “ p1 ´ pqδ0 ` pδ1, that is, full disclosure is uniquely optimal, and cavpξβ,F˚qpp̃q “

p1 ´ βqg1 pD2pF
˚qq p̃. This implies that F ˚

∆ “ p1 ´ p˚
F qδ0 ` p˚

F δ1. Next, pṽ ´ p1 ´

βqg1 pD2pF
˚qq p2 ` cavpξβ,F˚qppq “ pṽ ` p1 ´ βqg1pD2pF ˚qqpp ´ p2q. Given that the

optimal pp˚
F , F

˚
∆q are arbitrary, the statement follows.

Proof of Proposition 3. This follows from the following three lemmas. The

first two are standard; we relegate their proofs to Online Appendix II.A.

Lemma 2. σpx, F q defined by a method of moments forecast is a forecast error.

Given F, F̃ P F , we say that the direction F̃ ´ F is relevant at F if for some

λ ą 0 the signed measure F ` λpF̃ ´ F q ě 0 is an ordinary measure.

Lemma 3. Let Hpx, x̃q “
ş

hpx, sqhpx̃, sqdµpsq. Then

V pF q “

ż

Hpx, xqdF pxq ´

ż ż

Hpx, x̃qdF pxqdF px̃q

with directional derivatives for relevant directions pδz ´ F q at F given by

DV pF qpδz ´ F q “

Hpz, zq ´

ż

Hpx, xqdF pxq ´ 2

„
ż

Hpz, xqdF pxqq ´

ż

Hpx, x̃qdF pxqdF px̃q

ȷ

.

When F ÞÑ hpF, ¨q is one-to-one we have an additional property:

Lemma 4. If F ÞÑ hpF, ¨q is one-to-one and µ assigns positive probability to open

sets of S then V pF q is strictly concave.
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Proof. From Lemma 3 it suffices to prove that the positive semi-definite quadratic

form
ş ş

Hpx, x̃qdMpxqdMpx̃q is positive definite on the linear subspace of signed mea-

sures where
ş

dMpxq “ 0. Recall that Hpx, x̃q “
ş

hpx, sqhpx̃, sqdµpsq, and suppose

that
ş

hpx, ŝqdMpxq ‰ 0 for some ŝ. Since h is continuous there is an open set S̃ Ď S

such that ŝ P S̃ and
ş

hpx, sqdMpxq ‰ 0 for all s P S̃. Since µ assigns positive

probability to open sets of S this implies that

ż ż

Hpx, x̃qdMpxqdMpx̃q “

ż
„ˆ

ż

hpx, sqdMpxq

˙
ż

hpx̃, sqdMpx̃q

ȷ

µpsqds ą 0.

Hence it suffices for V pF q to be strictly convex that
ş

hpx, sqdMpxq ‰ 0 for any

signed measure M with
ş

dMpxq “ 0. Using the Jordan decomposition we may write

M “ λpF ´ F̃ q where F, F̃ are probability measures and λ ą 0 if M ‰ 0. Hence
ş

hpx, sqdMpxq “ 0 for M ‰ 0 if and only if for all s

hpF, sq “

ż

hpx, sqdF pxq “

ż

hpx, sqdF̃ pxq “ hF̃ psq.

Since h Ñ hpF, ¨q is one-to-one this implies F “ F̃ and M “ 0.

To prove Theorem 2 we use a sequence of intermediate results. To begin, we fix

an arbitrary parametric adversarial forecaster representation V , and define upx, yq “

vpxq ` σ̂px, yq. Let H denote the set of probability measures over Y .

For any convex and compact subset F Ď F of lotteries, let extpFq denote the

set of extreme points of F . By Choquet’s theorem, for all F P F , there exists

λ P ∆
`

ext
`

F
˘˘

such that F “
ş

F̃ dλpF̃ q. Let ΛF Ď ∆
`

ext
`

F
˘˘

be the set of

probability measures over extreme points that satisfy F “
ş

F̃ dλ
´

F̃
¯

for F .

Theorem 7. Fix Ĥ P argminHPH maxFPextpFq

ş ş

u px, yq dF pxq dH pyq. Then F̂ P

argmaxFPF V pF q if and only if for all F̃ P ext
`

F
˘

, V pF̂ q ě
ş ş

u px, yq dF̃ pxq dĤ pyq ,

and, for all F̃ P
Ť

λPΛF̂
suppλ, V pF̂ q “

ş ş

u px, yq dF̃ pxq dĤ pyq .

Note that when F “ ∆
`

X̄
˘

for some closed subset X̄, the extreme points

ext
`

F
˘

“ X̄ are simply point masses over the set of feasible outcomes. In this

case, Theorem 7 implies that F is optimal if and only if V pF q ě
ş

upx, yqdĤpyq for

all x P X, with equality for x P suppF .

Now we fix a closed subset X Ď X and a finite collection of functions Γ “

tg1, ..., gku Ă CpXq. As in the main text, we consider FΓpXq Ď F . By Theorem 2.1
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in Winkler [1988], F̃ P ext
`

FΓpXq
˘

if and only if F̃ P FΓpXq and F̃ “
řp

i“1 αiδxi

for some p ď k ` 1, α P ∆ pt1, ..., puq, and tx1, ..., xpu Ď X̄ such that the vectors

tpg1 pxiq , ..., gk pxiq , 1qu
p
i“1 are linearly independent. For every finite subset of extreme

points E Ď ext
`

FΓpXq
˘

, define XE “
Ť

F̃PE supp F̃ Ď X, which is finite from Win-

kler’s theorem. We identify copEq with the subset of FΓpXq composed of all convex

combinations of extreme points in E . Recall that Ŷ pF q ” argminyPY

ş

upx, yqdF pxq,

and that pY, uq satisfies the uniqueness property if Ŷ pF q is a singleton for all F P F
(see Definition 8).

Theorem 8. Fix a finite set E Ď ext
`

FΓpXq
˘

, and suppose that Y has the structure

of an m-dimensional manifold with boundary, that u is continuously differentiable in

y, and that Y and u satisfy the uniqueness property. We have:

1. For an open dense full measure set of w P W Ď RXE , every lottery F that solves

maxF̃PcopEq minyPY

ş

pupx, yq ` wpxqqdF̃ pxq has finite support on no more than

pk ` 1qpm ` 1q points of XE .

2. There exists a lottery F that solves maxF̃PcopEq minyPY

ş

upx, yqdF̃ pxq and has

finite support on no more than pk ` 1qpm ` 1q points of XE .

Proof. Let |E | “ n and |XE | “ r ď npk ` 1q. Because | supp F̃ | ď k ` 1 for every

F̃ P ext
`

FΓpXq
˘

, both statements are trivial if pm ` 1q ě n. For pm ` 1q ă n, for

every w P RXE , define uwpx, yq “ upx, yq`wpxq and VwpF q “ minyPY

ş

uwpx, yqdF pxq,

and fix Hw P argminHPH maxFPE
ş ş

uw px, yq dF pxq dH pyq . For every w P RXE , the

uniqueness property implies thatHw “ ŷpFwq P Y for some Fw P argmaxFPcopEq VwpF q,

and the expectation of each w with respect to each F P copEq is well defined since

suppF Ď XE by construction.

We first prove point 1. Fix an arbitrary subset of m ` 2 extreme points E “
!

F̃1, ..., F̃m`2

)

Ď E and consider the map UE : Y ˆ R ˆ RXE Ñ Rm`2 defined by

UEpy, v, wqℓ “ upF̃ℓ, yq ´ v ` wpF̃ℓq @ℓ P t1, ...,m ` 2u

where, for every y P Y , upF̃ℓ, yq “
ş

upx, yqdF̃ℓ pxq and wpF̃ℓq “
ş

wpxqdF̃ℓ pxq. For

every py, vq P Y ˆ R, the derivative of UE with respect to w P RXE is a pm `

2q ˆ r matrix whose ℓ-th row coincides with the probability vector F̃ℓ, and because

the
!

F̃1, ..., F̃m`2

)

are extreme points of FΓpXq, this matrix has full rank, so the
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total derivative of UE has full rank as well. Hence by the parametric transverality

theorem,41 for an open dense full measure subset of RXE , denoted WpEq, the manifold

py, vq ÞÑ upF̃ℓ, yq ´v`wpF̃ℓq intersects zero transversally. Since dimpY ˆRq ă m`2,

there is no py, vq that solve upF̃ℓ, yq ´ v ` wpF̃ℓq “ 0 for all ℓ ď m ` 2. And since E
has finitely many subsets E of m` 2 extreme points, the intersection W “

Ş

E WpEq

is open, dense, and of full measure, since it is the finite intersection of full-measure

sets. Thus, for w P W and for all y P Y and v P R, upF̃ℓ, yq ´ v ` wpF̃ℓq “ 0 for at

most m ` 1 extreme points in E .
Next, fix w P W , F ˚ P argmaxFPcopEq Vw, and λ P ΛF˚ . By Theorem 7, for

all F̃ P suppλ Ď E , upF̃ , Hwq ´ Vw pF ˚q ` wpF̃ q “ 0. By the previous part of the

proof and Theorem 7, we then have | suppλ| ď m ` 1. Therefore, Fw is the linear

combination of up to m ` 1 extreme points in E . Each F̃ P E is supported on up to

k ` 1 points of XE , so Fw is supported on up to pm ` 1qpk ` 1q points of XE .

Now we prove point 2. BecauseW is dense in RXE , there exists a sequence wn P W
such that wnpxq Ñ 0 for all x P XE , and a sequence of corresponding optimal lotteries

F n with support of no more than pm` 1qpk ` 1q points of XE . Choose a convergent

subsequence of F n Ñ F , and observe that lotteries with no more than pm` 1qpk` 1q

points of support cannot converge weakly to a lottery with larger support. Finally,

because Vw is continuous with respect to w, the Berge Maximum Theorem implies

that F solves maxFPcopEq V0pF q, concluding the proof.

Lemma 5. Suppose that for every finite set E Ď ext
`

FΓpXq
˘

there exists a lottery

FE that solves maxFPcopEq V pF q and has finite support on no more than pm`1qpk`1q

points of X. Then there exists a lottery F ˚ that solves maxFPFΓpXq V pF q and that has

finite support on no more than pm ` 1qpk ` 1q points of X.

Proof of Theorem 2. Fix a parametric adversarial forecaster representation pY, v, σ̂q,

and define u “ v`σ. By Definition 4, the adversarial expected utility representation

pY, uq is such that Y has the structure of an m-dimensional manifold with boundary,

u is continuously differentiable in y, and Y and u satisfy the uniqueness property. By

Theorem 8 and Lemma 5, there exists a solution F ˚ that is supported on no more

than pk ` 1qpm ` 1q points of X.

41See e.g. Guillemin and Pollack [2010].
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Proof of Proposition 4. Stationarity implies that Hpx, xq is constant, so the di-

rectional derivatives from Lemma 3 simplify to

DV pF qpδz ´ F q “ ´2

„
ż

Hpz, xqdF pxqq ´

ż

Hpx, x̃qdF pxqdF px̃q

ȷ

.

Since V pF q is continuous and concave on a compact set the maximum exists, and is

characterized by the condition that no directional derivative is positive, which is

ż

Hpz, xqdF pxq ě

ż

Hpx, x̃qdF pxqdF px̃q for all z P X. (19)

This implies the complementary slackness condition: if there exists z P A such that

z satisfies (19) with strict inequality, then F pAq “ 0.42

Next we show that for any 0 ă a ď 1 and interval A “ r0, aq there is z P

A such that
ş

Hpz, xqdF pxqq “
ş

Hpx, x̃qdF pxqdF px̃q. By continuity this implies
ş

Hp0, xqdF pxqq “
ş

Hpx, x̃qdF pxqdF px̃q and by symmetry
ş

Hp1, xqdF pxqq “
ş

Hpx, x̃qdF pxqdF px̃q.

Suppose instead that for all z P A
ş

Hpz, xqdF pxq ą
ş

Hpx, x̃qdF pxqdF px̃q, and take

a P X to be the supremum of the set
␣

x1 P X :
ş

Hpx1, xqdF pxq ą
ş

Hpx, x̃qdF pxqdF px̃q
(

,

so that
ş

Hpa, xqdF pxq “
ş

Hpx, x̃qdF pxqdF px̃q. By complementary slackness F pAq “

0. Positive definiteness, that is
ş

Hpx, x̃qdF pxqdF px̃q ą 0, implies that Hpa, xq ą 0

for some non-trivial interval x P ra, bs. Since Hp0, x̃q is decreasing and Hpa, aq “

maxx̃Hpa, x̃q, it follows that Hpa, xq ą Hp0, xq. Hence
ş

Hpx, x̃qdF pxqdF px̃q “
ş

Hpa, xqdF pxq ą
ş

Hp0, xqdF pxqq, violating the first order condition at z “ 0.

Finally, suppose there is a non-trivial open interval A “ pa, bq such that F pAq “ 0.

We may assume w.l.o.g. that
ş

Hpa, xqdF pxq “
ş

Hpx, x̃qdF pxqdF px̃q,
ş

Hpb, xqdF pxqq “
ş

Hpx, x̃qdF pxqdF px̃q. Then for x R A by strict convexity either p1{2qpHpa, xq `

Hpb, xqq ą Hppa ` bq{2, xq or both the left-hand side and the right-hand side are

equal to zero. The latter cannot be true for a positive measure set of x R A, so
ş

Hpx, x̃qdF pxqdF px̃q “ p1{2q
`ş

Hpa, xqdF pxq `
ş

Hpb, xqdF pxq
˘

ą
ş

Hppa`bq{2, xqdF pxqq

violating the first order condition at pa ` bq{2.

42If there is z P A with F pAq ą 0, then there is an open set Ã Ď A containing z with
F pÃq ą 0, and every x P Ã satisfies (19) with strict inequality. Then

ş

Hpx, x̃qdF pxqdF px̃q “
ş

Ã

ş

X
Hpx, x̃qdF px̃qdF pxq `

ş

Ãc

ş

X
Hpx, x̃qdF px̃qdF pxq ą F pÃq

ş

Hpx, x̃qdF pxqdF px̃q ` p1 ´

F pÃqq
ş

Hpx, x̃qdF pxqdF px̃q “
ş

Hpx, x̃qdF pxqdF px̃q, a contradiction.
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Online Appendix I: Proofs omitted from the main

appendix

Online Appendix I.A: Section 5

Proof of Theorem 3. Let Á is a transport preference with a continuously differ-

entiable ϕ, and recall that Y Ď CpXq is the set of continuous functions such that
ş

exp p´ypxqq dx “ 1. We first prove that if ϕ is continuous, then Á has an adversarial

expected utility representation. First, observe that

V pF q “

ż ż 1

0

ϕpx, θqdθdF pxq ` ΣϕpF q “ min
yPY

"
ż 1

0

yϕpθqdθ ´

ż

ypxqdF pxq

*

, (20)

where yϕpθq “ maxξPX tϕpθ, ξq ` ypξqu. Observe that the restriction
ş

expp´ỹpξqqdξ “

1 defining the set elements of the set Y is irrelevant in the previous minimization

problem because for every y P Y and c P R the function y ` c attains the same value

as y. This and Proposition 1.11 in Santambrogio [2015] together with its proof, imply

that

V pF q “ min
yPỸ

"
ż 1

0

yϕpθqdθ ´

ż

ypxqdF pxq

*

(21)

for some compact set Ỹ Ď Y . This implies that Á has an adversarial expected utility

representation pỸ , uq where upx, yq “
ş1

0
yϕpθqdθ ´ ypxq.

Next, because both X and Θ are compact and convex with nonempty interior and

U has full support, Proposition 7.18 in Santambrogio [2015] implies that the solution

y P CpXq to the intermediate minimization problem in equation 21 is unique up to an

additive constant. In turn, there exists a unique y P Ỹ that satisfies the normalization
ş

expp´ỹpξqqdξ “ 1 and that solves the problem in equation 21 restricted to Ỹ . This

implies that Á has an adversarial expected utility representation with uniqueness,

hence, by Theorem 6, it has an adversarial forecaster representation. Finally, given

that the continuous local expected utility of V is wV px, F q “
ş1

0
yϕpθqdθ´

ş

yF pxqdF pxq

for all F , where yF P Ỹ is the unique solution of the minimization problem in equa-

tion 21, and V pδxq “
ş1

0
ϕpθ, xqdθ for all x P X, the formulas for v and σ given the

statement follow.
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Proof of Proposition 5. From the proof of Theorem 5 we know that Á admits a

representation V as in equation 20. By Proposition 1.11 in Santambrogio V pF q “

maxTP∆pU,F q

ş

ϕpθ, xqdT pθ, xq for all F P F . Next, because X “ r0, 1s, U is atomless,

and ϕ is continuously differentiable with ϕx increasing in θ, Theorem 2.9 in Santam-

brogio [2015] implies that V pF q “
ş1

0
ϕpθ, F r´1spθqqdθ.

Online Appendix I.B: Section 6

Before proving Proposition 6, we state some new definitions together with a general

result (Theorem 9) on the existence of local expected utility. We will make use of the

Bregman divergence. For each F P F , let WV pF q Ď CpXq denote the local expected

utilities of V at F .

Definition 10. Let V be continuous and have a local expected utility. We say that

B : F ˆ F Ñ R` is a Bregman divergence for V if

BpF̃ , F q “ V pF q ´ V pF̃ q ´

ż

wF pxqdpF ´ F̃ qpxq @F P F

for some wF P WV pF q.

Definition 11. We say that σ : X ˆ F Ñ R` is a pseudo forecast error if σp¨, F q

is continuous for all F P F , σpx, δxq “ 0 for all x P X, and if
ş

σpx, F qdF pxq ď
ş

σpx, F̂ qdF pxq for all F, F̂ P F .

Theorem 9. Let V be a continuous functional. The following are equivalent:

(i) V has a local expected utility.

(ii) There exist v P CpXq and a pseudo forecast error σ such that

V pF q “

ż

vpxqdF pxq ` min
F̂PF

ż

σpx, F̂ qdF pxq @F P F . (22)

(iii) There is a separable metric space Y and a continuous function u : X ˆ Y Ñ R
such that V pF q “ minyPY

ş

upx, yqdF pxq.

If any of these conditions holds, then

1. v is uniquely defined by vpxq “ V pδxq;
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2. σ satisfies 22 if and only if σpx, F q “ Bpδx, F q for some Bregman divergence.

This result implies that even if multiple forecast errors are consistent with (22),

the induced surprise function Σ is uniquely defined by ΣpF q “ V pF q ´
ş

vpxqdF pxq.

Proof of Theorem 9. It is immediate that under (ii), condition (iii) for V is ob-

tained by setting Y “ tv ` σp¨, F quFPF and upx, yq “ ypxq. It is also immediate that

(iii) implies (i) since, for all F P F and y P Ŷ pF q, upx, yq is a local expected utility of

V at F . We next prove that (i) implies (ii). Because V has a local expected utility,

WV pF q ‰ H for all F P F . Fix wF P WV pF q for all F P F and let B denote the

corresponding Bregman divergence as defined in Definition 10. For every F

ż

Bpδx, F qdF pxq “ V pF q ´

ż

V pδxqdF pxq ´

ż

wF pxqdF pxq `

ż

wF pxqdF pxq

“ V pF q ´

ż

V pδxqdF pxq,

so V pF q “
ş

V pδxqdF pxq `
ş

Bpδx, F qdF pxq. Now define vpxq “ V pδxq and σpx, F q “

Bpδx, F q for all x and F . Given that V is continuous, it follows that v is continuous.

Next we show that σ is a pseudo forecast error. First, observe that, for every F ,

σpx, F q “ V pF q ´ vpxq ´

ż

wF px̃qdF px̃q ` wF pxq

is continuous in x since v and wF are continuous. Second, σpx, δxq “ Bpδx, δxq “ 0

for every x. Finally, fix F, F̃ P F and observe that

ż

σpx, F̃ qdF pxq “ V pF̃ q ´

ż

vpxqdF pxq ´

ż

wF̃ pxqdF̃ pxq `

ż

wF̃ pxqdF pxq

ě V pF q ´

ż

vpxqdF pxq “

ż

σpx, F qdF pxq,

where the inequality follows since wF̃ P WV pF̃ q. This shows that σ is a pseudo

forecast error. Thus V pF q “
ş

vpxqdF pxq ` minF̂PF
ş

σpx, F̂ qdF pxq, as desired.

Next, we prove point 1. Assume that there exists v̂ ‰ v that satisfy equation

22 for V , possibly with respect to a different pseudo forecast errors σ and σ̂. Then

vpxq “ V pδxq “ v̂pxq ` minF̂PF σ̂px, F̂ q “ v̂pxq ` σ̂px, δxq “ v̂pxq, a contradiction.

We finally prove point 2. First let σpx, F q “ Bpδx, F q for some Bregman diver-

gence of V . It follows from the proof of (i) implies (ii) that σ satisfies 22 for V .
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Conversely, assume that a pseudo forecast error σ satisfies 22 for V . For every F and

x, define wF pxq “ vpxq ` σpx, F q. Given that σ is a pseudo forecast error, we have

V pF q “

ż

vpxqdF pxq `

ż

σpx, F qdF pxq “

ż

wF pxqdF pxq.

Next, fix F̃ P F and observe that

V pF̃ q ď

ż

vpxqdF̃ pxq `

ż

σpx, F qdF̃ pxq “

ż

wF pxqdF̃ pxq.

This proves that wF P WV pF q. Because F was arbitrary, it follows that wF is a

local expected utility for V . Consider the corresponding Bregman divergence B and

observe that, for every F̃ P F ,

BpF̃ , F q “ V pF q ´ V pF̃ q ´

ż

pvpxq ´ σpx, F qq dpF ´ F̃ qpxq @F P F

“

ż

´

σpx, F q ´ σpx, F̃ q

¯

dF̃ pxq

where the second equality follows from equation 22. With this, we have Bpδx, F q “

σpx, F q for every x. Given that F was arbitrarily chosen, the implication follows.

We are now ready to prove Proposition 6.

Proof of Proposition 6. (i) implies (ii). Define Wv,σ “ cl ptv ` σp¨, F quFPFq,

where cl denotes the closure operation, and M “ maxFPF |V pF q|. For every F P F ,

maxxPX |vpxq ` σpx, F q| ď M , so maxxPX |wpxq| ď M for all w P Wv,σ. Next, because

X is compact, v is uniformly continuous and the family tσp¨, F quFPF is uniformly

equicontinuous over X, so there is a continuous function ω : R` Ñ R` such that

ωp0q “ 0 and|vpxq ` σpx, F q ´ vpx1q ´ σpx1, F q| ď ωpdpx, x1qq for every x, x1 P X

and F P F . Thus the family of functions Wv,σ is equicontinuous over X and, by

the Arzaela-Ascoli theorem, a compact metric space. This implies that V pF q “

minwPWv,σ

ş

wpxqdF pxq, and, by setting Y “ Wv,σ and upx, yq “ ypxq, that Á admits

a representation as in equation 13.

(ii) implies (i). By assumption, Á has a representation V as in equation 13.

Define W “ tup¨, yquyPY Ď CpXq. Continuity of u implies that W is uniformly

bounded and equicontinuous, hence compact. Next, for every F fix an arbitrary
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ŷpF q P argminyPY

ş

upx, yqdF pxq and define wV px, F q “ upx, ŷpF qq for all x and F .

Because twV p¨, F quFPF Ď W , the family of function twV p¨, F quFPF is equicontinuous

in x. Moreover, by construction wV p¨, F q is a local expected utility of V for every F ,

that is wV p¨, F q P WV pF q. Theorem 9 thus implies there is a v P CpXq and a pseudo

surprise function σ such that V can be written as in equation 22. In particular, by

point 2 of Theorem 9, σ satisfies 22 if and only if σpx, F q “ Bpδx, F q for some Bregman

divergence of V . Let Bw be the Bregman divergence induced by twV p¨, F quFPF and

let σpx, F q “ Bwpδx, F q “ wV px, F q´vpxq, hence the family of functions tσp¨, F quFPF

is equicontinuous. This implies that Á is a weak adversarial forecaster preference.

Online Appendix I.C: Section 7

Recall that Ŷ pF q “ argminyPY

ş

upx, yqdF pxq, and let HpŶ pF qq Ď H denote the

probability measures over Ŷ pF q. Before proving Theorem 5, we state and prove an

ancillary lemma.

Lemma 6. Suppose F n Ñ F and that wn Ñ w. Then
ş

wnpxqdF npxq Ñ
ş

wpxqdF pxq.

Moreover, if V is continuous with continuous local expected utility and if each wn is

a local expected utility for F n, then w is a local expected utility for F .

Proof of Lemma 6. Write

ż

wn
pxqdF n

pxq´

ż

wpxqdF pxq “

ż

pwn
pxq ´ wpxqq dF n

pxq`

ż

wpxqdpF n
pxq´F pxqq.

For the second term
ş

wpxqdpF npxq´F pxqq Ñ 0 by the definition of weak convergence.

Analyzing the first term

ż

pwn
pxq ´ wpxqq dF n

pxq ď sup |wn
pxq ´wpxq|

ż

dF n
pxq “ sup |wn

pxq ´wpxq| Ñ 0.43

Finally, we wish to show that if F n Ñ F and wn are local expected utility

functions for F n with wn Ñ w then w is a local expected utility function for F .

Suppose we are given
ş

wnpxqdF̃ pxq ě V pF̃ q and
ş

wnpxqdF npxq “ V pF nq. We

have
ş

wpxqdF̃ pxq ě V pF̃ q by the definition of weak convergence. It remains to

43This highlights an important difference between positive and signed measures. In the case of a
signed measure it is not true that

ş

pwnpxq ´ wpxqq dFnpxq ď sup |wnpxq ´ wpxq|
ş

dFnpxq and the
lemma is false for signed measures on infinite-dimensional spaces.
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show that
ş

wpxqdF pxq “ V pF q. As V pF q is continuous so it suffices to show that
ş

wnpxqdF npxq “
ş

wpxqdF pxq. This follows directly from the first result.

Proof of Theorem 5. We only prove the equivalence between (i) and (ii) since the

other implications are explained in the main text. (i) implies (ii). As a preliminary

step we show that, for every F P F and for every G, Ĝ P F such that G ÁW Ĝ, there

exists y P Ŷ pF q such that
ş

upx, yqdĜpxq ď
ş

upx, yqdGpxq. Observe that λG ` p1 ´

λqF ÁW λĜ ` p1 ´ λqF , for all λ P p0, 1s. By hypothesis, this implies that V pλG `

p1 ´ λqF q ě V pλĜ ` p1 ´ λqF q, for all λ P p0, 1s. Next, consider a sequence λn Ñ 0.

For every n P N, fix two any ŷn P Ŷ pλnĜ` p1´λnqF q, and yn P Ŷ pλnG` p1´λnqF q.

Observe that for every n P N,
ż

upx, ŷnqdpλnĜ ` p1 ´ λnqF qpxq “ V pλnĜ ` p1 ´ λnqF q

ď V pλnG ` p1 ´ λnqF q “

ż

upx, ynqdpλnG ` p1 ´ λnqF qpxq

ď

ż

upx, ŷnqdpλnG ` p1 ´ λnqF qpxq

where the last inequality follows since yn P Ŷ pλnG ` p1 ´ λnqF q. This implies that

λn

ż

upx, ŷnqdĜpxq`p1´λnq

ż

upx, ŷnqdF pxq ď λn

ż

upx, ŷnqdGpxq`p1´λnq

ż

upx, ŷnqdF pxq,

which in turn gives
ş

upx, ŷnqdĜpxq ď
ş

upx, ŷnqdGpxq. Take a subsequence ŷn con-

verging to y. By Lemma 6 y P Ŷ pF q and
ş

upx, yqdĜpxq ď
ş

upx, yqdGpxq as desired.

Next, fix F P F and define the subset of the signed measures on X in the

weak topology M “

!

G ´ Ĝ : G, Ĝ P F , G ÁW Ĝ
)

; for every M P M, there ex-

ists y P Ŷ pF q such that
ş

upx, yqdMpxq ě 0. Let UpF q denote the convex hull of
!

up¨, yq : y P Ŷ pF q

)

. Since Ŷ pF q is compact so is UpF q, so maxwPUpF q

ş

wpxqdMpxq

exists, and is nonnegative for all M P M. Thus infMPM maxwPUpF q

ş

wpxqdMpxq ě 0.

Now we show that M is convex and compact. Fix M,M 1 P M and λ P r0, 1s, and

probability measures G,G1, Ĝ, Ĝ1 such that G ÁW Ĝ, G1 ÁW Ĝ1, such thatM “ G´Ĝ

and M 1 “ G1 ´ Ĝ1. From the definition of ÁW , λG` p1´λqG1 ÁW λĜ` p1´λqĜ1, so

λM`p1´λqM 1 P M. Moreover, the subset in F ˆ F of pointsG, Ĝ such thatG ÁW Ĝ

is closed so it is compact. As subtraction is continuous, M is the continuous image of
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a compact set, so it is also compact. Given that UpF q andM are compact and convex,

and the objective function is bilinear and continuous in each argument separately, the

Sion minmax Theorem implies that maxwPUpF q minMPM
ş

wpxqdMpxq ě 0.

Letting v P UpF q be a solution, we see thatG ÁW Ĝ implies
ş

vpxqd
´

G ´ Ĝ
¯

pxq ě

0, that is Áv preserves ÁW . Hence, because v continuous, Theorem 2 in Castagnoli

and Maccheroni [1998] implies that v P xWy.

(ii) implies (i). Consider F,G P F such that F ÁW G, and a probability

distribution H over Ŷ pF q such that
ş

upx, yqdHpyq P xWy. Then y P Ŷ pF q im-

plies V pGq ď
ş

upx, yqdGpxq and
ş

upx, yqdF pxq “ V pF q. By Fubini’s theorem this

implies V pGq ď
ş ş

upx, yqdHpyqdGpxq and
ş ş

upx, yqdHpyqdF pxq “ V pF q. Since
ş

upx, yqdHpyq P xWy and G ĺW F , it follows that

V pGq ď

ż ż

upx, yqdHpyqdGpxq ď

ż ż

upx, yqdHpyqdF pxq “ V pF q.

Online Appendix II: Ancillary results

This appendix gives proofs of the ancillary results stated in the main appendix.

Online Appendix II.A: Ancillary results for Appendix I

We start with a preliminary lemma.

Lemma 7. If V has a continuous local expected utility wV px, F q, then

ż

wV px, F qdF̃ pxq ´

ż

wV px, F qdF pxq “ lim
λÓ0

V pp1 ´ λqF ` λF̃ q ´ V pF q

λ
.

for all F, F̃ P F .

Proof. Fix F and F̃ , and for 0 ă λ ď 1 and F “ p1 ´ λqF ` λF̃ define

∆pλq “
V pF q ´ V pF q

λ
.

Since wV px, F q is a local expected utility function at F ,
ş

wV px, F qdF pxq ´ V pF q ě
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V pF q ´ V pF q so

∆pλq “
V pF q ´ V pF q

λ
ď

ş

wV px, F qdF pxq ´ V pF q

λ
“

ż

wV px, F qdF̃ pxq´

ż

wV px, F qdF pxq.

On the other hand since wV px, F q is a local utility function at F ,
ş

wV px, F qdF pxq ´

V pF q ě V pF q ´ V pF q so

∆pλq “
V pF q ´ V pF q

λ
ě
V pF q ´

ş

wV px, F qdF pxq

λ

“

ş

wV px, F q
`

dF pxq ´ dF pxq
˘

λ
“

ż

wV px, F qdF̃ pxq ´

ż

wV px, F qdF pxq

Ñ

ż

wV px, F qdF̃ pxq ´

ż

wV px, F qdF pxq

since wV px, F q is continuous in F . Putting these together we have

ż

wV px, F qdF̃ pxq´

ż

wV px, F qdF pxq ď lim
λÓ0

∆pλq ď

ż

wV px, F qdF̃ pxq´

ż

wV px, F qdF pxq

which yields the statement.

Proof of Lemma 1. Choose µ ą 0 as in the statement and observe that

lim
λÓ0

V pF ` λpF̃ ´ F qq ´ V pF q

λ
“

1

µ
lim
λÓ0

V pp1 ´ λ{µqF ` pλ{µqpF ` µpF̃ ´ F qq ´ V pF q

λ{µ

“
1

µ

ˆ
ż

wV px, F qdF pxq ´

ż

wV px, F qdpF ` µpF̃ ´ F qqpxq

˙

“

ż

wV px, F qdF̃ pxq ´

ż

wV px, F qdF pxq

where the second equality follows by Lemma 7.

Proof of Lemma 2. We must show that σ is non-negative, weakly continuous, that

σpx, xq “ 0 and that
ş

σpx, F qdF pxq ď
ş

σpx,GqdF pxq. Non-negativity is obvi-

ous. Since hpx, sq is continuous in x we have F n Ñ F implies that hFnpsq con-

verges pointwise to hnpsq. Hence
`

hpx, sq ´
ş

hpx̃, sqdF npx̃q
˘2

converges pointwise to
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`

hpx, sq ´
ş

hpx̃, sqdF px̃q
˘2
. Given that h is square-integrable over pS, µq, the domi-

nated convergence theorem implies that

ż
ˆ

hpx, sq ´

ż

hpx̃, sqdF n
px̃q

˙2

dµpsq Ñ

ż
ˆ

hpx, sq ´

ż

hpx̃, sqdF px̃q

˙2

dµpsq.

For the last property, σpx, xq “
ş

phpx, sq ´ hpx, sqq
2 dµpsq “ 0, and so

ż

σpx,GqdF pxq “

ż ż

phpx, sq ´ hGpsqq
2 dµpsqdF pxq “

ż
ˆ
ż

phpx, sq ´ hGpsqq
2 dF pxq

˙

dµpsq.

Since mean square error is minimized by the mean for each s,

hpF, sq “

ż

hpx, sqdF pxq P argmin
HPR

ż

phpx, sq ´ Hq
2 dF pxq

implying that
ş

σpx, F qdF pxq ď
ş

σpx,GqdF pxq.

Proof of Lemma 3. By definition V pF q “
ş ş

phpx, sq ´ hpF, sqq
2 dµpsqdF pxq, and

simple manipulations show this is equal to

ż

Hpx, xqdF pxq ´

ż ż ż

rhpx, sqhpx̃, sqdµpsqs dF pxqdF px̃q.

We next extend V to the space of signed measures by

V pF`Mq “

ż

Hpx, xqd pF pxq ` Mpxqq´

ż ż

Hpx, x̃qd pF pxq ` Mpxqq d pF px̃q ` Mpx̃qq

and observe that the cross term is

´2

ż
ˆ
ż

Hpx, x̃qdF px̃q

˙

dMpxq “ ´2

ż ż

hpx, sqhpx̃, sqdµpsqdF px̃qdMpxq

so that

V pF`Mq “ V pF q`

ż
„

Hpx, xq ´ 2

ż

hpx, sqhpx̃, sqdµpsqdF px̃q

ȷ

dMpxq´

ż ż

Hpx, x̃qdMpxqdMpx̃q.

This enables us to compute the directional derivatives. The directional derivative in
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the direction M “ δz ´ F is given as

DV pF qpδz ´ F q “

ż
„
ż

h2px, sqdµpsq ´ 2

ż

hpx, sqhpx̃, sqdµpsqdF px̃q

ȷ

pdδz ´ dF pxqq

“

ż

h2pz, sqdµpsq ´ 2

ż

hpz, sqhpx̃, sqdµpsqdF px̃q

´

ż

h2px, sqdF pxqdµpsq ` 2

ż

hpx, sqhpx̃, sqdµpsqdF px̃qdF pxq.

Online Appendix II.B: Ancillary results for Appendix B

We next restate and prove Theorem 7. Moreover, we relax the original assumptions by

considering an arbitrary adversarial expected utility representation pY, uq of V , and

an arbitrary convex and compact set of feasible lotteries F Ď F . Define V ˚
`

F
˘

“

maxFPF V pF q. By Sion’s minmax theorem,

V ˚
`

F
˘

“ max
FPF

min
yPY

ż

u px, yq dF pxq “ min
HPH

max
FPextpFq

ż ż

u px, yq dF pxq dH pyq .

Theorem 7. Fix Ĥ P argminHPH maxFPextpFq

ş ş

u px, yq dF pxq dH pyq. Then F̂ P

argmaxFPF V pF q if and only if for all F̃ P ext
`

F
˘

, V pF̂ q ě
ş ş

u px, yq dF̃ pxq dĤ pyq ,

and, for all F̃ P
Ť

λPΛF̂
suppλ, V pF̂ q “

ş ş

u px, yq dF̃ pxq dĤ pyq .

Proof of Theorem 7. Fix Ĥ as in the statement. Then fix F̂ P argmaxFPF V pF q,

F̃ P ext
`

F
˘

, and observe that

ż ż

u px, yq dF̃ pxq dĤ pyq ď max
FPextpFq

ż ż

u px, yq dF pxq dĤ pyq

“ min
HPH

max
FPextpFq

ż ż

u px, yq dF pxq dH pyq “ V ˚
`

F
˘

“ V
´

F̂
¯

,

yielding the first part of the desired condition. Next, observe that

V ˚
`

F
˘

“ max
FPextpFq

ż ż

u px, yq dF pxq dĤ pyq

ě

ż ż

u px, yq dF̂ pxq dĤ pyq ě min
HPH

ż ż

u px, yq dF̂ pxq dHpyq “ V ˚
`

F
˘

,
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Combining the first two chains of inequalities yields

ż ż

u px, yq dF̂ pxq dĤ pyq ě

ż ż

u px, yq dF̃ pxq dĤ pyq @F̃ P ext
`

F
˘

. (23)

Next, fix λ P ΛF̂ , F
˚ P suppλ, and assume toward a contradiction that

V
´

F̂
¯

ą

ż ż

u px, yq dF ˚
pxq dĤ pyq .

It follows that
ş

´

ş

u px, yq dF̃ pxq

¯

dĤ pyq dλ
´

F̃
¯

“
ş

u px, yq dF̂ pxq dĤ pyq

ě V
´

F̂
¯

ą
ş ş

u px, yq dF ˚ pxq dĤ pyq , so there exists F ‹ P suppλ and ε ą 0 such

that
ż ż

u px, yq dF ‹
pxq dĤ pyq ą

ż ż

u px, yq dF̃ pxq dĤ pyq

for all F̃ P suppλ X Bε pF ˚q, where Bε pF ˚q Ď F is the ball of radius ε (in the

Kantorovich-Rubinstein metric) centered at F ˚.

Next, define the probability measure λ‹ “ λpBε pF ˚qqδF ‹`p1 ´ λ pBε pF ˚qqqλ p¨|Bε pF ˚q
c
q

and the lottery Fλ‹ “
ş

F̃ dλ‹pF̃ q. Then

ż ż

u px, yq dFλ‹ pxq dĤ pyq “

ż
ˆ
ż

u px, yq dF̃ pxq

˙

dĤ pyq dλ‹
´

F̃
¯

“ λpBε pF ˚
qq

ż

u px, yq dF ‹
pxq ` p1 ´ λ pBε pF ˚

qqq

ż
ˆ
ż

u px, yq dF̃ pxq

˙

dĤ pyq dλ
´

F̃ |Bε pF ˚
q
c
¯

ą λpBε pF ˚
qq

ż
ˆ
ż

u px, yq dF̃ pxq

˙

dĤ pyq dλ
´

F̃ |Bε pF ˚
q

¯

` p1 ´ λ pBε pF ˚
qqq

ż
ˆ
ż

u px, yq dF̃ pxq

˙

dĤ pyq dλ
´

F̃ |Bε pF ˚
q
c
¯

“

ż
ˆ
ż

u px, yq dF̃ pxq

˙

dĤ pyq dλ
´

F̃
¯

“

ż ż

u px, yq dF̂ pxq dĤ pyq

which contradicts equation (23).

Conversely, fix F̃ P ext
`

F
˘

and observe that the implication follows by

V
´

F̂
¯

ě max
F̃PextpFq

ż ż

u px, yq dF̃ pxq dĤ pyq

“ min
HPH

max
FPextpFq

ż ż

u px, yq dF pxq dH pyq “ V ˚
´

F̂
¯

ě V
´

F̂
¯

.
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Before proving Lemma 5, we state and prove an intermediate result.

Lemma 8. For every F P FΓpXq, there exists a sequence F n Ñ F such that each F n

is the convex combination of finitely many points in extpFΓpXqq.

Proof. Define Fe “ extpFΓpXqq and endow it with the relative topology. This makes

Fe metrizable. Next, by the Choquet’s theorem, FΓpXq can be embedded in the set

∆pFeq of Borel probability measures over Fe. By Theorem 15.10 in Aliprantis and

Border [2006], the subset ∆0pFeq of finitely supported probability measures over Fe

is dense in ∆pFeq. In turn, this implies the statement.

Lemma 6. Suppose that for every finite set E Ď ext
`

FΓpXq
˘

there exists a lottery

FE that solves maxFPcopEq V pF q and has finite support on no more than pm`1qpk`1q

points of X. Then there exists a lottery F ˚ that solves maxFPFΓpXq V pF q and that

has finite support on no more than pm ` 1qpk ` 1q points of X.

Proof of Lemma 5. Let F̂ solve maxFPFΓpXq V pF q. By Lemma 8, there exists

a sequence F̂ n Ñ F̂ such that, for every n P N, F̂ n P copEnq for some finite

set En Ď extpFΓpXqq. By Theorem 8, for every n P N, there exists a lottery

F n P copEnq that is supported on no more that pk ` 1qpm ` 1q points of X and

such that V pF nq ě V pF̂ nq. Given that FΓpXq is compact, there exists a subsequence

of F n that converges to some lottery F ˚ P FΓpXq. Since each F n has support on

at most pk ` 1qpm ` 1q points, the same is true for F ˚. And since V is continuous

V pF nq Ñ V pF ˚q and V pF̂nq Ñ V pF̂ q hence V pF ˚q ě V pF̂ q, F ˚ is optimal.

Corollary 1. Maintain the assumptions of Proposition 4, and let F denote the unique

fully supported solution. There exists a sequence of method of moments represen-

tations V n with |Sn| “ mn P N, and a sequence of lotteries F n such that each F n

is optimal for V n, is supported on up to mn ` 1 points, and F n Ñ F weakly, with

suppF n Ñ suppF “ X in the Hausdorff topology.
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Proof of Corollary 1. By Theorem 15.10 in Aliprantis and Border [2006], there

exists a sequence of finitely supported µn P ∆pSq such that µn Ñ µ. The GMM

adversarial forecaster representation V n induced by ph, µn satisfies the assumptions

of Theorem 2 by defining Y n “
ś

sPsuppµn hpX, sq Ď Rmn
, where mn “ | suppµn|, so

for every n P N, there exists a solution F n of the problem maxFP∆pXq V
npF q that is

supported on up to mn ` 1 points of X. Because the constraint set ∆pXq is compact

and V is continuous, the Berge maximum theorem implies that all the accumulation

points of the sequence F n are solutions of the problem maxFP∆pXq V pF q, where V is

the GMM adversarial forecaster representation induced by h and µ. Proposition 4

established that this problem has a unique full-support solution F , so F is the unique

accumulation point of F n. Because X is compact, the sequence suppF n converges

to some set X̂ Ď X in the Haussdorf sense. By Box 1.13 in Santambrogio [2015],

F n Ñ F implies that suppF Ď X̂, and, given that suppF “ X, it follows that

suppF n Ñ X.

Online Appendix III: Optimization

This appendix collects additional optimization results for adversarial forecaster and

adversarial expected utility representation that are of independent interest.

Online Appendix III.A: Optimal lotteries in the adversarial

EU model

Here we provide two alternative characterizations of optimal lotteries under the ad-

versarial expected utility model.

Proposition 7. Let V be an adversarial expected utility representation pY, uq and let

F Ď F be a convex and compact set. The following are equivalent:

(i) F ˚ P argmaxFPF V pF q

(ii) There exists H P HpŶ pF ˚qq such that F ˚ P argmaxFPF
ş ş

upx, yqdHpyqdF pxq.

(iii) For all F P F , there exists y P Ŷ pF ˚q such that
ş

upx, yqdF ˚pxq ě
ş

upx, yqdF pxq.
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The equivalence between (i) and (iii) is similar to Proposition 1 in Loseto and Lucia

[2021], with the important difference that they consider quasiconcave representations

and restrict to a finite set of utilities (which corresponds to a finite Y in our notation).

Proof. As a preliminary step, define W “ tup¨, yquyPY and observe that it is compact

since u is continuous.

The equivalence between (ii) and (iii) is a standard application of the Wald-Pearce

Lemma, so we only prove the equivalence between (i) and (ii).

(ii) implies (i). Let F ˚ P argmaxFPF
ş ş

upx, yqdHpyqdF pxq for someH P HpŶ pF ˚qq.

For all F̃ P F , we have

V pF ˚
q “

ż ż

upx, yqdHpyqdF ˚
pxq ě

ż ż

upx, yqdHpyqdF̃ pxq ě V pF̃ q,

yielding that F ˚ P argmaxFPF V pF q.

(i) implies (ii). Fix F ˚ P argmaxFPF V pF q. Define R : CpXq Ñ R as Rpwq “

maxFPF
ş

wpxqdF pxq and let copWq denote the convex hull of W , which is also com-

pact. Because F is compact, R is continuous. Fix w˚ P argminwPcopWq Rpwq. Observe

that

min
wPcopWq

ż

wpxqdF ˚
pxq “ max

FPF
min

wPcopWq

ż

wpxqdF pxq “ min
wPcopWq

max
FPF

ż

wpxqdF pxq

“ max
FPF

ż

w˚
pxqdF pxq ě

ż

w˚
pxqdF ˚

pxq ě min
wPcopWq

ż

wpxqdF ˚
pxq

This shows that w˚ P argminwPcopWq

ş

wpxqdF ˚pxq, that is, there exists H P HpŶ pF ˚qq

such that w˚pxq “
ş

upx, yqdHpyq. Next, observe that

max
FPF

min
wPcopWq

ż

wpxqdF pxq “ max
FPF

V pF q “ V pF ˚
q “ min

wPW

ż

wpxqdF ˚
pxq

ď

ż

w˚
pxqdF ˚

pxq ď max
FPF

ż

w˚
pxqdF pxq

“ min
wPcopWq

max
FPF

ż

wpxqdF pxq “ max
FPF

min
wPcopWq

ż

wpxqdF pxq,

where the last equality follows from Sion minamx theorem given that F is compact

and convex. This yields F ˚ P argmaxFPF
ş

w˚pxqdF pxq “ argmaxFPF
ş ş

upx, yqdHpyqdF pxq.
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Online Appendix III.B: finite Y

This section states and proves additional results on the optimization problem of Sec-

tion 4.2. Fix an arbitrary compact and convex set F Ď F of feasible lotteries. We

start with a simple lemma that establishes the existence of a saddle pair pF ˚, y˚q.

Lemma 9. There exists F ˚ P F and y˚ P Y such that

ż

upx, y˚
qdF ˚

pxq “ V pF ˚
q “ max

FPF
V pF q (24)

Proof. Because F is compact and V is continuous in the weak topology, there ex-

ists F ˚ P F such that V pF ˚q “ maxFPF V pF q. And because Y is compact and u is

continuous in y, there exists y˚ P Y such that
ş

upx, y˚qdF ˚pxq “ V pF ˚q, yielding the

statement.

For every pF ˚, y˚q as in Lemma 9, define the set

FpF ˚, y˚
q “

"

F P F : @y P Y zty˚
u,

ż

upx, yqdF pxq ě

ż

upx, yqdF ˚
pxq

*

(25)

Observe that FpF ˚, y˚q is nonempty since it contains F ˚, and convex since it is

defined by (possibly infinitely many) linear inequalities. In addition, FpF ˚, y˚q is the

intersection of closed sets since up., yq is a continuous function for all y P Y zty˚u, so

it too is closed.

Lemma 10. Fix pF ˚, y˚q as in Lemma 9 and a nonempty, closed, and convex set

K Ď FpF ˚, y˚q. The set argmaxFPK

ş

upx, y˚qdF pxq is nonempty, convex, and closed.

Proof. Given that K is nonempty, convex, and closed, hence compact, and the map

F ÞÑ
ş

upx, y˚qdF pxq is linear and continuous, the statement immediately follows.

We next state and prove a general, yet simple, result about the existence of max-

imizers of Problem 24 that are extreme points of convex, closed sets K Ď FpF ˚, y˚q.
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Lemma 11. For any pF ˚, y˚q as in Lemma 9 and nonempty, closed, and convex set

K Ď FpF ˚, y˚q such that F ˚ P K,

argmax
FPK

ż

upx, y˚
qdF pxq Ď argmax

FPF
V pF q. (26)

In particular, there exists F0 P extpKq such that V pF0q “ V pF ˚q “ maxFPF V pF q.

Proof. Fix F ˚ P F and y˚ P Y as in Lemma 9 and a nonempty, closed, and convex

set K Ď FpF ˚, y˚q. Let F̂ P argmaxFPK

ş

upx, y˚qdF pxq. We need to show that

V pF̂ q “ V pF ˚q. Observe that

ż

upx, yqdF̂ pxq ě

ż

upx, yqdF ˚
pxq @y P Y zty˚

u (27)

since F̂ P K Ď FpF ˚, y˚q. Moreover,

ż

upx, y˚
qdF̂ pxq ě

ż

upx, y˚
qdF ˚

pxq (28)

since F̂ P argmaxFPK

ş

upx, y˚qdF pxq and F ˚ P K. Then for all y P Y , we have that

ż

upx, yqdF̂ pxq ě

ż

upx, yqdF ˚
pxq ě V pF ˚

q “ max
FPF

V pF q (29)

and in particular that V pF̂ q ě maxFPF V pF q. Given that F̂ P F , we must have

V pF̂ q “ V pF ˚q, so F̂ P argmaxFPF V pF q. This proves the first part of the theorem.

The second part immediately follows from the Bauer maximum principle since the

map F ÞÑ
ş

upx, y˚qdF pxq is linear over the convex set K.

Lemma 11 is not very insightful per se since the set FpF ˚, y˚q depends on the par-

ticular choice of pF ˚, y˚q. However, whenever we can find a set K as in the statement

of Lemma 11 whose extreme points satisfy interesting properties, the theorem lets us

conclude that there is an optimizer of the original problem with those properties. We

next apply this strategy to optimization problems with additional structure on F and

on Y by relying on known characterizations of extreme points of sets of probability

measures. For completeness, we report here the original results mentioned.
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Theorem 10 (Proposition 2.1 in Winkler [1988]). Fix a convex and closed set F Ă F ,

an affine function Λ : F Ñ Rn´1, and a convex set C Ă ΛpFq. The set Λ´1pCq is

convex and every extreme point of Λ´1pCq is a convex combination of at most n

extreme points of F .

We can combine this result with Lemma 11 to obtain the following result.

Theorem 11. Suppose that Y hasm elements. There exists a solution F ˚ P argmaxFPF V pF q

that is a convex combination of at most m extreme points of F .

Proof. Fix pF ˚, y˚q as in Lemma 9. Observe that |Y zty˚u| “ m ´ 1 by assumption.

For simplicity we write Y zty˚u “ ty1, ..., ym ´ 1u. Define the map Λ : F Ñ Rm´1 as

ΛpF qi “

ż

upx, yiqdF pxq @i P t1, ...,m ´ 1u (30)

Also define the convex set

C ” ΛpFpF ˚, y˚
qq Ď ΛpFq (31)

It is easy to see that Λ´1pCq “ FpF ˚, y˚q. By Theorem 10 it follows that every

extreme point of FpF ˚, y˚q is a convex combination of at most n extreme points of

F . Finally, the statement follows by a direct application of Theorem 11.

The next result sharpens Theorem 2 for the case where Y is finite.

Theorem 12. Suppose that Y is finite with m elements. For every closed X Ď X,

there exists an optimal lottery F ˚ for the problem in equation 6 that has finite support

on no more than k ` m points of X.

Proof. Let F “ FΓpXq for some closed X Ď X, and fix pF ˚, y˚q as in Lemma 9.

The set FpF ˚, y˚q is defined by k ` m ´ 1 moment restrictions: k moments restric-

tions from Γ and m ´ 1 from the definition of FpF ˚, y˚q. By Lemma 11 there exists

F ˚ P extpFpF ˚, y˚qq such that V pF ˚q “ maxFPF V pF q. By Winkler’s Theorem the

each F̃ P FpF ˚, y˚q is supported on up to k ` m points of X as desired.
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Online Appendix III.C: Robust solutions

This section shows that the finite-support property of Theorem 2 generically holds

for all solutions of the optimization problem in equation 6 that are “robust” in the

following sense. For every F P FΓpXq, we call a sequence as in Lemma 8 a finitely

approximating sequence of F .

Definition 12. Fix w P CpXq and a lottery F that solves

max
FPFΓpXq

min
yPY

ż

upx, yq ` wpxqdF pxq

We say that F is a robust solution at w if

F n
P argmax

F̃PcopEnq

"

min
yPY

ż

upx, yq ` wpxqdF pxq

*

for some approximating sequence F n P copEnq of F , with En being any finite set of

extreme points generating F n.

In words, an optimal lottery F is robust if it can be approximated by a sequence

of lotteries that are generated by finitely many extreme points and that are optimal

within the set of lotteries generated by the same extreme points.

Theorem 13. Suppose that Y is an m-dimensional manifold with boundary, that u

is continuously differentiable in y, and that Y and u satisfy the uniqueness property.

For an open dense set of w P W Ď CpXq, every robust solution at w has finite support

on no more than pk ` 1qpm ` 1q points of X.

The proof will use the following lemma.

Lemma 12. Fix a finite set X̂ Ď X and an open dense subset Ŵ of RX̂ . The set

W “

!

w P CpXq : w
|X̂ P Ŵ

)

is open and dense in CpXq, where w
|X̂ denotes the restriction of w on X̂.

Proof. Because Ŵ is open, so is W . Fix w P CpXq. Given that w
|X̂ P RX̂ , there

exists a sequence ŵn P Ŵ such that ŵn Ñ w
|X̂ . Next, fix n P N large enough so that
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B1{npx̂q XB1{npx̂1q “ H for all x̂, x̂1 P X̂.44 By Urysohn’s Lemma (see Lemma 2.46 in

Aliprantis and Border [2006]), for every x̂ P X̂, there exists a continuous function vnx̂
such that vnx̂pxq “ 0 for all x P XzB1{npx̂q and vnx̂px̂q “ 1. Now define the continuous

function

wn
pxq “ wpxqp1 ´ max

x̂PX̂
vnx̂pxqq `

ÿ

x̂PX̂

ŵn
pxqvnx̂pxq.

Because wn P W , X̂ is finite, and X is compact, wn Ñ w as desired.

Proof of Theorem 13. Without loss of generality, we assume thatX “
Ť

FPFΓpXq suppF .
45

Define E “ cl
`

ext
`

FΓpXq
˘˘

and consider an increasing sequence of finite sets of ex-

treme points En Ď ext
`

FΓpXq
˘

such that En Ò E . Observe that, by construction,

XEn Ò X.46 For every n P N, let Ŵn the open dense subset of RXEn that satisfies the

property of point 2 in Theorem 8. By Lemma 12 the set

Wn
“

!

w P CpXq : w|XEn P Ŵn
)

is an open dense subset of CpXq. By the Baire category theorem (see Theorem 3.46

in Aliprantis and Border [2006]), the set W “
Ş

nPNW
n
is dense in CpXq.

Next, fix w P W and a robust optimal lottery F ˚ for

max
FPFΓpXq

min
yPY

ż

upx, yq ` wpxqdF pxq

It follows that F ˚ is the weak limit of a sequence of solutions F n of the problem

max
FPcopEnq

min
yPY

ż

upx, yq ` wpxqdF pxq

In particular, given that, for every n P N w|XEn P Ŵn, Theorem 8 implies that F n

is supported on up to pk ` 1qpm ` 1q points of XEn . Because F n Ñ F ˚, it follows

that F is supported on up to pk ` 1qpm` 1q points of X. Given that F ˚ and w were

44Here, B1{npx̂q is the open ball centered at x̂ and of radius 1{n.
45Assume not, then we could just consider lotteries over the closed set X

1
“

cl
´

Ť

FPFΓpXq suppF
¯

.
46This follows from the fact that X “

Ť

FPFΓpXq suppF by assumption. See also footnote 45.
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arbitrarily chosen, the result follows.

Online Appendix III.D: Optimal lotteries under transport pref-

erences

Here we consider the problem of choosing a lottery F P F when Á is a transport

preference with representation given by ϕ.47 Define the correspondence Ψϕpθq “

argmaxxPX ϕpθ, xq and let ψ P Ψϕ denote an arbitrary measurable selection.

Proposition 8. If Á is a transport preference with continuous ϕ, then the set of

optimal lotteries for Á over F is the closure of tU ˝ ψ´1 P F : ψ P Ψϕu.

To see that the distributions U ˝ ψ´1 are optimal, rewrite the problem as

max
FPF

V pF q “ max
TP∆pΘˆXq:margΘT“U

ż

ϕpθ, xqdT pθ, xq,

which immediately implies that, for every ψ P Ψϕ, the distribution U ˝ψ´1 is optimal.

The converse follows by a further application of the Kantorovich duality as we next

show.

Proof of Proposition 8. By the Proof of Proposition 5,

max
FPF

V pF q “ max
TP∆pΘˆXq:margΘT“U

ż

ϕpθ, xqdT pθ, xq,

which immediately implies that F P argmaxF̃PF V pF q if and only if there exists T P

∆pU, F q such that T pGϕq “ 1, where Gϕ “ GrpΨϕq Ď Θ ˆ X is the graph of the

correspondence Ψϕ. In turn, this is equivalent to 0 ě infTP∆pU,F q t1 ´ T pGϕqu and, by

an application of the Kantorovich duality for t0, 1u-valued costs (see Theorem 1.27

in Villani [2021]), it is also equivalent to

UpΨℓ
ϕpAqq ě F pAq

47Some of the results presented in this section can be extended to the case where there are
additional feasibility constraints such as the moment constraints considered in the previous section.
However, we leave a formal analysis of these cases for future research.
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for all closed A Ď X, where Ψℓ
ϕpAq “ tθ P Θ : Ψϕpθq X A ‰ Hu is the lower-inverse of

the correspondence Ψϕ evaluated at A. Finally, because U is atomless, Corollary 3.4

in Castaldo, Maccheroni, and Marinacci [2004] implies that this is equivalent to the

fact that F is in the closure of tU ˝ ψ´1 P F : ψ P Ψϕu.

Proposition 8 yields the following corollaries.

Corollary 4. Let Á be a transport preference with representation ϕ such that Ψϕ “ ψ

is single valued. The unique optimal lottery is U ˝ ψ´1.

The assumption of the corollary is satisfied, for example, when ϕpθ, xq is strictly

quasi-concave in x for every θ, as in Example 3 where the optimal lottery is uniformly

distributed over the entire space of outcomes.

Corollary 5. Let Á be a transport preference with representation ϕ. For every ψ P

Ψϕ, there is an optimal lottery F that assigns probability 1 to ψpΘq.

When there is ψ P Ψϕ such that ψpΘq is finite (as in the case of the sport example),

there is an optimal lottery supported on finitely many points, as in Theorem 2. Thus

the number of different utility functions of the selves plays a role analogous to the

number of parameters in parametric adversarial forecaster preferences.

Online Appendix IV: Additional applications

Online Appendix IV.A: Linear case of Section 3

In this section, We spell out the details for the linear case gpdq “ d of our application

in Section 3 that was sketched in the main text.

The linear case Consider the setting of Section 3 with an arbitrary finite state

space Ω and X “ Ω ˆ ∆pΩq. As before, the broadcaster chooses a joint distribution

F P F over states and conditional beliefs of the watcher, where the feasible joint

distributions are those such that the marginal over states is the feasible set ∆ Ď ∆pΩq

and the conditional distribution over states given the belief p is equal to p itself.

The preferences of the watcher over joint distributions of states and beliefs have

an adversarial forecaster representation, where preferences over states are given by

61



utility function v P RΩ, and the forecast error given realization x “ pω, pq and the

forecast F̂ is σβppω, pq, F̂ q “ p1 ´ βqσ0pp, F̂∆q ` βσ1pω, F̂ p¨|pqq. Here F̂∆ and F̂ p¨|pq

are respectively the marginal distribution over ∆pΩq and the conditional distribution

over Ω given p, while σ0 and σ1 are forecast errors for the outcome spaces X0 “ ∆pΩq

and X1 “ Ω respectively, and β P r0, 1s a parameter capturing the relative importance

of interim and ex-post surprise.

To see that σβ satisfies the properties of Definition 1 note that

σβppω, pq, δpω,pqq “ p1 ´ βqσ0pp, δpq ` βσ1pω, δωq “ 0.

because σ0 and σ1 are forecast errors, and for every F̂ P F ,

ż

σβpx, F qdF pxq “ p1 ´ βq

ż

σ0pp, F∆qdF∆ppq ` β

ż ż

σ1pω, F p¨|pqqdF pω|pqdF∆ppq

ď

ż

σβpx, F̂ qdF pxq.

Thus the preferences of the watcher over joint lotteries F are given by VβpF q “
ş

vpsqdF pω, pq`minF̂PF
ş

σβppω, pq, F̂ qdF pω, pq. The broadcaster solves maxFPF VβpF q.

Next, consider the binary state case Ω “ t0, 1u, ∆pΩq “ r0, 1s, with ∆ “ r0, 1s

and the forecast errors σ0pp, F̂∆q “ 1
2
pp ´

ş

p̃dF̂∆pp̃qq2 and σ1pω, p̂q “ pω ´ p̂q2. Also,

assume that the watcher gets utility ṽ P R when the state is equal to ω “ 1. For every

feasible lottery F P F let pF P r0, 1s denote induced probability that ω “ 1 and let

F∆ the marginal over ∆pΩq. The definition of F implies that pF “
ş

pdF∆ppq. The

total payoff of the watcher simplifies to

VβpF q “ ṽpF ` p1 ´ βq

ż

pp ´ pF q
2dF∆ppq ` β

ż

pp1 ´ pqdF∆ppq

“ pF pṽ ` βq ´ p2F p1 ´ βq `

ż

p1 ´ 2βqp2dF∆ppq,

which is W’s payoff in Section 3 when g is linear gpdq “ d. Therefore, the maximiza-

tion problem of the broadcaster simplifies to

max
FPF

VβpF q “ max
pPr0,1s

"

ppṽ ` βq ´ p2p1 ´ βq ` max
F∆P∆r0,1s:

ş

p̃dF∆pp̃q“p

ż

p1 ´ 2βqp̃2dF∆pp̃q

*

.

When β ă 1{2, the integrand in the inner maximization is strictly convex, so full
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disclosure is uniquely optimal. When β ą 1{2, the integrand in the inner maximiza-

tion is strictly concave so no disclosure is uniquely optimal. When β “ 1{2, then the

corresponding term disappears, and the watcher is indifferent over all the information

structures. And simple computations show that p˚
F “ max

!

0,min
!

1, ṽ`maxtβ,1´βu

2maxtβ,1´βu

))

solves the outer maximization problem. △

Online Appendix IV.B: Additional examples

This section presents two examples. In the first, there are GMM preferences that have

a strictly concave representation and give rise to an optimal lottery with full support.

The second example illustrates most of the main results in the text by solving an

optimal lottery under the asymmetric adversarial forecaster preferences of Section

7.2.

Example 5 (Weiner Process Example). We interpret x P r0, 1s as time. While it is

natural to think of hp¨, sq as a random function of s with distribution induced by F ,

there is a dual interpretation in which we think of hpx, ¨q as a random function of x (a

random field) with distribution induced by µ. In this interpretation, the Hpx, x̃q are

the second (non-central) moments of that random variable between different points

x, x̃ in the random field. If, for example, X “ r0, 1s, then this random field is a

stochastic process, and Hpx, x̃q the second moments of the process h between times

x, x̃. It is well known that continuous time Markov process are equivalent to stochastic

differential equations and that an underlying measure space S and measure µ can

be found for each such process. Specifically, consider the process generated by the

stochastic differential equation dh “ ´h ` dW where W is the standard Weiner

process on pS, µq and the initial condition hp0, sq has a standard normal distribution.

Then the distribution of the difference between hpx, ¨qand hpx̃, ¨q depends only on the

time difference x̃´x, and in particular Hpx, x̃q “
ş

hpx, sqhpx̃, sqdµpsq “ Gpx´ x̃q. In

this case Hp0, x̃q “ e´x̃, which is non-negative, strictly decreasing and strictly convex.

△

Example 6 (Optimal lotteries under asymmetric forecast error). Let X “ r0, 1s

and consider the parametric adversarial forecaster preferences with asymmetric loss

function ρpzq “ exppλzq ´ λz and linear baseline utility vpxq “ vx for some 0 ă

v ă 1 and λ ą 0. In this case, the best response of the adversary is x̂pF q “

1
λ
ln
´

ş1

0
exppλxqdF pxq

¯

and the continuous local utility function is wpx, F q “ vx `
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exp pλpx ´ x̂pF qqq ´ λ px ´ x̂pF qq, which is convex for every F . Corollary 2 then

implies that the preference induced by this adversarial forecaster representation pre-

serves the MPS order. Now consider maximizing the V defined by the loss function

above over the entire simplex F . Because the preference preserves the MPS order,

Theorem 2 shows that the optimal distributions are supported on 0 and 1, that is,

F “ pδ1 ` p1 ´ pqδ0 for some p P r0, 1s. By Proposition 1, the optimal probability p˚

solves

max
pPr0,1s

vp ` p pexp pλp1 ´ x̂pp˚
qqq ´ λp1 ´ x̂pp˚

qqq ` p1 ´ pqpexp p´λx̂pp˚
qq ` λx̂pp˚

qq.

(32)

If there is an interior solution, the agent is indifferent over any p P r0, 1s. This is the

case only if the solution is the p˚
int defined by

v ` exp pλp1 ´ x̂pp˚
intqqq ´ λ “ exp p´λx̂pp˚

intqq

which is equivalent to

p˚
int “

1

pλ ´ vq
´

1

pexppλq ´ 1q
.

Therefore, the overall solution is p˚ “ min t1,max t0, p˚
intuu. Clearly, the solution is

increasing with respect to the baseline utility parameter v. However, the effect of the

asymmetry parameter λ is ambiguous. △

Online Appendix IV.C: Risk preferences and surprise

Eeckhoudt and Schlesinger [2006] formalize the idea that an agent is averse to higher-

order risks through the comparison of pairs of lotteries that only differ for their n-th

order risk. If at any wealth level the agent prefers the lottery with less n-th order

risk, they say the preferences exhibit risk apportionment of order n. In our setting

with general continuous preferences, a sufficient condition for risk apportionment of

order n is monotonicity with respect to the n-th order stochastic dominance relation

ÁWSDn
where

WSDn “
␣

u P Cn
pXq : @m ď n, sgnpupmq

q “ p´1q
m´1

(

.
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Agents with risk apportionment of order n for all n are called mixed risk averse. Most

participants in the experiment of Deck and Schlesinger [2014], make choices that are

consistent with mixed risk aversion (at their current wealth levels), but almost 20%

make risk-loving choices. These participants are mixed risk loving, which means they

are consistent with risk apportionment of order for odd n but not even n.

As an example, suppose vpxq “ 1´expp´axq{a for a ą 0. If there is no preference

for surprise, that is λ “ 0, the agent is mixed risk averse, as most of the risk-averse

subjects in Deck and Schlesinger [2014]. However, as λ increases the sign of the even

derivatives of the local expected utilities switches from negative to positive, while the

sign of the odd derivatives remains positive, so the agent shifts from mixed risk averse

to mixed risk loving. Moreover, if the agent is very risk averse, that is, a ą 1, then

higher-order derivatives will be more affected by an increased taste for surprise, while

the opposite is true if the agent is not very risk averse, that is, a ă 1.

Online Appendix IV.D: Repeated choices and correlation aver-

sion

When the space of outcomes is multidimensional, our model also covers the case

where the adversary can observe the realization of one dimension before choosing

their action. Consider X “ X0 ˆ X1 where X0 is finite and X1 is an arbitrary

compact subset of Euclidean space. Assume that the adversary takes two actions

py0, y1q P Y “ Y0ˆY1, where the adversary takes the first action y0 with no additional

information about F , and then takes the second action after observing the realization

of x0. Assume that both Y0 and Y1 are compact subsets of Euclidean space. Here the

set of strategies of the adversary is Y “ Y0 ˆ Y X0
1 , which is compact. Therefore, the

induced preferences

V pF q “ min
yPY

ż

upx, y0, y1px0qqdF pxq

still admit an adversarial expected utility representation. These preferences capture

the idea of aversion to correlation between x0 and x1, which is well documented in

experiments (see for example Andersen et al. [2018]). Intuitively, the agent would

tend to avoid lotteries with a high correlation between x0 and x1, since this means

the adversary is well informed about the residual distribution of x1 when choosing y1.

The next example formalizes this using Theorem 5.
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Example 7. Let X0 “ t0, 1u, X1 “ r0, 1s, vpx0, x1q “ v0px0q ` v1px1q, and as-

sume that the adversary tries to minimize mean squared error, so σ0px0, F0q “
`

x0 ´
ş

x̃0dF0px̃0q
˘2

and σ1px1, F1|x0q “
`

x1 ´
ş

x̃1dF1px̃1|x0q
˘2
, where F0 and F1p¨|x0q

respectively denote the marginal and the conditional distributions of F . Then σpx0, x1, F q “

σ0px0, F0q ` σ1px1, F1|x0q, so the local expected utility is wV px0, x1, F q “ vpx0q `

vpx1q ` σpx0, x1, F q. We model the agent’s preference for correlation between x0 and

x1 through the monotonicity properties of their preference with respect to the super-

modular and submodular order. Intuitively, preferences that preserve the supermod-

ular order favor lotteries with high positive correlation between x0 and x1 because

their local expected utilities are supermodular, and vice versa for the submodular

order. Following Shaked and Shanthikumar [2007] (Section 9.A.4), F dominates G

in the submodular (resp. supermodular) order if F Á G whenever
ş

wpxqdF pxq ě
ş

wpxqdGpxq for all functions w P CpXq that are differentiable in x1 and such that
B

Bx1
wp1, x1q´ B

Bx1
wp0, x1q ď 0 (resp. ě). Therefore, the submodular and supermodular

order are examples of stochastic order introduced in Definition 9, where the relevant

sets of functions are those ones that satisfy the partial derivative condition above.

For every F , the corresponding partial derivatives for the local utility at F are

B

Bx1
wV p1, x1, F q ´

B

Bx1
wV p0, x1, F q “ ´2

ˆ
ż

x̃1dF1px̃1|1q ´

ż

x̃1dF1px̃1|0q

˙

.

Thus by Theorem 5, the agent’s preference preserves the submodular order for all

F such that
ş

x̃1dF1px̃1|1q ą
ş

x̃1dF1px̃1|0q, and at each such lottery they would be

better off by decreasing the amount of positive correlation between x0 and x1. By

similar reasoning, the agent would prefer to decrease the amount of negative correla-

tion between x0 and x1 at each lottery F such that
ş

x̃1dF1px̃1|1q ă
ş

x̃1dF1px̃1|0q.48

Combining these facts, we see that the agent has the highest utility with distribu-

tions such that
ş

x̃1dF1px̃1|1q “
ş

x̃1dF1px̃1|0q, so that the best conditional forecast is

independent of x0. △

We leave a more detailed analysis of correlation aversion under the adversarial

expected utility model for future research.49

48This last claim follows from the fact that the preference of the agent preserves the supermodular
order over such lotteries.

49Stanca [2021] analyzes correlation aversion under uncertainty as opposed to risk.
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Online Appendix V: Adversarial forecasters, local

utilities, and Gâteaux derivatives

In this section, we discuss the relationship between our notion of local utility and the

one in Machina [1982]. This is closely related to the differentiability properties of a

function V with a continuous local expected utility, which we also discuss.

Fix a continuous functional V : F Ñ R. Recall that V has a local expected utility

if, for every F P F there exists wV p¨, F q P CpXq such that V pF q “
ş

wV px, F qdF pxq

and V pF̃ q ď
ş

wV px, F qdF̃ pxq for all F̃ P F , We say that this local expected utility is

continuous if w is continuous in px, F q.

Proposition 9. Let Á admit a representation V with a local expected utility w and,

for every F P F , let ÁF denote the expected utility preference induced by wV p¨, F q.

Then F ÁF F̃ (resp. F ąF F̃ ) implies that F Á F̃ (resp. F ą F̃ ).

Proof. The first implication follows from V pF q “
ş

wV px, F qdF pxq ě
ş

wV px, F qdF̃ pxq ě

V pF̃ q. To prove the second, let V pF̃ q ě V pF q and observe that
ş

wV px, F qdF̃ pxq ě

V pF̃ q ě V pF q “
ş

wV px, F qdF pxq, implying that F̃ ÁF F as desired.

Machina [1982] introduced the concept of local utilities for a preference over lot-

teries with X Ď R. For ease of comparison, we make assume here that X “ r0, 1s for

the rest of this section. Machina [1982] says that V has a local utility if, for every

F P F , there exists a function mp¨, F q P CpXq such that

V pF̃ q ´ V pF q “

ż

mpx, F qdpF̃ ´ F qpxq ` op||F̃ ´ F ||q,

where || ¨ || is the L1-norm. This is equivalent to assuming V is Fréchet differentiable

over F , a strong notion of differentiability.50

Our notion of local expected utility is neither weaker nor stronger than Fréchet

differentiablility. If V has a continuous local expected utility, then it is concave, which

is not implied by Fréchet differentiability. Conversely, Example 8 below shows that

continuous local expected utility does not imply Fréchet differentiability.

50The notion of Fréchet differentiability depends on the norm used. Here, following Machina, we
use the L1-norm.
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Now we discuss the relationship between continuous local expected utility and the

weaker notion of Gâteaux differentiability, which has been used to extend Machina’s

notion of local utility to functions that are not necessarily Fréchet differentiable.

In particular, Chew, Karni, and Safra [1987] develops a theory of local utilities for

rank-dependent preferences and Chew and Nishimura [1992] extends it to a broader

class. Recall that V is Gâteaux differentiable51 at F if there is a wV p¨, F q P CpXq

such that

ż

wV px, F qdF̃ pxq ´

ż

wV px, F qdF pxq “ lim
λÓ0

V pp1 ´ λqF ` λF̃ q ´ V pF q

λ
.

If wV p¨, F q is the Gâteaux derivative of V at F we can define the directional derivative

operator DV pF qpF̃ ´ F q “
ş

wV px, F qdF̃ pxq ´
ş

wV px, F qdF pxq. We can restate

Lemma 7 with the language of Gâteaux derivatives just introduced.

Proposition 10 (Lemma 7 in Online Appendix II.A). If V has continuous local

expected utility wV px, F q, then V is Gâteaux differentiable and wV p¨, F q is the Gâteaux

derivative of V at F , for all F .

Corollary 6. V has continuous local expected utility if and only if it is concave and

Gâteaux differentiable with continuous Gâteaux derivative.

We conclude by providing an example of a class of preferences that have a contin-

uous local expected utility but not a local utility in Machina’s sense.

Example 8. Consider a function V with a Yaari’s dual representation, that is,

V pF q “
ş

xdpgpF qqpxq for some continuous, strictly increasing, and onto function

g : r0, 1s Ñ r0, 1s. In addition, assume that g is strictly convex and continuously

differentiable, for example gptq “ t2. By Lemma 2 in Chew, Karni, and Safra [1987],

V is not Fréchet differentiable, but since V pF q “
ş1

0
1 ´ gpF pxqqdx, it is strictly con-

cave in F . Moreover, by Corollary 1 in Chew, Karni, and Safra [1987], V is Gâteaux

differentiable with Gâteaux derivative wV px, F q “
şx

0
g1pF pzqqdz, which is continuous

in px, F q. Therefore, by Corollary 6, V has a continuous local expected utility and,

by Theorem 1, it admits an adversarial forecaster representation. △
51Here we follow Huber [2011] and subsequent authors and adapt the standard definition of the

Gâteaux derivative to only consider directions that lie within the set of probability measures.
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