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Abstract

One way to define a Nash equilibrium is by positing a set of beliefs (or conjectures) for
each player over (about) the actions of their opponents that has the property that, given these
beliefs, when each player best responds, the actions taken confirm the initial beliefs. This
rational expectations definition leaves open the question of how beliefs and actions get into this
self-confirming state. For example, do beliefs converge to their equilibrium state first and drag
actions into alignment or is the process action driven with them converging before beliefs. What
we find is that the process of convergence is one where actions converge before beliefs. However,
after reaching equilibrium in actions, the beliefs of subjects converge to the degenerate beliefs
that place all the weight on the partner’s equilibrium action extremely rapidly (within 2 periods
on average). We also identify differences between the early converger and the late converger in
a group — often it is the case that the early converger plays his part of the Nash action profile
long enough to convince his opponent to adhere. Finally, we investigate the process of belief
formation and argue that, unlike all of the most common learning models, the belief formation
process is one that takes into account not only the payoff of the learner but also those of his
opponents.
Keywords: Game Theory, Belief Formation, Learning, Convergence.
JEL Classification: C70, C91, D83, D84

1 Introduction

One way to define a Nash equilibrium is by positing a set of beliefs (or conjectures) for each player
over (about) the actions of their opponents that has the property that, given these beliefs, when
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each player best responds the actions taken confirm the initial beliefs. This rational expectations
definition leaves open the question of how beliefs and actions get into this self-confirming state.
For example, do beliefs converge to their equilibrium state first and drag actions into alignment
or is the process action driven with them converging before beliefs? One thing we have learned in
our work is that people do not arrive at the equilibrium play of a game by a process of deductive
reasoning but rather by induction, observation and learning as the game is iterated. They converge
to it as time passes rather than leaping to it spontaneously after a logical reasoning process. Along
the path of this convergence we also know that in some learning models people are forward looking
and make conjectures (form beliefs) about what their opponent is likely to do.1

In this paper we investigate the answers to the following questions:

1) When people playing a finite strategy matrix game converge to the Nash equilibrium of the
game, assuming that the game has a unique pure-strategy equilibrium, do their actions converge
first and then drag their beliefs into convergence or do their beliefs converge first and pull in their
actions?

2) When the actions of players in these circumstances fail to converge to the Nash equilibrium,
is it true that their beliefs converge but the players fail to best respond to them or is it simply that
their beliefs fail to enter the best response region where the Nash equilibrium beliefs exist?

3) In the final play of a repeated game that converges to a unique pure-strategy Nash equilibrium
do the players typically place all the probability mass on the equilibrium strategy of the other player
or are they still unsure of what he or she is going to do? If the probability distribution is degenerate,
how long does it take to get there after actions have exhibited the Nash equilibrium pattern?

4) Do the answers to questions 1-3 above change when the game played can be solved by the
iterative elimination of dominated strategies? Do games that are dominance solvable converge
faster than those that are not and do beliefs or actions get to equilibrium first?

5) Is there a consensus across people on the belief formation process, i.e., if we showed the time
series of play of a simple two-person game to a set of people and asked them to state their beliefs
about how the players are expected to play, would the belief formation process look similar across
the observing agents? In other words, do people tend to form their beliefs in a similar way holding
the play of the game they are watching constant?

6) Are existing learning models that do not include the payoff received by both players descriptive
of how people form beliefs?

The answers to these questions are not readily available in the existing literature. The reason
is that we do not have a good description of how people converge to the equilibrium of games even
when those equilibria are unambiguously defined, i.e. unique, and easily approachable logically

1Of course some learning models, such as reinforcement learning, are totally backward looking and do not involve
the use of beliefs. Still most of the commonly used learning models can be reinterpreted as belief learning models as
Camerer and Ho (1999) indicate in their description of the EWA model which nest belief learning as a special case.
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(e.g., can be arrived at by a process of iterative deletion of dominated strategies).2

This paper tries to answer these questions by having laboratory subjects play a set of two
two-person 3× 3 games for twenty periods while beliefs are elicited from them as they play. Both
3 × 3 games played have a unique pure strategy equilibrium. In one game the equilibrium is
dominance solvable while in the other it is not. We chose these games because we expected play
to converge to the pure Nash equilibrium (as opposed to games where the equilibrium is only in
mixed strategies) and hence the combination of observing actions and beliefs could be informative
about the convergence process. After having 32 pairs play one of these games we selected one pair
and their associated time series from the dominance-solvable (DSS) and non-dominance solvable
(nDSS) game experiments that either converged or did not (DSS.c, DSS.nc, nDSS.c and nDSS.nc)
and brought in new subjects to play a “prediction game” in which they were paid, period by period,
to predict the next action in these time series.

What we find is that in answer to Question 1, actions converge faster than beliefs. While we
will formally define what we mean by this in the next section of the paper, suffice it to mean
what it says, on the way to convergence people do not hold “equilibrium beliefs” before they play
equilibrium actions. Rather they seem to need an exhibition of equilibrium play in order to believe
that the Nash equilibrium is likely to occur. This exhibition is typically given by one of the players,
whom we will call the “early converger.” Specifically, the early converger plays his/her part of
the Nash equilibrium for several periods even when the Nash action is not a best response to the
beliefs held at the time. For this player actions clearly converge before beliefs. The other player,
the “late converger,” seeing the Nash actions played, alters his or her behavior after a while and
conforms to Nash as well but the beliefs of the late converger almost simultaneously converge along
with his or her actions. After both players play the Nash, in answer to Question 3, beliefs quickly
become degenerate. These patterns do not differ much when we compare dominance solvable and
non-dominance solvable games.

One striking finding of our experiment is related to Question 2 and to what occurs when play
does not converge. Here it appears that for those games that do not converge beliefs rarely enter into
the set of beliefs for which the Nash strategy is a best response. In other words, non-convergence
of actions is equivalent to the failure of players to ever hold equilibrium beliefs even if, on occasion,
they exhibit equilibrium actions. Non convergence appears to be the result of a failure in beliefs
and not in the ability of players to best respond.

In answering Question 5 we take advantage of a unique feature of our experimental design that
shows individuals the same time series of actions and elicits their beliefs period by period. This
allows us to investigate whether people in general tend to update their beliefs in similar ways. We
know of no other experiment in which this is done. What we find is that there is a good deal
of consensus in the way people update their beliefs. One feature of this updating is that when

2Nyarko and Schotter (2002a) elicit beliefs for the repeated play of games with mixed strategy equilibria but due
to the nature of the equilibrium play does not converge to the repeated play of one strategy there.
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updating observers appear to take account of the payoffs of both the player whose actions she is
predicting and the payoffs of his/her opponent. This feature is absent in just about all learning
models such as reinforcement, fictitious play, and EWA learning models (see, for example, Erev
and Roth (1998) and Camerer and Ho (1999)). Hence it goes a long way to explaining the stylized
features of elicited belief time series seen in this paper as well as Nyarko and Schotter (2002a,b)
where the elicited beliefs of subjects were very volatile, as opposed to the smooth looking belief
vectors expected from previous learning models.3 Two notable exceptions are the work of Stahl and
Wilson (1995) and Camerer et al (2002). The finding that there is a consensus in the way people
update in these games (or at least how observers update) provides hope that we may one day create
a convincing theory of belief formation which is behaviorally rich since without a consensus such
a theory would have to be based on psychological characteristics in an individual by individual
manner.

In this paper we will proceed as follows. In Section 2 we define more precisely what we mean
when we say that either beliefs or actions converge. In Section 3 we describe our experiment design
and procedures, while in Section 4 we present the results of our experiments. In Section 5, we argue
that there is a consensus in the belief formation process. We also identify many regularities that we
believe any reasonable model of belief formation must incorporate. Section 6 concludes the paper.
Instructions can be found in Appendices A and B, while figures are collected in Appendix C.

2 Definition of Convergence

Consider a finite strategy two person game Γ = 〈N, Ai, πi〉 where N is the set of players indexed
i = 1,2, Ai is the set of actions for each player, and πi is player i’s payoff function which maps
A1 ×A2 into a set of real valued payoffs. Assume that this game is to be played T times and that
Γ has a unique pure strategy Nash equilibrium a∗ = (a∗1, a

∗
2), a

∗
1 ∈ A1, a∗2 ∈ A2 whose payoffs are

not Pareto dominated by any other payoffs in the game. In such a case we would expect that a∗

would remain the unique pure strategy equilibrium even for the T times repeated play of Γ and
that such an equilibrium would be sub-game perfect in the repeated game. We will call a∗i player
i’s Nash action. Let ht = [(a1

1, a
1
2) . . . (at

1, a
t
2)] be a history of actions in the play of Γ over the first

t periods of play.

Let T a
i := {t′ ≤ T − 2 | at

i = a∗i ∀t′ ≤ t ≤ T}. Now we can define the notion of convergence in
actions to Nash equilibrium at period t.

Definition 1. Player i converges in actions to Nash equilibrium in period t̄ if T a
i 6= ∅ and t̄ =

mint′∈T a
i

t′. Such t̄ will be called the convergence period of actions. If T a
i = ∅ then we will say that

player i does not converge in actions to Nash equilibrium.4

In other words, player i converges to Nash equilibrium in period t̄ if this is the earliest period in
3See Nyarko and Schotter (2002b) for an elaboration of this point.
4We will sometimes omit the words “to Nash equilibrium.”
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which player i has played her Nash action and continued to play her Nash action from that period
until the end of the game. If there is no such period, it means that the player did not play her
Nash action consistently up to period T and thus did not converge. Notice that we put an upper
bound on the convergence period, T − 2 , since we do not want to consider a player as converged in
period T if that player chose her actions randomly and the action chosen in period T just happened
to be her Nash action. While using the upper bound of T − 1 would have been sufficient, we have
decided to be more conservative in our definition of convergence in actions and defined the upper
bound as T − 2.

We will say that a game has converged in actions to Nash equilibrium if there are t̄1, t̄2 such
that player 1 has converged in actions in period t̄1 and player 2 has converged in actions at period
t̄2.

If player j has K actions then define the K dimensional simplex ∆i = [0, 1]K for player i as
her beliefs simplex where bt

i ∈ ∆i defines a K dimensional belief vector at time t for player i;
that is,

∑K
k=1 bt

i,k = 1. Bi ⊆ ∆i is that subset of beliefs for player i for which her best response
to any vector of beliefs in Bi is to play her part in the Nash equilibrium, i.e., a∗i = argmax

ai∈Ai∑
k bi,kπi(ai, a

k
j ) ∀bi ∈ Bi. Let ~bt = [(b1

1, b
1
2)....(b

t
1, b

t
2)] be a belief history defining the beliefs held

by the two players at each point in the history of the game up to period t.

We will define convergence in beliefs similar to the way we defined convergence in actions. First
define T b

i := {t′ ≤ T − 1 | bt
i ∈ Bi ∀t′ ≤ t ≤ T}. Next define convergence in beliefs.

Definition 2. Player i converges in beliefs to Nash equilibrium in period t̃ if T b
i 6= ∅ and t̃ =

mint′∈T b
i
t′. Such t̃ will be called the convergence period of beliefs. If T b

i = ∅ then we will say that
player i does not converge in beliefs to Nash equilibrium.

A game will be said to have converged in beliefs if there are t̃1, t̃2 such that player 1 has converged
in beliefs in period t̃1 and player 2 has converged in beliefs at period t̃2.

3 Experimental Design and Procedures

In order to answer the questions posed in the beginning of this paper, we conducted two experi-
ments — the first of which we call the AB experiment (actions and beliefs) and the second, the
B experiment (beliefs only). Both experiments were conducted in the laboratory of the Center for
Experimental Social Science at New York University. All the participants were NYU undergraduate
students recruited via e-mail. Participants received a $7 show-up fee in addition to the gains from
the experiment. Each experiment session took about 1.5 hours to complete. The number of parti-
cipants in the AB experiment and the B experiment were 64 and 53, respectively, and the average
payoff in each experiment was $19.7 and $20.9. All the sessions were run using the experimental
program z-Tree by Urs Fischbacher (1999).
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3.1 The AB Experiment

In the AB experiment subjects played the two 3×3 games shown in Figure 1. Note that each game
has a unique pure-strategy equilibrium but that the game in Figure (1.a) is dominance solvable
while the game in Figure (1.b) is not dominance solvable. Each game was played for 20 periods
with a fixed partner but partners were randomly switched when the game changed. Also, the role
of each player was randomly determined. There were four sessions in the AB treatment with the
order of the games presented to subjects changing in each one.

The games chosen had the following features:

• A unique Nash equilibrium in pure strategies in the stage game.

• Nash payoffs are on the Pareto frontier.

• Payoffs in the Nash equilibrium were not symmetric.

These properties insured that there was a unique sub-game perfect equilibrium to the 20-period
repeated game the subjects played in the lab in which they play the stage-game Nash equilibrium
in each period.

At each period, the subjects were asked to make 2 decisions. The first was to choose the action
for that period. The second was to state their beliefs regarding their partner’s action in that
period.5 The action decision was rewarded according to the relevant game matrix, while the beliefs
predictions were rewarded using the Quadratic Scoring Rule (QSR).6 All payoffs from the action
choices and the belief predictions were then summed up to give subjects their final payoff.

3.2 The B Experiment

The AB experiment produced a set of action choices, some converging to the Nash equilibria while
others not. In the B experiment new subjects were recruited and brought into the lab. In front
of the room there was a screen upon which the period-by-period play of one pair of subjects who
played the game in the AB treatment was projected. In other words, we took the time series of
actions of a pair in the AB experiment and played it out period by period. In the instructions, the
subjects were informed that the games they were about to see were played in the past by NYU
undergraduates so that ambiguity regarding the population will be eliminated. The subjects were

5While the game subjects face is a repeated one, the beliefs elicited here are only for one period.
6Under the assumption the subjects are risk neutral, the use of the QSR should make the subjects state their true

beliefs regarding their opponent’s action. Sonnemans and Offerman (2001) find that the QSR is incentive compatible
and that subjects tend to report their true beliefs when the QSR is used. Nyarko and Schotter (2002a) also use a
quadratic scoring rule and offer substantial evidence that subjects best respond to the beliefs they state. Moreover,
Wilcox and Feltovich (2000) report that belief elicitation does not always affect subjects’ behaviour. However,
Rutström and Wilcox (2004) argue that the act of solicitation may focus the attention of the subject on his or her
beliefs in a way that may be unnatural.
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shown the time series of 2 games (DSS and nDSS). Their task was to predict the actions of one of
the players in this game for 20 periods as the actions in the time series were revealed to them period
by period. Predictions were rewarded with the same QSR that was used in the AB experiment.

Note that in this experiment subjects do not play a game but are spectators who were asked
to make predictions, period by period, about the actions of one of the players whose behavior they
were observing. The nice feature of the experiment was that since all subjects observed the same
time series we are able to hold the actions observed constant and study the belief formation process
of subjects observing the same set of actions. In all other belief elicitation experiments that we
know of, subject beliefs are elicited pair by pair so that the observed actions are not controlled.
In our design, the actions observed by all subjects are held constant so we can study the belief
formation process in isolation and the consensus (if any) of observing subjects about beliefs.

The only other experiments we know of where spectators were used were those of Offerman et
al (1996) and Huck and Weizsäcker (2002). In the former experiment, spectators were matched to
an actual player in a public goods experiment and asked to state beliefs on the contributions of the
other group members. In the latter experiment, subjects were asked to predict a second group’s
choice frequencies in a set of lottery-choice tasks. Our design differs from both of these settings by
having many spectators view the same choice path and predicting the same player behavior rather
than having one spectator be attached to one player.

4 Results

In this section and the next we report the results of our experiments by answering the six research
questions stated in the introduction.

Question 1: When people playing a finite strategy matrix game converge to the

Nash equilibrium of the game, assuming that the game has a unique pure-strategy

equilibrium, do their actions converge first and then drag their beliefs into convergence

or do their beliefs converge first and pull in their actions?

Despite the fact that each game our subjects played had a unique pure strategy equilibrium,
there was a significant failure on the part of subjects to reach it. Using the definition of convergence
in Section 2, we categorized each pair in each game as either converging or non-converging. In the
dominance-solvable game only 17 of 32 pairs converged, while in the non-dominance solvable game
16 of 32 pairs converged.

Regarding the relative speed of convergence of beliefs and actions, Table 1 provides clear evi-
dence that actions converged before beliefs in both the dominance solvable and the non-dominance
solvable games. For example while, on average, in the dominance solvable game it took 5 periods
for players to reach the Nash equilibrium action, their beliefs did not converge until 7.7 periods.
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For non-dominance solvable games the comparable numbers are 7 and 8.7.7 The results, in the

Table 1: Summary Statistics: Convergent Pairs
DSS nDSS

Number of pairs 17 (of 32) 16 (of 32)
Mean period of convergence in actions 5.0 7.0
Mean period of convergence in beliefs 7.7 8.7

column labeled “All” in Table 2, of the paired t-test clearly show that beliefs converge after actions
for both game types.8 However, note that looking at the data at this level of aggregation masks an
important distinction between so-called early convergers and late convergers that we discuss below.

Table 2: Results of the Paired t-test (H0: Beliefs and Actions Converge Simultaneously)
DSS nDSS

All Early Late All Early Late
Mean: Conv Period of Beliefs 2.71 5.70 0.69 1.72 3.43 -0.14
minus Conv Period of Actions

t-statistic 4.03 4.54 1.06 3.75 5.16 -0.46
p-value <0.001 <0.001 0.16 <0.001 < 0.001 0.67

Number of Observations 34 13 13 32 14 14
“Early” uses only those subjects whose actions were first to converge (in a group), while “Late” uses only
those subjects whose actions converged second (in a group). In the case of simultaneous convergence, the
pair was excluded.

It appears that the process of reaching equilibrium is an action-led process. Pairs do not seem
to reach equilibrium by first having their beliefs reach the Nash best response set and then replying
appropriately. Rather subjects seem to need proof that their opponent knows what an equilibrium is
before they will choose the equilibrium action themselves. Only after this do their beliefs converge.
This creates a problem for convergence, however, since if each player is waiting to observe their
opponent play the equilibrium action before they do, it would seem as if it would be difficult, if not
impossible, to converge. This standoff can only be resolved if one player leads the way and acts
first. We call such players “early convergers” (teachers).

To illustrate the difference between early and late convergers consider Figure 2. For both early
and late convergers, this figure plots the histogram of the difference between the action convergence
period and the beliefs convergence period. A very clear pattern emerges: early convergers’ actions
almost always converge before beliefs (in fact there are no negative differences), while for late
convergers two things are noticeable. First, the difference between when the actions and beliefs
converge is much smaller for these subjects. For example, in the DSS game, while the mean

7In Table 1 we allowed for final period deviations so long as a clear pattern of convergence emerged beforehand.
For example, we labeled a subject as converging if from period 10 to 19 the subject played his/her Nash strategy but
defected in period 20.

8Results are the same for the Wilcoxon Signed-Rank test and are not reported here.
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difference between when actions and beliefs converged for the early convergers was 5.7 periods it
was only 0.69 periods for late convergers; a similarly stark difference arises is the nDSS game as
well. This is not a surprise since, often times, the early convergers are leading the way and waiting
for their opponent to converge. While they are waiting their beliefs are outside of the Nash best
response set. Second, while for early convergers in either of our games beliefs always converged
after actions, this was not true for 7 of 16 followers in the nDSS game and 2 of 17 in the DSS game.
The results of a paired t-test in the columns “Early” and “Late” in Table 2 lend further support to
our claim that early convergers’ beliefs converge after their actions, while late convergers’ actions
and beliefs converge almost simultaneously.

This suggests that teaching and learning happen in the games that converged. One player
understands what the equilibrium is in the game and plays it for the rest of the session. The early
converger sticks with her action even though it is not a best response to her beliefs in order to
influence her partner’s beliefs, assuming that he will eventually choose the Nash action. Conver-
gence in actions takes some time for the early converger’s opponent and thus her beliefs converge
after the actions. Meanwhile, the late converger sees that his opponent has chosen the same action
for consecutive periods and the realization of the Nash equilibrium occurs at the same time as the
convergence of the beliefs. Thus beliefs and actions converge in, roughly, the same period.

Remark 1. What we have just discussed may be loosely thought of as successful teaching. That
is, one of the players saw the Nash equilibrium, began to play it, despite it not being a best
response to his/her beliefs, until eventually his/her opponent also played the Nash action and the
game converged. However, there are also many instances of unsuccessful teaching episodes. For
example, approximately 30% of the players not part of a pair that converged to Nash equilibrium
actually played their Nash equilibrium strategy for three or more consecutive periods. Moreover,
it was usually the case that their beliefs lied outside of the Nash Best-Response region — perhaps
indicating a desire to teach the other player the Nash equilibrium. Of course, what makes such
episodes unsuccessful is the fact that her opponent did not choose his Nash action. Eventually,
this teacher simply gave up on playing her Nash strategy and the game did not converge to Nash
equilibrium.

4.1 Early Convergers: A Digression

From our discussion above, there appear to be substantial differences between early and late con-
vergers. We would like to know why some players converge on their Nash action relatively early
and others converge on their Nash action relatively late. One may conjecture that the strategic
role you play (i.e. Row or Column) is a causal factor in determining whether you are likely to be
an early converger. Beyond this conjecture, one might ask, for dominance solvable games, does the
early converger tend to be the player with fewer steps of iterated elimination of strategies? (The
idea here being that he or she may be more able to see where the eventual equilibrium is.) Finally,
how many periods are their between the convergence of the early and late convergers?
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The answers to these questions are not very informative. First, we find that half of the early
convergers are column players and the other half are row players. In other words, your strategic
role in the game has little to do with whether you converge first or second. This is true for both the
DSS and nDSS games. This also answers our second question since if both row and column player
are equally likely to be converge first, then the number of iterated steps of elimination they face
can not be a factor. Finally, it appears as if late convergers recognise the Nash equilibrium quite
quickly after his opponent has converged on her Nash action: on average, late convergers play the
Nash equilibrium 2.8 periods later.9

This discussion leaves us with a very unclear idea what differentiates between those that converge
early and those that converge late. However, we offer the following conjecture which is that it is
the subject whose payoff is below his or her expectations that ultimately converges first to his/her
Nash action. More precisely, say that you and I are playing a game and each period, given your
expectations about me, you are pleasantly surprised by my actions in that your payoff often exceeds
your expected payoff while just the opposite it true for me. In such a case we might expect that the
person who is getting the short end of the expectational stick will look more closely at the game
and try to lead her opponent to the Nash equilibrium where, in both of the games we used, each
player does rather well. In this sense, we may view the early converger as a teacher.

To investigate this conjecture we calculate the ratio of the actual payoffs (AP) that players
received to their expected payoffs (EP), given their elicited beliefs, in the periods before convergence
(or the periods before the early converger played Nash); we denote this ratio by AP

EP . The motivation
for this exercise is as follows. If a player’s actual payoff is lower than her expected payoff, then she
may devote more attention to learn about the game. Note, however, that an important difference
between dominance solvable and non-dominance solvable games may arise. In the former, a player
may learn that one or more strategies is dominated, and this may help her find her Nash strategy.
However, in a non-dominance solvable game, she may simply learn how to best respond to her
beliefs (or to her opponent’s actions), which will not necessarily lead her to her Nash strategy. In
this way, we may expect that the AP

EP ratio will be significantly lower for early convergers only in
the dominance solvable game. This ratio was calculated for each subject for each period up to the
period in which the subject had converged in actions. We have 18 sets of useable observations,
since in 9 cases convergence was in the initial period (for the early converger). In Table 3 we
report the average of the means of the AP

EP ratio for early and late convergers.10 As can be seen, for
dominance solvable games, the ratio is substantially higher for late than for early convergers, as is
our conjecture. Indeed, in Table 4, which reports the results of the Wilcoxon signed rank test, one
can see that this difference is statistically significant at the 1% level. Consistent with our intuition,

9Of course, there is a selection issue here since we only count those groups that actually converged. In particular,
there were instances of unsuccessful teaching episodes in which a potential late converger never played his Nash action
(see Remark 1).

10The calculation of the average of means of the AP
EP

ratio was done as follows: First, the ratio was calculated for
each subject for each period prior to convergence. Second, the mean ratio was computed. Finally, the average over
all the players’ means is reported in the table.
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the same result does not hold when we examine non-dominance solvable games. We see from Table
4 that there is no significant difference between early and later convergers.11 Thus, for dominance
solvable games, players whose actual payoffs did not match their expectations, appeared motivated
to learn about the game, leading them to converge first.

Table 3: The AP
EP Ratio for Early & Late Convergers

DSS nDSS All
Mean AP

EP Ratio for Early Convergers 0.66 (9) 0.93 (9) 0.80 (18)
Mean AP

EP Ratio for Late Convergers 1.14 (13) 0.89 (14) 0.95 (27)
The number in brackets denotes the number of observations over which the mean was
taken.

Table 4: Wilcoxon Signed-Rank Test (H0: AP
EP early

= AP
EP late

)

Up to own convergence period Up to early convergence period
DSS nDSS All DSS nDSS All

Mean AP
EP Ratio 0.66 0.93 0.80 0.66 0.93 0.80

for Early Convergers
Mean AP

EP Ratio 0.98 0.85 0.91 0.88 0.88 0.88
for Late Convergers
z-statistic -2.67 1.01 -1.68 -2.07 0.53 -1.29
p-value <0.01 0.31 0.09 0.04 0.59 0.20

A positive z-statistic implies that the ratio for early convergers is higher than for late
convergers, while a negative statistic implies the converse.

Lastly, an interesting pattern arises when comparing the AP/EP ratio of non-converging games
to converging ones. The mean AP

EP ratio of converging games is 0.916 and the corresponding ratio
for non-converging games is 0.983. A Wilcoxon-Mann-Whitney test shows that the null hypothesis
of equality in these ratios can be rejected in favor of the alternative hypothesis that the ratio
for the non-converging games is higher than for the converging games (z-statistic=2.613, p-value
< 0.01).12 Thus, given the relatively high AP

EP ratios, it may explain why these groups did not
reach Nash equilibrium — they had little incentive to learn about the game and seek out the Nash
equilibrium.

4.2 Comparison of Converging and Non-Converging Games

As we stated above, not all pairs of subjects converged in their play of our experimental games.
This was a little surprising since our expectation was that with a 20 period horizon and only one
pure strategy equilibrium, each pair would ultimately be able to find their way to it. Luckily they
did not since this affords us the opportunity to investigate the non-convergence phenomenon. This
motivates our second question:

11For late convergers, the entries in Tables 3 and 4 do not match since in the latter we exclude those pairs for
which the early converger converged in the first period.

12Here there is no significant difference between dominance and non-dominance solvable games.
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Question 2: When the actions of players fail to converge to the Nash equilibrium,

is it true that their beliefs converge but the players fail to best respond to them or

is it simply that their beliefs fail to enter the best response region where the Nash

equilibrium beliefs exist?

Before we answer question 2, we investigate whether convergence and non-convergence is heavily
path dependent by trying to discover whether the way the game starts (i.e., the subjects period 1
beliefs and actions) determines how they will end up. Table 5 reports Kolmogorov-Smirnov tests on
the beliefs and action distributions in the first period between converging and non-converging games.
The results in the table show that the difference between converging games and non-converging
games does not stem from the initial choice of actions or the initial beliefs since the distribution
of those are not significantly different across games and roles when comparing converging and
non-converging pairs.

Table 5: Generalized Kolmogorov-Smirnov Test:

Difference Between Converging and Non-Converging Players
DSS nDSS

Row Players Column Players Row Players Column Players
Test Statistic: First 0.163 0.349 0.375 0.234
Period Beliefs (0.983) (0.277) (0.198) (0.763)
Test Statistic: First 0.222 0.413 0.250 0.188
Period Actions (0.778) (0.100) (0.633) (0.912)

p-values are in parentheses.

Since the initial period beliefs or actions does not determine if a game will converge or not,
we need to look for other explanations. It is our claim that failure to converge is a result of a
failure of the subjects to ever hold beliefs in the Nash Best-Response set. This is a striking result.
To illustrate what we mean, consider Figures 3 and 4 where we present the simplex of beliefs and
the time paths of beliefs of four subjects whose play failed to converge in either the DSS or nDSS
game. In each figure, the point (0,0) represents the case in which a player holds degenerate beliefs
that her opponent will play his Nash strategy. The beliefs on the two non-Nash actions are then
given by a point in the (x, y) plane and the area enclosed by the dashed line represents the Nash
Best-Response set. That is, if beliefs lie inside this set, it is a best response for the player to choose
her Nash action. Finally, the points labeled S and F depict where the subject’s beliefs started and
finished in the simplex; when it is not clear, an arrow points to the direction in which the subject
updated his/her beliefs. What is obvious is that for these players, who are very representative of
all players who failed to converge (as we will see later), throughout the entire game their beliefs
almost never entered into the Nash Best-Response set. In other words, if subjects are capable of
best responding and best respond to the beliefs we elicited, then this is clear proof that failure to
converge is a result of a failure in beliefs not in actions.
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To contrast this to representative convergent pairs, consider Figures 5 and 6 where we show
a typical sequence of beliefs for players whose actions converged. Here, after some initial periods
outside the Nash best-response set, the beliefs of the subjects enter the set and very shortly become
degenerate. To give a more aggregate picture of the beliefs of non-convergent subjects (beyond
the four presented above) consider Figures 7 — 10. In these graphs the probability simplex is
represented and the best response region (BR region) is drawn. The graphs plotted all the beliefs
of all the players for each game, role and classification (convergent or non-convergent). It is obvious
that in the non-converging games, it was rare that the beliefs were inside the BR region (see also
Table 6). For example, in the nDSS game where play did not converge there were only 80 out of
640 instances where beliefs fell in the Nash Best Response region, while in the nDSS game where
convergence occurred, the numbers were 435 out of 640. For the DSS game the numbers were 112
out of 600 for the non-convergent games and 462 out of 680 for the convergent games.

Table 6: Average Number of Periods With Beliefs Inside the Best-Response Region
DSS nDSS

Mean # of Periods in BR Region 13.588 13.594
Players that converged to Nash
Mean # of Periods in BR Region 3.733̄ 2.500
Players that did not converge to Nash

Finally, further support for our explanation of non-convergence can be found by calculating the
probability of staying in the BR region conditional on the beliefs being in the BR region in previous
period - P (bt

i ∈ BRi|bt−1
i ∈ BRi). For the non-converging games this probability is 37.7% while

for the converging games this probability is 76.7%.13 These probabilities are significantly different
from each other.14 The difference in probability implies that in order to converge to equilibrium,
the players had to “believe” in equilibrium; i.e., convergence had to supported by stable beliefs
that one’s opponent will choose her Nash action in coming periods.

The fact that the beliefs of convergent and non-convergent pairs are very different is not the
entire story. One might argue that subjects in convergent pairs were simply better at best respon-
ding; however, claim that this is not the case. To demonstrate that there was no differential ability
of convergent pairs to best respond we could simply compare the percentage of time convergence
pairs best respond to that same percentage for non-convergent pairs. However, this would bias
the comparison in favor of the convergent pairs since, by definition, once they converge they best
respond while non-convergent pairs never converge. In order to control for the effect of the con-
vergence, we calculate the percentage of best response for the converging games excluding periods
in which the games converged in actions or beliefs (which ever came first) and compare this to the

13For the converging games we report a more conservative estimate - P (bt
i ∈ BRi|bt−1

i ∈ BRi and bt−2
i /∈ BRi),

i.e. the probability conditional on the beliefs in previous period being in the BR region and that two periods prior
the beliefs were outside the BR region. We do so in order to eliminate the effect that convergence in beliefs has on
the probability. If we calculate the probability in the same way we calculated the probability for the non-converging
games, it would be 96.1%.

14The t-statistic for the two sample proportion test is -6.410 (p− value < 0.001).
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percentage of best responses for non-convergent pairs. Doing this we see that subjects best respond
51.6% and 51.9% of the time in the DSS and the nDSS converging games and 52.2% and 60% of
the time in the non-convergent games. We cannot reject the hypothesis that these proportions are
identical at the 5% level.

These results are summarized in Table 7 which reports the empirical frequencies with which
the subjects have chosen the best-response action to their stated beliefs. For convergent games,
the first number uses the entire sample, while the bracketed number uses only those periods up
to convergence. Table 7 clearly shows that even when subjects did not converge to the Nash

Table 7: Frequencies of Best-Response Behavior (%)
DSS nDSS

Convergent Non-convergent Convergent Non-convergent
Action was a best-response 76.2 (53.8) 52.2 75.9 (51.9) 60.0
Action was a 2nd best-response 18.1 (26.9) 29.0 17.0 (25.8) 25.8
Action was a 3rd best-response 5.7 (19.2) 18.8 7.1 (12.6) 14.2

The number in parentheses is the empirical frequency using data only up to the period of convergence.

equilibrium, they played the best response to their belief at least half of the time. When not
playing the best response action, players were more likely to choose the second best option. This
leads us to the conclusion that games did not converge because players’ beliefs fail to enter the BR
region and not because non-convergent subjects were relatively incapable of best responding.

Question 3: In the final play of a repeated game that converges to a unique pure-

strategy Nash equilibrium do the players typically place all the probability mass on

the equilibrium strategy of the other player or are they typically still a little unsure of

what he or she is going to do? If the probability distribution is degenerate, how long

does it take to get there after actions have exhibited the Nash equilibrium pattern?

One of the most striking results regarding the convergence of beliefs is the speed with which
beliefs become degenerate on the Nash action; i.e., the belief that the opponent will play his
Nash action with 100% probability, from the moment the opponent converges to his Nash action
(see Figure 11). The average number of periods is 2.6 while the median is 2 periods. This fact
demonstrates, perhaps, that subjects know what the equilibrium of the game is before they play
it and only need assurance from their opponent that he or she understands as well. Once that
assurance is received (i.e., once the Nash play is observed) beliefs quickly converge.

Question 4: Do the answers to questions 1 — 3 above change when the game played

can be solved by the iterative elimination of dominated strategies? Do games that are

dominance solvable converge faster than those that are not and do beliefs or actions

get to equilibrium first?

In the previous section, we combined the data from all the experiments and reported the dif-
ferences between convergent and non convergent games. However, the two games were different in
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their structure. Dominance solvable games have a “natural” way to reach the equilibrium, through
elimination of dominated strategies, while in non-dominance solvable games do not. In spite of this
conceptual difference, we find few empirical differences between DSS and nDSS games — either in
the way they are played or in the beliefs formed by the subjects playing them. For example, as we
have seen before, when subjects fail to converge, their beliefs fail to enter the Nash best-response set
and this is true no matter what type of game they are playing. Once convergence in actions occurs
for both players, then in both types of games beliefs quickly become degenerate. One difference
that does exist is that DSS games seem to converge faster than nDSS games. This can be seen
in Table 8 where we see the mean period of convergence for early convergers is 3.78 and 6.83 for
DSS and nDSS games, respectively, and for late convergers it is 5.75 and 8.31 for DSS and nDSS
games. Despite these differences in means, the results of the Kolmogorov-Smirnov test comparing
the distributions of convergence periods between the game types, also reported in Table 8, shows
no significant difference in the distribution of convergence period when considering teacher and
followers separately.

Table 8: Kolmogorov-Smirnov Test: Period of Convergence
Mean Period of Convergence K-S Test Diff.

DSS nDSS b/w DSS & nDSS
Early Convergers 3.78 5.75 0.2708

(0.495)
Late Convergers 6.83 8.31 0.3542

(0.188)
The first number in the third column reports the test statistic while the second number
in parenthesis reports the p-value.

5 Consensus in Beliefs

Question 5: Is there a consensus across people on the belief formation process; i.e., if

we showed the time series of play of a simple two-person game to a set of people and

asked them to state their beliefs about how the players are expected to play, would

the belief formation process look similar across the observing agents? In other words,

do people tend to form their beliefs in a similar way holding the play of the game they

are watching constant?

Economists have paid considerable attention to the process of belief formation (see, e.g., Came-
rer 2003, Ch. 6). A successful model of belief formation, however, would have to be fairly universal
and employed by a wide variety of people since if there were excessive heterogeneity across people
about the way they form their beliefs, attempting to build one general model of this process would
be a vacuous exercise.

To answer this question we use the data generated by our Belief-Only experiment where we
show subjects the time series of four particular games played by four pairs in our Belief-and-
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Actions experiment. The beliefs we measure are then those of the observers who watch these time
series as they unfold and offer their best guess as to what the player being observed will do in the
next period. As we have said before, this design has the advantage of holding the time series of
actions constant across observers and seeing whether they respond in similar ways to what they
are observing. In other words, we are looking for a consensus in the belief formation process.

This question is very important. If it turns out that the degree of consensus is very minimal, it
suggests that there is little hope in writing one general belief-formation model. Therefore, we view
a positive answer to the first question as a necessary hurdle to pass before addressing the second
question.

5.1 Consensus Indices

There are many ways in which one may try to uncover consensus in beliefs. In this section we
propose two different measures whose purpose is to capture two different aspects of the consensus
problem. We call these two consensus measures the “dynamic” or “directional” measure and the
“static” measure, and we will attempt to describe them below. To explain what we mean by these
consensus measures let us make an analogy between a flock of birds migrating and a set of beliefs.
Each bird at any point in time is characterized by a point in some three dimensional space just as
the beliefs of our observers are a simplex. As the birds fly they are subject to various shocks (bolts
of lightning, claps of thunder, etc.) just as our observers see various outcomes of the game they
are watching. One question that we can ask is do the birds respond to these shocks in a similar
manner, i.e., do they move away or towards them similarly. This is analogous to what we will call
our dynamic belief consensus measure since it asks how birds (subjects) alter their position (change
their beliefs) in response to a shock (observing an outcome). So this is consensus about how to
change one’s position.

Alternatively, one can view consensus as a measure of how closely packed the birds (beliefs) are.
The less space between the birds (the more closely packed beliefs are) the more consensus exists.
This is our static consensus measure which we will expand on below. Note that each measure
measures a different aspect of the consensus problem both of which are important for descriptive
purposes. Note that it is possible for a set of beliefs to show considerable consensus on one of these
measures but little on the other. They measure different things.

5.1.1 Dynamic or Directional Consensus Measures

As stated above, one way to measure whether people form beliefs in a similar manner is to ask and
measure whether they respond to information in a similar way. That is, do observers’ beliefs move
in a similar direction and/or magnitude between periods t − 1 and t after seeing the outcome of
play in round t − 1? Since we are interested in how subjects change their beliefs here and not in
the levels, this is an exercise in directional learning and the consensus across people about it (see,
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e.g., Selten and Stoecker 1986, Selten and Buchta 1999). Subjects may have completely different
priors about what action is likely to have been chosen, but conditional on the observed history, it
is reasonable to imagine that most subjects may update their beliefs in the same direction. To get
an idea of whether or not this is true, we posit a consensus index at each time period t.

Suppose we have the beliefs of N players. Define Bi
j(t) denote the belief of observer i for strategy

j at time t and let ∆Bi
j(t) = Bi

j(t)−Bi
j(t− 1) for t = 2, . . . , 20. Finally define the variable:

Di
j(t) =





1, ∆Bi
j(t) > 0

0, ∆Bi
j(t) = 0

−1, ∆Bi
j(t) < 0

(1)

That is Di
j(t) takes value 1 if observer i increased the weight on strategy j from time t− 1 to time

t, -1 if the weight was decreased and zero if the weight was unchanged.

We will define the following notion of consensus for all players i and t = 2, . . . , 20:

Ci(t) =
1

12(N − 1)

N∑

k=1

3∑

j=1

(Di
j(t)−Dk

j (t))2 (2)

Therefore, for each observer i we take the squared difference between the directional change in i’s
beliefs and the directional change in player k’s beliefs and sum over all players k and all strategies.
The normalization 1

12(N−1) ensures that Ci(t) ∈ [0, 1]. Finally then, our consensus index is simply
the average over the indices for all players:

C(t) =
1
N

N∑

i=i

Ci(t) (3)

The indices are plotted in Figure 12 for each of the four games in our beliefs only experiment.
The solid line hovering around 0.5 can be thought of as a benchmark for the amount of consensus.
Specifically, it measures the degree of consensus that would arise if all subjects formed beliefs in
an i.i.d. fashion in each period.15 The dotted lines denote the 95% confidence interval. In all
games, the consensus indices are well below the lower confidence band. This indicates to us, at the
very least, that beliefs are not all random and there is some degree of consensus in how beliefs are
updated.

Look now at the indices for the specific games. A couple of points can be made. First, until
around period 8, the indices for the four different games look very similar. It is only after period
8 when there appears to be a growing consensus for the game DSS, early convergence; however,
this is not unexpected, since the actual players in this game converge to the Nash equilibrium in
period 6. Indeed, the beliefs of almost all observers quickly converged to degenerate beliefs on

15Specifically, we computed the consensus index for each of 500 replications in which 20 subjects formed beliefs in
an i.i.d. fashion for 20 periods and then averaged over all replications.
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the Nash strategy after which there was no change in their belief vectors. Second, for the other
games, two of which did not converge to Nash equilibrium and one of which converged in period
16, there is nothing distinguishable in the indices. Obviously, since there was no, or at least late,
convergence there was less consensus shown than in the DSS early convergence game. Still, the
amount of dynamic consensus shown was significantly less than what we would have seen if beliefs
were updated randomly.

5.1.2 Static Consensus

Another way to measure consensus and whether people respond to outcomes in a similar fashion
is to measure how closely packed their beliefs are and how the diversity of their beliefs changes
as they observe the history of the game they are either playing or watching. Obviously, we might
expect more consensus amongst people when they share similar beliefs so that the less variance in
their beliefs at a point in time the more consensus exists amongst them.

To measure this type of static consensus we used a simple Euclidean metric. At any round t

we simply calculated the mean belief of the set of observers watching the game and calculated the
mean Euclidean distance of the observers from the mean belief. The smaller this mean distance the
greater the consensus. Also, if in round t−1 an action was observed that caused this mean distance
to decrease between period t − 1 and t, then the outcome observed was consensus increasing (or
consensus building). This is a static measure because it simply looks at the level of beliefs and
measures their closeness and is defined statically on beliefs in each round rather than dynamically
using data from the change in beliefs across two adjacent rounds.

The results of our measure of static consensus are presented in Figure 13(a - d). The solid line
is the mean (Euclidean) distance of observer beliefs from the group mean, while the dashed line is
distance between the belief of the person who actually played these games and the group mean. As
we can see, except in the early convergence game (panel (b)) observing the time series of actions
over the 20 periods of the game was not a consensus building experience. In fact, in all cases except
for the game that converged early, consensus was typically higher in round 1 than in almost all
later rounds indicating that subjects tended to be confused by the actions they saw played during
the game.16 This does not contradict our previous finding that a fair amount of dynamic consensus
existed since that measure simply says that people reacted to outcomes in the game by moving
generally in the same direction while our static measure says that when they did so it did not imply
that their beliefs got closer together.

One interesting feature of Figure 13 is how well the mean belief of the group of observers tracks
the belief of the player who actually played the game. More precisely, the distance between that
player’s belief and the mean of the group is always less than the mean distance of the members of
the group to the group mean. This means that using the mean belief of the observing group is a

16The horizontal line has an intercept at the consensus measure in the first period. Therefore, above (below) this
line, consensus is worse (better) than in the first period.
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good statistic for the belief of the player playing the game.

This result is interesting for several reasons. First it gives us some confidence that the beliefs
we elicited are meaningful since, despite the variance in them, their mean seems to track the beliefs
of the person playing the game rather well. Second, it yields some hope for the use of focus groups
or other survey methods whose aim is to measure whether consumers are interested in a particular
product or simply their confidence about the economy, etc. This follows since the mean of solicited
opinions tracks the mean of the population being studied; therefore such surveyed beliefs may be
a useful (and cheap) input into macro policy making.

5.2 Belief Updating: Learning Models

Question 6: Are existing learning models that do not include the payoff received by

both players descriptive of how people form beliefs?

Figure 12 tells us, at a minimum, that changes in beliefs are not random. In particular, subjects,
observing a common history, tend to increase their beliefs in the same direction. However, it does
not inform us about the direction in which beliefs move, nor what determines any changes in beliefs.
One way to make such predictions, however, is to subscribe to one of the often used learning models
that economists have become fond of. For example, if one were to subscribe to a noisy fictitious
play model employed by Fudenberg and Levine (1998), then at each point in time one would assume
that the probability that a player chooses an action at period t is equal to the fraction of times
she chooses that strategy up until period t − 1. After forming beliefs in this manner, the player
would be assumed to noisily best respond. If one subscribed to a reinforcement-type model (Erev
and Roth (1998), then the choice of a strategy today would be proportional to how heavily one was
reinforced or rewarded for that choice in the past. If one were an EWA-type learner (see Camerer
and Ho (1999), then how attractive a strategy is for a player, (which determines how likely that
person is to choose that strategy) will depend on how she was rewarded for choosing it as well as
the counter-factual payoff she would have received by choosing an alternative strategy. Finally, if
one were a follower of Cheung and Friedman (1997) then, instead of giving equal weights to all
past choices of your opponent, you would use geometrically declining γ-weights, and weight recent
history more heavily.

The point of interest, however, is that all of these belief formation processes give no weight to
the payoff history of one’s opponent. For example, reinforcement learning is totally egocentric in
that it cares only about how heavily I am reinforced for taking certain actions without giving any
consideration to how my opponent has done. EWA, while allowing counter-factuals, also ignore
how my opponent does as does all of the other models mentioned. The only models we know of
that takes one’s opponent’s payoffs into account is the strategic teaching model of Camerer et al
(2002) and Stahl and Wilson (1995).

While we do not offer a full fledged model of belief formation here, we do attempt the de-
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monstrate that we think these existing models are myopic because of this omission. For example,
say that you and I are repeatedly playing a 3 × 3 non-zero sum game as our subjects do in this
experiment. At round t I choose a row and you choose a column and I get a great payoff but you
do miserably; i.e., you get the minimum payoff in your column. While I am happy (my payoff was
higher than my expectations and I have no regret given your choice) I will probably recognize that
you are heavily disappointed and regretful. This recognition should lead me to think that you will
not repeat your action again especially if you think that I will since I did so well. However, as this
iterative logic works itself out, it leads to a belief formation process that is not nested in any of the
above mentioned models. For example, in a reinforcement learning model, if I choose a row and
receive the highest payoff available in it, an observer watching this game and using a reinforcement
learning model will increase the probability that I will use this strategy again regardless of how my
opponent did. Obviously I may not if I assume that my opponent will change his or her behavior
forcing me to adapt to that expectation.

Given these remarks we proceed as follows: First we will consider two well studied models of
belief formation, the Cheung-Friedman (1997) and the Camerer-Ho (1999) models and consider how
well they described the data in our experiments. While we find that they do have a considerable
predictive ability, they ultimately fail to explain a key feature of the belief data – the feature that
changes in subject beliefs depend on the payoffs of both subjects and not just one. This correlation
is not predicted by these models but is certainly a feature of our data.

First consider Cheung and Friedman’s (1997) model of γ-weighted beliefs. Under this weighted
fictitious play model, if a player observes strategy si

t being played in period t, then her belief
for strategy i will increase in period t + 1 and her beliefs on all other strategies will decrease.
Therefore, if the observers in our sample believe that the actual players of the game behave in this
fashion, the beliefs on the chosen action should (weakly) increase, while the beliefs on all unchosen
actions should (weakly) decrease. In Table 9, we present the frequency of observations which were
consistent with this view in each of our four games.

Table 9: Testing γ-weighted Beliefs; Fraction of Obs. Consistent With Theory

 (1) (2) (3) (4) 
Game ↑ Chosen ↓ Both Un 

Chosen 
(1) & (2) (2) Conditional 

On (1) 
nDSS (N.C.) 72.4% 50.0% 50.0% 69.1% 
DSS (N.C.) 66.8% 44.7% 44.7% 66.9% 

nDSS (CON) 82.0% 
(81.8%) 

61.4% 
(60.4%) 

61.4% 
(60.4%) 

74.9% 
(73.8%) 

DSS (CON) 88.5% 
(76.4%) 

73.7% 
(43.0%) 

73.7% 
(43.0%) 

83.3% 
(56.3%) 

 Column (1): Frequency with which observers increase their belief on last period’s chosen action.

Column (2): Frequency with which observers decrease their beliefs on both of last period’s unchosen

actions.

20



Column (1) gives the empirical frequency with which observers (weakly) increased their beliefs
on the action which was chosen in the previous period, while the column (2) gives the empirical
frequency with which observers (weakly) decrease their beliefs on both of the actions which were
not chosen in previous period. For the two convergent games, we provide two numbers in each cell;
the first is the empirical frequency over all periods, while the second is the empirical frequency over
those periods before the actual player converged to his/her Nash strategy. As the reader can see,
for the two games which did not converge to Nash equilibrium, approximately 70% of the time,
observers increase their belief on the chosen action. Moreover, between 76% and 89% of the time
(depending on the sample), in the convergent games, was it the case that observers increased their
belief on the action which was chosen last period. This suggests that there is often inertia in the
belief updating process, something which seems rather myopic given that last period’s chosen action
may not have been the correct action to take.17 This is just one component of the predictions from
a γ-weighted belief updating model. Looking at column (2) gives us the complete picture. If we
restrict attention to the period before convergence,18 we see that at most 60% of the observations
are fully consistent with the predictions of γ-weighted beliefs.

Now consider Camerer and Ho’s (1999) model of experience weighted attraction. Specifically,
recall that attractions for each strategy, j, and player i are updated according to:

Aj
i (t) = φN(t−1)Aj

i (t−1)+[δ+(1−δ)I(sj
i ,si(t))]π(sj

i ,s−i(t))
N(t)

N(t) = ρN(t− 1) + 1
(4)

Furthermore, recall that Camerer and Ho (1999) interpret δ ∈ [0, 1] as an imagination parameter.
The payoffs of all actions, whether chosen or not, contribute to the updating of attractions. If the
action was not chosen, the contribution is δπ(sj

i , s−i(t)), while if it was chosen, the undiscounted
payoff enters. Consider the case in which δ = 1 so that players have full imagination and therefore
equally weight all possible payoffs, whether realized or not. In this case, the attraction will increase
the most on the action that would have received the highest payoff, given the strategy of the
opponent, while the attraction will increase the least (or even decrease) on the action that would
have received the lowest payoff, given the strategy profile of the opponent. Therefore, if observers
think actions are chosen according to EWA (and that δ = 1), they should increase their belief
on the action that would have received the highest payoff and decrease their belief on the action
that would have received the lowest payoff. The empirical frequencies are given in Table 10. Here
the first column gives the empirical frequency with which the belief on the action that would have
given the highest payoff weakly increases and the second column gives the empirical frequency with
which the belief on the action that would have received the lowest payoff weakly decreases.

In general, for the non-convergent games, the predictions of EWA beliefs explain more of the
data than does γ-weighted beliefs; however, for the convergent games, EWA beliefs do substantially

17Inertia is not the ideal word, since the beliefs on last period’s chosen action may actually be quite low.
18Of course, for the two non-convergent games, this implies that we make use of the entire sample.
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Table 10: Testing EWA Beliefs; Fraction of Obs. Consistent With Theory

 (1) (2) (3) (4) 
Game ↑ Best Payoff ↓ Worst Payoff (1) & (2) (2) Conditional 

on (1) 
nDSS (N.C.) 76.1% 75.8% 63.7% 83.7% 
DSS (N.C.) 73.9% 68.2% 59.7% 80.8% 

nDSS (CON) 70.8% 
(68.6%) 

73.7% 
(70.8%) 

57.6% 
(53.8%) 

81.3% 
(78.5%) 

DSS (CON) 82.5% 
(53.3%) 

84.5% 
(67.9%) 

77.4% 
(44.2%) 

93.8% 
(83.0%) 

 Column (1): Frequency with which observers increase their belief the action that would have given the

highest payoff.

Column (2): Frequency with which observers decrease their belief on the action that would have given the

lowest payoff.

worse. However, we believe that there is an explanation for this result. Consider the convergent
DSS game. Observers were asked to state beliefs on the action choices of the column player. This
game converged in period 6 and the action choices of the row and column player for the first six
periods were {(1, 2), (1, 1), (1, 1), (1, 1), (3, 2), (3, 1)}, where (3, 1) is the Nash equilibrium strategy
pair. In particular, in periods 2, 3 and 4 the column player was playing her Nash action, despite
the fact that action 2 is a best response to the row’s choice of action 1. Therefore, if the observers
believed that the column player was trying to teach the row player, in order to get convergence
to the Nash equilibrium, they would not necessarily increase their beliefs on action 2, giving more
weight instead to action 1, despite it not being a best response to the row player’s choice.

The γ-weighted belief model predicts that the beliefs on both of the unchosen actions should
decrease. However, as Table 9 shows, at most 60% of the observations are consistent with this
model. We may then wish to uncover more about how beliefs on unchosen actions are updated.
This is the content of Table 11. The first column reports the empirical frequency with which
subjects (weakly) increase their belief on the unchosen action with the higher payoff, while the
second column reports the empirical frequency with which subjects (weakly) decrease their belief
on the unchosen action with the lower payoff and the third is the intersection of the first two
columns. The most robust feature apparent in Table 11 is that the beliefs on the unchosen action
with the lower payoff decrease a substantial proportion of the time, as EWA would suggest. As a
final remark, note that we conducted a similar analysis using the data from the beliefs and actions
experiment; the results are largely the same and are not presented here.

5.3 Belief Updating: Logit Regressions

Given the descriptive statistics reported above, we would like to try to disentangle all of the varying
effects more formally; for example, it may well be that the action chosen last period, was also a
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Table 11: Updating Beliefs on Unchosen Actions

 (1) (2) (3) 
Game ↑ Unchosen Higher 

Payoff 
↓ Unchosen Lower 

Payoff 
(1) & (2) 

nDSS (N.C.) 63.2% 74.5% 53.7% 
DSS (N.C.) 67.4% 72.4% 53.9% 

nDSS (CON) 58.1% 
(58.5%) 

81.7% 
(80.3%) 

51.2% 
(51.3%) 

DSS (CON) 63.2% 
(47.9%) 

84.5% 
(67.9%) 

58.5% 
(40.6%) 

 Column (1): Frequency with which observers increase their belief on last period’s unchosen action with

the higher payoff.

Column (2): Frequency with which observers decrease their beliefs on last period’s unchosen actions with

the lower payoff.

best response to the opponent’s choice. It is important to separately identify these effects. Also,
the descriptive statistics above speak only of changes in beliefs and not levels. While we do not
immediately go far from this, we can say more. For example, whether or not an observer increases
her belief on last period’s chosen action may be related to how surprising the realized action choice
was. Consider an observer with a very low initial belief on action j; she may be much more likely
to increase her belief on action j (assuming it was chosen last period) than an observer with a high
initial belief. Let yit be the event that observer i increases her belief at time t on the action chosen
in the previous period. We posit the following random effects model:

Yit = α + β1D[MAXt] + β2Lit + ui + εit

yit = 1 ⇐⇒ Yit ≥ 0
(5)

where Yit is an unobserved variable and D[MAX] is a dummy variable which takes the value 1 if
the action chosen in the previous period gave the maximal payoff, given the action choice of the
other player and Lit represents the level of the belief on the chosen action.19 Given the results of
the descriptive analysis above and our intuition, we expect that α > 0, β1 > 0 and β2 < 0. We
assume that εit is a logistic disturbance term. The results of this exercise are given in Table 12. In
brackets, below the estimated coefficients, are the z-statistics.20

Notice that the variable D[MAX] is only significantly positive for the non-convergent games
and the convergent DSS game (using the full sample). In the latter case, when we restrict attention
to the pre-convergence periods, it becomes negative and is no longer significant. On the other hand,

19To be clear, suppose that we are predicting the row player’s actions. The variable D[MAX] takes value 1 if the
row player received her maximal payoff last period and 0 otherwise.

20Hausman tests for fixed versus random effects were conducted in all cases, with a fixed effects specification being
preferred in nDSS (NC), DSS (C) and nDSS (C), pre-conv. However, since we are mostly interested in the signs and
significance of the variables, non of which are changed when using the random effects specification, we do not report
results for the fixed effects estimation.
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Table 12: Logit Regressions

 DSS (NC) nDSS 
(NC) 

DSS (C) DSS (C) 
Pre-conv 

nDSS (C) nDSS (C) 
Pre-conv 

constant 2.12 
(6.88) 

1.98 
(6.23) 

1.62 
(4.42) 

2.67 
(5.02) 

2.56 
(7.99) 

2.71 
(7.57) 

D[MAX] 0.94 
(3.33) 

1.34 
(4.62) 

1.71 
(4.82) 

-0.15 
(-0.28) 

-0.12 
(-0.53) 

-0.27 
(-1.04) 

Level -3.94 
(-6.84) 

-3.19 
(-5.62) 

-0.67 
(-1.31) 

-3.40 
(-3.61) 

-1.61 
(-4.27) 

-1.81 
(-4.31) 

       σu 0.57 0.60 1.04 0.93 0.90 0.99 ρ 0.089 
(p = 0.007) 

0.100 
(p = 0.005) 

0.246 
(p < 0.001) 

0.209 
(p = 0.026) 

0.197 
(p < 0.001) 

0.228 
(p < 0.001) 

L.L. -206.09 -193.79 -201.68 -80.83 -279.05 -233.95 
 The dependent variable is a dummy which takes value one if the belief on last period’s chosen action

is increased and zero otherwise.

for the nDSS game, the coefficient is negative but not significant. For the levels of beliefs on last
period’s chosen action, we find a significantly negative effect in all cases, except over the full sample
of the DSS game. That we lose significance in the convergent DSS game over the full sample is
not surprising, since the game converged to Nash equilibrium in period 6 and beliefs for almost all
players quickly became degenerate on the Nash action choice. Therefore, since we only insist on
weak increases in beliefs, we have that yit = 1 and Lit = 1 for much of the sample. Finally, notice
that in all cases, a likelihood ratio test rejects the null hypothesis that ρ = 0, in most cases, with
p-values below 1%. This means that a significant portion of the overall variation comes from the
observer-specific disturbance ui.21

In our empirical work, we also experimented with a number of other variables that we thought
may influence beliefs, such as a dummy for whether the chosen action gave the second highest
payoff, the payoff difference between the maximal payoff given the other player’s action choice and
the actual payoff experienced as well as the cumulative average payoff from a given strategy up to
time t, given the choices of the other player in all previous periods. Rarely did these extra variables
add much in the way of explanatory power and so we do not report the results here.

5.4 Belief Updating: Do Opponent Payoffs Matter?

In the logit regressions reported above, we saw that subjects generally increased their belief on last
period’s chosen action if that payoff was a best response to their choice. This view is consistent
with reinforcement learning or EWA in that a player’s experienced payoff affects the likelihood that
he/she will choose a particular action. However, it may be that one’s opponent’s payoff affects the

21To see this note that ρ =
σ2

u
σ2

u+σ2
ε
.
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likelihood that he/she will choose a particular action. Consider the following example. Suppose
that the row player is forming beliefs over the action choices of the column player. Moreover,
suppose that the particular action combination implied that the row player received her worst
possible payoff, while the column player received his middle payoff. If the column player thinks
that the row player is very likely to change actions (since the chosen action turned out to be very
bad for the row player), this will affect column’s action decision. Therefore, if the row player is
aware of this, her beliefs may be different in this situation than if, say, she had received her middle
or best payoff.

Consider Table 13, which tabulates how the beliefs of row players about the column players’
actions move given the 9 possible payoff realization combinations. This table is constructed by
pooling all of the row player data from the actions and beliefs experiment. In the left-hand pane,
the cell corresponding to (C. Max, R. Med) indicates that 57% of the time (66 in total) the row
player (weakly) increased her belief on the action chosen by the column last period, given that the
column player received his maximal payoff while the row player received her middle payoff.22

Table 13: The Actual Players: Row Players’ Beliefs About Column

Frequency With Which Belief on Last Period’s

Action is Increased Given Outcome

R. Max R. Med R. Min
C. Max 84% 57% 57%
C. Med 61% 79% 70%
C. Min 75% 72% 69%

Table 14: The Actual Players: Column Players’ Beliefs About Row

Frequency With Which Belief on Last Period’s

Action is Increased Given Outcome

C. Max C. Med C. Min
R. Max 72% 63% 75%
R. Med 78% 83% 88%
R. Min 50% 69% 72%

We now wish to see if the belief formation process depends on the joint realizations of payoffs.
We conduct the Fisher Exact Test to test for independence. For example, suppose that the row
player is predicting the actions of the column player. We ask, “Given that the column player
obtained her Max (Med or Min) payoff, does the fraction of times in which beliefs increase depend
on the payoff rank, Max, Med or Min, of the row player?” The p-values of the Fisher Exact Test
are given in Table 16.

22Of course, 43% of the time, the row player (strictly) decreased her belief on column’s last period action.
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Table 15: The Observers: Beliefs About Column

Frequency With Which Belief on Last Period’s

Action is Increased Given Outcome

C. Max C. Med C. Min
R. Max 91% 75% 71%
R. Med 79% 78% 80%
R. Min - 88% 62%

Table 16: Fisher Exact Test: A Test of Independence

Max Med Min
Row on Col < 0.001 0.002 0.849
Col on Row 0.027 0.287 0.065
Obs on Col < 0.001 0.256 0.053

Indeed, we see that in 4 of 9 cases, we can reject the null hypothesis of independent random
samples at the 5% level of significance and in two other cases, we can reject the null hypothesis
at the 10% level. Therefore, it appears that, for example, when the row player is forming beliefs
about the column player, she takes into consideration the payoff that she herself receives since that
is likely to affect how the column players reasons. To see this more clearly, consider the first row of
Table 13. When both players are obtaining their maximal payoff (and so, playing Nash), the row
player increases her belief that the column player will play his Nash strategy again 84% of the time.
On the other hand, when the row player is obtaining her middle or lowest payoff, she increases her
belief on column taking the same action only 57% and 58% of the time, respectively.

Finally, this evidence is strongest when the player receives the maximal or minimal payoff
and less clear when the player receives her middle payoff. This makes sense; there may be strong
incentives to change actions after one receives the minimal payoff and very weak incentives after one
receives the maximal payoff. In either case, these clear incentives (strong or weak) may translate
to beliefs in a clean way. However, when one receives her middle payoff, the incentives are not
clear and so how this translates into beliefs may also not be clear; in this case, subjects may simply
default to a particular rule for which independence holds.

6 Conclusions

This paper has attempted to investigate the process through which people playing games converge
to an equilibrium — a state where their beliefs about the actions of their opponents are confirmed.
By conducting a set of experiments we have learned that the convergence process is an action-led
process in that the actions of players reach the equilibrium before their beliefs. However, one key
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ingredient for convergence is the presence of a “teacher” who chooses the Nash action in an effort
to teach his opponent what to expect. Failure to reach equilibrium appears to be a failure in beliefs
and not in best response behavior in that for such games the beliefs of players almost never enter
that subset of the belief simplex where Nash actions are best responses. Also, players in games
that fail to converge to Nash equilibria tend to best respond equally as often as do their convergent
cohorts. We have investigated the process of belief formation and found that while there is some
consensus in the dynamics of how people update their beliefs, the actual belief vectors vary wildly
and do not exhibit a tendency to converge. Finally, we present evidence that suggests that a
truly successful belief formation model must be one that includes a role for the payoff that one’s
opponent receives rather than focusing exclusively on a player’s own past payoffs as is true of all
reinforcement models, EWA, and weighted historical belief models.
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A Actions and Beliefs Experiment Instructions

The following instructions were used for the beliefs and actions experiment:

General Instructions

Welcome and thank you for coming today to participate in this experiment. The purpose of this experiment is to

learn how people behave in certain very simple settings.

After this experiment, another experiment will take place. The precise details of that experiment will be explained

to you at the appropriate time. At the beginning of this experiment, you will be randomly paired with another

participant and you will remain paired with this person for the duration of this first experiment. However, at no

point in time will it ever be revealed to you with whom you are matched. Depending on your choices and those of

your partner you will earn money, which will be paid at the end of the experiment. The exact method of calculating

your final payment will be described below.

We ask that you remain silent throughout the experiment. If, at any time, you have a question, please ask the

session coordinator. Failure to comply with these instructions means that you will be asked to leave the experiment

and all earnings will be forfeited.

In the experiment it is more convenient to work with points rather than dollars. At the end of the experiment,

the total number of points earned will be converted to dollars. The exact conversion factor is the following:

200 points = $1.00

Decision Problem

In this experiment, you and your partner will play a game for a total of 20 periods. You will be asked two things.

In each period, you will be asked to choose an action. Your action choice and the action choice of your partner will

determine the bulk of your payoff for each period. However, before making your action choice, you will be asked to

predict the action choice that your partner will make. We now explain, in detail, both of the decisions you must

make.

The Game

On your computer screen, you will be presented with the following representation of the game that you and your

partner will play. The game is exactly the same for all 20 periods.

A1 A2 A3
A1 12, 83 39, 56 42, 45
A2 24, 12 12, 42 58, 76
A3 89, 47 33, 94 44, 59

In each period, both you and your partner will simultaneously choose one of three actions, labeled A1, A2 and

A3. The actions that you and your partner take in each period, as well as your position as either the row or
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column player, determine the payoffs for that period. Each of the nine boxes above represent the nine possible

action combinations. In each box, the first entry represents the payoff for the row player, while the second entry

represents the payoff for the column player.

For example, suppose that you are the row player and chose action A3 in the current period; suppose also that

your partner, the column player, chose action A1. Then you will earn 89 experimental points for the current period

and your partner will earn 47 experimental points. As another example, suppose that you are the column player and

took action A2, while your partner, the row player, took action A1. In this case, you, the column player, will earn

56 points and your partner, the row player, will earn 39 points.

On the computer screen it will be clearly marked whether you are the row player or the column player. Moreover,

your position will not change in any of the 20 periods which comprise this first experiment. That is, if you are the

row player in period 1, you will continue to be the row player in each of periods 2 through 20.

Predicting Other People’s Choices

Prior to choosing an action in each period, you will be given the opportunity to earn additional money by predicting

the choices of your partner in the game. On your computer screen, each of you will be asked the following three

questions:

• On a scale from 0 to 100, how likely do you think it is that your partner will take action A1?

• On a scale from 0 to 100, how likely do you think it is that your partner will take action A2?

• On a scale from 0 to 100, how likely do you think it is that your partner will take action A3?

Your response to each question must be a number between 0 and 100. Moreover, the sum of the three numbers that

you provide must be exactly 100.

For example, suppose that you think there is a 30% chance that your partner will take action A1, a 25% chance that

your partner will take action A2 and a 45% chance that your partner will take action A3. In this case, you will enter

30 in the first box on the screen in the bottom left corner and 25 and 45 in the second and third, respectively. The

exact computer screen you will see is given below.

You will earn experimental points for your predictions according to a specific payoff function, which we now

explain. Suppose your predictions are as in the above example. Furthermore, suppose that in the current period your

partner actually chose A2. In that case your payoff for predicting your partner’s action will be:

Payoff = 5[2− (
30

100
)2 − (1− 25

100
)2 − (

45

100
)2]

In other words, we will give you a fixed amount of 10 points from which we will subtract an amount which

depends on how inaccurate your prediction was. To do this, we find out what choice your pair member has made.

We then take the number you assigned to that choice, in this case 25% on A2, subtract it from 100%, square it and

multiply by 5. Next, we take the number you assigned to the choices not made by your pair member, in this case

the 30% you assigned to A1 and the 45% you assigned to A3, square them and multiply by 5. These three squared

numbers will then be subtracted from the 10 points we initially gave you to determine your final point payoff. Your

point payoff will then be converted into dollars at the same conversion factor as given above.

Note that since your prediction is made before you know what your partner has actually chosen,

the best thing you can do to maximize the expected size of your prediction payoff is to simply state

your true beliefs about what you think you partner will do. Any other prediction will decrease the
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amount you can expect to earn as a prediction payoff.

Note also that you cannot lose points from making predictions, you can only earn more points.

The worst thing that could happen is that you predict that your partner will choose one particular

action (e.g., A2) with 100% certainty but it turns out that your partner actually chose a different

action (e.g., A3). In this case, you will earn 0 points. In all other situations, you will earn a strictly

positive number of points.

The Computer Screen

In each period, you will see the following computer screen. At the very top of the screen, you will see which period

you are in, how many periods in total there are and the time remaining to make your decision. In the experiment,

you will have 1 minute to state your predictions regarding what you think the other player will do and choose an

action.

In the top left portion of the screen, you will see the game that you are playing and the payoffs to both you and

your partner for each combination of actions taken. Recall that the first number in every box gives the payoff to

the row player and the second number gives the payoff to the column player for each of the nine possible action

combinations.

The top right portion of the screen shows the outcomes from all previous periods. In particular, you are able to

see what action you took in all previous periods and what action your partner took in all previous periods.

The bottom left corner of the screen is where you will make your decisions. The first thing that you will see is

whether you are the row player or the column player. Below that are the three questions asking you to predict the

action choice of your partner. Your responses to these three questions must each be numbers between 0

and 100 and the three numbers must sum to 100. Your response may contain at most 1 number after

the decimal point.

The bottom right portion of the screen has a couple of reminders that you may wish to refer to during the

experiment. You will also see a calculator button. By pressing this button, the computer’s calculator appears, which

can be used as a check that your predictions add up to 100.

After all of your decisions have been made, click on the OK button. Once both you and your partner have

pressed OK, you will be taken to a new screen where you may review the action that you took, learn the action taken

by your partner and find out your payoff from your action choices for that period. In the bottom right corner of this

screen, you may press continue. Once both you and your partner have done so, you will be returned to the main

screen, where a new period, exactly the same as the previous, will begin. There are 20 periods in total.
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Final Payment

Your final payment for the experiment will be determined as follows. We will sum up the number of experimental

points earned in each period for your action choices as well as for your predictions regarding your partner’s behavior.

The total number of points will then be converted back into dollars at the rate of $1 = 200 experimental points.

This will be combined with your $7 participation fee to come up with your final payment. Payments will be made

privately at the conclusion of the two experiments.
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B Beliefs Only Experiment Instructions

The following instructions were used for the beliefs only experiment:

General Instructions

Welcome and thank you for coming today to participate in this experiment. The purpose of this experiment is to

learn how people make decisions in certain very simple settings.

After this experiment, another experiment will take place. The precise details of that experiment will be explained

to you at the appropriate time. Depending on your choices you will earn money, which will be paid at the end of the

experiment. The exact method of calculating your final payment will be described below.

We ask that you remain silent throughout the experiment. If, at any time, you have a question, please ask the

session coordinator. Failure to comply with these instructions means that you will be asked to leave the experiment

and all earnings will be forfeited.

In the experiment it is more convenient to work with points rather than dollars. At the end of the experiment,

the total number of points earned will be converted to dollars. The exact conversion factor is the following:

20 points = $1.00

A Previous Experiment

In a previous experiment, we had two subjects play the following game for 20 periods.

A1 A2 A3
A1 51, 30 35, 43 93, 21
A2 35, 21 25, 16 32, 94
A3 68, 72 45, 69 13, 62

One of the subjects had the role of the row player, while the other had the role of the column player. In each

of 20 periods, the two subjects simultaneously chose an action — either A1, A2 or A3. The actions taken by the

row and column players in each period determine the payoffs for that period. Each of the nine boxes above represent

the nine possible action combinations. In each box, the first entry represents the payoff for the row player, while

the second entry represents the payoff for the column player.

To understand how to calculate the payoffs for this game, suppose that the row player chose A2 and the column

player chose A3. In this case, the row player would have earned 32 points and the column player would have earned

94 points.

The subjects who have played this game before were recruited just as you were today by the CESS lab recruiting

program. Hence they are NYU undergraduates just as you are. They played the game for 20 periods and we have

recorded their choices in each of the 20 periods of their interaction. That means that in each of the 20 periods the

row player has made one of his or her three possible choices A1, A2, or A3 as has the column chooser. Your task in

this experiment is to predict the actions of the COLUMN player in each of the 20 periods of his or her interaction

with the row player he or she was matched with. We stress that these two subjects were paired with each other for

the entire 20 periods. We will now explain this task to you in more detail as well as how you will be paid for your

decisions.
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Predicting Other People’s Choices

In each period, but before learning what actually happened, you will be asked the following three questions which

will appear on the computer screen in front of you:

• On a scale from 0 to 100, how likely do you think it is that the COLUMN player will take action A1?

• On a scale from 0 to 100, how likely do you think it is that the COLUMN player will take action A2?

• On a scale from 0 to 100, how likely do you think it is that the COLUMN player will take action A3?

Your response to each question must be a number between 0 and 100. Moreover, the sum of the three numbers that

you provide must be exactly 100.

For example, suppose that you think there is a 30% chance that the COLUMN player will take action A1, a 25%

chance that the COLUMN player will take action A2 and a 45% chance that the COLUMN player will take action

A3. In this case, you will enter 30 in the first box on the left-hand side of the screen, 25 in the second box and 45 in

the and third box. The exact computer screen you will see is given below.

After you have submitted your predictions, you will be taken to a waiting screen on which you will see the actions

actually chosen by both the ROW and the COLUMN players. Based on your predictions and the action actually

chosen by the COLUMN player, you will earn experimental points according to a specific payoff function, which we

now explain. Suppose your predictions are as in the above example. Furthermore, suppose that in the current period

the COLUMN player actually chose A2. In that case your payoff for predicting the COLUMN player’s action will

be:

Payoff = 5[2− (
30

100
)2 − (1− 25

100
)2 − (

45

100
)2]

In other words, we will give you a fixed amount of 10 points from which we will subtract an amount which

depends on how inaccurate your prediction was. To do this, we find out what choice the COLUMN player made. We

then take the number you assigned to that choice – in this case 25% on A2 – subtract it from 100%, square it and

multiply by 5. Next, we take the number you assigned to the choices not made by the COLUMN player – in this case

the 30% you assigned to A1 and the 45% you assigned to A3 – square them and multiply by 5. These three squared

numbers will then be subtracted from the 25 points we initially gave you to determine your final point payoff. Your

point payoff will then be converted into dollars at the conversion factor as given above.

Note that since your prediction is made before you know the choices of both the row and column

players, the best thing you can do to maximize the expected size of your prediction payoff is to simply

state your true prediction about what you think the ROW player will do. Any other prediction will

decrease the amount you can expect to earn as a payoff.

Note also that you cannot lose points from making predictions. The worst thing that could

happen is you predict that the COLUMN player will choose one particular action (e.g., A2) with

100% certainty but it turns out that the COLUMN player actually chose a different action (e.g., A3).

In this case, you will earn 0 points. In all other situations, you will earn a strictly positive number of

points.

The Computer Screen

On your computer screen, in each period you will see the following screen:
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You make your predictions by entering a response to each question on the bottom left-hand side of the computer

screen. To submit your predictions simply press [OK]; you will then be taken to a waiting screen, which will be

shown below. Your responses to these three questions must each be numbers between 0 and 100 and

the three numbers must sum to 100. Your response may contain at most 1 number after the decimal

point. On the bottom right-hand side, you will see a reminder message as well as all of your previous predictions

and a calculator button, while on the upper right-hand side of the computer screen you will see the actions chosen

by the ROW and COLUMN players in each of the previous periods as well as your past prediction.

After you have made your predictions, you will be taken to a waiting screen. On this screen, you will see the actions

that the ROW and COLUMN players actually made for that period as well as the number of experimental points

they earned for that period. You will also see the number of points that you earned for making your predictions.

 

In this example, the row player chose action A1 and the column player also chose A1. For this period, the ROW

player earned 51 points while the COLUMN player earned 30 points. At the beginning of the next round, at the

right-hand side of the screen, it will be marked that each player chose A1 in period 1.
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This concludes one round. In every round, except the 20th, a new round will proceed in exactly the same manner.

Final Payment

Your final payment for the experiment will be determined as follows. We will sum the number of points you earned

in each of the 20 rounds that you played. This number will then be converted back into dollars at the rate of $1 =

20 points. This will be combined with your $7 participation fee to come up with your final payment. Payments will

be made privately at the conclusion of the two experiments.

C Figures

Figure 1: Games Used in the Experiments
A1 A2 A3

A1 51, 30 35, 43 93, 21
A2 35, 21 25, 16 32, 94
A3 68,72 45, 69 13, 62

(1.a) DSS

A1 A2 A3
A1 12, 83 39, 56 42, 45
A2 24, 12 12, 42 58,76
A3 89, 47 33, 94 44, 59

(1.b) nDSS
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Figure 2: Difference Between Convergence Periods Beliefs and Actions - Empirical Distributions

Dominance Solvable Game 

0

1

2

3

4

5

6

7

8

-2 -1 0 1 2 3 4 5 6 7 8 9 10+

Period of Convergence in Beliefs minus Period of Convergence in Actions

# 
O

b
s.

Early Converger

Late Converger

Non-Dominance Solvable Game 

0

1

2

3

4

5

6

7

8

-2 -1 0 1 2 3 4 5 6 7 8 9 10+

Period of Convergence in Beliefs minus Period of Convergence in Actions

# 
O

b
s.

Early Converger

Late Converger

37



Figure 3: Belief Data - nDSS(non-converging)
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Figure 4: Belief Data - DSS(non-converging)
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Figure 5: Belief Data - nDSS(converging)
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Figure 6: Belief Data - DSS(converging)
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Figure 7: Belief data - DSS(converging)
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Figure 8: Belief data - DSS(non-converging)
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Figure 9: Belief data - nDSS(converging)
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Figure 10: Belief data - nDSS(non-converging)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2

2

2

2

2

2

2 2

2

2

2 2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

3

3

3

4

4

5

5

5

5

6

6

6

6

7

7

7

8 9

1112

1213

39
nDSSnoconverge − Row

A1

A
2

Nash

# Observations in BR region − 28
# Total Observations − 320

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2 2

2

2

2

2

2

2

3

3

3

3 3 3

3

3

3

3

3

3

4

4

4

4

4

5

5

5

5

6

6

7

7

7

10

13

16

16

37

41
nDSSnoconverge − Column

A1

A
3

Nash

# Observations in BR region − 52
# Total Observations − 320

45



Figure 11: Periods until beliefs degenerate
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Figure 12: Consensus Index
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Figure 13: Static Consensus
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