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This paper presents a detailed theoretical derivation and justification for methods used to 
compute solutions to a multi-period (including infinite-period), continuum-agent, unobserved- 
effort economy. Actual solutions are displayed illustrating cross-sectional variability in consump- 
tion and labour effort in the population at a point in time and variability for a typical individual 
over time. The optimal tradeoff between insurance and incentives is explored and the issue of 
excess variability is addressed by consideration of the analogue full-information economy and 
various restricted-contracting regimes. 

1. INTRODUCTION 

A strong but troublesome prediction of stochastic general equilibrium macroeconomic 
models is the extreme level of risk-sharing. Even in macroeconomic models with 
endogenously derived population diversity in labour effort (e.g. Rogerson (1988), Hansen 
(1985)) there is, nevertheless, full consumption insurance. That is, an individual's con- 
sumption does not depend on his labour effort or the resulting productivity of that effort. 
In the absence of either aggregate shocks or individual preference shocks this implies 
constant consumption for each individual over time. In the absence of preference or 
initial wealth or Pareto-weight diversity this implies equal consumption levels across 
individuals at a point in time. Such predictions seem implausible. 

Introducing unobserved actions or other "incentive problems" has long held promise 
of helping to reconcile stochastic general equilibrium macro models with apparently 
incomplete insurance. The idea, simple enough, is that full consumption insurance has 
adverse incentive effects on effort. Thus consumption dependent on labour effort or 
labour productivity may be desirable ex ante. Unfortunately, the characterization of 
solutions to incentive-constrained economies, and especially dynamic incentive- 
constrained economies, has proved difficult. Analytic treatments have tended to provide 
disappointingly weak characterizations, even with unintuitive and stringent restrictions 
on technologies and preferences. Analytic treatments of repeated incentive-constrained 
economies have been hampered by the history-dependent nature of solutions.' 

Some recent contributions have made important progress. Perhaps the most salient 
among these is Fudenberg, Holmstrom, and Milgrom (1986) which shows that under 
some assumptions there need be no history-dependence and that an optimal long-term 
agreement can be replicated by a series of single-period contracts. These assumptions 
are (1) exponential utility in consumption for the agent, (2) uncontrolled access to credit 
on the part of the agent, as if this were unobserved, and (3) a disutility cost for action 

1. See Rogerson (1985) and Townsend (1982) for a proof of the necessity of such history-dependence. 
853 
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which is like a financial cost and hence subtracted linearly from consumption. As they 
note, the ability to control consumption is crucial, and much of the earlier literature is 
exploiting this possibility. The exponential utility function removes wealth effects, and 
this also seems to be crucial. In any event, our paper should be viewed as a complementary 
effort; we are able to display solutions without any of these restrictions. 

Our alternative to further search for analytic theorems is to present and justify a 
method for computing solutions to a repeated, continuum-agent version of the classic 
agency problem. We believe the method we present is sufficiently general to readily extend 
to a less restricted set of incentive constrained frameworks. Again, such methods are 
important because in the absence of analytic solutions, computing solutions is the only 
way to discover the characteristics of a model and the only way to allow for the eventual 
comparison of a model to data. 

Any method for computing solutions must be formally justified. Specifically for us, 
this means proving we have defined a problem for which a solution exists, that our 
reduction to a dynamic programming framework is valid, that our computation method 
is guaranteed to converge, and that this converged solution is the solution to the original 
problem. This paper presents a sequence of theorems to that effect. 

We also explore the characteristics of the classic prototype agency model by displaying 
computed solutions to it and by contrasting these to the solutions of the analogue 
full-information economy. In full-information solutions, consumption and labour efforts 
(actions) are constant for individuals over time (full insurance) and population distribu- 
tions are degenerate if there is no initial diversity. As foreshadowed above, computed 
solutions to the incentive-constrained model overturn these predictions. Computed solu- 
tions are also contrasted with solutions (also computed) to the agency problem restricted 
to one-period contracts. This restriction induces greater consumption variability and 
lower average output than the incentive-constrained solution without this restriction. We 
thus illustrate the (computed) optimal tradeoff between insurance and incentives and the 
effect of multi-period contracting on such environments. 

This work is derived mainly from three somewhat distinct lines of research in the 
literature. One line is represented by Prescott and Townsend (1984a, b), who demonstrate 
the ability to analyze incentive-constrained economies in the space of measures of 
economic variables. Relatedly, Townsend (1987, 1988) numerically simulates a wide 
variety of static or short-horizon incentive-constrained economies using linear program- 
ming techniques. 

Another line of research is represented by Abreu, Pearce, and Stacchetti (1986), and 
by Spear and Srivastava (1987) who provide the key insight into the nature of history- 
dependent solutions needed to yield a computationally-feasible repeated formulation of 
the problem. Abreu, Pearce, and Stacchetti show for an unobserved-action, cartel problem 
that a given history can be sufficiently represented by the expected profit of the cartel 
members from the given time on. This gives a state variable similar to the amount of 
capital in a growth problem. Spear and Srivastava extend this to the infinite-horizon 
principal-agent problem where the state variable is the expected utility of the agent. 

Lastly, Green (1987) analyzes a closely related continuum-agent endowment economy 
with private information concerning the individual endowments. In our conclusion, we 
argue that our methods apply to this economy as well. This paper builds directly on 
Spear and Srivastava, but extends the principal-agent problem to a continuum of agents, 
and uses a formulation consistent with the measure-space techniques of Prescott and 
Townsend (1984a, b). These steps allow the numerical computation of solutions. We 
borrow from Green the idea and justification of maximizing a discounted social surplus 
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in a context in which society has access to an unlimited linear borrowing-lending tech- 
nology. Finally, we emphasize here a sequence of theorems which justify the recursive 
formulation of our framework. 

We will focus heavily on the relationships among the full-information (or fully- 
observed-action) economy, the static unobserved-action economy, and the repeated unob- 
served-action economy. Section 2 introduces the full-information problem, in our some- 
what unorthodox, more general manner of stating the problem, with lotteries. Section 3 
alters this environment to the static unobserved-action economy and then discusses and 
displays the nature of solutions. Section 4 considers the repeated version of the agency 
problem and displays and discusses computed solutions. Section 5 gives a sequence of 
theorems justifying the recursive formulation used to solve the repeated problems. Section 
6 gives an overview of the computational methods used, and Section 7 offers a conclusion. 

II. THE FULL-INFORMATION ECONOMY 

In this section, we consider the social planning problem for an economy with a 
continuum of identical agents each having an identical but independent production 
technology taking in an agent's own labour and producing the single consumption good 
as a function of this labour and an independent shock. Our method of finding the Pareto 
optima for the economy is to maximize social surplus subject to each of the agents 
receiving exactly a prespecified ex ante expected utility. Social surplus is defined as the 
total amount of the consumption good that is produced but not eaten. A Pareto optimum 
for this economy is then a solution to this problem for an initial distribution of required 
utilities which gives a non-negative surplus, so that it is feasible, and has the property 
that any other distribution of initial utilities that Pareto-dominates the initial distribution 
has a negative surplus and thus is not feasible.2 

The social contract or planning problem assigns to each agent an action, a, from a 
finite set of possible actions A c R .3 We assume the contractual rule for determining 
this action may be probabilistic. Such an action for a given agent results in the realization 
of an output quantity q, an element of a finite set Q c lR,. For a given action, a E A, 
output is determined by an exogenous probability P(q I a). Probability P(q I a) is assumed 
strictly positive so that any output is possible given any action. No other restrictions are 
put on the technology such as likelihood ratio or convexity conditions common in the 
literature. The social contract, again allowing for mixed outcomes, then gives each agent 
some consumption amount c E C where C is again some finite subset of lR,. 

Mixed or probabilistic outcomes for the individual are assumed to be possible without 
having uncertainty in the aggregate due to the continuum of agents. This is justified 
formally in Judd (1985).4 Indeed, all probability measures used in our discussion, here 
and below, are viewed at the aggregate level as representing population fractions and at 
the individual level as representing probabilities. 

The utility function for each agent is denoted by U(a, c): R, x R+ -> lR+. For given 
A x C c lR+ x R+, U(a, c) is assumed bounded on A x C. Further, for all else equal, the 
agent prefers lower action and higher consumption. We need not assume separability in 

2. Green uses and justifies this method as the dual programming problem to that of maximizing utilities 
subject to an initial wealth constraint. 

3. Sets are denoted by upper-case bold type. Subsets are denoted by lower case bold type. 
4. Judd proves the existence of a measure assigning joint-output probabilities over all agents taking a 

given action which is consistent with independence, the individual measures P(q I a), and where a law of large 
numbers can be stated and holds. 
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the a, c components except to allow quicker computation methods. Preferences towards 
risk are characterized by expected utility. 

Lastly, we make additional assumptions when discussing the nature of solutions. 
First, we assume that U(a, c) is strictly concave over changes in c, holding the action a 
constant. Second, we assume that higher actions imply greater expected output. These 
assumptions do not affect the validity of our methods of finding solutions. 

The lowest ex ante utility level possible for an agent is that of receiving with certainty 
the lowest consumption in C and the highest labour assignment in A. We denote this 
utility by w. The highest utility is that of receiving with certainty the highest consumption 
amount and the lowest labour. This utility is denoted by v. Any utility level w between 
w and iwP and hence representable as asw+(l - a) , for some number a, 0_ a 1, is 
possible by giving fraction of a of those required to receive w the plan yielding w4 specified 
above and fraction (1 - a) the plan yielding w specified above. As fractions are viewed 
as probabilities by the individual agents, expected utility for the individual would be 
w = aw + (1- a) w as required. Thus the set of possible ex ante expected utilities is an 
interval, W= [w, w]. We assume that the initial distribution of required utilities in the 
population has finite support and define do(w) to be the fraction of agents whose initial 
required utility is w. Object do is then the associated distribution of exact ex ante expected 
utility levels as opposed to lower bounds on ex ante expected utility. 

For each utility such that do(w) > 0 the choice variables for society in the planning 
problem can be written as HW(a, q, c): the probability for an agent required to receive w 
of taking action a, having output q occur in his own production technology and receiving 
consumption amount c. Object [1W thus defines a probability measure. Again, HIW(a, q, c) 
is also the fraction of those agents promised w who will be assigned action a, get output 
q, and receive consumption c. For a given w E W, we define a contract as such a function 
[1W which satisfies the following constraints. 

First, that the discounted expected utility for the agents required to get w is actually 
w, or, 

Cl. W=EAXQXC U[a, c]HW(a, q, c). 

Second, since a given probability measure [IW implies conditional probabilities of outputs 
given an action but is nevertheless a choice object, it must be constrained so that these 
implied conditional probabilities coincide with the ones imposed by nature, namely 

P(qIa). That is, for all (a, q) E A x Q, 

C2. EYc HW(d, 4, c) = P(qI a) ZQXC IlW(c, q, c). 

Lastly, we require that [IW actually represent a probability measure, or, 

C3. EAxQxCllw(a,q,c)=l and for all (a,q,c)eAxQxC, [1W(a,q c)? O. 

For a given distribution do over required ex ante expected utility w E W, we define 
an allocation as a collection of contracts for each w in the support do(w). The planning 
problem is then to maximize total social surplus by separately maximizing the surplus 
from each utility group. This separation is valid because constraints Cl through C3 must 
hold separately for each we W. The choice of one contract I[W does not affect the 
constraint set for choosing the contract for another ex ante utility w. Again, since one is 
just determining fractions in a population, the surplus from each utility group and thus 
total social surplus is a non-random number-there is no aggregate uncertainty. We 
formally define the programming problem for finding surplus-maximizing contracts as 
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Full Information Problem (FIP). Maximize by choice of probability measure [1W 

the objective function, s(w) =AXQXC(q - c) IIW (a, q, c) subject to I[W satisfying Cl 

through C3. 

Call solutions to these problems r1W* with corresponding optimized surplus values s*(w). 
Total social surplus for initial distribution do is then S*(do) = w s*(w)do(w). An initial 
distribution of ex ante expected utilities do is feasible if S*(do) > 0. 

Lastly, we must specify when solutions to the above programming problem correspond 
to Pareto optima. An initial distribution of utilities do and its associated surplus maximiz- 
ing plans {17IW*}Ew represent a Pareto optimum if the support of do lies within the 

non-increasing portion of s*(w). 
The first step in the argument is to show that the function s*(w): W -> lR is weakly 

concave. Linear combinations (where the weights add to unity) of HI functions satisfying 
C2 and C3 themselves satisfy C2 and C3, and satisfy Cl, the utility constraint, where w 
is the interpolated ex ante utility for the agent. Thus this linear combination is a feasible 
plan for delivering this interpolated w. Since the linear combination yields the interpolated 
surplus, the optimized surplus function s*(w) is at least linear. 

Given concavity, s*(w) has at most one maximum. For an allocation to be Pareto 
optimal, we need only to require that all initial required utilities are on the downward- 
sloping portion of s*(w), and that aggregate surplus is zero. That is, it is not possible 
to raise the utility of a subset of agents without lowering aggregate surplus and thus 
violating aggregate feasibility. Formally, an initial distribution of utilities do(w) and its 
associated surplus maximizing plans {1IW*}W "w represent a Pareto optimum if aggregate 

surplus is zero and all points in the support of do(w) are weakly greater than the argmax 
of s*(w).5 

It is important to note that for a given w, FIP is a linear programme. The expression 
(q - c) in the objective function and expressions P(q I a) and U[a, c] in the constraints 
are simply coefficients on the choice variables IHW(a, q, c). This allows FIP to be solved 
numerically for each w E W using a standard revised simplex algorithm. 

Solutions to FIP display the full-insurance characteristics common to full-information 
programmes. If a given contract specified large variations in leisure or consumption 
among a set of agents required to receive a given ex ante utility, another contract with 
slightly less mean leisure or consumption but less variability would keep the ex ante 
expected utilities of the agents constant while raising the social surplus. Thus variation 
will exist only where such tightenings are not possible, that is when further tightenings 
are impeded by the finiteness of sets A and C. 

For example, suppose there is only one action (full leisure), the consumption set C 
consists of the integers 10, 1, 4, 5}, and U(a, c) = c0o5. If all agents are required to receive 
an ex ante expected utility of 1-5, then some uncertainty in consumption is required to 
deliver this ex ante utility. Nevertheless, the curvature of the utility function will make 
it optimal to mix between the adjacent points 1 and 4 (with 0-5 probability on each). 
This is the smallest possible spread. 

If Q = {q, 4} and each of these outputs occurs with 0 5 probability, then one solution 
to this FIP is to set [1i5(0, q, 1) = 05, and H' 4(o 4, 4) = 05 (all other [1 5(0, q, c) = 0). 

That is, give high consumption to those with high output. However, it is also a solution 
to set [115 (0, q, 4) = 0-5, and [1'5(0, 4, 1) = 0-5 (all other [1 5(0, q, c) = 0). That is, give 

high consumption to those with low output. It is also optimal to set I 15(o, q, 1) = 0-25, 

5. In the full-information programme, the argmax of s*(w) is w. This property does not hold when 
incentive constraints are introduced. 



858 REVIEW OF ECONOMIC STUDIES 

1115(0, q, 1) = 0-25, ri1.5(0, q, 4) = 0-25, and H15(0, q, 4) = 0-25 (all other II1H5(0, q, c) = 0). 
Specifically, there will be at most coincidental dependence of an agent's consumption on 
his output. Further all variation will diminish as more and more intermediate points are 
added to C. Recall again that aggregate output for such a group of agents is predetermined 
by specified actions-there is no aggregate risk and thus no need for individuals to bear 
any. 

III. THE STATIC UNOBSERVED-ACTION ECONOMY. 

The static unobserved-action economy is identical to the full information economy except 
that an agent's action is unobservable by everyone other than the agent himself. The 
social contract can recommend actions, but since actions are unobserved, each agent can 
contemplate deviating from the action recommended for him. The contract-design prob- 
lem for a given w thus is identical to the full-information problem except for additional 
constraints requiring that obeying the action recommendation is always weakly preferred.6 

For a given w E W, these additional constraints require that once the recommended 
action a is announced, that the expected utility of obeying the recommendation is greater 
than that of each possible deviation. These constraints take the general form for all 
assigned and possible alternative action pairs (a, a) E A x A, 

ZQxC U[a, c]{lw(c I q, a)P(q I a)} i_ 2Qxc U[6, c]{l1w(c I q, a)P(q I a)}, 
where 11w(c I q, a) is the conditional probability implied by IHw(a, q, c). The expression 
{I`w(c I q, a) P(q I a)} is the probability of a given (q, c) combination given that action a 
is recommended and that this action is taken. Likewise, the expression {IHw(c I q, a) 
P(q I ac)} is the probability of a given (q, c) combination given that action a is announced 
and deviation action a' is taken instead. Given that Hw(q, c a) = Hw(c I q, a) P(q I a) we 
can solve for IwI(c I q, a), substitute this on each side of the incentive constraint, and 
simplify to get 

ZQxc U[a, c]HW(q, c| a) EQxc U[a, c] P(q [ ) Iw(q c/ a). P(q Ia) 1 

Finally, one can multiply both sides of this by the marginal probability of action a, Hw(a) 
(where this derived from Iw(a, q, c) by summing over q and c). HW(a) is either zero, in 
which case the incentive constraint does not matter because a is never recommended, or 
positive, in which case the inequality is essentially unaltered. This yields 

C4. Z.Qxc U[a, c]HW(a, q, c)-EQxc u[aA c] P(q [ Iw(a q, c). C4. al ~~~~~~~~P(qjIa) 1 

Ratio P(q a )/P(q I a) gives how many more times likely it is that output q will occur 
given deviation action a' as opposed to recommended action a, and thus updates the joint 
probability of observing recommended action a, output q, and consumption c. 

6. Another difference is that because of these constraints the set of possible ex ante expected utilities W 
has a higher lower bound. Since actions must be induced, the lowest possible ex ante expected utility for the 
unobserved action economy is that of receiving the lowest consumption and the lowest labour amount: at least 
this utility can be achieved unilaterally by any agent under any contract specifying consumptions c as a function 
of outputs q simply by taking the lowest action. For any utility lower than this, every plan will violate C4 (see 
below). It is important to note that this is not a participation constraint but simply a consequence of assuming 
unobserved actions. Again, for reasons given earlier all utilities between this lower bound and the previous 
upper bound on ex ante utility are possible through randomization schemes. 
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The most significant change in the character of solutions to the unobserved action 
problem as opposed to solutions to the full-information problem is that if the full- 
information solution specifies any action other than the lower bound on actions, then 
the full-insurance outcome violates an incentive constraint. If the consumption of an 
individual does not depend on the output of that individual, as in the full-information 
solution, then it is always preferable for this agent to take a lower action; this raises his 
utility directly and does not affect his consumption, even though such an action would 
change the probabilities of his own outputs. Thus, in general, solutions will not display 
full insurance. 

Figures 1 through 4 display solutions to both the full information and unobserved 
action planning problems. The period-by-period utility function for each agent is 
U[a, c]-=[(c?5/.05)+((1-a)15/05)]. The set of feasible actions, A, equals 
{0, 0-2, 04, 06}, and possible output quantities Q = {1, 2}. Consumption can take on any 
of 81 equally spaced values between zero and 2-25. Lastly, the technology relating action 
to the probability of each output is represented by 

a P(q = 1) P(q = 2) 

O 0-9 0.1 

0-2 0-6 0-4 
0-4 0-4 0-6 
0-6 0-25 0-75 

These parameters, along with those used for later examples, were chosen to display 
the possible characteristics of the economies we consider, and thus the main choice 
criteria was that they resulted in readable graphs. The figures presented are "typical" in 
that their general characteristics did not change over the set of parameters we explored. 

The function s*(w) for each case is displayed in Figure 1. As can be seen in the 
maximization problems, randomizing between any two feasible schemes yields the interpo- 
lated surplus along with the interpolated utility for the agent while satisfying the other 
constraints. Thus the surplus functions must always be at least weakly concave over W 
Further, the surplus for the unobserved-action environment cannot exceed that for the 
full-information environment since we have only added constraints. Note that since the 
y-axis is in terms of real consumption units, the loss to imposing these constraints (the 
vertical distance between the functions) is also in terms of real consumption. As Figure 
1 shows, this loss is extremely small at the egalitarian optimum (s*(w) = 0) for this set 
of parameters.7 Nevertheless, the characteristics of optimal plans given unobserved action 
is markedly different than given full information. 

The upwards-sloping portion for the unobserved-action environment exists because 
the only incentive-compatible way to give an agent the ex ante utility of the lower bound 
on consumption and the lower bound on action is to actually give the lower bound of 
consumption and recommend the lower bound on action with certainty. For the left 
end-point in required utility, a higher required utility can deliver a higher surplus due to 
a higher expected level of action (Figure 2), and thus higher aggregate output from agents 
assigned that required utility. This higher output is more than enough to compensate the 

7. This result may be somewhat akin to large literature which computes welfare losses and almost always 
finds small numbers. 
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agents for the higher action. Note that the solution smooths over discrete points in A by 
mixing over adjacent points in A. For yet higher values of w, leisure is a normal good 
and thus decreases for both problems as w increases. 

Figures 3 and 4 respectively display the unobserved-action and full-information 
consumption values c as functions of w, a, and q. As anticipated in the discussion of 
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incentive constraints for the unobserved action economy, whenever action is greater than 
zero, higher consumption is associated with higher outputs. That is, an individual is now 
bearing risk. Further, for a given w, the difference in consumption over outputs is greater 
when the assigned action is greater. For the full-information solution, other than co- 
incidental variations due to the finiteness of sets C and A, consumption does not vary 



862 REVIEW OF ECONOMIC STUDIES 

over outputs or assigned action.8 Lastly, note that given a distribution of required utilities 
do one can derive from these pictures cross-sectional figures in consumption and effort. 

IV. REPEATED UNOBSERVED ACTION ECONOMIES. 

The ability of incentive-constrained model economies to help explain effort and consump- 
tion variability is more pronounced when we examine the dynamic or repeated versions 
of the previous model. The repeated version allows a given individual's consumption 
and effort to be variable over time and for the distribution of agent characteristics in the 
population to change over time. We emphasize here that such dynamic economies can 
be solved by iteratively solving for value functions, or in our case, surplus functions, 
much like in optimal capital accumulation problems, but each step in the iteration defines 
linear programmes much like the static environments considered above. 

Here we assume that time is discrete and agents are assumed to discount at a common 
rate 8 < 1. The social problem is to maximize the discounted sum of social surpluses 
subject to each agent receiving a given ex ante expected discounted utility. The possible 
initial required discounted expected utilities can be derived along the same lines as for 
the static economies. For the full-information case the lower bound on the possible set 
of such utilities, !VT, is that of receiving the lower bound on consumption and the upper 
bound on effort with certainty at every date. For the unobserved-action case, the lower 
bound on utility is that of receiving the lower bound on consumption and the lower bound 
on effort with certainty at every date, since as before, this situation can be achieved 
unilaterally by each agent or 

VT=Ei=1 pt01 U(a c), W =St=1 p1 U(a, C) 
Again, all utilities in between can be achieved by randomizing between these two extremes. 
We denote these sets WT = [W, WT] for the T-period environment where T is a positive 
integer or infinity. 

In using discounted social surplus as the objective function we are implicitly assuming 
(as in Green) that society can borrow and lend at a constant rate of interest. For 
convenience, we set this rate equal to (1/,8)-1 so that the full-information solution will 
have no aggregate borrowing or lending. A plan with zero (or positive) discounted social 
surplus is said to be feasible even though the associated contemporary surplus may be 
negative. In this case future resources are brought forward though they must be repaid 
with interest at some point through the horizon T Alternatively, this can be viewed as 
society having the ability to invest resources in a productive technology, accumulating 
reserves for subsequent consumption. For the unobserved-action economy, computed 
solutions have this latter property.9 

As before, we take as given do(w), the fraction of agents at each initial w. As we 
shall establish carefully in the sections which follow, for a finite T-period economy, the 
social problem at date 1 can be defined in terms of the surplus function for the (T- 
1) -period economy. For the infinitely-repeated economy, the social problem is recursively 

8. If U(a, c) were not separable then consumption could vary with assigned action for the full-information 
case. With unobserved action, consumption varies with assigned action even with separability. 

9. The assumption of a linear storage technology is crucial in allowing us to derive a feasible method for 
computing solutions to the repeated unobserved-action economy. Specifically, without this assumption, it is 
no longer the case that an optimal allocation can be found by separately maximizing the social surplus from 
each utility group. Instead, one must solve for all contracts simultaneously as a function of the initial distribution 
of utilities do(w). In the recursive formulation, it is the distribution of utilities at any given time which acts as 
the state variable for the economy. Distributions do not make convenient state variables. This type of linearity 
was also used in the seminal paper of Green (1987). 
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defined in terms of its own surplus function. The key, which again will be established 
carefully in the following sections, is to consider the utility of an agent from tomorrow 
on as a choice variable today. Thus the choice problem for society is to find for an agent 
required to have an ex ante expected discounted utility of w today the probability him 
taking action a E A today, having output q E Q today, receiving consumption c E C today, 
and being required to receive expected discounted utility w'E WTl1 from tomorrow- on. 
We denote this probability HW (a, q, c, w').10 As in the static problems, for given w E WT, 

these chosen probabilities must satisfy certain conditions: 
First, the analogue of Cl, that ex ante expected discounted utilities are satisfied, or, 

C5. W =ZAXQXCxWT1I {U[a, c]+/3w'}HI (a, q, c, w'). 

Second, the analogue of C2, that the chosen probabilities of outputs given actions are 
consistent with nature, or, for all (a, q) E A x Q, 

C 6. EZc x w T1 (a, q, c, w') = P(q I a) EQxcxWT -I wT(a, q, c, w'). 
Third, the analogue of C3 are that these represent valid probability measures, or, 

C7. EIAxwCXWTl H (a, q, c, w') = 1 and H T(a, q, c, w') -0 

forall (a,q,cw')EAxQxCxWT_1. 

Lastly, for the unobserved-action problem, the analogue of C4, that the contract be 
incentive compatible, or, for all assigned and alternative action pairs (a, d) E A x A, 

C8. Y.QXCXWT_ {U[a, c]+pw'}IH (a, q, c, w') 

P(q d I >-E QxCxWTh, {U[r, C]+3,8w'} H T(a, q, c, w'). ::"''QXXWT_ I , P(q Ia) 
Again each of these constraints holds separately for each w type and thus the optimal 

social contract can be found by separately maximizing the social surplus from each w 
type, w E WT. At any given date, then, the plan that maximizes social surplus satisfies, 

Repeated Problem (RP). Maximize by choice of probability measures Hw the 
objective function ST( W) = >.AXQXCX WT_I {(q - c) + p,s?(w')}H (a, q, C, w') subject to II 
satisfying C5 through C7, and for the unobserved action economy, C8. 

The function S* - (w'): WT-, -> R on the right-hand side is assumed to give the solution 
surplus values for the (T - 1)-period economy. For the infinite-period economy, it is 
assumed to give its own solution values. That is, for here and the rest of the paper, when 
T is set equal to infinity, the notation T- 1 is meant to equal infinity as well. 

The T-period economy is solved by solving the one-period (or static) problem and 
using its solution values to solve the two-period problem and so on. The infinite-period 
economy is solved by finding a surplus function sOO( * ) that, when put in the objective 
function of RP, returns solution surplus values equal to sOO( ). This can be done by 
choosing any initial guess for s,,(-) and using it in the objective function of RP for every 
we WO. The solution values of these programmes are then used as the next guess for 
s.(-). As with standard dynamic programming for the capital accumulation problem, 
this sequence of guessed functions will converge to the true sOO(*). In the next section 
we guarantee this from theory. 

10. There is some abuse of the notation here. Since w' can potentially take on a continuum of values, it 
is not proper to choose probabilities defined on all possible (a, q, c, w') points. Probabilities should be defined 
using more general measure notation. We do this in the later sections. For now, the notation is implicitly 
assuming a restriction that the number of possible future utilities is finite. 
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Both for the finite- and the infinite-period problems, we "grid" the relevant sets of 
possible utilities (WOO or WT, WT-1,...) allowing only a finite number of points in these. 
Then with actual finite or finite approximations to sets A, Q, and C, any stage in the 
computation process amounts to finding a solution to the finite linear-programming 
problem RP for a given w and a given function s(*) arrived at either by solving the 
(T-71)-period economy for a finite-period problem or from the last iteration for the 
infinite-period problem. These linear programmes have a finite number of variables and 
a finite number of constraints. The only potential problem is that the number of variables 
and constraints may be large. Further, for each iteration there are as many programmes 
to solve as the number of grid points we allow in WT. 

Solutions for the full-information problem FIP, in the static environment, are also 
solutions to the full-information repeated environments. Specifically, there is full insur- 
ance so that action and consumption levels are variable only where tightenings are not 
possible due to the finiteness of A and C as noted before. Moreover, future utilities w' 
are chosen with certainty to yield the pre-specified initial utility w and thus guarantee 
the same action and consumption levels over time. If the future utility assignment of 
some measure 11W were variable, then the mean could be assigned with certainty without 
affecting the initial prespecified utility w of the agent, but at least weakly raising surplus 
because the surplus function is at least weakly concave, and for non-trivial examples is 
strongly concave. If this certain w' were not equal to the initial required w then consump- 
tion and work probabilities would vary over time. From the concavity of the agents utility, 
this stream of consumption and leisure levels could be smoothed while holding ex ante 
utility constant but raising surplus. Thus to repeat, a solution to the static full-information 
problem is a solution to all the repeated problems whether the horizon T is finite or infinite. 

However, and much to the point of this paper, solutions to the repeated unobserved- 
action economy do not have this property and can display variation in an individual's 
effort and consumptions over time with positive autocorrelation and variability in popula- 
tion distributions at a point in time. In particular, these distributions can now be non-trivial 
despite initial uniformity in the population. Figures 5 through 8 display solutions to the 
infinitely-repeated unobserved-action problem using the same parameters as in the static 
problems for the point-in-time utility function, the technology P(q I a), and the sets A, 
Q, and C. We assume a discount rate of I8 = 08. 

The optimized surplus function for the infinitely-repeated unobserved action problem 
is displayed in Figure 5 along with the full-information surplus function and the surplus 
function associated with infinitely repeating the solution to the T = 1 economy. (Note 
that a static plan giving w to the agent with surplus s(w) gives an expected discounted 
utility of (1/(1 -,8)) * w to the agent and discounted surplus (1/(1 -,3)) - s(w) if infinitely 
repeated. This allows us to virtually copy the surplus functions from Figure 1 onto Figure 
5). The T = x unobserved action surplus lies everywhere below the surplus from the 
full-information problem due to the added incentive constraints. It lies everywhere above 
the T = 1 surplus because disallowing history-dependence in consumption and recommen- 
ded action is a binding constraint. In fact, Figure 5 shows that much of the surplus lost 
from the agency problem is recovered when history-dependence is allowed even for the 
relatively high rate of discount implied by /3 = 0-8. 

Allowing history-dependence also induces higher actions (Figure 6). As in the static 
problem, the lower bound on utility w can be achieved only by giving the lower bound 
on consumption with certainty and thus, for the incentive constraint to hold, having to 
recommend the lowest action. However, allowing history-dependence does lessen the 
severity of this for w near the lower bound. (Note again that points not on the action 
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grid are achieved through randomization.) Again, away from these points, action 
decreases as w increases due to the normality of leisure. 

Allowing history-dependence in consumption (Figure 7) greatly reduces the effect 
of contemporary output on consumption as compared to the static problem (Figure 3), 
that is, it allows better contemporaneous smoothing. 
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Figure 8 graphs the transition function in w as a function of w, a, and q. At both 
corners, this function lies on the black 450 line since the only way to achieve the endpoints 
of WOO is period-by-period repetition of the extreme schemes used to generate W1. At 
all other points where action is greater than zero, high output implies higher w' tomorrow, 
low output lower w' tomorrow. 

IO a-= -4a=*2, q = 1 

a= 4,=2a=/4,q \=-,qI2 

a =*2, q =a2 =-, q2aa =*6, q= I 
100 10* 15*0 20-0 25 0 

Ja=O,q=(1, 2) l w 

{a=(2,4),q=1} 
FIGURE 8 

Future utility 



PHELAN & TOWNSEND COMPUTING CONSTRAINED OPTIMA 867 

Given an initial w and a random-number generator, one can use the functions 
HT (a, q, c, w') to generate individual time series of utilities, consumptions, or actions. 
One simply keeps track of the w' generated each period and uses it as the initial condition 
for the next. Figures 9 and 10 display four such series for consumption and expected 
discounted utility w for the same parameters as used earlier except for the discount factors 
,8 =0-95. (The parameters /8 = 0 8 were chosen for Figure 5 through Figure 8 because 
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these graphs are not easily readable at higher / values. Figures 9 through 12 are most 
readable for higher / values.) Each agent's initial w is set such that s,(w) =0. This is 
the highest ex ante expected discounted utility which can be assigned equally to the 
agents and thus represents the ex ante "fair" Pareto optimum. 

The probability measures H w also allow one to chart population distributions over 
time. Figures 11 and 12 (where again /3 and 8 = 0 95) demonstrate that if every agent is 
given "fair" w initially that over time expected utilities and consumptions spread out 
giving non-trivial diversity in the population at a point in time. For other chosen 
parameters, diversity in action levels will exist for the same reasons. Although for our 
computed examples, the steady-state population distribution is degenerate due to absorb- 
ing states at the endpoints, it takes hundreds of periods for this absorption to significantly 
affect the distribution when starting at the fair w.11 The endogenously generated diversity 
we display suggests that incentive problems may account for a non-trivial portion of the 
diversity in consumption and work levels present in the economy. 

V. JUSTIFICATION OF METHODS. 

In this section we justify the recursive methods used to formulate and solve the repeated 
problems. Specifically, we formulate the planning problem directly on the set of measures 

11. We are not sure if there exist non-degenerate steady states in the environment of this paper. In 
computed solutions, agents seem to simply walk away from each other until they hit an absorbing state at one 
or the other endpoint in utility. We have, however, just discovered Thomas and Worrall (1990) who show 
analytically in the infinite-horizon version of Townsend (1982) that the steady state is always degenerate. The 
agent's (borrower's) utility becomes arbitrarily negative with probability one. 
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defined on the possibly infinite-dimensional space of individual histories. We show in 
Theorem 1 that a solution exists. We then show that at any point in time and any history 
to that point, the expected discounted utility of any given agent from that time on is 
sufficient to describe the history of that agent along an optimal path; in a sense then one 
can start the problem over at any point. (Theorem 2). This allows us to show the optimal. 
surplus or value function satisfies a recursive functional relationship. Further, one can 
then convert over to a space which replaces lotteries over contemporary outcomes 
conditioned on histories to lotteries conditioned on expected discounted utilities. This 
conversion requires a reduction of the incentive constraint from one defined on contingent 
sequences of deviations over the entire time-horizon to an apparently simpler incentive 
constraint concerning only one-date-at-time deviations given obedience from that date 
on. That this reduction is valid is the thrust of Theorem 3. Finally, for the case of an 
infinite time-horizon, Theorem 4 argues the existence of a unique surplus or value function 
satisfying the functional equation, with an associated maximal policy for the original 
problem. 

The use of measure notation is necessary because the space of possible ex ante 
utilities is not finite but we want to define probabilities on it. Given this, there are no 
additional complications to allowing the sets A, Q, and C to be general compact subsets 
of the real line, finite or not. 

The most general formulation of the problem of finding the optimal social contract 
for the repeated environments is to have as the social choice variable the joint probability 
measure over entire lifetime sequences of events for each agent given his initial required 
ex ante expected discounted utility. This allows the dependence of time t choice variables 
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on all previous information. If we let H be the set of triplets H = {h = (a, q, c) I a E A, 
q E Q, c E C}, then we can define H T (T a finite integer or infinity) as the possibly infinite 
cross-product space HT-X1T H, where a generic element hT E HT is a sequence (or 
history) of recommended actions, outputs, and consumptions for a given agent starting 
at date 1 and going through date T, possibly infinity. We use superscripts to denote 
sequences up to and including the superscripted date, as in hT e HT and subscripts to 
denote the elements of such sequences. That is, for a given sequence h T notation h, 
denotes the (a, q, c) triplet associated with date t, and for the cross-product set H T H, 
denotes the set of possible date t triplets. Lastly, wherever we use notation indicating a 
series from date t to date T, if T equals infinity we mean the infinite sequence from date 
t on. 

With real-valued compact sets A and Q, we define the exogenous technology relating 
an agent's effort to his output as a probability measure P(q I a). Measure P is defined 
on measure space [Q, O@ (Q)] where O@ (Q) is used to denote the Borel subsets of Q. Thus 
the object q in P(q I a) is such a Borel subset, q e 02(q). The number P(q I a) in the 
interval [0, 1] gives the fraction of agents taking action a whose resulting output q is an 
element of set q. 2 Fractions P(q I a) are viewed also as probabilities by the individual 
agents. Further, for any action, measure P( Ia) is associated with strictly positive 
continuous density over the set of outputs Q. This guarantees that all observed quantity 
sequences are possible given any action strategies, and thus we avoid any "off-the- 
equilibrium-path" considerations. Finally, no additional restrictions such as monotone 
likelihood ratio or convexity conditions on P( I a) are required; these are made in the 
literature on principal-agent problems in efforts to secure analytical solutions. 

Let Do define the initial measure of lifetime expected discounted utilities owed to 
the agents. For each generic subset w in the Borel subsets of WT, Oh( WT), number Do(w) 
gives the fraction of agents whose initial required utilities w are elements of set w.13 
Unlike the introductory sections, we no longer assume measure Do has finite support, 
but still assume a countable support for technical reasons. Lastly, for real-valued compact 
sets A and C, we require that U[a, c] both be bounded on A x C and be continuous. 

A measure FT(h T) returns for a given initially required discounted expected utility 
W E WT and each generic subset hT E Oh (HT) the fraction of agents whose actual possibly- 
infinite sequences of actions, outputs, and consumptions are elements of h T. It is this 
measure for each w E WT that is taken as the choice variable for society. 

For simplicity of notation, we will denote the marginal measures implied by a given 
FW on subsequences of events starting at date 1 and going to date t < T as14 

fw(h')-| HdFw(hT). (1) 
fh'xH,+Ix .. *XHT} 

A social contract is a set of measures FW for all w E WT satisfying the constraints 
defined below, namely C9, C0, and C1, the analogues of C1, C2, and C4 for the static 
economy. The first constraint is that the required discounted expected utilities for the 
agents are actually satisfied if agents follow the recommended actions, or for all w E WT, 

C9. w = J {'WT = -3t U[at, ct]}dFw(hT). 

12. Note here and below that subsets are denoted as lower case bold type. 
13. We will continue the notation $0( * ) to denote the Borel subsets of the indicated sets. 
14. The use of sets under the integral sign denotes integration over the elements of that set. 
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For the second constraint note that as in the static problem, the probability weights 
on outputs are choice variables in FW and thus must be constrained to be consistent with 
those imposed by nature. For every date, and almost every history up to that date, a 
measure FW implies a conditional probability measure of output given that history. Again, 
each of these measures must be constrained to be consistent with the exogenous technical 
measure P(q I a). That is, for all t, h'-t E 0(H`1), a, E 02(A), q, E $2(Q), 

C1o. df,(h')= f P(q, I a)dft(h,). 
J{h'1xa,xq,xC} {h' -Ixa,xQxC} 

The interpretation follows. Integrating measure ft over C on the left-hand side of C10 
gives a probability measure defined on 02(Ht-l x A x Q). Hence the entire term on the 
left-hand side gives the probability of outcomes in subset ht'l x at x qt. This measure 
must agree with the measure arrived at on the right-hand side by integrating ft over both 
Q and C to get a measure defined on X (H' x A), and then deriving the joint probability 
over htl x at x qt by using the underlying technology P, a measure defined on q and 
conditioned on contemporary action and trivially on history ht,.' 5 This constraint is 
essentially analogous to constraint C2 for the static problems. 

The third constraint concerns incentive compatibility. For repeated environments 
each agent can have a deviation strategy depending on all information available to the 
agent at the time of the possible deviation. An agent's strategy does not need to depend 
on any societal aggregates since these are predetermined by a given plan {FFw}W WT. It 

is impossible for a single agent with zero weight to affect these. The aggregates are 
predetermined because each agent believes the other agents will obey their action recom- 
mendations. Incentive compatibility requires that given this it is weakly optimal for each 
agent to have the strategy of always obeying his own action recommendation. 

To formally describe possible deviations, let A, be the set of functions mapping 
Ht'l x A to A. Define A&T to be the set of T length sequences {It}t=1,T of such functions. 
An element AT E AT represents a strategy of a given agent. So again, an agent's strategy 
has as arguments the actual recommended actions, quantities, and consumptions the 
agent realizes up to and including t- 1, and the action recommended to him at time t. 
A strategy AT thus gives the agent's action at all times under all possible histories. 

Again, incentive compatibility requires that the strategy of taking the recommended 
action at all times under all histories is weakly optimal for all w E WT, and T E AT, or that16 

Ci. WI T { T= Pt1 U[at, ct] }dFT(h T) 

> J|T {T=l p t1IU[6t(ht , at), ct]}dFw(h I T) = W( T) 

where Fw(hT T) is the probability measure facing an agent following deviation strategy 
8T This differs from measure Fw(h') in that deviation actions alter the probabilities of 
outputs and thus must be taken into account, as in the incentive constraint for the static 

15. Given a probability measure ,u(a x b): 0(A x B) - [0, 1] and associated marginal o(a): -0(A) - [0, 1] 
where w(a)--lJ.B dj,(a, b), conditional measures y(b a) can be defined (or chosen) for almost all a with 
respect tow such that ,(a x b) =J .,y(b a) dw(a). (Billingsley (1986, Section 33)). We require that it is possible 
to choose such conditional probabilities to equal P. 

16. These can be imposed, and AT can be restricted to deterministic strategies, without loss of generality 
using revelation principle or direct mechanism arguments. See Harris and Townsend (1981), Myerson 
(1979,1982), and Townsend (1982). 
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environment. Measure F'(hTI aT) can be defined such that for all a, E @4 (A), q, E 
? (Q), cl E 0 ( C), * . aT E 1? (A), qT E= " (Q), CT E 130(C), and ?6 E 

FT(h |T P[q1 |1(al)] P[q2 1 2(hh, a2)] 

J{hT =axqlxclx .* xaTxqTxcT} P(q1 I aJ] P[q2 I a2] 

P[qT I SAT(h 
- 

, aT) (hT).(2 
.. P[qTJ(h aT)] 

T 

Ratio P[q, I 8t(h1-1, a,)]/P[q, I aJ] gives how many times more likely it is that q, E q, under 
strategy 87- than under the recommended strategy 8 T; that is, this ratio updates the 
weights on sequences with qt E qt to account for the use of strategy a . 

For a given distribution of required ex ante expected utilities Do, the social problem 
is then to maximize by the choice of measures {Fw}WEWT over histories h T discounted 
social surplus, or, 

Problem 1 (P1). Maximize by choice of {Fw}WeWT the objective function 

ST(DO) fWTHT {t=1 t1(qt- ct)1dF(hT)dDo(w) 

subject to the FW satisfying C9 through C1I for all w E WT. 

Note that since C9 through C1I must each hold separately for all w e WT, we can bring 
the maximization inside the integral over WT and consider the simpler problem of 
maximizing the surplus from each w type.17 Although to guarantee a economy-wide 
optimum it is only necessary to maximize the surplus from the w elements of a support 
of Do, ther is no loss to requiring that surplus be maximized for all w = WT. This gives 
us 

Problem 2 (P2). Maximize by choice of FW the objective function 

ST (W) 3 t p ( qt-ct)}dFw(h) 

subject to FW satisfying C9 through ClI. 

Denote the set of solutions to this problem {FW }WE WT with solution surplus values SAT(w). 

Theorem 1. A solution to Problem 2 exists. 

Proof (Outline of argument with some intuition). Since A, Q, and C are compact 
metric spaces, set H is compact metric space, and by a theorem of Tychonoff the infinite 
cross-product of H, HT is a compact metric space, even if infinite-dimensional. This 
implies that the space of measures II on HT is also compact (and metrizable) relative to 
the weak topology.18 

17. The assumption of a countable support ensures that the outer integration is always defined. This 
could have been avoided if we considered our choice variable one measure, FT, over ?4( WT X HT) instead of 
a continuum of measures FT for each wE WT each over 41(HT) and constrained FT to be consistent with Do. 
This was avoided for expositional reasons. 

18. Probability measures on compact sets are "tight" (Billingsley (1968)) and then by Prohorov's theorem 
are weakly compact, or compact relative to the weak topology. 
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The objective function of P2 can be shown to be continuous at any point FW since 
it is defined by the integration of bounded continuous functions. Similarly, the space TI 
restricted by C9 through C1I can be shown to be closed because one is dealing with 
linear equality and inequality constraints. If every element is some sequence were to 
satisfy some linear inequality constraint but the limit point did not, one can obtain a 
contradiction. As closed subsets of compact sets are compact, the constraint set for 
Problem 2 is compact. Continuous real-valued functions on non-empty compact topologi- 
cal spaces achieve maxima. Note that the constraint set is non-empty because for each 
w E WT an FW satisfying C9 through C I I can be created by mixing over the plans described 
earlier yielding the utility endpoints w and w. Note for this, and more generally below, 
that linear combinations of measures satisfying ClO and Cl also satisfy ClO and ClI. 11 

Further simplification is now possible. Specifically, the optimal FW* are recursive in 
the following sense: If an individual starts with expected discounted utility w and 
subsequently has history hT (which under F'* gives him an expected discounted utility 
from r + 1 on of w), FW* might as well treat him from r + 1 on as if it were the first period 
of a (T- r)-period economy and the individual is required to receive w'. That is, the 
solution to a T-period economy can be stated in terms of the solution to (T - r)-period 
economies, and the solution to the infinite-period economy can be stated in terms of itself. 

For a given FW and almost every history up to time r, hT, we can define the discounted 
expected utility of an agent from time r+ 1 on, Ww(h') as 

Ww(h) { JT{,T=T+l ft-T-lU(at, ct)}dFw(hT+l, .. ., hTI Th, (3) 
JH + x- .. *XHT) 

where conditional probability measure Fw(hT+l x*** x hT I h) is defined (or chosen) such 
that for all hT x hT+l x ... x hT, 

Fw(hT x hr+1 x... x hT) = f Fw(hT+l x... x hTl hT)dfw(hT). (4) 
hTr 

Then, formally, we can state the recursive nature of the FWT in Theorem 2. 

Theorem 2. For all w E WT, there exists an optimalplan FW* with thefollowingproperty: 
for any finite-length history hT with associated expected discounted utility Ww(h'), the 
probability measure on future events given that history, FW*( - I h T) can be chosen to be both 
consistent with equation 4 and to equal FTo*T, an optimal probability measure for the 
(T - r)-period economy for an individual required to receive Wi = Ww(hT). (Note that for 
the infinite-period economy the solution to the (T- r)-period economy is the same as the 
solution to the T-period economy, namely FW* = FWTT for all w E WOO.) 

Proof 19 Fix a positive measure subset of time-r histories with respect to the optimal 
plan FW*, denoted hT E 04(HT). Suppose for almost all of the hT E hT there exists a new 
plan for determining the continuation fractions, Fw(* Ih), that generates a higher discoun- 
ted surplus from r +1 on than the continuation plan FW*( -I ET), that is, 

(T(h) ( { )xHT {ETqt ptT-(q - ct) }dFw( hT+I,..X hT I hT) 
{H +I x... X HT} 

>J .xHT} { ETl=T+1/ (qt - ct) }dFw*(hT+I,* , hT I hT) ) 
{H +I X . . . X HT( 

(5) 

19. This proof follows a line of argument in Spear and Srivastava (1987). 
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with history-contingent surpluses 
- 

(h) and o*(h) defined on the left and right 
equalities. Further suppose that this new plan FT( I h) satisfies conditions C9 through 
C11 if time r is taken as time zero and W'(h) is taken as the initial required utility. 

The collection of measures F * I h) for each hT E hT can be used to define a time-zero 
plan FW. First, simply define the collection of conditional measures FT( -I h') over all 
of HT, not just the preselected subset hT, by letting Fw( I hT) FW*I h') for hT ' hT so 
that the old optimal plan is not changed off the branches in h. Also no change is made 
to the old optimum on or before date r. This allows us then to define FW for all 
hTx h,+l x * x hT E 0(HT) as 

Fw(hT x hT+l x *** x hT) TF(h+l x*** x hT I hT)df,(h). (6) 

The fact that for each original w type, Fw(- I h') gives exactly the same continuation 
utility to the agent after any time r history implies that the ex ante utility of the agent is 
the same under FW as under FWT, so that FW satisfies C9. Further, that the Fw(- I h-) each 
satisfy CIO insures that FW also does. 

Discounted surplus from the perspective of time zero is greater under FW than under 
FWT because surplus at time zero is the discounted sum of outputs over consumptions 
through date r and the discounted surplus from r + 1 on. That is, 

ST()JH{z=f3(q- ct) +P8rJT(h T)}dfw(hT) S W) 5 Et=l p qc} 

> i| {t f3 t(q qt-c) +8T4(hT)}dfw*(h') -ST(w), (7) 

since by the definition of FW (equation (6)), fw(h) =fw*(hT) and also that r(h) > 4(h') 
for hT E hT and equal elsewhere. 

We need only to show that FW is incentive compatible from the perspective of time 
zero, and we contradict our original assumptions, since if FW is within the constraint of 
the time-zero problem and gives a higher discounted surplus than FW*, then FW* could 
not have been optimal. 

Claim. FW is incentive compatible from time zero. 

Proof of Claim. Suppose not. Then there exists a deviation plan 8T E AT such that 

| ~j <JHT {tl= 1 1 U[ 8a(ht-, at), ct] }dFw(hT ) w T) (8) 

where w* is the discounted expected utility of the agent under obedience and plan FW*T 
w is the same but under plan FW and obedience, and F W( I 'AT) is the measure defined 

Al ~~~~~~AT by FW and the deviation strategy 8 as in equation (2). For a given history at time r, 
the agent has a discounted expected utility from that point on of following the deviation 
strategy that can be denoted Ww(hT, AT). Equation (8) can be rewritten as 

w < (gT) f {Ws t-l U[8t(ht-', at), c] + pTWw(hT a )}dfr(h 8 ) (9) 

From the incentive compatibility of the Fw( * I h') we can replace Ww(hT, 8T) in (9) with 
the discounted expected utility of following a strategy of obedience from r + 1 on, denoted 
Ww(h'), without violating the inequality since obedience weakly dominates from r +1 
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on. This in turn can be replaced by W'(hT), the discounted expected utility of the agent 
if plan FWT(. I hT) is followed, due to the fact that plan F * I hT) satisfies constraint C9 
from the perspective of time r, that is that it delivers the same utility to the agent from 
the perspective of hT having occurred. Lastly, it follows that for any particular deviation 
plan aT, fw(hT ) =fw*(hT j8T) (since no change is made in the old optimum through 
date 7 and thus fw(h') =fw (hT)) and this replacement can be made in (9) also. This 
allows us to write 

w* < f {,t=, t U[8t(h , at), ct] + PTWw*(hr) dw*(hr a (10) 

The right-hand side of equation (10) is the utility of following aT up to time r and 
obedience afterward under the old plan FW*. If 8T specifies obedience up to and including 
time T then equation (10) would be an equality and we have a contradiction. Assuming 
gT does imply deviation on or before time 7, if we alter strategy AT to obedience after 
date X, we have derived another deviation strategy AT such that w* < w*(gT), which is 
a contradiction due to the assumed incentive compatibility of the time zero optimal plan. 

This proves the claim of the incentive compatibility of F , implying FW is within 
the constraint set of the time zero problem, contradicting the optimality of Fw*. Thus, 
for all 7, and almost all histories hT, the surplus from r +1 on of following the original 
optimum, '*(h'), is the maximal surplus from 7+1 on. Thus there is no loss in surplus 
from at every date 7 pretending it is the first date of a (T - T) economy and the initial 
required utility w is W'*(h'). All other information in hT can be ignored. jj 

We are now well on the way to reducing the original maximum problem to finding 
a function satisfying a recursive functional relationship. In particular, we now know 
from Theorem 2 that optimized surpluses s*(w) satisfy the recursive relationship, 

ST(W) = {(q1 - cl) + ps*-,[ W*(hl)]} dfw*(hl). ( 11) 
HI 

Note from this that the optimized surplus today is determined only by the measure 
on one-period histories f' (hl), the function sA_-(w) and the function W*(h1).20 For a 
T-period economy, we can derive fromfl*(hl) and W*(hl) a probability measure gT (h1 x 
w) determining the joint probability weights on an agent having a given history h1 today 
and expected discounted utility w from tomorrow. Measure gw*(h, x w) gives the fraction 
of agents whose one-period history paired with end-of-period expected discounted utility 
is an element of h, x w, and can be defined for all h, x w E OI/(Hl x WT-1) by 

gw (hlxw)-C f I(hl, w')dw'dfw*(h,) (12) 

where for indicator function I H1 x WT-1 - {O, 1}, I(hl, w') = 1 if W*(hl) = w' and 0 
otherwise, and the Fw implying fl is now assumed to satisfy the recursive property in 
Theorem 2. Notation w' is used to denote expected utility as of the end of the first period 
from tomorrow on and w is for initial required utility. Note (12) implies that for almost 
all h, with respect to fw* the implied conditional of w' on h, is degenerate; a particular 
number w' is always assigned for each history. 

(12) allows us to express (11) as 

s*(w) = {(q - cl) + Ps*i(w')}dgw*(h1, w'). (13) 
2H0X WT-At 

20. This is analogous to what Abreu, Pearce, and Stacchetti call factorization. 
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This allows us to find solutions to finite T-period problems by finding the functions 
g;v*(hl, w') for all t ' T and all w E W,. For the infinitely-repeated problem we need only 
to find the function g'* (hl, w') for all w E WOO. To do either we need to search over the 
class of possible measures g'(hl, w') on H1 x WT-1, where again T may be infinity, (and 
thus T-1 equals infinity as well.) 

A collection of arbitrary measures g' for all t ' T and all w E Wt, each degenerate 
on some end-of-period utility w' for almost all hl, defines a collection of measures F'T 

over entire histories hT (for all we WT) by successively applying the appropriate g'. 
Marginal measure flw, over initial hl, is defined by integrating g' over w'. Measure fV, 
over (hl, h2) can then be obtained by integrating g1-, over w' and using fw to determine 
the weights on the first-period histories, while keeping track of the end-of-period utilities 
associated with those first-period histories. This is repeated for f3' and further.21 

In order to be able to compute optimal plans we need to know what restrictions 
must be put on an arbitrary collection of g,' measures, {g'}tTw', so that all of the FT 
plans that {g'} Tw. imply satisfy constraints C9 through C1I if and only if these restrictions 
hold. Condition C9 is satisfied by the implied FT if and only if for all t ' T, w E W, 

C12. w = f { U[al, cl] + Pw'}dgt'(hj, w'). 
{HIXWt-1) 

Constraint C12 simply requires that at the beginning of all dates, the w assigned in the 
last period, and used as a state variable now to select from the {g,'} family, is actually 
the expected discounted utility of the agent assigned it. Constraint CIO is satisfied by 
the implied FT if and only if all the g,v generate the correct conditional probabilities of 
outputs on actions, or for all a E 0(A), q E 0(Q), t T, and w E Wt, 

C13. dg"(a, q, c, w') = { P(q I a)dg, (a, q, c, w'). 
{axqxCxW,_j} {axQxCxWt-1) 

The interpretation is analogous to C2. 
Lastly, the most subtle equivalence concerns the incentive constraints. The result is 

summarized in Theorem 3. 

Theorem 3. For any collection of measures {gt}'tw, satisfying conditions C12 and 
C13, the corresponding explicit history measures {FF}WC WT satisfy incentive compatibility 
(constraint C1) if and only iffor all t ' T, w e W and all functions 8: A -> A, 

(C14) w-- I U[al, cj] + 8w'}dgtw(hj w') 
IH,x W,--,} 

' | { ~~U[S(a 1), cl ] +8 pWI dg w (hl w' I ), 
{H, X W,-,} 

where for axqxcxwGe4(AxQxCx Wt-1), g w(axqxcxw 8) is defined by 

A( 1^)-| P(qj18(a)) gw"(axqxcx wj) JA(j dg w (a, q, c, w') (14) 

the obvious analogue to (2). 

21. Note for the case T = oo that the ,V (Ht) on which the ft are defined can be considered partitions or 
sub-sigma-algebras of sV(H'). Further, this sequence of partitions converges to R(H') and thus the sequence 
of f1 functions converges to F' as t -e co. 
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Proof Object w' is by condition C12 the expected utility from tomorrow on of a 
non-deviation strategy from tomorrow on and thus condition C14 requires that there be 
no gain to deviation at any history given that the agent will not deviate in the future. 
Since condition CII requires that all contingent strategies be weakly worse than non- 
deviation, this includes the specific strategy of deviating at a given history and then 
following non-deviation from then on. Thus we already have the necessity of C14 or that 
every FW satisfies C 11 only if every gt, t T and w e WT satisfies C14. 

To get the sufficiency of C14 suppose there exists a collection {gt } tTj' that all satisfy 
C14 but a corresponding {FT}WE WI implied by this collection does not satisfy CI1 for 
some initial utility w0. This implies there exists an aTEA T such that w(8T) = W+ 

(e > 0), where w(6T) denotes the expected discounted utility of the agent following 
strategy 8 T. Consider an alternative action strategy 8T which follows uT Up through some 
finite date r T T but assumes obedience from 7+1 on. Condition C14 which assumes 
obedience from tomorrow on thus implies for all h-l, 

r-(h ) U[a,, cJ]+ PWrw(h`-1 hT)}dFWT(hr . . . hT Ihrl 
J{H X... XHT} 

> l {~~~U[ 3TIPCT] 
J HTX- ... XHT} 

+,f3W(t 1, )IdFw(h T, Tl .hT h-AT 

3 w 
'w(q aT). (15) 

Stepping back one date, condition C14 again implies for all hT2, 

WTW2(hT2) J I H} U[a7.1, cr_] + PWw L(hr2 h,-7)}dFw(h-1 ..., hT Ih 

fHx... {U[8T1, CI 
{H -1lX . .. X HT} 

+WTW_1(h- h,-,)IdFwT(h_,l, I , hTih2 AT) (16) 

The expression W' 1(hT-2, h71) on the right-hand side of (16) represents the utility 
corresponding to obedience from date r on, even though AT allows disobedience at date 
r. If we replace Ww (hT2, h,l) on the right-hand side with W_1(h2, h_1 j T) that 
is, the utility associated with disobedience at date r, (15) ensures the inequality is 
maintained. This gives 

W- 2(hT2){H | {Ut8T1, C-1] 
{HT-lX.. XHT} 

+pWw1 (hT , hT 118 )}dl%(h71,** , hTIh aT) 

WTW2(h a8) (17) 

Repeating this stepping back to t = 1 gives 

w0? w(T). (18) 

For a finite T, if we choose Xr T we have generated a contradiction since aT = aT 

but the utility associated with strategy aT is weakly worse than obedience (18) and the 
utility of strategy 8T is assumed strictly greater than obedience. For the infinitely-repeated 
case, denote iwv as the greatest element of W,, and w as its least element. If we choose 
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date r sufficiently great pT.(w-w)<s we have Iw(8T)-w(8T)Is, or a 
w(8T) - e. Substitution from (18) gives w0> w(8T) - , which is a contradiction due to 
the initially assumed equality w(8T) = w0+ e. 

Now again let {F'* WEWT denote a solution to P2 satisfying the recursive property 
of Theorem 2, and s*(w) denote the solution values. We know from above that the 
associated {g' *}wYTw satisfying C12 through C14 and any other set {gw}lw'T satisfying 
C12 through C14 must induce a set {FF}wEWT with a lower surplus from the optimality 
of set {Fw*}WEWT. This implies that s*(w) must be the maximal value of the objective 
function in 

Problem 3 (P3). Maximize by choice of gw the objective function 

ST(W)-| {(q - c) +,8ps_1(w')}dgw(h1, w') 
{H x WT-1) 

subject to constraints C12 through C14. 

For finite-period problems, one can start with the one-period problem (where s* = 0 
everywhere and Wo = {0}) to find s* and the set {gw*} WE'w and then solve P3 given s, to 
solve the two-period problem and repeat until period T For infinite-period problem, we 
need to derive a method of finding the maximal surplus function s*(w). We can then 
characterize a solution to Problem P1 as the probability measure on infinite sequences 
hoo implied by the set {gwl}WEW which solves P3 given s*(-). To find s*(-), we can 
define an operator T mapping functions s00(*) into functions TsOO() by letting, for every 
w E= WOO , 

Tsoo(w) maxgw } {(q1- cl)+ps(w')}dgw(h1, w) 
I HI x WOO 

subject to conditions C12 through C14. (19) 

We know from the statement of Problem P3 that Ts*( - ) = s*( - ). Theorem 4 states that 
no other function soo(*) has this property and delivers a method of finding s*(*). 

Theorem 4. Mapping Tas defined in (19) maps bounded continuousfunctions on WOO 
into bounded continuous functions on WOO. Moreover, T is a contraction mapping, thus there 
exists a unique function s* such that Ts* ( - ) = s* ( - ). 

Proof. A maximum exists over gw for the right-hand side of (19) because the 
objective function is an integral over bounded continuous functions defined on H1 x WOO 
and hence is continuous in the weak topology, and the constraint set q'(w) is compact. 
Set q(w) is compact because the constraints are linear equalities or inequalities and hence 
p(w) is closed and the set of unrestricted measures on H1 x WOO is compact. That is, the 
constraint set is a closed subset of a compact set and hence is itself compact. Continuous 
functions on compact sets achieve their maxima. -- 

That TsOO(*) is bounded is trivial given the compactness of H1 and the supposed 
boundedness of soo(*). The continuity of TsOO(*) in w follows from familiar arguments. 
The objective function of (19) is trivially continuous in w as well as in the choice objects; 
utility level w doesn't enter as an argument. The constraint set, p(w), is lower semicon- 
tinuous. This follows because any point g' in set p(w) can be attained as the limit of a 
sequence of gOfl E p(w') as w' goes to w. If w' were to approach w from above, for 

example, then one can construct the g"fl as the appropriate weighted combinations of 
g' and the scheme yielding the upper end point w. This uses the fact that linear 
combinations of measures satisfying constraints C13 and C14 also satisfy C13 and C14 
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and thus one simply chooses the appropriate weights such that the linear combination 
gives the appropriate expected utility to satisfy constraint C12. The argument generalizes 
to all w'-> w. 

Also, the constraint set p(w) is upper semicontinuous. That is, if w" -> w, and g900 90 
with gwn E p(w') then gw E Cp(w). This follows as with the establishment of the closedness 
of the constraint set above. Then the analogue of the maximum theorem given in Debreu 
(1959), here for a metric space, gives the desired result. 

To establish T is a contraction mapping on this space of bounded continuous 
functions, it suffices to note that the Blackwell sufficient conditions are satisfied: 

(i) If s't s" then Ts'-' Ts", and 

(ii) For any constant K, T(s+K)= Ts+f8K, 0<3<1. 

Existence and uniqueness of a function s* satisfying s* = Ts* follows from the contraction 
property. Further iterations from s to Ts to T2s and so on are ensured to converge to 
s* for any starting value s,,. 

VI. NOTES ON COMPUTATION. 

This section outlines the nature of the numerical algorithm used to compute solutions 
for a grid of utilities on W, t : T, and grids on the sets A, Q, and C. We also make clear 
the sense in which our solutions approximate the solution where these sets can take on 
a continuum of values. 

For a given function s* L(*) or guess s.(*) and initial w, finding st(w) or Ts.(w) is 
an infinite linear programme literally having a continuum of choice variables, the mass 
to put on every point in the support of gw, and if set A or Q is continuous, a continuum 
of constraints since C14 must hold for all possible strategies, and C5 for all q e A (Q). 
If one imposes a grid on A and Q, that is allows (a, q) to take on only a finite number 
of points, then the number of constraints becomes finite. If one imposes a grid on W,_1 
and C as well, then the number of choice variables becomes finite, and function s,-1( ) 
defined on Wt-1 is a finite-length vector. This makes s*(w) or Ts"(w) the solution to a 
finite linear programme for a given function s*( *) or guess s,( *). Such programmes 
can be computed using standard revised simplex algorithms. The entire function s*(*) 
or Ts,,(-) is obtained by finding s*(w) or Ts(w) for all wE Wt, where Wt is the grid on 
the appropriate W,. Further, the contraction theorem (Theorem 4) still applies even when 

WO is restricted to a grid, so iteration over these functions for a given grid WOO is ensured 
to converge. The converged solutions and associated policies are the ones we report. 

Now return to the unrestricted set H1 x W,-_. By imposing finer and finer grids on 
H1 and Wt-1, for instance by uniformly distributing the elements and successively doubling 
the number of values they can take on (call these sets (H1 x Wt1): n = 1, oo). We get a 
sequence of solutions {gw}wew"1, n = 1, oo which are valid measures on the unrestricted 
space H1 x Wt-1. Moreover, as a sequence on a compact metric space, at least some 
subsequence must converge, say to {gI }Wf:W. Yet this must yield the same surplus as 
{g t*}WE ww since any true maximizer for an unrestricted H1 and Wt_1 can be approximated 

arbitrarily closely by measures in sufficiently refined grids given that the actual technology 
P, (a measure on the unrestricted Q x A) can be closely approximated on grided sets Q 
and A. 

Finally, large gains are realized in the size and speed of computation of these linear 
programmes if one can separate each period into sub-periods as is easily the case with 
a separable utility function. Here it is the case that the expected utility of the agent also 
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sufficiently describes history in the middle of a period, after the output is realized but 
before the consumption is handed out, for the same reasons as in the proof of Theorem 
2. This allows us to separately choose the joint probability of (a, q, wm) triplets given w, 
where wm is the utility of the agent in the middle of the period, and the joint probability 
of (c, w') pairs given wm where, as before, w' is the expected discounted utility of the 
agent at the beginning of the next period. 

This breaks each linear programme into two smaller ones. The programme choosing 
the probabilities over (a, q, wm) triplets has the same number of constraints since the 
number of consumption points did not affect the number of constraints but has far fewer 
variables. For a gridded set C with nc elements, the number of variables in the smaller 
programme will be 1/nc the number of variables in the original problem. The second 
linear programme choosing the probabilities of (c, w') pairs has only two constraints (that 
required utility is satisfied and that probabilities add to one) and thus runs extremely 
quickly. The adoption of this method allowed us to move from solving these problems 
on a CRAY supercomputer to a fast PC. 

VII. CONCLUDING REMARKS. 

The methods we present are more general than they may appear. For instance, the source 
of the incentive problem does not appear important. This allows similar arguments to 
those given to apply to repeated private-preference shock economies, or repeated private- 
endowment shock economies such as Green (1987). Since Green's model does not have 
actions, simply let the set A have one element and thus remove the incentive constraints 
on actions. Because Green has unobserved endowments (or unobserved q) we need to 
add constraints to require that those with high outputs do not claim to have low outputs, 
or, for all (q, q) E Q x Q (where q < q), 

I cX U[ a, c] +83w'}TIt '(a, q, c, w')'-cx w,- [ cq]+3 }r,( c ) 
(20) 

This replacement of constraints does not upset the logic of the earlier arguments. 
We have also shown in an earlier working paper version (Phelan and Townsend 

(1988)) that optimal renegotiation-proof contracts can be found by suitably restricting 
the utility sets W such that they induce non-increasing surplus functions over w, but 
otherwise solving the same programming problems. But the restriction to renegotiation- 
proof contracts does make a difference. Without it, as in the body of this paper, the 
optimal solution enters the upwards surplus regions, in which case, ex post, all agents 
can be made better off by starting over. In any event, this method of restricting utility 
sets also appears promising for computing other limited commitment environments such 
as Atkeson (1988) where international borrowers (agents) can withdraw from the credit 
system at any time with the utility associated with autarky given their present amount of 
capital. 
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