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Learned Convention and Subgame Perfect Equilibrium in an
Overlapping Generations Model with Two-Sided Altruism

1 Introduction

There are many unresolved issues regarding the pay-as-you-go (PAYG) social security pro-

gram and its effects on fertility, savings and intergenerational transfers in overlapping gen-

erations (OLG) economies. First, what should be an appropriate equilibrium concept to

model individual incentives for intergenerational transfers? While the notion of subgame

perfect equilibrium is an appropriate equilibrium concept, there are generally many equi-

libria and computation of a subgame perfect equilibrium in OLG set-up is very complex.

This led most previous studies in this area to use the notion of open-loop Nash equilibrium

which does not fully capture the incentives in the OLG framework. Second, the literature

has remained elusive on the issues of why does there exist a PAYG social security program,

and whether it can restore Pareto optimality or lead to a Pareto superior allocation for OLG

economies.

Samuelson [1958] explained the need for a PAYG social security program to restore

Pareto optimality in pure exchange OLG economies. He assumed that agents have life-

cycle utility functions and thus there are no voluntary intergenerational transfers. Another

type of explanation postulates that there could be economy of scale and other sources of

market failures in pension provision (see, Diamond [1977]) or there might be adverse selec-

tion/moral hazard problems in private provision of retirement income insurance and these

could be mitigated by compulsory participation (see Diamond and Mirrlees [1978]).

Veall [1986] provided an alternative explanation for PAYG social security. He consid-

ered an OLG model in which each agent is assumed to derive utility not only from his/her

own life-cycle consumption, but also from the level of old-age consumption of his/her par-

ents. Due to this consumption externality, elderly may save little to extract the maximum

possible gifts from their children; ”This can lead to an inferior steady state, where no one is

consuming ’enough’ in retirement” (Veall [1986, p.250). If a PAYG social security system

is introduced such that it transfers from the young to the old at least the amount that the old

could extract from their children by saving nothing, such a social security program could

restore inter-temporal efficiency of consumption for each agent and Pareto optimality for
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the whole society. However, once the agents begin to save, the young may like to reduce

their social security contribution and have incentive to amend the PAYG social security leg-

islation. Thus such a PAYG system may not be stable. Veall showed that if social security

benefits are set at the level of optimal steady-state old-age consumption, then such a legis-

lation will be honored by all future generations and thus is stable. Moreover, the resulting

allocation will be Pareto optimal.

Hansson and Stuart [1989] provided another closely related explanation by modeling

PAYG social security legislation as a trade among living generations. They considered an

OLG model in which agents derive utility not only from their own young age and old-age

consumption but also from properly discounted young age and old-age consumption of their

parents and of all future generations. They find conditions under which the young and the

old agents would find it beneficial for them to agree upon a stream of PAYG social security

transfers for the current and all future generations such that the resulting allocation is Pareto

optimal and that no future generations would have incentives to amend the program.

These models did not endogenize fertility choices. If agents expect to receive gifts from

their children to support old-age consumption, it is clear that not only savings decisions but

also the fertility decisions will be affected; in fact, agents may like to have more children

than what is socially optimal.1 Hence, it is important to relax the exogenous fertility as-

sumption in the above class of models.

Recent models that study the effect of social security on fertility and savings (Barro

and Becker [1989], and Raut [1990]) the existence of a social security is not explained.

Nishimura and Zhang [1992] incorporated fertility choices in Veall’s one-sided altruism

framework. They used open-loop Nash equilibrium as a solution concept for decentralized

economy and assumed that agents care only about their parent’s old-age consumption but

not about their children’s well-being and then considered the possibility of implementing

social optimal with social security in an open loop Nash equilibrium. Following Veall,

they viewed the optimal old-age consumption in the steady-state as PAYG social security

benefits. However, when fertility is also a choice variable, it is not possible to implement

1 This is an alternative formulation of old-age security hypothesis. Raut and Tran [2004] studied theo-
retically and empirically an alternative formulation of old-age security motive. They examined how parental
investment in children’s human capital is affected when parents expect old-age transfers from their children.
While human capital investment is an important intergenrational transfers decision, the focus of this paper is to
study the link among the savings, fertility and old-age resource transfers decisions.
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the optimal steady-state allocation using only a PAYG social security policy instrument; this

was possible in Veall’s framework because he treated fertility as exogenous; in fact, once

such a PAYG social security program is enacted, the free rider’s problem would cripple

the system since an individual agent will have no incentive to have children (as they do

not affect utility but cost money). Parents would like to depend on others’ children for

contribution to social security program. Since every body would behave this way, such

a social security program is not individually rational. Therefore, viewing optimal steady-

state gifts as a form of PAYG social security in Veall’s framework loses both normative and

positive virtues once fertility is a choice variable.

In this paper, I extend the literature in two respects:First , I introduce two-sided pa-

ternalistic altruism of the type that agents derive utility not only from their own young age

and old age consumption, but also from the old-age consumption of their parents and the

young age consumption of their children.Second,I introduce a more general notion of

equilibrium which includes open-loop Nash equilibrium and subgame perfect equilibrium

notions as special cases. I assume that behaviors are guided by best responses, given a com-

mon fixed convention and bounded rational expectations about other agents’ behaviors. I

then provide a mechanism for agents in each generation to learn the common convention by

observing their parent generation’s behaviors. When the evolutionary process converges, I

show that the limiting equilibrium produces a subgame perfect equilibrium. This procedure

leads to both selection of a subgame perfect equilibrium and computation of an equilibrium

locally. Using this procedure I study both analytically and numerically the effect of a social

security program on local subgame perfect equilibrium rate of intergenerational transfer,

fertility rate and welfare level of a representative agent.

In section 2, I set up the basic OLG model. In section 3, I define the notions of open-

loop Nash equilibrium, social optimum, and subgame perfect equilibrium. In section 4, I

explain the bounded rational framework involving conventions, learning of conventions and

the computation of a subgame perfect equilibrium locally. In section 5, I study properties

of this equilibrium. Section 6 concludes the paper.
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2 The Basic Framework

I use the basic Samuelsonian [1958] overlapping generations framework and introduce two-

sided altruism to endogenize intergenerational transfers. Assume that time is discrete and is

denoted ast = 0, 1, 2, ....; each person lives for three periods: young, adult, and old. While

young, he depends on his parents for all decisions. I follow the notational convention that

a superscriptt refers to an adult of periodt and a subscriptt refers to time periodt. For

instance,ctt andctt+1 denote respectively the adult age and old-age consumption of an adult

of period t; however,nt denotes the number of children of an adult of periodt, since I

assume that only adults can have children, so from the subscript ofnt we can identify

which generation it corresponds to. Assume that for allt ≥ 1, the wage ratewt and the

interest ratert are exogenously given.

Assume that all children are born identical and they all behave identically in a given

situation. An agent’s behavior regarding fertility, savings and intergenerational transfers are

guided by concerns for the well-being of children and parents which I model by assuming

that an adult of generationt derives utility from his own life-cycle consumption and from

consumption level of his children and parents that he observes during his active life-time

(see Kohlberg [1976], and Pollak [1988] for use of similar utility functions in different

contexts). More specifically, agent t’s utility function is as follows:

U t = δ(nt−1)v(ct−1
t ) + αv(ctt) + βv( ctt+1) + γ(nt)v(ct+1

t+1) (1)

Veall [1986] in his exogenous fertility framework and Nishimura and Zhang [1992] in their

endogenous fertility framework assumed thatγ(nt) = 0 andδ(nt) to be constant, for all

t ≥ 0. In the above specification, I allow the degree of an individual’s concern for his

parents to depend on the number of siblings. However, most of our results hold ifδ(.) is

constant. I will argue later that assumingγ(nt) = 0 leads to unsatisfactory modeling of

fertility decisions.

An adult of periodt earns wage incomewt in the labor market andexpectsto receive

a bequestbt from his parents. These two sources of income constitute his budget during

adulthood. Rearing cost per child in periodt is θt > 0 units of periodt good. Given his

budget, he decides the amount of savingsst, the number of childrennt ≥ 0, the fraction

of income to be transferred to his old parentsat ≥ 0; in the next period, he retires and
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expects to receiveat+1nt amount of gifts from his children, earns(1 + rt+1)st as return

from his physical assets, and decides the amount of bequestbt+1 ≥ 0 to leave for each of

his children.

time t = 1 t = 2 t = 3 ... t− 1 t ...
generation

0 b1
1 (a1, n1, s1) b2
2 (a2, n2, s2) b3 ...
... ...

t− 1 (at−1, nt−1, st−1) bt
t (at, nt, st) ...
... ... ...

Table 1: Time table of actions by overlapping generations of agents

The effects of agentt’s action,αt = (at, nt, st, bt+1), on the levels of his own life cycle

consumption and the levels of consumption of his parents and children in the periods that

overlap with his life-cycle, depend on his parent’s action,αt−1 and his children’s action

αt+1 as follows:

ctt + st + θtnt = (1− at)wt + bt (2)

ctt+1 + ntbt+1 = (1 + rt+1)st + at+1wt+1nt (3)

ct−1
t = (1 + rt)st−1 − nt−1bt + atwtnt−1 (4)

ct+1
t+1 = (1− at+1)wt+1 + bt+1 − st+1 − θt+1nt+1 (5)

ctt, c
t
t+1 ≥ 0

Similarly, the agentt = 0’s utility function is given by

W0 = βv(c0
1) + γ(n0)v(c1

1)

and agentt = 0 decides the level of bequestb1, given his past decisions,n0, s0, and his

children’s decisions,α1. The arguments of his utility function are given by

c0
1 + n0b1 = (1 + r1)s0 + a1w1n0 (6)

c1
1 = (1− a1)w1 + b1 − s1 − θ1n1 (7)

c0
1 ≥ 0
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3 Equilibrium notions

3.1 Open-loop Nash Equilibrium

Note that if1 > a∗t > 0 andb∗t > 0 is an equilibrium combination of gifts and bequest in

period t, so isa∗t + ε andb∗t + εwt, for smallε > 0; this can lead to gift-bequest war. This

could be handled by requiring an equilibrium to yield either positive bequest or positive gift

within a period but not both. Most commonly used equilibrium concept is an open-loop

Nash equilibrium which I define as follows:

A sequence of strategies,
{
αt
}∞
t=0

is feasibleif there exists an associated sequence

of non-negative consumption streamc0
1,
{
ctt, c

t
t+1

}∞
1

such that it satisfies the budget con-

straints (2)-(7).

Definition 1 An open loop Nash equilibriumis a sequence of feasible strategies
{
αt
}∞

0

such that for given initial condition,n0, s0

(i) at > 0⇒ bt = 0 andbt > 0⇒ at = 0

( ii) for anyt ≥ 1, givenαt−1 = (at−1, nt−1, st−1, bt) andαt+1 = (at+1, nt+1, st+1, bt+2)

there does not exist another strategyα̃t for agentt such that̃αt together withατ , τ 6=

t, τ ≥ 0 form a feasible sequence of strategies, andα̃t yields higher utility for agent

t.

I distinguish further among different types of equilibria.An open-loop bequest equilib-

rium is an equilibrium of the above type that satisfiesat = 0, andbt > 0 for all t ≥ 1. An

open-loop gift equilibriumis an equilibrium of the above type that further satisfiesbt = 0,

andat > 0 for all t ≥ 1.

3.2 Social Optimum

Following Samuelson [1958], I define a social optimum to be an allocation of consumption

(cy, co) between adults and olds within a given generation and the number of childrenn

such that a representative agent’s utility in a stationary economy is maximized. More

formally, the problem is to choosecy, c0, andn

7



max (α+ γ (n)) v (cy) + (β + δ (n)) v (co)
subject to
cy + c0

1+n = w − nθ

I use this in the numerical example section.

3.3 Subgame Perfect Equilibrium

An open loop Nash equilibrium framework does not fully model the incentives that agents

may have to manipulate their parents’ or their children’s behavior to extract more transfers

from them. For instance, since parents make their consumption and fertility decisions prior

to their children’s, parents may find it strategically advantageous to consume more in their

working age, save little on physical assets and possibly have more children so that when

they become old they have little income of their own. When the children find that their old

parents have little to consume, they will have sympathy for their parents since they care

about their parents’ consumption; thus they will transfer a larger amount of old-age support

than what they would be transferring in the open loop Nash equilibrium. The children in

turn can manipulate their children in the same way and the process could go on for ever.

To proceed more formally, I assume a particular sequencing of decisions within each

period in order to compute and study the properties of subgame perfect equilibrium. More

specifically, I divide each time periodt into two stages denoted byt and t.1 (staget.1

follows staget) at which the live agents of period t are to make decisions. At staget, which

is the beginning of periodt, the agentt−1’s decisions(at−1, nt−1, st−1) are part of history

and are assumed to be observable to the live agentst− 1 andt. Denote these past decisions

at staget by ht. Given a realization of the historyht, the agentt − 1 decides to bequeath

bt to each of his children and each of his children decides the fractionat of their income

to be given as gift to their parents. Both agents make their decisions simultaneously and

independently. The game moves to staget.1 at which both agents observe the outcome up

to staget.1. Denote a typical realization of these decisions at staget.1 by ht.1. Given a

realization of the historyht.1 at staget.1, the agentt−1 does not make anymore household

decision, agentt, however, decides the number of children and savings(nt, st) . Figure 1

depicts a part of the extensive form of the game starting at staget. The tree is shown only
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up to staget+1.1; the label of a branch describes the action of the agent that it corresponds

to; the shaded boxes are the information sets of the agents within a given stage.

Figure 1: Extensive form representation of the multi-stage game,Γ(ht)

Since at staget the parentt−1 knows that his children will use the information regarding

his observable actions, he will choose his actions in a manner that exploits the reactions of

his children in most favorable way. Or in other words, parents may find it beneficial to

manipulate their children’s behavior. In the above set-up, agents in later stages can use very

complex punishment rules as their strategies. For instance, an agentt = 5 in stage 5 can

condition his actions as follows:

”he will transfer a certain fractiona5 of his income to his parents if his parents

transferred a certain fractiona4 of their income to the agent’s grandparents,

saved certain amounts4, had certain number of children,n4, and if his grand

parents transferred a certain fractiona3 of their income to the agent’s grand

grand parents, ... and so on.”

While these types of strategies may lead to many subgame perfect equilibria, the equi-

libria that prescribe strategies conditioning on the dead grand parents are hard to execute

since it is not possible to objectively verify if the agent’s grand parents or grand grand par-
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ents did such and such. I consider only pay-off relevant strategies: From equations (2)-(5),

and the arguments of the utility function, it is clear that the only information from history

that is relevant to decision making of the agents at staget is agentt− 1’s own past decision

regarding(st−1, nt−1), and thus I consider the bequest decision rule of agentt− 1 to be of

the formbt (nt−1, st−1) , and the old-age transfer decision rule of agentt to be of the form

at (nt−1, st−1) ; similarly at staget.1, the agentt’s actions depend on his own past deci-

sionat and his parent’s bequest decisionbt, only through the net effect,atwt − bt which

I represent as functions of the form,nt = nt (atwt − bt), andst = st(atwt − bt). Thus

agentt’s strategies are functions of the type:at = at(nt−1, st−1), nt = nt (atwt − bt), and

st = st(atwt − bt) andbt+1(nt, st). Whenever actions at any stage are functions of past

actions, they are known asreaction functions.Putting all the actions and reactions of agent

t from all stages of the game together, it is easy to see that aprofile of pure strategiesof all

agents together is given by,

At =

{
(at(nt−1, st−1), nt(atwt − bt), st(atwt − bt), bt+1(nt, st)) for all agentst ≥ 1
b1(n0, s0) for agentt = 0

where, each component belongs to the relevant strategy space specified above. Note that

agentt’s actions,nt, st, at, andbt+1 now belong to function spaces, whereas in open loop

Nash equilibrium they were non-negative real numbers. I use the following characterization

of the subgame perfect equilibrium notion.

Definition 2 Let n0 and s0 be the initial condition. A profile of strategies,A∗t =
(
a∗t (nt−1, st−1), n∗t (atwt − bt), s

∗
t (atwt − bt), b

∗
t+1(nt, st)

)
, for agentt ≥ 1, andA∗0 =

b∗1(n0, s0) for agentt = 0, is said to bea subgame perfect equilibriumif

1. for all agentst ≥ 1 and for anynt−1, st−1, bt = b∗t (nt−1, st−1) , givena∗t+1(., .),

n∗t+1(.), s∗t+1(.) the strategiesat = a∗t (nt−1, st−1) , nt = n∗t (atwt−bt), st = s∗t (atwt−

bt), bt+1 = b∗t+1(nt, st) maximizeUt, subject to agent t’s budget constraint deter-

mined by the given optimal reaction functions of the other agents, and

2. for agentt = 0, given(n0, s0) , and the optimal reaction functionsa∗1(., .), n∗1(.), s∗1(.)

of agentt = 1, the reaction functionb∗1(n0, s0) maximizes his utility within his bud-

get constraint determined by the given optimal reaction functions of agent 1.
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3.3.1 The First Order Conditions for a Subgame Perfect Gift Equilibrium

Let at+1(nt, st), nt+1 (at+1wt+1 − bt+1), st+1(at+1wt+1 − bt+1) be the optimal reaction

functions of agentt + 1, and letnt−1, st−1 be any feasible actions of agentt − 1. Taking

these decisions as given, agent t chooses a feasibleAt = at(nt−1, st−1), nt(atwt − bt),

st(atwt − bt), bt+1(nt, st) that maximizes his utility. Fort > 1, the first order necessary

conditions for his maximization problem are as follows:

At stage t:

δ(nt−1)nt−1v′
ct−1
t

(
︷ ︸︸ ︷
(1 + rt)st−1 + atwtnt−1 − nt−1bt)...

−αv′(

ctt︷ ︸︸ ︷
(1− at)wt − st − θtnt + bt) ≤ 0,and = 0 if at > 0

(8)

−βv′(ct−1
t )nt−1 + γ(nt−1)v′(ctt) [1− θtn′t(bt − atwt)− s

′
t(bt − atwt)] ≤ 0,

and = 0 if bt > 0

(9)

At stage t.1:

−αv′(ctt) + βv′(

ctt+1︷ ︸︸ ︷
[1 + rt+1)st + at+1 (.)wt+1nt − ntbt+1])×

[(1 + rt+1) + wt+1ntat+1,2(nt, st)]− γ(nt)v′(

ct+1
t+1︷ ︸︸ ︷

(1− at+1)wt+1 − st+1 − θt+1nt+1 + bt+1)×

[at+1,2(nt, st)wt+1] ≤ 0, and= 0 if st > 0

(10)

−αθv′(ctt) + βv′(ctt+1) [at+1(nt, st)wt+1 + ntwt+1at+1,1(nt, st)] ...

+γ′(nt)v(ct+1
t+1)− γ(nt)v′(c

t+1
t+1) [wt+1at+1,1(nt, st)] ≤ 0, and = 0 if nt > 0

(11)

Similar to open loop Nash equilibrium, I can define subgame perfect gift equilibrium

and subgame perfect bequest equilibrium. However, in the rest of the paper I analyze only

the properties of the subgame perfect gift equilibria.

In this framework, a subgame perfect equilibrium with differentiable reaction functions

may not exist. Even when there exists one, it is not possible to compute all subgame perfect
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gift equilibrium reaction functions from the above first order conditions.2 If we further

restrict to a stationary local subgame perfect equilibrium, could we compute it using the

first order conditions? More formally, assume that the wage ratewt = w, the interest rate

rt = r, and the cost of raising childrenθt = θ for all t ≥ 1.

Definition 3 A stationary local subgame perfect gift equilibriumis a vector of fertility

level, savings amount, and the rate of old-age support to parents,(n∗, s∗, a∗) ≥ 0 and a

vector of reaction functions(a(nt−1, st−1), n(atwt − bt), s(atwt − bt)) defined in a neigh-

borhood3 of (n∗, s∗, a∗) such that

a∗ = a (n∗, s∗) , n∗ = n(a∗w)), s∗ = s(a∗w)

and

at(nt−1, st−1) = a(nt−1, st−1)

nt(atwt − bt) = n(atwt − bt)

st(atwt − bt) = s(atwt − bt)

bt (nt−1, st−1) = 0 for all t ≥ 1

and that the above satisfies the system of equations (8)-(11) for allt ≥ 1 with initial condi-

tion,n0 = n∗, ands0 = s∗.

Could one compute a stationary local subgame perfect equilibrium reaction functions

from the above first order conditions (8)-(11)? To that end, denote the one period lag value

and the one period forward value of a variablex by x− andx+ respectively, the system of

equations (8)-(11) for a stationary subgame perfect equilibrium becomes:

Ψa (a (n , s ) , s+ θn) ≡
δ(n−)n−

α
=

v′ ([1− a(.)]w − s− θn))

v′ ((1 + r)s− + a(.)wn−)
(12)

Ψb (a (n , s ) , s+ θn) ≡ −βv′((1 + r)s− + a(.)wn−)n + γ(n−)...

v′ ([1− a(.)]w − s− θn)) [1− θn′ − s′] ≤ 0 and = 0 if b > 0
(13)

2 See Kohlberg [1976] for a discussion of such problems in a similar framework.
3 The adjective ”local” in the definition refers to this neighborhood restriction.
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Ψs
(
a (n , s ) , a+ (n, s) , a+

2 (n, s) , n, s, s+ + θn+
)
≡

−αv′ ([1− a]w − s− θn)) + βv′ ((1 + r) s+ a (n, s)nw) ((1 + r) + nwa2(n, s)) ...

−γ(n)v′ ([1− a(n, s)]w − s+ − θn+)
[
a+

2 (n, s)w
]
≤ 0 and = 0 if s > 0

(14)

Ψn
(
a (n , s ) , a+ (n, s) , a+

1 (n, s) , n, s, s+ + θn+
)
≡

−αθv′ ([1− a]w − s− θn)) + βv′ ((1 + r) + wna+(n, s))×

[
a+(n, s)w + a+

1 (n, s)wn
]

+ γ′(n)v ([1− a+(n, s)]w − s+ − θn+) ...

−γ(n)v′ ([1− a+(n, s)]w − s+ − θn+)
[
a+

1 (n, s)w
]
≤ 0, and = 0 if n > 0

(15)

Since we are trying to compute a local gift equilibrium, we restrict our computation to

a neighborhood in whichb (n−, s−) ≡ 0, and thus assume that the no bequest constraint in

equation (13) is satisfied as an inequality. Notice that one can solve fora(.) as a function

of n− ands− from equation (12) treatingn ands as given, and then solve forn ands from

equations (14)-(15) after plugging in the values ofa(.), a1(.) anda2(.). This cannot work

sincen ands in equation (12) are implicit functions ofa, and hence it will not be possible to

calculatea(.), a1(.) anda2(.) from equation (12) alone. This is a curse on subgame perfect

equilibrium in overlapping generations models.

4 Convention, Learning, and Subgame Perfect Gift Equilibrium

In the previous section we saw that it was not possible to compute a subgame perfect gift

equilibrium even locally around a steady-state using the first order conditions. Furthermore,

there are generally multiple subgame perfect equilibria, and the literature on equilibrium

selection theory does not guide us in the overlapping generations context to select an equi-

librium. To make progress, I adopt the recent developments in evolutionary game theory

for repeated normal form finite games to the OLG set-up.

Much of the evolutionary game theory literature assumes that a game with a finite num-

ber of pure strategies is played repeatedly many times by randomly drawn players from

a large population (see for instance Fudenberg and Levine [1998], and Weibull[1995]). It
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combines two processes: a selection process that postulates which strategies yield higher

pay-offs given the actions of all players, and a mutation process which randomly creates

exceptions to the evolutionary process. The selection process has been formulated in vari-

ous ways. For instance, as natural selection, imitation reinforcement and best response. In

this paper, I consider a best response model with bounded rational expectations about other

agents’ behaviors and define a notion of equilibrium with fixed common convention that en-

compasses open-loop Nash equilibrium and subgame perfect equilibrium as specializations

of this equilibrium.

4.1 Gift Equilibrium with a common convention

The bounded rationality of this paper consists of three assumptions:First , at every staget,

each agent follows a common ”convention” that if he transfers a fractionat of his income

to his old-parents at staget, then he spendsSt = σ (at) on savings for old-age and on

children at staget.1. Hereσ (.) is aconvention. It is common to all individuals. It could be

viewed as a threat strategy that a child may use if his parent did not save enough for old-age.

Second, each agent assumes that his children will react to his decisions exactly the way he

reacts to his parent’s decisions, that is the reaction functiona () that he chooses will be also

the reaction function of his children.Third , given a conventionσ () , an individual chooses

an action that maximizes his utility, i.e., individual behavior is guided by best response

given a conventionσ () and assumption about others’ behaviors.

Assuming that the conventions belong to a well-behaved family of functions, notice

that given a decision(a−, n−, s−) of the parent generation, (using implicit function the-

orem) one can solve for the best response(a (n−, s−) , n(a), s(a)) from equations (12),

(13)and (15) as follows: The reaction functiona(.) is a solution of equation (12) with

s+ θn = σ(a(n−, s−)); the other two functionsn(a), s(a) are solutions of equations (14)

and (15) after substitutings+ + θn+ = σ (a(n, s)) . I denote the set of best responses by

BR (a−, n−, s−;σ) whose elements are the vectors(a, n, s) of optimal choices of adult

agentt. While in generalBR (a−, n−, s−;σ) could be a correspondence, I assume that

economies satisfy conditions such thatBR (a−, n−, s−;σ) is a function. Given a popula-

tion distributionµ− of decisions(a−, n−, s−) by adults of previous generation, and given a

conventionσ, the best response functionBR (a−, n−, s−;σ) determine the distribution ofµ
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of current generation’s decisions(a, n, s) and the reaction functions(a (n−, s−) , n(a), s(a)) .

For a givenσ, I refer toBR (a−, n−, s−;σ) as astationary gift equilibrium with common

conventionσ.

The above bounded rationality is very strong and not self-fulfilling. To see this, assume

that a conventionσ () is followed at staget.1. Parents make their bequest decisionbt = 0

and an adult child make his old-age transfer decisionat at staget that maximize their

respective utility functions. But when the game moves to staget.1, the children choose

their best responsesnt (at) andst (at) givenat which may not satisfy the convention that

was assumed at staget, i.e., σ̄ (a) ≡ θnt (a) + st (a) may not be equal toσ (a) that was

assumed at staget, i.e. his decisions are not time-consistent. I will address this in the

subsection on learning. The following result is now straightforward.

Proposition 1 Suppose(a(n−, s−), n, s) ∈ BR (a−, n−, s−;σ∗) is a stationary gift equi-

librium with a fixed conventionσ∗ such thats (a)+θn (a) = σ∗ (a) . Thena(n−, s−), n(a), s(a)

is a stationary subgame perfect gift equilibrium.

Notice that the fixed conventionσ (.) corresponding to a subgame perfect equilibrium

does not have the time inconsistency problem mentioned above. But how do individuals in

a society arrive at such a common convention? I address this in the next subsection.

4.2 The Gift Equilibrium with Learned Conventions

In the previous subsection I assumed that individuals somehow know the subgame perfect

conventionσ (a). In this section I provide a learning mechanism starting with an arbitrary

convention and an evolutionary process with and without mutation, and show that when the

learning process converges, the limiting distribution gives a subgame perfect equilibrium.

This learning procedure could also be used to compute a subgame perfect equilibrium.

4.2.1 Learning

Let µt−1 be the population distribution of actions(at−1, nt−1, st−1) that are chosen by the

adults of generationt − 1. The old parents and the adult children at staget observe the

distributionµt−1, and then compute conditional expectation ofSt−1 ≡ θnt−1 + st−1 given

at−1. Let this conditional expectation be denoted asσt−1 (at−1) .At staget, old parents and
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their adult children presume this will be the convention that will be followed in future and

make choices(at, nt, st) ∈ BR (at−1, nt−1, st−1;σt−1) . Note that given the distribution

µt−1 of (at−1, nt−1, st−1), the associated conventionσt−1, and the best response function

BR (at−1, nt−1, st−1;σt−1) , the distributionµt of actions(at, nt, st) and the convention

σt (which is the conditional expectation ofSt ≡ θnt + st givenat) are determined and the

process iterates over time to go on for ever. Denote the evolutionary process for convention

by σt = Φ (σt−1) . When this process converges, it converges to a fixed pointσ∗of this

mapΦ, which is the long-run learned convention, and it is self-fulfilling and time consistent

and hence also a subgame perfect equilibrium.

It is possible that when the processσt = Φ (σt−1) converges to the fixed pointσ∗, the

support of the distributionµt might shrink to the degenerate distribution concentrated at a

point (a∗, n∗, s∗) ∈ BR (a∗, n∗, s∗;σ∗). Then there will be no variation in the population

distribution of optimal actions. How does one learn the reaction functions if there is only

one type of observation? In evolutionary game theory the problem is handled by assuming

that, in each period, a fractionε of population experiments or mutates i.e., instead of choos-

ing (at, nt, st) ∈ BR (at−1, nt−1, st−1;σt−1) , an agent makes a random choice around

(at, nt, st) in their feasible set. This creates varieties and the support of the distributionµt

does not degenerate. One then studies the limiting invariant distributionµ∗ and learned

conventionσ∗. I pursue this line of enquiry in another paper.

4.3 Computation of local gift equilibria with learned conventions

I now use the learning algorithm to compute a local subgame perfect equilibrium and study

the effect on the equilibrium when a PAYG social security program is introduced. No-

tice that since we are computing a local subgame perfect equilibrium, we can restrict our

computation to a small neighborhood around a steady-state(a∗, n∗, s∗) and to a linear spec-

ification forσ (.) of the following form:

σ(a) = s∗ + θn∗ + (a− a∗)wσ′ (16)

Assume that the utility function satisfies the following:
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Assumption A: 1 (constant elasticity of marginal utility (CEM) function)

v(c) =
c1−ρ

1− ρ
, ρ 6= 1, 0 < ρ <∞ (17)

where−ρ measures the elasticity of marginal utility.

Assumption A: 2 γ(n) = γ0n
1−γ1 , 0 ≤ γ1 < 1

The significance of this assumption is that parents care about consumption of all children

equally. However, the weight they give to such consumption decreases with the number of

children wheneverγ1 > 0.

Assumption A: 3 δ(n) = δ0n
δ1−1, 0 ≤ δ1 ≤ 1

I refer this economy as CEM economy. Consider a PAYG social program of the type

that the an adult of generationt paysτwt as social security taxes, and receivesτntwt+1 as

social security benefits when he is old. Although, the benefitsτntwt+1 depends on agent

t’s number of childrennt, he takes it as an externality. For a given value ofσ′ = σ′∗ the

steady-state local learning equilibriuma(n, s) for our CEM economy is given by

a(n, s) =
(δ0/α)1/ρnδ1/ρ (w − τw − [s∗ + θn∗ − a∗σ′∗])− (1 + r)s− nτw

w
(
n+

(
1 + σ′

∗

w

)
(δ0/α)1/ρnδ1/ρ

) (18)

For all reasonable non-negative values ofσ′∗, it is clear from equation (18) that∂a∂τ < 0,

and it is not necessarily equal to−1. That is social security does not perfectly crowd-

out private transfers. One can easily verify that botha1(.) anda2(.) are negative for this

reaction function. While it is not possible to analytically derive the effect ofτ on fertility

and savings, for various values ofσ′, I numerically found the effect ofτ on equilibrium

fertility level to be always negative.

A typical phase diagram for the evolution of convention that emerged in our numeri-

cal CEM economies is shown in figure 2. From the figure, it is clear that there are two

local subgame perfect gift equilibria, and the learning convention converges to the stable

equilibrium.
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Figure 2: Phase diagram of Learning dynamics

I assume thatδ1 = .8; γ0 = .3, γ1 = .6; ρ = 1.5; α= .4; β = .34; r = .05;

w = 10; andθ = .1. For δ0, I consider two cases: (1)δ0 = 0.35 and (2)δ0 = 0.01.

The main difference between the two cases is that in the first case agents are assumed

to care relatively heavily for their parents as compared to the second case. This will have

implication for social security as we will see shortly. For various values ofσ′∗, I numerically

solved steady-state gift equilibrium using MathSoft’s Maple software and using my own

C++ programs. The numerical strategy I used is as follows: I chose an initial valueσ′∗0

close to the fixed point and simulated the learning equilibrium path{σ′∗t }t≥1 . I found that

in the case ofs = 0, {σ′∗t }t≥1 converged to a stable local subgame perfect gift equilibrium,

σ′∗s = −0.121472602158 (the equilibrium allocation is shown in table 2 in the row with

τ = 0 and Equilibrium Concept = Learned convention). For the equilibrium type with

s > 0, none of the sequences of learning equilibria that I considered converged. The same

phenomenon is true for the economy with social security tax rateτ = .035. The equilibria

corresponding to second set of parameter values are presented in table 3.

For all the values ofσ′∗ that I considered, I found two equilibria one withs = 0 and the
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other one withs > 0, and the former equilibrium always produced a higher level of utility

and a higher level of old-age support in the steady-state. Furthermore, a gift equilibrium

with fixed convention with respect to a largeσ′∗ is very close to the corresponding open-

loop Nash equilibrium. In panels (a) and (b) of figure 3 corresponding to the casess = 0

ands > 0, I have plotted the graph ofΦ(σ′∗) around its fixed points for our calibrated

economy.

Table 2: Steady-state local learning and subgame perfect gift equilibria for the economy
with δ0 = 0.35

τ
Equilibrium
Concept

σ′∗ (n∗, s∗, a∗, Umax)

0
Nash
Equilibrium

-
(1.699710194, 0, .4095616885,−1.140189766)
(1.025062190, 1.341247016, .3341720874,−1.241803182)

-
Social
Optimum

- n∗ = 4.4273139, τ∗ = .296681, Umax = −1.066475

0
Fixed
Convention

573.2 (1.6958508998, 0, 0.409831247,−1.140547454)

0
Fixed
Convention

0
(1.5989049725, 0, 0.41682122123,−1.1501342368)
(.8658794251, 1.477940857, .3265849827,−1.270158580)

0
Learned
Convention

-0.121472602158 (1.59835683672,0, 0.4168619874, -1.1501919166)

0.035
Learned
Convention

-0.0884944056 (1.4123165415, 0, 0.39660878 -1.1724263009)

Table 3: Steady-state local learning and subgame perfect gift equilibria for the economy
with δ0 = 0.01

τ
Equilibrium
Concept

σ′∗ (n∗, s∗, a∗, Umax)

-
Social
Optimum

- n∗ = 2.229280716, τ∗ = .2964089, Umax = −.8944282

0
Learned
Convention

0.0140687 (4.260833, 0, 0.0398846038, -1.1509245896)

0.035
Learned
Convention

0.036904528 (3.6475198, 0,0.00802, -1.1506664)

Note that in both economies, a PAYG social security reduces the local subgame perfect
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Figure 3: Phase diagram of learning equilibrium for numerical CEM economy
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equilibrium fertility level. The main distinguishing features of these two economies are that

for the economy of the first table, the socially optimal fertility rate is above the local sub-

game perfect equilibrium level of fertility and introduction of a social security reduces the

steady-state welfare level of a representative agent. For the economy of the second table,

the socially optimal fertility level is below the local subgame perfect equilibrium fertility

level, and introduction of a social security program improves the steady-state welfare level

of a representative agent. These qualitative properties are insensitive to small changes to

the parameter values. Furthermore, neither economies produced convergent convention se-

quences for equilibrium of either type (i.e.,s = 0, or s > 0) when I tried social security tax

rate close to the rate implied by the social optimal solution.

5 Properties of Gift Equilibrium

In this section I study the properties of steady-state local learning equilibria for which the

associatedσ′∗ > −1. These results are also true, in particular, for any local subgame per-

fect gift equilibria for which the associatedσ′∗ > −1 (this is true for instance, for the CEM

economy in our numerical example above). The following proposition shows that the equi-

librium reaction of children to parents’ higher savings is to reduce old-age support to their

parents.

Proposition 2 Let v(.) be twice continuously differentiable withv′′(c) < 0 ∀ c > 0,

then for all (n, s) that lead to positive consumptions in each period, equation (13) has a

continuously differentiable solutiona(n, s) and∂a(n, s)/∂s < 0.

Proof. Assume thatτ = 0. Substitutings + θn = σ(a) from equation (16) in equation

(12), we have an implicit functionΦ(n, s, a) = 0 for which

∂Φ(.)

∂a
= −w

[
v′′(c∗1)(1 + σ′∗) + v′′(c∗2)δ(n)n2/α

]
> 0

Hence the first part follows from the implicit function theorem. Using the implicit function

theorem again, we have

∂a(n, s)

∂s
= −

(1 + r)v′′(c∗2)δ(n)n/α

w [v′′(c∗1)(1 + σ′∗) + v′′(c∗2)δ(n)n2/α]
< 0

Q.E.D.
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While the effect of a parent’s savings on the rate of transfers from children is negative,

it’s effect on the number of children is ambiguous. To see this, denote byφ(n) ≡ δ(n).n/α

and assume thatφ(n) is an increasing function ofn. Proceeding in the same manner as in

the proof of the previous proposition, it follows that

∂a(., .)

∂n
= −

φ′(n)v′(c∗2) + [φ(n)a(., .)wv′′(c∗2)]

[wv′′(c∗1)(1 + σ′∗) + φ(n)wnv′′(c∗2)]

Note that both the bracketed terms in the above are negative and the first term of the nu-

merator are positive. Thus the sign of the right hand side of the above partial derivative will

depend on the relative magnitudes of the bracketed terms and the first term on the numera-

tor. In the numerical example that I considered earlier, the right hand side is unambiguously

negative for all the parameter values that I considered. That means, if parents have more

children, they would receive less gifts from each child. The total gift, however, could be

higher.

The following proposition finds condition under which a local learning equilibrium is

also a open-loop gift equilibrium in the steady-state.

Proposition 3 A stationary local gift equilibrium with common conventionσ′∗ = ∞ is

also a steady-state open-loop gift equilibrium

Proof. Notice above that ifσ′∗ = ∞, then botha1(n, s) anda2(n, s) are zero for equilib-

rium reaction functiona(.), and thus it follows from equations (13)-(12) and equation (??)

that the equilibrium conditions for the steady-state local learning equilibrium is the same as

the conditions for steady-state open-loop gift equilibrium.

Q.E.D.

Although, a threat to parents by the children of the typeσ′∗ = ∞ leads to open-loop

Nash equilibrium but it is incredible since it sounds like:

”if his parents choose levels of fertility and saving different from that are pre-

scribed by the open loop Nash-equilibrium leveln∗, s∗ and thus induce him to

transfer more (resp. less) amount than that is prescribed by open-loop Nash

equilibrium, he will consume nothing (resp. consume everything that he has,

and if necessary he will borrow against his children) during his adult age.”
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A feasible steady-state allocation is said to bePareto Optimalif there does not exist

another feasible steady-state allocation that gives higher utility to a representative agent.4

Proposition 4 Consider an economy that has a stationary local gift equilibrium with com-

mon conventionσ′∗ as(s∗, n∗, a∗(., .)) with s∗ = 0 and no bequest constraint (13) holds as

a strict inequality, and suppose further that the equilibrium satisfies:

β −

(
γ(n∗)

n∗

)
.

(
v′(c∗1)

v′(c∗2)

)
≡ µ > 0 andδ(n∗) < µ (19)

then all agents can be made better-off with a suitably designed pay-as-you-go social security

program. Hence such an equilibrium is not Pareto optimal.

Proof. Consider a pay-as-you-go social security program which marginally taxes all adult

agents and redistributes the revenues equally among their old parents. Suppose for the

moment that agents do not change their fertility and savings decisions in response to in-

troduction of such a social security program. The utility gains of a representative agent

is n∗βv′(c∗2) from the increased consumption in the old-age. The utility loss is given by

αv′(c∗1) + γ(n)v′(c∗1), where the first term corresponds to welfare loss due to fall in own

adult-age consumption and the second term corresponds to the welfare loss due to reduction

in children’s adult-age consumption. Thus the net gain is

4U = n∗βv′(c∗2)− αv′(c∗1)− γ(n∗)v′(c∗1)

= n∗βv′(c∗2)−δ(n∗)n∗v′(c∗2)− γ(n∗)v′(c∗1)

= n∗
(
βv′(c∗2)− γ(n∗)v′(c∗1)

)
− δ(n∗)n∗v′(c∗2)

> 0

In deriving the above I have used equation (13). The fertility will also respond to the

social security program.. If the fertility rate without a social security program is above

the social optimal rate ( in our numerical simulation I found this to be the case when an

economy satisfies condition (19), for instance, the economy in table 3), introduction of a

social security program with a small tax rateτ will lead to a higher utility level of the

4 This is a modified version of Pareto Optimality, modified to take into account the problem of comparing
non-existing individuals’ utililities under two different feasible steady-state allocations. See Raut [1990] for a
discussion of this problem and the related literature on this issue.
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representative agent (see again the numerical example in table3). If the initial fertility

rate of the subgame perfect equilibrium without social security is, however, lower than the

socially optimal fertility level, one needs to integrate a social security program with an

appropriate population policy so that fertility rate does not fall because of social security.

With this integration of policies, a social security program can lead to a higher utility level

of a representative agent in the steady-state.

Q.E.D.

The implication of the above results for social security program is that when fertility

is endogenous, introduction of a social security program may improve welfare level of a

representative agent. But unlike in the case of exogenous fertility, the social security by

itself would not produce the social optimal welfare level for a representative agent. The

social security program needs be complemented by an appropriate population policy to

attain social optimal.

6 Conclusion

In this paper I have considered an OLG model of endogenous fertility, savings and inter-

generational transfers. I have argued that the commonly used open-loop Nash equilibrium

does not fully capture the individual incentives that agents have in making these decisions

in an OLG economy. It is more appropriate to use the notion of subgame perfect equilib-

rium. There are generally multiple subgame perfect equilibria and it is, in general, difficult

to compute a subgame perfect equilibrium. I have introduced a unifying notion of equilib-

rium in which behaviors are guided by best responses given a fixed convention and bounded

rational expectations about other agents’ behaviors. This equilibrium notion includes both

the notions of subgame perfect equilibrium and the open loop Nash equilibrium as special

cases. I have provided a learning mechanism specifying how agents learn about the common

convention by observing their parent generation’s choices. This generates an evolutionary

process for convention. I have shown that when this evolutionary process converges, the

resulting learned convention produces a subgame perfect equilibrium. This provides a ra-

tionale for equilibrium selection and a method to compute a subgame perfect equilibrium
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locally around a steady-state. I have used this method to compute a local subgame perfect

equilibrium numerically using the Maple software and my own C++ codes.

Based on analytical and numerical results, I have shown that a PAYG social security

program improves the steady-state welfare level of a representative agent when the fertility

level without social security in the subgame perfect equilibrium is higher than the socially

optimal level. When the fertility level without social security in the subgame perfect equi-

librium is lower than the socially optimal level, a PAYG social security program lowers

the welfare level. Furthermore, I have shown that a PAYG social security program always

reduced the fertility level and the level of voluntary within family old-age support. The

reduction in old-age support is, however, less than a dollar for a dollar increase in social

security benefits.
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