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Abstract

Building on evidence from neurobiology and neuroscience, we model the physiological lim-
itations faced by individuals in the process of decision-making that starts with sensory
perception and ends in action selection. The brain sets a neuronal threshold, observes
whether the neuronal cell firing activity reaches the threshold or not, and takes the optimal
action conditional on that (limited) information. We show that the optimal threshold is
set in a way that existing beliefs are most likely to be confirmed and least likely to be re-
futed. The conclusion holds in static and dynamic settings, and with linear and quadratic
loss functions. We then relate our result to the somatic marker theory, and argue that it
provides support for the hypothesis that emotions help decision-making. Last, we discuss
the implications for choices in concrete vs. abstract situations, for interactions in cooper-
ative vs. competitive activities, for reactions to expected vs. unexpected events, and for the
choice of cognitive vs. affective encoding channels.
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1 Introduction

Economic theory has traditionally been interested in the analysis of choices. In partic-
ular and with some exceptions (such as Bernheim and Rangel (2004)), the processes by
which individuals reach decisions have been overlooked, mainly because we had very little
knowledge of the pathways going from perception to action. With the development of
increasingly sophisticated designs and techniques to measure brain activity, the neurobi-
ology and neuroscience literatures have dramatically improved our understanding of the
biological mechanisms that transform sensory perceptions into voluntary actions. These
results can now be incorporated into formal economic models of decision-making.

Building theoretical models of brain processes is an important step both for economics
and neuroscience. For economics, incorporating physiological costs and constraints in the
capacity of individuals to evaluate situations, process information and reach conclusions
will help provide microfoundations for some well-documented heuristics, systematic errors
and biases in choices, without having to rely on ad-hoc explanations.1 For neuroscience,
developing formal models of the brain as a modular entity can provide testable implications
about the functionality of different brain systems and their interactions in decision-making.
Since our theory builds on literatures that, in principle, are quite distant from economics,
we start with a brief overview of the recent research that is relevant for our study.

1.1 Some background from the brain sciences

The basic premises for our theory come from two overlapping literatures.

1. Neurobiology. Researchers in neurobiology have studied the neural mechanisms un-
derlying the transformation of sensory signals into decisions. One of the early theories, the
“Efficient Coding Hypothesis” and its mathematical formulation in terms of bayesian esti-
mation, postulates that neurons encode information as compactly as possible, so as to use
resources efficiently (see Barlow (2001) and Simoncelli (2003) for a synthesis). This the-
ory has recently led to a myriad of sophisticated statistical models that describe bayesian
stochastic processing of information by neurons in visual, auditory and haptic perception
tasks (see e.g. Schwartz and Simoncelli (2001), Ernst and Banks (2002), Körding and
Wolpert (2004) and Ma et al. (2006)).

1One could draw a parallel with the theory of organizations, where a more accurate modelling of
organizational constraints (agency problems, restricted information channels, limited resources) has helped
understanding the tendency of organizations to take certain decisions and avoid some others.
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In another classical study, Hanes and Schall (1996) use single cell recording to ana-
lyze the neural processes responsible for the duration and variability of reaction times in
monkeys. The authors find that movements are initiated when neural activity reaches a
certain threshold activation level, in a winner-takes-all type of contest.2 Also, stochastic
variability in cell firing rates is responsible for the observed differences in reaction times.
Building on this work, Shadlen et al. (1996) and Gold and Shadlen (2001) study a motion
discrimination task, where monkeys must decide whether the net direction of dots that
appear on a monitor is upward or downward. The studies show that, first, neurons in the
extrastriate visual cortex respond to the motion stimuli, and then, neurons in the parietal
and frontal association cortex carry these signals. The authors argue that information
is processed in a specific way. Neurons “compute” approximately the log-likelihood ratio
of the alternatives in order to determine which hypothesis should be supported by the
evidence. Thus, according to this result, neurons incorporate the two major ingredients of
bayesian theory: prior probabilities, and stochastic information processing (see also Den-
eve et al. (1999) for a numerical simulation model of cortical circuitry that can implement
a close approximation to maximum likelihood).

The work by Shadlen et al. (1996) has led other researchers to study whether neural cir-
cuits have a similar way to encode information in more complex situations. Ditterich et al.
(2003) show that when the task is more difficult (fewer dots move in synchrony), monkeys
require more time to take a decision and make more mistakes, two results also consistent
with a stochastic information accumulation theory. Also, using fMRI studies, Heekeren et
al. (2004) conclude that the mechanism by which the brain of a monkey computes percep-
tual decisions is also at work for humans and for more sophisticated choices, such as image
recognition. Last, in the work that is possibly most closely linked to economics, Platt and
Glimcher (1999) demonstrate that neurons react not only to probabilities of gains (as
already discussed) but also to magnitudes of gains, hence computing approximately the
“expected value” associated to each alternative (see also Glimcher et al. (2005) and the
review by Glimcher and Rustichini (2004)).

2. Affective neuroscience. The increased interest during the 1990s in understanding
the neural basis of emotions led to the development of a new subdiscipline called “affective
neuroscience” (Davidson and Sutton, 1995). Within this area, fear is arguably the emotion
that has been studied in more detail. It has been shown, for example, that the amygdala is

2Nichols and Newsome (2002) provide a further analysis of the type of situations where information
processing is likely to follow a winner-takes-all vs. a vector averaging pattern.
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a key neural pathway to fear. An emotional deficit results in anxiety disorders that prevent
the normal functioning of the individual (LeDoux (1996, 1998)). Numerous studies using
both PET scan and fMRI techniques have been conducted on other emotions and reached
qualitatively similar conclusions. First, emotions are crucial for decision-making as they
guide actions towards salient goals (Davidson and Irwin, 1999). Second, abnormalities in
the functioning of specific brain regions are responsible for emotional disorders, including
social phobias (Reiman, 1997) and depression (Drevets et al., 1997). These pathologies
result in poor decision-making.3

In his review of the brain areas involved in reward processing, Schultz (2000) concludes
that neurons adapt their activity according to ongoing experiences. Of special importance
are neurons in the orbitofrontal cortex (Tremblay and Schultz, 2000), an area that plays
a major function in the experience of emotions. Inspired by this research, and in many
cases preceding it, Damasio (1994) developed the “somatic marker hypothesis”, a thought-
provoking but also controversial neural theory that rests on two key ingredients. First, the
way emotions affect decisions is by modifying neuronal thresholds. The direction of the
change in thresholds is very precise: the individual becomes more receptive to information
that supports current beliefs and less receptive to information that contradicts current
beliefs. As summarized by Bechara and Damasio (2005):

[P]re-existing somatic states influence the threshold of neuronal cell firing in
trigger structures (e.g., VM cortex) so that subsequent somatic states from
thoughts (secondary inducers) are triggered more or less easily. [...] While
pre-existing negative somatic states reinforce subsequent negative states, they
may impede the effectiveness of positive ones. Similarly, pre-existing positive
states reinforce positive states, but they may impede negative ones (p. 363-4).

Second, this threshold modification induced by somatic dispositions improves decision-
making. Again, in Bechara and Damasio’s (2005) words:

These somatic states are indeed beneficial, because they consciously or non-
consciously bias the decision in an advantageous manner (p. 351, italics added).

Rustichini et al. (2005) provide further evidence that the emotional circuitry is active
in the task of processing information. In our view, one weakness of the somatic marker

3The primary goal in most of these studies is not so much to discuss these well-established facts but,
instead, to identify the brain circuitry behind each particular emotion or emotion disorder. These details,
however, are less crucial for the purpose of our study.
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theory is that it does not explain why a modification in that specific direction is beneficial.
As discussed below, one objective of our paper is to build a formal framework that can
address this issue.

1.2 Implications for decision-making and overview of the results

From the neurobiology literature reviewed above, the physiological information processing
mechanism can be summarized in three basic principles. First, neurons carry informa-
tion from the sensory to the decision-making system. However, the encoding technology
is imperfect: the level of neuronal cell firing depends stochastically on the information
obtained. Second, the motor cortex triggers an action whenever the cell firing activity in
favor of one alternative reaches a certain threshold. Third, the individual has the ability
to modify the triggering threshold. By acting on the threshold, the individual affects the
likelihood of interpreting evidence for and against each option.

Assume now that the brain has been developed (say, through evolution) in a way that
it maximizes the acquisition of information, in order to take the best possible action.
However, due to the constraints described above, it is only able to choose a neuronal
threshold and learn whether that cell firing level is reached or not. The first objective of
our study is to find the optimal threshold. That is, we determine what is the best way
to process information given the documented physiological limitations, and then discuss
its implications for decision-making. We also study how the thresholds vary over time,
across activities, under different priors, and for different objectives. Finally, we analyze
the effect on choices of an impairment in the capacity of an individual to set thresholds
optimally. The second and complementary objective of the paper is to relate our findings
to somatic dispositions. According to the affective neuroscience literature also reviewed
above, emotions play an important role in the regulation of neuronal activity. The somatic
marker theory goes one step beyond in arguing that: (i) emotions operate on neuronal
thresholds, (ii) they modify thresholds in a way that existing beliefs are likely to be
confirmed, and (iii) this modulation of thresholds improves decision-making. However, it
does not provide a compelling argument for the desirability of this threshold modulation.
Since our model determines the optimal threshold, it is equipped to discuss whether and
why the threshold modifications postulated by the somatic marker theory are beneficial.
In other words, if we accept (i) and (ii) as a premise, our model can determine whether
(iii) is indeed its logical consequence.4

4For the reader skeptical of the somatic marker hypothesis that emotions operate on neuronal thresholds,
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To formalize the neurobiological principles described above, we consider a simple model
with two states, A and B. We assume that the level of cell firing stochastically depends
on the state, with high cell firing being more likely in state A and low cell firing in state
B. The brain sets a threshold and determines only whether the cell firing surpasses it
or not. Given the information obtained, an action is undertaken. Payoffs depend on the
combination of action and state. The first contribution of the paper is to show that the
threshold is optimally set in a way that beliefs are likely to be supported. That is, if the
agent becomes more confident that the state is A, the threshold is decreased. Thus, the
new threshold is more likely to be surpassed whether the state is indeed A or not and,
as a result, the agent is more likely to take the action which is optimal in that state but
suboptimal in the other. Conversely, if the individual becomes more confident that the
state is B, the threshold is increased and therefore less likely to be reached (Proposition
1). The logic for this property of the optimal threshold is simple. As the likelihood of
A increases, stronger contradictory information is required to reverse that belief. From
simple Bayesian theory, we know that stronger information towards state B can only be
obtained if a lower threshold is not reached, hence the result. We then check the robustness
of this conclusion. We show that it generalizes to a continuum of states and to different
payoff formulations (e.g., linear and quadratic loss functions). Under some conditions, it
also holds when multiple thresholds can be set sequentially, which implies that the ability
to modify neuronal thresholds has a snowball effect on decision-making: a stronger belief
towards one state implies a greater threshold variation in its favor, therefore a higher
probability that new information supports it, and so on (Propositions 2 to 6).

The second contribution is to relate this result to the somatic marker theory. According
to Bechara and Damasio (2005), the role of emotions is to act on neuronal thresholds
by rendering the individual more receptive to information that supports current beliefs
relative to information that contradicts current beliefs. If we accept this as a premise, then
our previous results demonstrate that the somatic marker’s claim –namely that emotions
improve decisions– is indeed correct. In other words, a person with an emotional deficit will
not modulate thresholds in this direction and, as a result, will take suboptimal actions more
frequently. Furthermore, the effect of emotions on thresholds is all the more important
in dynamic settings: as time passes, emotionally balanced individuals are most likely to
maintain the beliefs initially favored (Corollaries 1 and 2).

our model has nothing to say about the effect of somatic dispositions on choices. Even in that case, it is still
a useful model of the neurobiological mechanisms in the brain, as it determines the (constrained) optimal
way to process information and discusses the implications for decision-making in different contexts.
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The third and last contribution of the paper is to investigate in more detail the costs
of having a coarse information partition and the implications of our theory. We show
that the limited ability of the individual to process information does not prevent efficient
decision-making if the environment is static and there are only two relevant alternatives,
which we label as “basic” situations. We also argue that cognitive encoding channels with
multiple thresholds are relatively more valuable in complex environments whereas affective
encoding channels with one or few thresholds are more appropriate in simple environments
(Propositions 7 and 8). As for the implications, we prove that optimal thresholds are more
sensitive to initial beliefs the weaker the correlation between state and cell firing. This
suggests that threshold modulation is most important in activities where information is
subjective and difficult to interpret. We also show that thresholds are more sensitive to
beliefs when agents benefit if their peers also take the correct action (positive externali-
ties) than when they benefit if they alone take the correct action (negative externalities).
Thus, optimal threshold modulation is more important in cooperative environments than
in competitive ones. Last, we highlight the importance of the correlation between action
and payoff when discussing the reaction of individuals to expected and unexpected events.
If the correlation is high, an agent who sets thresholds optimally will exhibit a low (pos-
itive) reaction to success and high (negative) reaction to failures, as emphasized in the
neuroscience literature. However, if the correlation is weak, that agent understands the
importance of luck on outcomes and has a low reaction to both successes and failures.
(Propositions 9 to 11).

1.3 Related literature

The existing neuroeconomic literature that models the interplay between reason and emo-
tion assumes competition between a (rational) cognitive system and an (impulsive) affec-
tive system as well as a specific cost-benefit tradeoff between the two (see e.g. Bernheim
and Rangel (2004), Benhabib and Bisin (2005), Loewenstein and O’Donoghue (2005); see
also Camerer et al. (2005) for a brief review).5 Our work departs quite substantially from

5Brocas and Carrillo (2005) and Fudenberg and Levine (2006, 2007) adopt the model by Thaler and
Shefrin (1981), where the two competing systems have different temporal horizons. A difference, however, is
that the myopic system is not necessarily irrational; it simply has a different (in this case, more immediate)
objective. Therefore, these papers do not directly address the role of emotions in decision-making. There
is also a literature where the individual makes choices anticipating that emotions –such fear, anxiety or
rejoicing– affect utility (Caplin and Leahy (2001), Palacios-Huerta (2004)) and some other recent works
where the individual has imperfect self-knowledge resulting in other types of intrapersonal conflicts (Carrillo
and Mariotti (2000), Benabou and Tirole (2002, 2004), Bodner and Prelec (2003)).
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this literature in that we do not presuppose any tradeoff between reason and emotion. In
fact, we do not even assume separation and competition between cognitive and affective
systems. Instead, we propose a more primitive model that incorporates the physiolog-
ical constraints faced by the brain in the decision-making process, and discuss the role
of emotions in this constrained optimization problem.6 Since we focus on the physio-
logical mechanisms behind the choice process, our paper is closer to the “physiological
expected utility” theory developed by Glimcher et al. (2005). It is worth noting that
the dichotomy between rational/cognitive and automatic/affective systems has been very
successful in neuroeconomic circles, mainly because it captures in a parsimonious way the
tension between reason and passion. However, it should also be acknowledged that most
neuroscientists strongly disagree with a literal interpretation of this dichotomy. According
to Glimcher et al. (2005, p. 251-2): “[T]here is no evidence that hidden inside the brain are
two fully independent systems, one rational and one irrational. [...] What we cannot stress
strongly enough is that the vast majority of evolutionary biologists and neurobiologists
reject this view.” Similarly, Phelps (2006, p. 27) argues “that the classic division between
emotion and cognition may be unrealistic and that an understanding of human cognition
requires the consideration of emotion.”7 There is no doubt that the metaphor is adopted
mainly for modelling purposes, and therefore can be a reasonable first approximation in
many contexts. Nonetheless, the objections raised by neuroscientists suggest that it can
be complementary and interesting to explore other ways (maybe more directly connected
to evidence from the brain sciences) to model and understand the role of emotions on
decision-making. The present paper offers one alternative approach.

Finally, there are several areas outside economics that study a related problem, al-
though from a different angle. First, there is a literature on information processing that
adopts a purely statistical approach. Neurobiologists have worked on complex statistical
algorithms that mimic what neurons in the brain do (see the references in section 1.1).
Theoretical neuroscientists have constructed mathematical and computational models of
the brain based on the underlying biological mechanisms (see Dayan and Abbott (2005)
for an introduction). Psychophysicists have developed a “signal-detection theory” to study

6From a modelling viewpoint, the paper is in fact a generalized version of the research conducted in
the theory of organizations that studies optimal partition of information when evidence is scarce: advisors
who can only convey binary information (Calvert, 1985), agents who can only announce whether the
organization’s standard is met (Sah and Stiglitz, 1986), or supervisors who can only declare who is the
winner of a contest (Meyer, 1991).

7See also LeDoux (1996, ch. 4) for an non-technical, historical perspective of the misconceptions about
the physical location of functions in the brain.
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the likelihood of finding a weak signal in a noisy environment, depending on the statistical
properties of the noise and signal random variables (see McNicol (1972) or Wickens (2002)
for an introduction). Second, there is also a literature on neural networks and artificial
intelligence which builds models inspired by the architecture of the brain in order to solve
specific tasks like data processing or filtering (see Abdi (1996) for a review).

2 A model of neuronal cell firing activity

2.1 The brain: a constrained processor of information

An individual (he) has to take an action with uncertain payoff. Prior to that, he can
obtain some information about the relative desirability of the alternatives. His objective
is to process the information as efficiently as possible, given the physiological limitations
of his brain. As reviewed above, the neurobiology literature highlights three key aspects
of signal processing in the brain. First, information is scarce and imperfect: neuronal cell
firing is stochastically correlated with the state. Second, the brain has a limited capacity
to process information. It can only determine whether the neuronal cell firing activity
surpasses a given threshold or not. Third, the brain (and, more specifically, the soma
according to the somatic marker theory) has the ability to choose the neuronal threshold.

To understand the effects of this limited capacity to process information, we consider
a concrete and very basic choice situation. The individual must decide how far from the
cave to go hunting. There are two states, S ∈ {A,B}: leaving the cave is either dangerous
(A) or safe (B), and the individual assigns probability p ∈ (0, 1) to state A. We denote
by γ ∈ [0, 1] the action, where lower values of γ denote going farther away from the cave
to hunt. The payoff of the individual is πA l(γ − 1) if S = A and πB l(γ − 0) if S = B,
where l(z) = l(−z) for all z and l′(z) < 0 for all z > 0. Thus, if hunting is dangerous
(S = A), the individual should stay as close as possible to the cave (γ = 1), since each mile
traveled increases the probability of encountering a predator. If hunting is safe (S = B),
then he should go as far away as possible to find the best preys (γ = 0).8 Note that πS
captures the marginal cost of taking a wrong action given that the state is S. So, for
example, πA > πB would reflect the idea that hunting on a dangerous day is more costly
than staying in the cave on a safe day. Given a belief p, the expected payoff function that

8We deliberately chose an example encountered by primitive individuals because it illustrates reasonably
well evolutionary relevant situations. For current applications, it makes more sense to think of the states
as investment A or B being most profitable, relationship A or B being more gratifying, etc.
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the individual maximizes is:

L(γ; p) = p
[
πA l(γ − 1)

]
+ (1− p)

[
πB l(γ)

]
(1)

Before making his choice, the individual takes one step out of the cave and looks around.
The information transmitted by the sensory system is modeled in a way to incorporate
the three premises reviewed above. First, we assume that there is some stochastic level
of neuronal cell firing c that depends on the state. Formally, the likelihood of a cell firing
level c ∈ [0, 1] is g(c) if the state is A and f(c) if the state is B, with G(c) =

∫ c
0 g(y)dy

and F (c) =
∫ c
0 f(y)dy representing the probability of a cell firing activity not greater

than c when the state is A and B, respectively. Furthermore, high cell firing is relatively
more likely when S = A and low cell firing is relatively more likely when S = B. Said
differently, on dangerous days, there are stochastically more neurons in the amygdala
carrying a message of fear to the brain than on safe days. Formally, the functions g(·) and
f(·) satisfy the standard Monotone Likelihood Ratio Property (MLRP):9

Assumption 1 (MLRP)
(
f(c)
g(c)

)′
< 0 for all c. (A1)

This assumption states that the probability of state B (hunting is safe) rather than A

(hunting is dangerous) monotonically decreases with the level of cell firing. In other
words, an increase in the number of neurotransmitters carrying the signal “fear” indicates
a higher likelihood that a predator is present. Figure 1 provides a graphical representation
of cell firing probabilities for the case of symmetric functions f(·) and g(·).

���

if state is B
AAU

if state is A

-

6

1/2 10 c

f(c) g(c)

Pr(c)

Figure 1. Stochastic cell firing level.

9MLRP implies: (i) 1−G(c)
g(c)

> 1−F (c)
f(c)

, (ii) G(c)
g(c)

< F (c)
f(c)

, and (iii) G(c) < F (c) ∀ c ∈ (0, 1).
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Second, the neuronal activity is an indicator of the state, and therefore of the optimal
action to be taken. However, physiological constraints prevent the brain from learning the
exact level of cell firing c. Following the second premise, we assume that the brain only
determines whether the neuronal activity is above or below a threshold x. This means
that, for any given threshold x, a cell firing activity above it will suggest (more or less
strongly) that S = A, whereas a cell firing activity below it will indicate (more or less
strongly) that S = B. Last, according to the third premise, we allow the brain to modify
the threshold, that is, to select x. In the next section, we determine how the threshold
should be set in order to optimize learning.

The timing of our game can thus be summarized as follows. In stage 0, nature picks
a state S ∈ {A,B}. In stage 1, the brain sets a threshold x ∈ (0, 1), the individual looks
around, there is neuronal activity c ∈ [0, 1], and the brain finds out whether the cutoff
is reached or not (c ≷ x). In stage 2, the individual updates his beliefs and chooses an
action γ ∈ [0, 1]. Final payoffs depend on the action γ and the state S. Figure 2 depicts
this sequence of events.

-tnature picks

S ∈ {A,B}

tx ∈ (0, 1)

brain sets

tcell firing

c ≷ x

tγ ∈ [0, 1]

action

tpayoff

L(γ |S)

stage 0 stage 1 stage 2

Figure 2. Timing.

2.2 Optimal cell firing threshold

Our first objective is to determine the optimal threshold. We solve this game by backward
induction. In stage 2, the optimal action depends on the shape of the payoff l(·). We
first assume that l(z) is weakly convex on both sides of its bliss point z = 0: l′′(z) > 0
for all z, so that departures from the optimal action are decreasingly costly. A special
case of this class of functions is the linear loss function l(z) = −|z|.10 Note that when
l(z) is weakly convex, then the expected payoff function, L(γ; p), is weakly convex in
γ and differentiable in (0, 1), so corner solutions are optimal. If we denote by γ∗(p) =
arg max γ L(γ; p), necessary and sufficient conditions for γ∗(p) = 1 and γ∗(p) = 0 are,

10In section 3.1, we extend the analysis to a strictly concave loss function.
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respectively, L(1; p) > L(0; p) and L(0; p) > L(1; p). Using (1) and given that l(0) > l(1),
we have:

γ∗(p) = 1 if p > p∗ ≡ πB
πA + πB

and γ∗(p) = 0 if p < p∗ ≡ πB
πA + πB

Not surprisingly, if the marginal cost of an incorrect action in a given state increases, then
the individual is more willing to take the action optimal in that state even at the increased
risk of erring in the other state. Formally, dp∗/dπA < 0 and dp∗/dπB > 0. In our example,
as predators become smarter and more dangerous, the individual is more likely to decide
to stay in the cave, even on days that are apparently safe.

In stage 1, the threshold x is selected. Before proceeding, three properties must be
noted. First, for any p and x, the belief about state A is revised upwards if x is surpassed
and downwards if x is not reached:

p(x) ≡ Pr(A | c > x) =
p(1−G(x))

p(1−G(x)) + (1− p)(1− F (x))
> p ∀ p, x ∈ (0, 1)2 (2)

p(x) ≡ Pr(A | c < x) =
pG(x)

pG(x) + (1− p)F (x)
< p ∀ p, x ∈ (0, 1)2 (3)

It captures the idea that low cell firing is an (imperfect) indicator of state B and high cell
firing an (imperfect) indicator of state A. Second, a necessary condition for a threshold
x to be optimal is that it must prescribe different actions depending on whether c ≷ x.
Indeed, if it prescribes the same action, stage 1 is uninformative, and the threshold does
not play any role. Third, when evaluating the likelihood of A, surpassing a stringent
cutoff is more unlikely than surpassing a weak cutoff, but it is also a stronger indicator
that this state is correct: ∂ Pr(A | c > x)/∂x > 0. Also, not reaching a stringent cutoff
is more likely than not reaching a weak cutoff, but it is also a weaker indicator that this
state is incorrect: ∂ Pr(A | c < x)/∂x > 0. A similar argument is true for state B. This
property captures the negative relation in Bayesian learning contexts between likelihood
and impact of information.

Properties one and two imply that the individual will set a threshold x such that
γ∗ = 1 if the threshold is exceeded and γ∗ = 0 if the threshold is not met. Property three
highlights the trade-off between the likelihood of obtaining a given piece of information
and its impact on beliefs. Taken together, it means that the optimal threshold maximizes
the following value function:

V (x; p) = Pr(c > x)L(1; p(x)) + Pr(c < x)L(0; p(x))

= p πA

[
(1−G(x))l(0) +G(x)l(1)

]
+ (1− p)πB

[
(1− F (x))l(1) + F (x)l(0)

] (4)
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Denote by x∗(p) = arg maxx V (x; p) the optimal threshold as a function of the belief
p, and assume that the parameters of the model are such that f(0)

g(0) >
p

1−p
πA
πB

> f(1)
g(1) .11

Our first result is the following.

Proposition 1 When l′′(z) > 0, the optimal threshold x∗(p) is unique and given by:

f(x∗(p))
g(x∗(p))

=
p

1− p
πA
πB

(5)

which, in particular, implies that dx∗/dp < 0.

Consider two individuals who differ only in their belief about the likelihood of state
A. According to Proposition 1, the individual with strongest prior in favor of A sets the
lowest threshold. As a result, he is more likely to receive evidence that endorses A and less
likely to receive evidence that endorses B than the other agent, both if the true state is A
and if the true state is B. In other words, the ability to set optimal thresholds increases
the likelihood that an individual be reaffirmed in his belief.

This result is due to the trade-off between the likelihood of information and its impact.
To see this, suppose that the individual believes that A is more likely than B and, conse-
quently, prefers to choose action γ = 1 given his current prior. Assume also that he sets a
high threshold. If the threshold is surpassed, he will be extremely confident that the state
is A, whereas if the threshold is not reached, he will be only moderately convinced about
state B. In both cases, his posterior belief hinges towards A, and he takes the same action
he would have taken without this information. Suppose instead that the individual sets
a low threshold. If the threshold is surpassed, he will slightly increase his confidence in
state A, whereas if the threshold is not reached, he will become quite convinced that the
state is B. The individual ends up taking different actions and, in both cases, he is quite
confident about his choice. Overall, the optimal threshold must balance the belief in favor
of A conditional on the threshold being surpassed and the belief in favor of B conditional
on the threshold not being reached. In order to achieve this balance, the threshold should
be low whenever A is a priori more probable than B: evidence of A is weakly informative
but adds to the prior in its favor, whereas evidence of B is highly informative and compen-
sates for the prior against it. In other words, when one state is a priori more likely than
the other, the individual will require strong information against it to change his beliefs.

Notice that (A1) ensures the uniqueness of the local (hence, global) maximum. If,
instead, we assumed stochastic dominance (a substantially weaker condition than (A1)

11This condition ensures that the optimal solution is interior.
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formally defined as F (c) > G(c) for all c), x∗ would not necessarily be unique. Neverthe-
less, since the value function (4) is always submodular, the monotonic relation between
threshold and likelihood of state, dx∗/dp < 0, would be preserved in all the local max-
ima.12 Last, note also that the threshold is set in such a way that, in equilibrium, the
most costly mistakes are most likely to be avoided: dx∗/dπA < 0 and dx∗/dπB > 0.

2.3 The role of emotions

The model presented so far relies exclusively on our three neurobiological premises. Ac-
cording to the somatic marker theory, there is a tight physiological link between these
findings and the somatic dispositions of individuals. As discussed in section 1.1, Bechara
and Damasio (2005) argue that emotions affect the way information is processed, a view
consistent with the findings of Rustichini et al. (2005). More precisely, the soma modifies
the neuronal threshold by increasing the likelihood of interpreting evidence in favor of
the currently supported hypothesis. They also conclude that this threshold modulation is
beneficial for decision-making. Our model clarifies this issue.

Corollary 1 If we accept as a premise that somatic dispositions play the biological role
described in the somatic marker theory, then emotions do improve decision-making.

Proposition 1 states that it is optimal to set a threshold so that the likelihood of con-
firming a belief is greater the stronger the prior in its favor. The somatic marker theory
argues that emotions affect the threshold in that precise direction. Corollary 1 simply puts
these two results together. In other words, our model formally proves that the somatic
marker’s claim regarding the desirability of favoring the current belief, when interpreting
new information, is correct. Conversely, consider an individual with an abnormal activa-
tion of somatic signals who sets the threshold independently of his belief (dx∗/dp = 0)
or who is most receptive to information that contradicts his current belief (dx∗/dp > 0).
According to our theory, this person will make suboptimal choices more frequently. Last
and as a matter of clarification, our model does not argue that the soma is an intelligent
system that performs the sophisticated trade-off described in Proposition 1. Instead, it
suggests that the development through evolution of a biological mechanism (in this case,
governed by emotions) with these qualitative properties is indeed advantageous.

12We thank Guofu Tan for pointing this out.
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3 Optimal threshold in other environments

The model presented in section 2 makes a number of assumptions. It is only natural
to discuss whether the qualitative properties of Proposition 1 (and its implications for
emotional dispositions presented in Corollary 1) hold in more general, or simply different,
settings. In this section, we extend the basic model in a number of directions: we consider
a concave payoff function (section 3.1), we increase the number of states (section 3.2), and
we allow for two stages of cell firing activity (section 3.3). To avoid carrying unnecessary
parameters, we will assume without loss of generality that πA = πB = 1.

3.1 Increasingly costly departures from the optimal action

Although plausible in some settings, a weakly convex payoff function may not always be
the most appropriate way to represent the payoff of the individual. For example, hunting
closely enough to the cave might not be dangerous, even in the presence of predators. To
capture this alternative situation, we assume in this section that the payoff function is
strictly concave, continuous and twice-differentiable everywhere: l′′(z) < 0 for all z and
l′(0) = 0. Denote by γ∗∗(p) = arg max γ L(γ; p). Taking the first-order condition in (1),
we have:

l′(γ∗∗(p))
l′(1− γ∗∗(p))

=
p

1− p
(6)

Note that ∂L(γ;p)
∂γ

∣∣∣
γ=0

= −p l′(1) > 0, ∂L(γ;p)
∂γ

∣∣∣
γ=1

= (1 − p)l′(1) < 0, and ∂2L(γ,p)
∂γ2 < 0.

Thus, contrary to the previous case, extreme choices are never optimal when departures
are increasingly costly: γ∗∗(p) ∈ (0, 1) for all p ∈ (0, 1). Furthermore:

dγ∗∗(p)
dp

∝ ∂2L(γ; p)
∂γ∂p

= −l′(1− γ)− l′(γ) > 0

As the likelihood of danger increases, the individual decides to stay closer to the cave.
Before making any decision, the individual looks outside the cave. The brain sets a
threshold x that is used to interpret the evidence. Given (2), (3) and (6), the optimal
actions when c > x and c < x are, respectively:

l′(γ∗∗(p(x)))
l′(1− γ∗∗(p(x)))

=
p(x)

1− p(x)
=

p

1− p
1−G(x)
1− F (x)

(7)

l′(γ∗∗(p(x)))
l′(1− γ∗∗(p(x)))

=
p(x)

1− p(x)
=

p

1− p
G(x)
F (x)

(8)
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where γ∗∗(p(x)) > γ∗∗(p(x)). Differentiating (7) and (8) and using (A1), we obtain:

dγ∗∗(p(x))
dx

> 0 and
dγ∗∗(p(x))

dx
> 0 (9)

According to (9), the individual reacts to an increase in the threshold by choosing a
higher action. Indeed, if the higher threshold is surpassed, then the evidence in favor of
state A is stronger. Conversely, if the higher threshold is not reached, then the evidence
in favor of B is weaker. In both cases, higher actions follow. We can now define the value
function of the individual. Adapting (4) to the present case, we get:

V (x; p) = Pr(c > x)L(γ∗∗(p(x)); p(x)) + Pr(c < x)L(γ∗∗(p(x)); p(x))

= p(1−G(x))l(1− γ∗∗(p(x))) + (1− p)(1− F (x))l(γ∗∗(p(x)))

+pG(x) l(1− γ∗∗(p(x))) + (1− p)F (x) l(γ∗∗(p(x)))

(10)

To solve this value function, we first need to introduce a strengthened version of MLRP:

Assumption 2 (s-MLRP) f(c)
1−F (c) >

g(c)
1−G(c) ,

(
f(c)
g(c)

1−G(c)
1−F (c)

)′
6 0,

(
f(c)
g(c)

G(c)
F (c)

)′
6 0 (A2)

Note that the first and second or the first and third parts in (A2) imply (A1), but
the converse is not true. Denote by x∗∗(p) = arg maxx V (x; p). The optimal threshold
maximizes (10) given (7) and (8). The first-order condition is:

∂V (x; p)
∂x

∣∣∣∣
x=x∗∗

= 0 ⇒ f(x∗∗)
g(x∗∗)

=
p

1− p
l(1− γ∗∗(p(x∗∗)))− l(1− γ∗∗(p(x∗∗)))

l(γ∗∗(p(x∗∗)))− l(γ∗∗(p(x∗∗)))
(11)

and we can now state our next result.

Proposition 2 Under (A2) and when l′′(z) < 0, a sufficient condition to have a unique
optimal threshold x∗∗ given by (11) and such that dx∗∗/dp < 0 is:

d

dx

[
F (x)l(γ∗∗(p(x))) + (1− F (x))l(γ∗∗(p(x)))

]
x=x∗∗

> 0 (C1)

Under (A1), the condition guarantees dx∗∗/dp < 0 in every optimum but not uniqueness.

When departures from the optimal action are increasingly costly, the quasi-concavity
of the value function V (x; p) is not guaranteed for generic values of the densities and
payoff functions f(·), g(·) and l(·). In fact, there are two forces at play when choosing the
optimal x. First, a higher threshold is less likely to be surpassed and therefore more likely
to induce the low action (γ∗∗(p(x)) will be taken more often than γ∗∗(p(x))). Second,
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either outcome is a weaker indicator that the state is B. Therefore, the final action
will be higher both when the threshold is surpassed and when it is not reached (see
(9)). In other words, conditional on being a priori more confident that the state is A, the
individual can always lower the action when his ex post confidence is weakened. Therefore,
and contrary to the previous section, choosing a high threshold is not necessarily always
dominated. Proposition 2 provides a sufficient condition such that V (·) is well-behaved.
The interpretation of (C1) is simple: starting from the optimal threshold, setting a higher
x increases the payoff of the individual if and only if the state is B.13 In other words, as
x increases, the direct effect of increasing the likelihood of choosing the low action must
dominate the indirect effect of choosing relatively higher actions. It is also clear why the
condition is automatically satisfied when payoffs are weakly convex: since only γ∗ = 0 or
γ∗ = 1 are optimal, a marginal change in the threshold does not affect the choice of action
(indirect effect) but it does change the likelihood of surpassing it (direct effect).

In order to provide a full characterization of the equilibrium, we will now restrict
attention to quadratic payoffs, l(z) = α − β z2 with β > 0. Under this restriction, the
optimal action coincides with the belief of the individual. Formally, (7) and (8) become:

γ∗∗(p(x)) = p(x) and γ∗∗(p(x)) = p(x) (12)

Replacing (12) into (11), we obtain the following result.

Proposition 3 Under (A2) and if payoffs are quadratic, the optimal threshold x∗∗ is
unique, it satisfies dx∗∗/dp < 0, and it solves:

f(x∗∗)
g(x∗∗)

=
p

1− p
(1− p(x∗∗)) + (1− p(x∗∗))

p(x∗∗) + p(x∗∗)
(13)

Under (A1), the optimal threshold satisfies dx∗∗/dp < 0 but it may not be unique.

The main conclusion in Proposition 1 is that thresholds are set in such a way that
existing beliefs are likely to be reaffirmed. According to Propositions 2 and 3, the result
extends immediately to quadratic payoffs. It also extends to other concave payoff functions
as long as (C1) is satisfied. The following example illustrates some other properties of
the equilibrium.

13Given (11), (C1) can also be stated as: d
dx

[
G(x)l(1−γ∗∗(p(x)))+(1−G(x))l(1−γ∗∗(p(x)))

]
x=x∗∗

< 0.

Therefore, a higher x decreases the payoff if the state is A.
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Example 1. Suppose that the cell firing distribution functions areG(c) = c2 and F (c) = c.
From (5) and (13) and after some algebra, the optimal thresholds with linear (l(z) = −|z|)
and quadratic (l(z) = −z2) payoffs are respectively:

x∗(p) = 1−p
2p and x∗∗(p) =

√
1−p√

1−p+
√

1+p

where x∗ and x∗∗ are interior if p > 1/3. In this example, the optimal threshold is always
less extreme with quadratic than with linear payoffs: x∗ T x∗∗ T 1/3 for all p S 3/5.

3.2 Enlarging the state space

In this section, we are interested in situations in which making a decision requires to assess
the likelihood of many states, so that information is more complex to evaluate. To better
isolate this new dimension, we consider the model presented in section 2.1 and assume
that there is a continuum of states s ∈ [0, 1], but only two possible actions γ ∈ {0, 1}. In
our example, there are many predators, and s captures the proportion of predators who
are currently in the neighborhood. The individual can only go hunting (γ = 0) or stay
in the cave (γ = 1). We order the states by the increasing degree of danger, from safest
(s = 0) to most dangerous (s = 1). The probability of a cell firing level c given state s is
now f(c | s). The generalization of MLRP to the continuous case is:

Assumption 1’ (continuous MLRP)
d

dc

(
fs(c | s)
f(c | s)

)
> 0 for all c and s. (A1’)

The individual initially believes that the state is s with probability p(s), where
∫ 1
0 p(s)ds =

1. The expected payoff function described in (1) can then be generalized as:

L(γ; p(s)) =
∫ 1

0
p(s)l(γ − s)ds

Since we restrict the action space to γ ∈ {0, 1}, the optimal action is:

γ̂ = 1 if
∫ 1

0
p(s)

(
l(1− s)− l(s)

)
ds > 0 and γ̂ = 0 if

∫ 1

0
p(s)

(
l(1− s)− l(s)

)
ds < 0

Given a prior distribution p(s) and a threshold x, the individual will put more weight
in states closer to 1 if c > x and in states closer to 0 if c < x. Thus, in equilibrium, the
individual will choose γ̂ = 1 if the threshold is surpassed and γ̂ = 0 if the threshold is not
reached (this property will be checked ex-post). The value function is then:

V (x; p(s)) = Pr(c > x)L(1; p(s | c > x)) + Pr(c < x)L(0; p(s | c < x))

=
∫ 1

0
p(s)

(
(1− F (c | s))l(1− s) + F (c | s)l(s)

)
ds

(14)
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Denote by x̂(p(s)) = arg maxx V (x; p(s)). We have:

Proposition 4 With a continuum of states s ∈ [0, 1] and only two actions γ ∈ {0, 1}, the
optimal threshold x̂ is unique and given by:

−
∫ 1

0
p(s)f(x̂ | s)

(
l(1− s)− l(s)

)
ds = 0 (15)

If
(
q(s)
p(s)

)′
> 0, then x̂(q(s)) < x̂(p(s)).

The main conclusions stated in Proposition 1 extend to the case of two actions and
a continuum of states: (i) the optimal threshold is unique and (ii) if one individual puts

more weight in higher states than another in a MLRP sense,
(
q(s)
p(s)

)′
> 0, then he also sets

a lower threshold. This property is simply a generalization of the comparative statics on p
to the case of a continuous distribution of beliefs. It thus strengthens the idea that, under
an optimal threshold, existing beliefs are more likely to be supported and less likely to be
refuted than opposite beliefs.

3.3 Dynamic thresholds

So far, we have assumed that the individual takes one look out of the cave before choosing
whether to go hunting. Another natural extension is to consider the situation in which
he can take a second look before deciding what to do. This case is interesting only if the
individual can re-optimize the threshold after having looked for the first time (otherwise,
it boils down to a model with one stage of cell firing and a more accurate information). We
deal with this situation by adding one stage to the basic model described in section 2.1. In
stage 1, the individual has a prior belief p. He sets a threshold y, learns whether c1 ≷ y,
and updates his belief. In stage 2 and given his new belief, he sets a new threshold x, learns
whether c2 ≷ x and, again, updates his belief. The action (and payoff) is contingent on his
posterior belief which depends on c1 ≷ y and c2 ≷ x. We assume that ct is independently
drawn from distribution Gt(ct) if S = A and distribution Ft(ct) if S = B, with t ∈ {1, 2}.
Distributions may be different across stages but both f1(c)

g1(c) and f2(c)
g2(c) satisfy (A1).

The game is solved by backward induction. The second cell firing stage is identical
to that described in section 2.2. The second stage value function is then given by (4).
If the first threshold y is surpassed, the posterior is p(y) and the optimal second period
threshold is x∗(p(y)). If the first threshold y is not reached, the posterior is p(y) and the
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optimal second period threshold is x∗(p(y)). Combining (2), (3) and (5), we get:

f2(x∗(p(y)))
g2(x∗(p(y)))

=
p(y)

1− p(y)
=

p

1− p
1−G1(y)
1− F1(y)

(16)

f2(x∗(p(y)))
g2(x∗(p(y)))

=
p(y)

1− p(y)
=

p

1− p
G1(y)
F1(y)

(17)

The value function that the individual maximizes in the first cell firing stage is:

W (y; p) = Pr(c1>y)
[
V (x∗(p(y)); p(y))

]
+ Pr(c1<y)

[
V (x∗(p(y)); p(y))

]
(18)

The first term is the likelihood of surpassing a cutoff y, in which case the posterior
becomes p(y), multiplied by the second-stage value function given this posterior (see (4)),
and under the anticipation of an optimal second-stage threshold x∗(p(y)) (see (5)). The
same logic applies to the second term. Notice that threshold y affects the utility of the
individual only through its effect in the posterior belief transmitted to stage 2. Denote by
y∗(p) = arg max y W (y; p) the optimal stage 1 threshold. It maximizes (18) under (16)
and (17). Taking the first-order condition in (18) and applying the envelope theorem:

∂W (y; p)
∂y

∣∣∣∣
y=y∗

= 0 ⇒ f1(y∗)
g1(y∗)

=
p

1− p
G2(x∗(p(y∗)))−G2(x∗(p(y∗)))
F2(x∗(p(y∗)))− F2(x∗(p(y∗)))

(19)

and we get the analogue of Proposition 2 to the dynamic threshold case.

Proposition 5 Under (A2) and with two cell firing stages, a sufficient condition to have
a unique optimal threshold y∗ in stage 1 given by (19) and such that dy∗/dp < 0 is:

d

dy

[
F1(y)F2(x∗(p(y))) + (1− F1(y))F2(x∗(p(y)))

]
y=y∗

> 0 (C2)

Under (A1), the condition guarantees dy∗/dp < 0 in every optimum but not uniqueness.

It is well-known that two-stage optimization problems are easily plagued by non-
convexities in the overall maximand, hence the possibility of multiple local optima. Propo-
sition 5 determines a sufficient condition for uniqueness of the maximum. Under this con-
dition, the familiar comparative statics with respect to p is also preserved. In fact, the
two-stage model with decreasingly costly departures is technically similar to the one-stage
model with increasingly costly departures. In particular, the same two effects operate
when the threshold is increased. First, the direct effect: the new threshold is less likely
to be surpassed. Second, the indirect effect: because surpassing a higher threshold is a
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stronger indicator of state A whereas not reaching a higher threshold is a weaker indicator
of state B, an increase in stage 1 threshold is always followed by a decrease in stage 2
threshold (dx∗(p)/dy < 0 and dx∗(p)/dy < 0). As before, the condition stated in the
proposition ensures that the direct effect dominates the indirect one.

Following a similar procedure as in section 3.1, we impose specific functional forms
to be able to characterize the equilibrium. We assume that the second stage cell firing
densities are linear and symmetric, g2(c) = 2c and f2(c) = 2(1 − c), and keep a general
formulation for the first stage cell firing densities. It turns out that, under this restriction,
the optimal first stage threshold takes the same form as in the one-stage quadratic case.

Proposition 6 Under (A2) and with second stage linear and symmetric cell firing den-
sities, the optimal first stage threshold y∗ is unique, it satisfies dy∗/dp < 0, and it solves:

f1(y∗)
g1(y∗)

=
p

1− p
(1− p(y∗)) + (1− p(y∗))

p(y∗) + p(y∗)
(20)

Under (A1), the optimal threshold satisfies dy∗/dp < 0 but it may not be unique.

Propositions 1, 3 and 4 showed the desirability of setting the threshold in a way
that pre-existing beliefs are likely to be confirmed when there is one stage of cell firing.
Proposition 6 shows that, under some conditions, being more receptive to information
that confirms rather than contradicts existing beliefs is optimal also when further news
are subsequently available. The intuition relies, just as before, on the balance between the
likelihood of the information vs. its impact: the individual must sacrifice either quality
or probability of obtaining information, and quality is relatively more important for the
state that is a priori less favored.

As already noted, the first stage threshold y affects the belief inherited at stage 2.
Then, it impacts the utility of the individual only through its effect on beliefs. By contrast,
the second stage threshold x directly determines which action is chosen. With three or
more stages, the thresholds at all but the last one only affect the belief inherited at the
following stage. Thus, we conjecture that the main properties of the thresholds emphasized
in Propositions 1 and 6 should, under reasonable conditions, be preserved in a situation
involving more than two cell firing stages. Unfortunately, a formal treatment of this
problem is difficult due to the increased analytical complexity of the problem.

Propositions 1 and 6 taken together have an interesting implication for the neurobio-
logical role of emotions on decision-making.
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Corollary 2 Under the premises of the somatic marker theory, emotions improve decision-
making at every stage of the information gathering process. Furthermore, an emotional
individual is most likely to develop beliefs that are maintained and least likely to develop
beliefs that are abandoned.

Because beliefs are developed on the basis of relevant information, it is obvious that,
other things being equal, further evidence is more likely to reaffirm the individual in
his beliefs than contradict him. Corollary 2 makes a stronger argument: compared to
an individual with an abnormal activation of somatic signals, an emotional individual
will modulate thresholds in a way that he will stick to his beliefs more often.14 Indeed,
an increase in the belief that the true state is A implies a decrease in the first period
cutoff, so a higher likelihood of surpassing it. Furthermore, if it is surpassed, the belief is
again updated upwards and the second stage threshold is decreased even further. Overall,
somatic activations have a snowball effect on decision-making: the more information an
individual obtains, the more he modulates the threshold to confirm his belief and, as a
result, the more likely he is to receive further supporting evidence.15 We conclude this
section with a simple example that nicely illustrates these and other effects of optimal
threshold selection on the process of information acquisition.

Example 2. Consider a two-stage cell firing model and suppose that the density functions
are identical in both stages, symmetric and linear: gt(c) = 2c and ft(c) = g(1−c) = 2(1−c),
with t ∈ {1, 2}. From (5) and (20) and after some algebra, the optimal thresholds in the
first and second stage are:(

1− y∗

y∗

)2

=
p

1− p
⇔ y∗(p) =

√
1− p√

1− p+
√
p

and
1− x∗

x∗
=

p

1− p
⇔ x∗(p) = 1− p

The threshold is always less sensitive to the belief in the first stage than in the second
stage, x∗(p) T y∗(p) T 1/2 for all p S 1/2, which seems quite natural. The individual
anticipates that, after the first cell firing stage, there is still more information to come.
Therefore, maximizing the amount of information acquired in the first stage is relatively
more important than learning whether, at this point, it supports or contradicts current
beliefs, and more information is on average obtained with a less extreme threshold. More
generally, the result implies that for some extreme priors, the belief about which state is

14Naturally and using a basic property of martingales, if the emotional individual receives contradictory
evidence, he will also revise his beliefs more strongly (see section 5.3).

15Again by the properties of martingales, if signals and threshold tend to infinity the individual always
ends up learning the true state.
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more probable will not be reversed after the first cell firing stage.16 This sharply contrasts
with the second cell firing stage, where a necessary condition for a threshold to be optimal
is that it must prescribe different actions depending on the result of cell firing.

4 The effect of physiological limitations on decision-making

The information processing mechanism by which the individual sets a threshold and learns
only whether it is surpassed necessarily implies some information loss, relative to a situa-
tion where the individual could determine the exact level of cell firing. In this section, we
discuss the cost of this physiological constraint as a function of the environment consid-
ered: two or more states, one or two cell firing stages, and concave or convex loss functions
(section 4.1). We then propose a simple extension where the individual can choose be-
tween a low cost but coarse information partition and a high cost but precise information
partition, and study in which cases one of them dominates the other (section 4.2).

4.1 Costs of a coarse information partition

Suppose that, instead of setting a threshold, the brain could determine the exact level
of cell firing. Interestingly, in the environment described in section 2.2 with two states
and a weakly convex utility loss, physiological limitations do not prevent efficient decision-
making. The key is that l′′(z) > 0 implies that only extreme choices are optimal, that is,
γ∗ is either 0 or 1. The threshold x∗ is set in such a way that if the individual learned that
c = x∗ (a zero-probability event), then he would be indifferent between actions γ∗ = 0 and
γ∗ = 1. Formally and using (5):

Pr(A | c = x∗) =
p g(x∗)

p g(x∗) + (1− p) f(x∗)
=

πB
πA + πB

As a result, γ∗ = 1 dominates γ∗ = 0 for all c > x∗ and γ∗ = 0 dominates γ∗ = 1 for all
c < x∗ which, in turn, means that learning whether x∗ is surpassed or not is sufficient for
the purpose of determining which action to take. Even though the assumptions in section
2.2 are restrictive, it is worth thinking in which circumstances they are met. Convexity of
the payoff function reflects the fact that marginal departures from the ideal choice are the

16Formally, Pr(A|c1 > y∗(p)) = 1 − [y∗(p)]2 < 1
2

for all p < 2−
√

2
4

. Symmetrically, Pr(A|c1 < y∗(p)) =

[1− y∗(p)]2 > 1
2

for all p > 2+
√

2
4

. If p ∈ (0, 2−
√

2
4

), the individual will believe at the end of the first stage

that B is more likely than A independently of whether c1 ≷ y∗. If p ∈ ( 2+
√

2
4

, 1), the individual will believe
at the end of the first stage that A is more likely than B independently of whether c1 ≷ y∗.

22



most costly ones. Therefore, it is suitable to model environments where life-threatening
events occur as soon as the optimal action is not taken. In our example, it can capture
a high probability of both fatal injury when a predator is encountered and death by
starvation if no food is collected.

The same conclusion may extend to more complex environments, like the continuum
of states extension presented in section 3.2. In that setting, the individual does not suffer
a utility loss form a coarse information partition either, simply because the action space
is binary (Γ = {0, 1}). Overall, as long as (i) there is one stage of cell firing and (ii) only
two actions are relevant (in equilibrium as in section 2.2 or by assumption as in section
3.2), setting one threshold will be sufficient for the purpose of decision-making. We label
these environments as “basic” or “primitive” decision-making situations.

We can also see why the two conditions are necessary. Consider a situation with
increasingly costly departures (l′′(z) 6 0) and a large action space (γ ∈ [0, 1]). As discussed
in section 3.1, the optimal action in that environment is different for every belief even with
two states (see (6)). Therefore, if the individual is only able to set a threshold, he will have
only one of two posterior beliefs (depending on whether the threshold is surpassed or not),
which immediately results in a strictly positive utility loss. A similar argument applies to
the dynamic environment considered in section 3.3. From equations (16) and (17) we can
see that every belief inherited from stage 1 implies a different optimal threshold in stage
2. Therefore, even though setting only one threshold in stage 2 is sufficient, the individual
would still increase his payoff if he were able to determine the exact cell firing level in stage
1. Notice also that, with a coarse information partition, the order in which evidence is
received matters. For example, under the sequence c∗ ‘small’ followed by c∗∗ ‘high’, γ = 1
is more likely to be chosen (i.e., stage 2 threshold is more likely to be surpassed) than
under the sequence c∗∗ followed by c∗. Taken together, these observations suggest that
the brain is well designed to process information in static environments, but behavioral
errors are inevitably generated when several pieces of information need to be processed
sequentially. The results of this section are summarized as follows.

Proposition 7 Physiological limitations in information processing do not prevent efficient
decision-making only in basic situations: a static environment with a choice between two
relevant alternatives.

Finally, we provide a simple analytical example characterizing the utility loss due to a
coarse information partition in a two-stage cell firing environment.
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Example 3. Consider the same setting as in Example 2. Let l(0) = 1, l(1) = 0 and
p = 1/2, which implies that y∗ = 1

2 , p(1
2) = 3

4 , x∗(p(1
2)) = 1

4 , p(1
2) = 1

4 , and x∗(p(1
2)) = 3

4 .
Given p(A|c1) = c1, the expected payoff if the exact level of cell firing c1 is observed is:

W̃ = p

∫ 1

0
Pr(c1|A)

[
1−G(x∗(p(A|c1)))

]
dc1 + (1− p)

∫ 1

0
Pr(c1|B)

[
F (x∗(p(A|c1)))

]
dc1 =

5
6

The payoff if the individual learns only whether the threshold y∗ = 1/2 is surpassed is:

W = Pr(A)
[

Pr(c1 > 1
2 |A) Pr(c1 > 1

4 |A) + Pr(c1 < 1
2 |A) Pr(c1 > 3

4 |A)
]

+ Pr(B)
[

Pr(c1 < 1
2 |B) Pr(c1 < 3

4 |B) + Pr(c1 > 1
2 |B) Pr(c1 < 1

4 |B)
]

=
13
16

< W̃

which results in a utility loss of only 2.5%.

4.2 The affective and cognitive encoding channels

As discussed in section 1.3, the main objective of the paper is not to analyze the interplay
between a rational and an emotional system in the brain. Nevertheless, understanding
whether neuronal thresholds are modulated by the soma (and, if so, why) remains a
challenge in neuroeconomics. In that respect, comparing the behavior of an individual
supposedly using an emotional process with the behavior of an individual using a “more
sophisticated” process might shed some light on this puzzle.

In this section, we postulate that, for each decision, the brain may have to choose be-
tween different encoding channels: an affective process where the partition of information
is coarse but fast vs. a cognitive process where the partition is fine but slow and/or en-
ergy demanding.17 The affective process is the process analyzed so far; it only determines
whether the neuronal activity is above or below a threshold. The cognitive process is a
sophisticated channel capable of interpreting neuronal activity in more detail (for exam-
ple, by setting more than one threshold). It is crucial to note that this approach does
not presuppose that the cognitive channel leads to correct choices whereas the affective
channel makes mistakes. Rather, both channels process the information received in an
optimal way. However, the latter channel faces tighter constraints than the former.

According to Proposition 7, the affective channel is sufficiently precise in basic sit-
uations. When the environment is more complex, the utility loss of a coarse partition

17Contrary to the rest of the paper (and to the general methodology advocated in it) this subsection is
based more on an “intuitive trade-off” than on evidence from neurobiology. The conclusions should then
be taken with extra caution.
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becomes positive, and the cognitive channel becomes relatively more valuable. To study
in more detail the marginal gain of using the cognitive channel, we consider the simplest
extension of the basic model in which the affective channel is not fully efficient. Formally,
we add a third state, S = O, to the two-state and a continuum of actions model of section
2. State O is intermediate and captures, for example, a case where hunting is mildly
dangerous. The payoff of the individual in that state is l(γ − 1

2) and the probability of

a cell firing level c is h(c), with
(
f(c)
h(c)

)′
< 0 and

(
h(c)
g(c)

)′
< 0 for all c. Given a linear

loss function, l(z) = −|z|, a straightforward extension of the argument in Proposition 1
implies that only three actions can be optimal, γ̃ ∈ {0, 1

2 , 1}. This has two implications.
First, there is a utility loss whenever the affective channel is used. Second, there is no gain
in utility by being able to set more than two cutoffs. Therefore, without loss of generality,
we assume in what follows that the cognitive process sets exactly two thresholds.

Denote by pS the probability of state S (with
∑

S pS = 1). For the same reason as in
section 2.2, a necessary condition for cutoffs x1 and x2 (> x1) to be optimal is that γ̃ = 0
if c ∈ [0, x1), γ̃ = 1

2 if c ∈ [x1, x2] and γ̃ = 1 if c ∈ (x2, 1]. The value function that the
individual maximizes is then:

V (x1, x2) = Pr(c < x1)L(0; p(· | c < x1)) + Pr(c ∈ [x1, x2])L(1
2 ; p(· | c ∈ [x1, x2])

+ Pr(c > x2)L(1; p(· | c > x2))

= −pB
[
(1− F (x2)) + 1

2(F (x2)− F (x1))
]
− pO

[
1
2(1−H(x2)) + 1

2H(x1)
]

(21)

−pA
[

1
2(G(x2)−G(x1)) +G(x1)

]
Taking first-order conditions in (21), we obtain that the optimal cutoffs under this

cognitive information processing channel, x and x, solve:

f(x)
g(x)

=
pA
pB

+
pO
pB

h(x)
g(x)

and
f(x)
g(x)

=
pA
pB
− pO
pB

h(x)
g(x)

Notice that x < x for all pA, pO, pB ∈ (0, 1)3 and x = x∗ = x when pO = 0. If an
information partition in three regions is cognitively too demanding, the individual can
activate an affective channel, characterized by one cutoff only. Information processing is
then faster but partitioned in only two regions. Let x̌ be the cutoff that solves:

f(x̌)
g(x̌)

=
pA
pB

It is immediate to see that x̌ ∈ (x, x), and we can state the following result.
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Proposition 8 With three states, the cognitive channel sets two thresholds (x, x) whereas
the affective channel sets one threshold which, depending on (pA, pO, pB), is x or x̌ or x.
The utility loss under the affective channel is highest when all states are equally likely and
lowest when one state is highly unlikely.

When the individual sets only one threshold, he realizes that this excessively coarse
information partition results in some utility loss. In particular, the individual will be able
to discriminate only between two actions, depending on whether the selected threshold
is surpassed or not. The question is to decide which action is not worth pursuing. This
will depend on the relative likelihood of the different states. When A is the most unlikely
state (pB/pO and pO/pA are high), the individual sets threshold x; he chooses γ = 0
if c < x and γ = 1

2 if c > x. Thus, relatively to the cognitive channel, the affective
channel discriminates optimally between the low and medium actions and fully disregards
the high one. When B is most unlikely, the opposite is true: the individual sets x and
disregards the low action. Last, when O is most unlikely, the threshold is x̌ and only
extreme actions (0 or 1) are undertaken. Note that, just like x∗, the cutoff x̌ compares
the ratio of prior probabilities of A and B with the ratio of their marginal cell firing
levels g(·) and f(·), ignoring any information relative to state O. When pO → 0, all
three thresholds converge to the optimal threshold with two states. Overall, the affective
channel sacrifices the action which is optimal in the state most unlikely to occur, and
discriminates optimally between the other two. So, even though by definition the cognitive
channel always outperforms the affective channel, the utility difference between the two
depends crucially on the probability distribution of states. More precisely, the difference
is greatest when all states are equally likely and smallest when one state occurs with very
low probability.18

5 Implications of the theory

We now analyze some implications of our theory. We also discuss and evaluate some
arguments developed recently in neuroscience regarding the effect of emotional deficits
in decision-making. Again, emotions are viewed here as brain mechanisms that lead to
optimal threshold modulation. The skeptical reader can focus on the general implications
of these mechanisms and ignore the discussion about the role of the soma in these choice

18To determine the optimal choice, this utility difference should then be traded-off against the extra cost
(time, energy, etc.) incurred under the cognitive channel.
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processes. For tractability, we consider the basic model presented in section 2, which is
simple enough to be extended in a number of directions, and we assume that πA = πB = 1.

5.1 Emotional choices in simple and complex activities

If emotions are responsible for modulating thresholds, a natural question is to determine
for which activities the cost of an emotional impairment is greatest. Activities usually
differ in several dimensions, such as the temporal horizon (near vs. distant), the likelihood
of occurrence (common vs. exceptional) and the difficulty to mentally represent the con-
sequences of outcomes (concrete vs. abstract). Based on studies with brain lesion patients
(Anderson et al. (1999), Bechara and Damasio (2005)), the somatic marker theory argues
that impairments in the emotional system have more dramatic effects in choices related to
abstract, exceptional and temporally distant situations than in choices related to concrete,
common and temporally close situations.

An extension of our theory can help understanding this issue. We divide activities into
two categories: simple (concrete, common, temporally close) vs. complex (abstract, excep-
tional, temporally distant) and assume that activities in the former category are easier to
evaluate than in the latter one. Formally, we assume that information obtained through
cell firing is uniformly more accurate in simple than in complex activities. So, for example,
it is easier to process news about the relative value of two goods available for immedi-
ate purchase than about the relative desirability of two future sentimental relationships.
This matches the evidence presented in Ditterich et al. (2003) about the correlation be-
tween task difficulty and probability of a choice error (see section 1.1). We use subscript
k ∈ {α, β} to denote the two categories of activities, where “α” refers to simple (con-
crete/common/close) activities and “β” refers to complex (abstract/exceptional/distant)
activities. The probability of a cell firing level c in activity k is denoted by fk(c) if S = B

and by gk(c) if S = A. We assume that the complex activity satisfies (A1), that is(
fβ(c)
gβ(c)

)′
< 0. The greater accuracy of cell firing conditional on state in simple than in

complex activities is also captured with a standard MLRP:(
gα(c)
gβ(c)

)′
> 0 and

(
fα(c)
fβ(c)

)′
< 0

The idea is simply that “neuronal mistakes”, defined as low cell firing when S = A or high
cell firing when S = B, are uniformly less frequent in α-activities than in β-activities.
Taken together, these conditions imply that the simple activity also satisfies (A1), that
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is,
(
fα(c)
gα(c)

)′
< 0. Denote by x∗k(p) the optimal threshold in activity k as a function of p.

We can show the existence of a belief p̂ ∈ (0, 1) such that the optimal threshold coincides
in both types of activities. Formally, x∗β(p̂) = x∗α(p̂) = x̂. Our next result is as follows.

Proposition 9 Optimal thresholds are more sensitive to initial beliefs in complex than in
simple activities, that is, x∗β(p) S x∗α(p) S x̂ for all p T p̂.

We showed in section 2 that the optimal threshold x∗ is set in such a way that the
ex-post confidence in the true state is balanced. When the correlation between state and
cell firing is high (simple activities), small variations in the threshold are sufficient to
achieve the desired balance. Conversely, when the correlation is low (complex activities),
the individual is forced to resort to more extreme variations in thresholds. Said differently,
the individual is more inclined to confirm his prior when neuronal mistakes are frequent,
that is, when new evidence is noisy.

The implications of this simple argument are interesting. It suggests that the inability
to modulate neuronal thresholds, due for example to a somatic deficit, results in relatively
poorer choices and more mistakes when the situation is complex (e.g., an action that may
cause a moral harm on someone) than when the situation is simple (e.g., an action that
may cause a physical harm on someone). This hypothesis is largely favored in the somatic
marker theory (Damasio (1994), Bechara and Damasio (2005)). Note, however, that the
result is based on a purely biological reason, and not on any moral or ethical consideration.

5.2 Emotional interactions in cooperative and competitive environments

Given that the optimal threshold depends on prior beliefs and payoffs derived from ensuing
decisions, we can reasonably anticipate that any element that modifies the structure of
individual payoffs should impact the threshold modulation. Natural environments with
this property are strategic interactions.

Consider the following extension. There are two agents, i and j with i, j ∈ {1, 2},
who are either in competition or cooperation for an activity. We adopt a reduced form
model of the positive (cooperation) and negative (competition) externalities exerted by
individuals on one another: in cooperative situations, agents benefit if their colleague also
takes the correct action whereas in competitive situations, agents benefit if they alone take
the correct action. This, for example, captures the cases where individuals hunt together
and compete for preys, respectively.
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Agents cannot exchange information. They each set a threshold xi, learn whether the
cell firing activity is below or above the threshold, and choose an action. The state is
common to both agents but, conditional on it, cell firing is independent across individuals.
Denote by λ the agent’s utility of taking the correct action. If, in the cooperation setting,
the other agent also takes the correct action or if, in the competition setting, the other
agent takes the incorrect action, the utility is increased by µ. Using the superscript
“+” and “−” to denote the cooperation and competition settings respectively, the value
function of agent i can be written as follows:

V +
i (xi, xj) = P(A)P(c > xi|A)

[
λ+ µP(c > xj |A)

]
+ P(B)P(c < xi|B)

[
λ+ µP(c < xj |B)

]
= p(1−G(xi))

[
λ+ µ(1−G(xj))

]
+ (1− p)F (xi)

[
λ+ µF (xj)

]
(22)

V −i (xi, xj) = P(A)P(c > xi|A)
[
λ+ µP(c < xj |A)

]
+ P(B)P(c < xi|B)

[
λ+ µP(c > xj |B)

]
= p(1−G(xi))

[
λ+ µG(xj)

]
+ (1− p)F (xi)

[
λ+ µ(1− F (xj))

]
(23)

Note that µ = 0 corresponds to the case of independent activities analyzed in section
2.2. Denote by x+

i = arg maxxi V
+
i (xi, x+

j ) and by x−i = arg maxxi V
−
i (xi, x−j ). Taking

first-order conditions in (22) an (23), if interior solutions exist, they will be such that:

f(x+
i )

g(x+
i )

=
p

1− p
λ+ µ(1−G(x+

j ))

λ+ µF (x+
j )

(24)

f(x−i )
g(x−i )

=
p

1− p
λ+ µG(x−j )

λ+ µ(1− F (x−j ))
(25)

According to this formulation, thresholds are strategic complements in cooperative
activities (dx+

i /dxj > 0) and strategic substitutes in competitive activities (dx−i /dxj < 0).
The reason is simple. Suppose that agent 1 decreases his threshold. This makes him more
likely to surpass it, and therefore to take action γ∗ = 1. In cooperative activities, it also
increases the expected benefit for agent 2 of taking action γ∗ = 1 when S = A relative
to the expected benefit of taking action γ∗ = 0 when S = B, since the extra cooperative
payoff is more likely to be enjoyed in the first than in the second case. The cost of either
wrong choice does not change. Therefore, agent 2 has an incentive to move the threshold
in the same direction as agent 1. The opposite is true in competitive activities.

In what follows, we look for interior symmetric equilibria, where x+
i = x+

j = x+ in the
cooperative case and x−i = x−j = x− in the competitive one. We denote by κ ≡ µ/λ the
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relative importance of the other agent’s choice on one’s payoff. In order to have interior
solutions, the following technical restriction needs to be imposed.

Assumption 3 (Interior stability) The parameter κ is such that:

κ g(x+)
1 + κ(1−G(x+))

+
κ f(x+)

1 + κF (x+)
<

g′(x+)
g(x+)

− f ′(x+)
f(x+)

(A3.1)

κ g(x−)
1 + κG(x−)

+
κ f(x−)

1 + κ(1− F (x−))
<

g′(x−)
g(x−)

− f ′(x−)
f(x−)

(A3.2)

If assumptions (A3.1) and (A3.2) are violated, then the solutions in the cooperative
and competitive settings respectively may not be interior. For some distributions, these
inequalities are satisfied for all κ. Otherwise, they require κ to be small enough.19 The
reason is straightforward. As κ increases, the decision of each agent becomes closer to a
coordination problem. Suppose that one agent disregards information and always takes
action γ∗ = 1. Then, if κ is high, the other agent also has an incentive to disregard
information and take action γ∗ = 1 (in the cooperative setting) and action γ∗ = 0 (in the
competitive setting). Under these conditions, we can prove that there exists p̃ ∈ (0, 1) and
x̃ such that x+(p̃) = x∗(p̃) = x−(p̃) = x̃ , and we have the following result.

Proposition 10 Optimal thresholds are more sensitive to initial beliefs in cooperative than
in independent activities, and less sensitive in competitive than in independent activities.
Formally, x+(p) S x∗(p) S x−(p) S x̃ for all p T p̃.

Proposition 10 states that, from a pure information processing perspective, threshold
modulation is more decisive in cooperative than in competitive situations. Because in
cooperative activities there is an extra payoff when both agents undertake the same correct
action, the benefit of favoring the current belief (the state a priori most likely to be correct)
is increased relative to the case of independent activities. Conversely, in competitive
situations, each agent is more interested in learning that the least likely state is indeed
the correct one. As a result, they both set the threshold in a way that existing beliefs are

19Technically, these assumptions ensure that the slopes of the reaction functions are smaller than 1 in
absolute value at the symmetric intersection. Note that the L.H.S. in (A3.1) and (A3.2) are increasing
in κ. Therefore, sufficient conditions for the inequalities to hold are:

g(x+)

1−G(x+)
+ f(x+)

F (x+)
< g′(x+)

g(x+)
− f ′(x+)

f(x+)
and g(x−)

G(x−)
+ f(x−)

1−F (x−)
< g′(x−)

g(x−)
− f ′(x−)

f(x−)

The first inequality always holds for instance if f(·) and g(·) are linear and symmetric, as in Example 2.
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less favored than under independent activities. Overall, the result of this simple extension
suggests that an emotional deficit that prevents the individual from modulating neuronal
thresholds (for example, keeping it always at x̃) is more costly in environments with
positive externalities than in environments with negative externalities. That is, emotions
are more helpful in cooperative than in competitive situations.

5.3 Emotional reactions to expected and unexpected events

Neuroscientists have been interested in the reaction of individuals to unexpected events.
Schultz et al. (2000) claim that somatic states induce an overreaction to unanticipated
outcomes, and determine in a series of experiments the biological mechanism behind this
behavior, labeled the “Dopaminergic Reward Prediction Error” (DRPE) hypothesis. This
theory argues that the response to rewards materializes in changes in dopamine release,
which reflects the discrepancy between the reward itself and its prediction.20 Bechara and
Damasio (2005) integrate this idea in the somatic marker theory: “[T]he very quick, almost
instantaneous, switch from one somatic state to another when an unexpected event occurs,
can exert a disproportional impact on somatic state activation. Thus people’s decision may
get reversed completely if a disappointment was encountered” (p.365).

From a Bayesian perspective, beliefs are always revised more strongly the greater the
distance between prior and observation. So, without a formal benchmark for comparison, it
is difficult to determine whether there is “overreaction” and a “disproportional” response,
or just a natural belief reversal due to the influx of contradictory evidence.

We study this issue within the framework of our model by considering the following
extension. In stage 1, the brain sets a threshold x and determines whether cell firing is
above or below it. In stage 2, the individual updates his beliefs and chooses an action.
In stage 3, he observes the outcome and assesses his ex post confidence in the choice he
made. If the payoff is perfectly correlated with the true state, the individual learns with
certainty whether he made the correct choice. That is, the ex-post probability of each state
is either 0 or 1. More interestingly, under imperfect correlation, the (positive) reaction
after a success and (negative) reaction after a failure may depend on the threshold. Our
objective is to analyze this case in more detail. Imperfect correlation is modeled in a
simple way. If S = A, the payoff of action γ is l(γ − 1) with probability θ and l(γ) with
probability 1 − θ, with θ ∈ (1/2, 1]. If S = B, the payoff is l(γ) with probability θ and
l(γ−1) with probability 1−θ. In our example, on a dangerous day, the individual may be

20Caplin and Dean (2007) provide an axiomatic approach of the DRPE hypothesis.
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lucky, avoid all predators, and go back to the cave with a nice prey believing that it was
a safe day. Section 2 thus corresponds to θ = 1, where the true state is known ex post.

We first need to characterize the optimal strategy of the individual in this modified
version of the problem. In stage 2, the expected payoff of the individual is:

L(γ; p, θ) =
[
p θ + (1− p )(1− θ)

]
l(γ − 1) +

[
p (1− θ) + (1− p) θ

]
l(γ) (26)

Let p′ = p θ + (1 − p )(1 − θ) be the probability of encountering a predator. It is
immediate that the strategy of the individual is the same as in section 2.2: γ∗ = 1 if
p′ > 1/2 and γ∗ = 0 if p′ < 1/2, where p′ ≷ 1/2 if and only if p ≷ 1/2. In words, the
correlation between the ex post payoff and the state does not affect the optimal action.

In stage 1, the brain sets a threshold x which may or may not coincide with x∗(p), the
optimal one. We restrict the attention to the non-trivial case where the threshold is such
that the result of the cell firing activity is informative (Pr(A | c < x) < 1/2 < Pr(A | c >
x)), because otherwise this stage is ignored. The question we ask is: for any given x, how
will the individual revise his beliefs after observing the outcome? Note that there are only
two possible outcomes in stage 3: lH ≡ l(0) and lL ≡ l(1) (< l(0)). By construction, the
individual expects to be correct (otherwise he would choose the other action) and get lH .
We thus call lH the “expected outcome” and lL the “unexpected outcome.” The confidence
of the individual is boosted when followed by a high payoff and reduced when followed
by a low payoff. If the level of cell-firing is high, he takes action γ∗ = 1 and believes this
action is correct with probability:

Pr(A | c > x) = p(x)

If the outcome is the expected one, his revised belief that the action was indeed correct is:

Pr(A | c > x, lH) =
p(1−G(x))θ

p(1−G(x))θ + (1− p)(1− F (x))(1− θ)
= p(x, lH) (> p(x))

Otherwise, his belief is revised downwards to:

Pr(A | c > x, lL) =
p(1−G(x))(1− θ)

p(1−G(x))(1− θ) + (1− p)(1− F (x))θ
= p(x, lL) (< p(x))

Let p(x, lH)−p(x) be the increase in confidence after a high payoff, and p(x)−p(x, lL)
the decrease in confidence after a low payoff. These differences measure the positive reac-
tion to an expected event and the negative reaction to an unexpected event, respectively.
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Similarly, if the level of cell firing is low, the individual takes action γ∗ = 0 anticipating
it is correct with probability:

Pr(B | c < x) = 1− p(x)

Again, if the action is confirmed with a high payoff, his revised belief becomes:

Pr(B | c < x, lH) =
(1− p)F (x)θ

(1− p)F (x)θ + pG(x)(1− θ)
= 1− p(x, lH) (> 1− p(x))

Otherwise, he believes the action was correct with probability:

Pr(B | c < x, lL) =
(1− p)F (x)(1− θ)

(1− p)F (x)(1− θ) + pG(x)θ
= 1− p(x, lL) (< 1− p(x))

In that case, p(x)−p(x, lH) measures the reaction to the expected event, and p(x, lL)−p(x)
measures the reaction to the unexpected event. We have the following result.

Proposition 11 For all x, the reaction to unexpected events is always greater than the
reaction to expected events, and all reactions are smaller as the environment becomes more
stochastic (lower θ). More extreme cutoffs always lead to lower reactions to expected events.
They lead to higher reactions to unexpected events if θ is high and to lower reactions to
unexpected events if θ is low.

When the threshold is surpassed, the individual assesses a high probability to state A
and γ∗ = 1 is believed to be correct. Then, by construction, the belief will be revised more
in absolute value if the action is not confirmed with a high payoff than if it is. Naturally,
as the environment becomes more stochastic, observing an event is less informative and
beliefs are less drastically revised in either direction. These conclusions do not depend
on which threshold x is selected. They occur simply because the individual integrates
all information in a Bayesian way. The same reasoning holds when the threshold is not
surpassed and action γ∗ = 0 is taken.

Thresholds also affect the magnitude of the reaction to different events. An individual
who surpasses an extreme threshold (close to 1) is more confident in his action (here γ∗ = 1)
than an individual who surpasses a weak threshold. Therefore, he also experiences less
(positive) surprise when his decision is confirmed by a high payoff. More interesting is the
case of an individual who obtains a low payoff. If the environment is deterministic (θ high),
he becomes almost sure that his decision was incorrect. Given that extreme thresholds
lead to stronger beliefs, they also lead to a higher (negative) surprise. If the environment
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is stochastic (θ low), there is little information in the payoff and the posterior belief hinges
towards the prior. Here, given that extreme thresholds lead to stronger beliefs, they also
lead to a smaller surprise.

The arguments in the neuroscience literature briefly discussed above capture some but
not all the effects associated with the reaction to anticipated and unanticipated events.
This literature emphasizes that an individual with emotional stability exhibits a small
positive surprise to expected events and a large negative surprise to unexpected events.
This is partly consistent with our findings. Indeed, the ability to set extreme cutoffs always
results in low reaction to expected events. Since an individual with emotional stability sets
optimal thresholds and since optimal thresholds are somewhat extreme, such individuals
will experience low positive reactions. However, Proposition 11 also qualifies that claim.
Our model predicts a high negative reaction to unexpected events only if outcomes are
sufficiently deterministic. This literature thus ignores the fact that, in highly stochastic
environments, emotionally balanced individuals realize the high importance of luck on
payoffs, and therefore react mildly to all outcomes, whether positive or negative.

6 Concluding remarks

We have modeled the physiological limitations faced by individuals when processing in-
formation. We have shown that, under such constraints, it is optimal to set neuronal
thresholds in a way that initial beliefs are favored. The conclusion holds in a wide array
of settings and has interesting implications for the somatic marker theory.

As discussed in detail, the general methodology used in the paper consists in build-
ing an economic model of decision processes based on evidence from neuroscience and
neurobiology. This “neuroeconomic theory” approach to decision-making has two main
advantages. First, by modeling the underlying mechanisms that lead to choices, it is pos-
sible to predict behavior more accurately. Second, the models provide testable predictions
concerning the effects of pathologies on choices. We have extensively discussed the first
point but only briefly mentioned how emotional deficiencies that translate into subopti-
mal thresholds affect decisions. We have therefore not exploited the full potential of the
methodology in the second dimension. A natural alley for future research would be to test
some of our implications in patients with brain lesions.

The model has also implications that extend beyond the realm of brain information
processing. First, we can apply it to a standard individual learning problem, under the
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assumption that news obtained is coarse. Under that interpretation, our model provides “a
rationale for stubbornness”: agents are less likely to change their mind as time passes, not
only because they are more confident about which alternative they prefer, but also because
they modify thresholds in a way that existing beliefs are most likely to be reinforced.
At the same time, when they change their mind, they do it more drastically. It also
suggests that stubbornness should be more prevalent in complex issues, where information
is more difficult to interpret. Second and related, two individuals with opposite beliefs
will set thresholds at opposite ends and therefore may interpret the same evidence in
opposite directions. In other words, in a world of different priors, common information
may increase polarization of opinions, at least in the short run.21 Third, we have seen that
the information sequence matters in dynamic settings. This suggests that behavior can be
influenced by manipulating the order in which news is revealed. One could possibly develop
a theory of framing based on this approach. Last, the way information is interpreted in
strategic settings seems to affect behavior substantially. The multi-agent application we
offered is introductory. It would be interesting to analyze interactions in more general
environments.

21See Sobel (2007) for a different study of polarization in group decision-making.
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Appendix

A1. Proof of Proposition 1

Taking the first-order condition in (4), we find that x∗(p) satisfies (5). Given (A1), x∗(p)
is unique and the local second-order condition is satisfied:

∂2V

∂x2

∣∣∣∣
x∗

= −p g′(x∗)πA(l(0)− l(1)) + (1− p)f ′(x∗)πB(l(0)− l(1))

= (1− p)πB g(x∗)(l(0)− l(1))
(
f(x∗)
g(x∗)

)′
< 0.

dx∗/dp < 0 is immediate from (A1). For V (x∗; p) to be the value function, we must check
ex-post that it is optimal to select γ∗ = 1 when c > x∗ and γ∗ = 0 when c < x∗. We have:

Pr(A|c > x∗) > πB
πA+πB

⇔ p πA(1−G(x∗)) > (1−p)πB(1−F (x∗)) ⇔ 1−G(x∗)
g(x∗) > 1−F (x∗)

f(x∗)

Pr(A|c < x∗) < πB
πA+πB

⇔ p πAG(x∗) > (1− p)πBF (x∗) ⇔ G(x∗)
g(x∗) <

F (x∗)
f(x∗)

Both inequalities are satisfied given (A1). This completes the proof.

A2. Proof of Proposition 2

From (11) and using (7) and (8), we get:

∂2V (x; p)
∂x∂p

∣∣∣∣
x=x∗∗

= −1
p

[
f(x∗∗)

(
l(γ∗∗(p))− l(γ∗∗(p))

)
+ F (x∗∗)l′(γ∗∗(p))

dγ∗∗(p)
dx

∣∣∣∣
x∗∗

+ (1− F (x∗∗))l′(γ∗∗(p))
dγ∗∗(p)
dx

∣∣∣∣
x∗∗

]
= −1

p
× d

dx

[
F (x)l(γ∗∗(p)) + (1− F (x))l(γ∗∗(p))

]
x=x∗∗

Similarly,

∂2V (x; p)
∂x2

∣∣∣∣
x=x∗∗

= (1−p)
(
f(x)
g(x)

)′
f(x)
g(x)

[
f(x)

(
l(γ∗∗(p))− l(γ∗∗(p))

)
+ F (x)l′(γ∗∗(p))

dγ∗∗(p)

dx

f(x)
g(x)(
f(x)
g(x)

)′
(
F (x)
G(x)

)′
F (x)
G(x)

+ (1− F (x))l′(γ∗∗(p))dγ
∗∗(p)
dx

f(x)
g(x)(
f(x)
g(x)

)′
(

1−F (x)
1−G(x)

)′
1−F (x)
1−G(x)

]
x=x∗∗

By (A2),
f(x)
g(x)(
f(x)
g(x)

)′
(
F (x)
G(x)

)′
F (x)
G(x)

6 1 and
f(x)
g(x)(
f(x)
g(x)

)′
(

1−F (x)
1−G(x)

)′
1−F (x)
1−G(x)

6 1. Therefore,
∂2V (x; p)
∂x∂p

∣∣∣∣
x=x∗∗

< 0 ⇒

∂2V (x; p)
∂x2

∣∣∣∣
x=x∗∗

< 0 and the proposition follows.
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A3. Proof of Proposition 3

Let P ≡ p
1−p . The F.O.C. in the quadratic case can be rewritten as:

1− p
p2

∂V (x; p)
∂x

∣∣∣∣
x∗∗

= k(x∗∗, P )

where k(x, P ) ≡
(

1−G(x)
(1−G(x))P+(1−F (x)) −

G(x)
G(x)P+F (x)

) [
f(x)

(
1−G(x)

(1−G(x))P+(1−F (x)) + G(x)
G(x)P+F (x)

)
−g(x)

(
1−F (x)

(1−G(x))P+(1−F (x)) + F (x)
G(x)P+F (x)

)]
. Differentiating the F.O.C., we get

∂2V (x; p)
∂x∂p

∣∣∣∣
x∗∗
∝ ∂k(x∗∗, P )

∂P

After some tedious algebra, and using (13), we get:

∂k(x∗∗, P )
∂P

= −g(x∗∗)

(
F (x∗∗)
G(x∗∗) −

1−F (x∗∗)
1−G(x∗∗)

)3

(
2P + F (x∗∗)

G(x∗∗) + 1−F (x∗∗)
1−G(x∗∗)

)(
P + F (x∗∗)

G(x∗∗)

)2 (
P + 1−F (x∗∗)

1−G(x∗∗)

)2 < 0

and the result follows.

A4. Proof of Proposition 4

Taking the F.O.C. in (14), we obtain (15). The local S.O.C. is:

∂2V

∂x2

∣∣∣∣
x̂

= −
∫ 1

0
p(s) fx(x̂ | s)

(
l(1− s)− l(s)

)
ds

=
∫ 1

0

(
−fx(x̂ | s)
f(x̂ | s)

)
p(s) f(x̂ | s)

(
l(1− s)− l(s)

)
ds

Let h(s) ≡ −fx(x̂ | s)
f(x̂ | s)

. By (A1’), h′(s) 6 0. We can then rewrite the local S.O.C. as:

∂2V

∂x2

∣∣∣∣
x̂

=
∫ 1/2

0
h(s) p(s) f(x̂ | s)

(
l(1− s)− l(s)

)
ds+

∫ 1

1/2
h(s) p(s) f(x̂ | s)

(
l(1− s)− l(s)

)
ds

< h(1/2)

[∫ 1/2

0
p(s) f(x̂ | s)

(
l(1− s)− l(s)

)
ds+

∫ 1

1/2
p(s) f(x̂ | s)

(
l(1− s)− l(s)

)
ds

]
= 0

Regarding the comparative statics, if
(
p(s)
q(s)

)′
6 0, then:

∂V (x; p(s))
∂x

∣∣∣∣
x̂(p(s))

= −
∫ 1

0

(
p(s)
q(s)

)
q(s) f(x̂(p(s)) | s)

(
l(1− s)− l(s)

)
ds

> −
(
p(1/2)
q(1/2)

)∫ 1

0
q(s) f(x̂(p(s)) | s)

(
l(1− s)− l(s)

)
ds
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Therefore,

∂V (x; p(s))
∂x

∣∣∣∣
x̂(p(s))

= 0 >

(
p(1/2)
q(1/2)

)
∂V (x; q(s))

∂x

∣∣∣∣
x̂(p(s))

⇒ x̂(p(s)) > x̂(q(s))

Last, we need to check that it is indeed optimal to choose γ̂ = 1 when c > x̂ and γ̂ = 0
when c < x̂. Let L(x) ≡ L(1; p(s | c = x))− L(0; p(s | c = x)), also p(s | c = x) ≡ j(s |x) =
p(s)f(x | s)∫ 1

0 p(s)f(x | s)ds
and J(s |x) =

∫ s
0 j(s̃ |x)ds̃. Integrating by parts:

L(x) =
∫ 1

0
j(s |x)

(
l(1− s)− l(s)

)
ds

= l(0)− l(1) +
∫ 1

0
J(s |x)

(
l′(1− s) + l′(s)

)
ds

Therefore
dL(x)
dx

=
∫ 1

0
Jx(s |x)

(
l′(1− s) + l′(s)

)
ds > 0

since, by (A1’), we know that Fs(x | s) < 0 and therefore Jx(s |x) < 0. From (15),
L(x̂) = 0, so L(x) T 0 for all x T x̂. This also proves that, for the purpose of the action
to be taken, it is equivalent to learn c or to learn whether c is greater or smaller than x̂.

A5. Proof of Proposition 5 and 6

They follow the exact same steps as the proofs of Propositions 2 and 3, and are therefore
omitted for the sake of brevity.

A6. Proof of Proposition 8

Cognitive channel. Taking F.O.C. in (21), we obtain x and x. We also have ∂2V (x1,x2)
∂x2

1

∣∣∣
x

=

−1
2pOf(x)

(
h(x)
f(x)

)′
−1

2pAf(x)
(
g(x)
f(x)

)′
< 0, ∂2V (x1,x2)

∂x2
2

∣∣∣
x

= 1
2pOg(x)

(
h(x)
g(x)

)′
+1

2pBg(x)
(
f(x)
g(x)

)′
< 0, and ∂2V (x1,x2)

∂x1∂x2
= 0. Therefore x and x are maxima. Last, it can be easily checked

that
(

Pr(A | c ∈ X ),Pr(O | c ∈ X ),Pr(B | c ∈ X )
)

are such that it is indeed optimal to

have γ̃ = 0 if X = [0, x), γ̃ = 1
2 if X = [x, x], and γ̃ = 1 if X = (x, 1].

Affective channel. The three candidates for optimal cutoffs are:
xa so that γ̃ = 0 if c < xa and γ̃ = 1 if c > xa
xb so that γ̃ = 0 if c < xb and γ̃ = 1/2 if c > xb
xc so that γ̃ = 1/2 if c < xc and γ̃ = 1 if c > xc
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These cutoffs are formally defined by:
xa = arg maxx V a(x) ≡ Pr(c < x)L(0; p(· |c < x)) + Pr(c > x)L(1; p(· |c < x))
xb = arg maxx V b(x) ≡ Pr(c < x)L(0; p(· |c < x)) + Pr(c > x)L(1

2 ; p(· |c < x))
xc = arg maxx V c(x) ≡ Pr(c < x)L(1

2 ; p(· |c < x)) + Pr(c > x)L(1; p(· |c < x))

It is straightforward to check that xa = x̌, xb = x, xc = x. Now, fix pO. Differentiating
each first-order condition with respect to pB, we get:

dxa
dpB

> 0,
dxb
dpB

> 0,
dxc
dpB

> 0

Furthermore:

dV a(xa)
dpB

= F (xa) +G(xa)− 1 ≷ 0,
d2V a(xa)
dp2

B

=
[
f(xa) + g(xa)

] dxa
dpB

> 0,

dV b(xb)
dpB

=
F (xb) +G(xb)

2
> 0,

dV c(xc)
dpB

=
F (xc) +G(xc)

2
− 1 6 0

Also, lim
pB→0

V a(xa) = −pO
2
< lim

pB→0
V c(xc) and lim

pB→1−pO
V a(xa) = −pO

2
< lim

pB→1−pO
V b(xb).

Combining these results, we have that there exist p∗ such that xc dominates xb if
pB < p∗ and xb dominates xc if pB > p∗. Also, there exist p∗∗ and p∗∗∗ such that xc

dominates xa if pB < p∗∗ and xb dominates xa if pB > p∗∗∗. The ranking between p∗, p∗∗

and p∗∗∗ will depend on the relative values of pO and pA.

A7. Proof of Proposition 9(
gα(c)
gβ(c)

)′
> 0,

(
fβ(c)
gβ(c)

)′
< 0,

(
fα(c)
fβ(c)

)′
< 0 ⇒ g′α(c)

gα(c) >
g′β(c)

gβ(c) >
f ′β(c)

fβ(c) >
f ′α(c)
fα(c) ⇒

(
fα(c)
gα(c)

)′
< 0.

Now, suppose there exists ĉ ∈ (0, 1) such that fα(ĉ)
gα(ĉ) = fβ(ĉ)

gβ(ĉ) . Then,

d

dc

[
fα(c)
gα(c)

−
fβ(c)
gβ(c)

]
c=ĉ

=
fα(ĉ)
gα(ĉ)

(
f ′α(ĉ)
fα(ĉ)

− g′α(ĉ)
gα(ĉ)

)
−
fβ(ĉ)
gβ(ĉ)

(
f ′β(ĉ)
fβ(ĉ)

−
g′β(ĉ)
gβ(ĉ)

)
< 0

so fα(c)
gα(c) and fβ(c)

gβ(c) cross at most once. Furthermore,
(
gα(c)
gβ(c)

)′
> 0 and

(
fα(c)
fβ(c)

)′
< 0 ⇒

fα(0)
gα(0) >

fβ(0)
gβ(0) and fα(1)

gα(1) <
fβ(1)
gβ(1) . Together with the previous result, it means that there

exists x̂ ∈ (0, 1) such that fα(x)
gα(x) T fβ(x)

gβ(x) for all x S x̂. Finally, given (5), there exists p̂

such that fα(x∗α(p̂))
gα(x∗α(p̂)) =

fβ(x∗β(p̂))

gβ(x∗β(p̂)) = p̂
1−p̂ , that is, x∗α(p̂) = x∗β(p̂) = x∗(p̂) ≡ x̂. For all p ≷ p̂,

fα(x∗α(p))
gα(x∗α(p)) =

fβ(x∗β(p))

gβ(x∗β(p)) = p
1−p ⇒ x∗β(p) ≶ x∗α(p) ≶ x∗(p̂) ≶ x̂.
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A8. Proof of Proposition 10

Cooperation. Taking the FOC in (22) and then differentiating it with respect to the other
agent’s threshold, we get:

∂x+
i

∂xj
= −

∂2V +
i /∂x

+
i ∂xj

∂2V +
i /∂(x+

i )2
= −µ

f(x+
i )/g(x+

i )(
f(x+

i )/g(x+
i )
)′ [ g(xj)

λ+ µ(1−G(xj))
+

f(xj)
λ+ µF (xj)

]
> 0

Because reaction functions are positive and identical for both individuals, equilibria can
only be symmetric. Let R+

i (xj) be i’s reaction function. Sufficient conditions for a unique,

stable interior solution are: R+
i (0) > 0, R+

i (1) < 1 and ∂x+
i

∂xj

∣∣∣
xj=x

+
i

< 1. From (24), the

first and second inequalities can be written as f(0)
g(0) >

p
1−p (1 + κ) and f(1)

g(1) <
p

1−p
1

1+κ ,
which are strengthened versions of the conditions determined in footnote ??. The third
inequality boils down to (A3.1). From (5) and (24), we finally get:

f(x+)
g(x+)

λ+ µF (x+)
λ+ µ(1−G(x+))

=
f(x∗)
g(x∗)

=
p

1− p
(27)

Competition. Taking the FOC in (23) and then differentiating it with respect to the other
agent’s threshold, we get:

∂x−i
∂xj

= −
∂2V −i /∂x

−
i ∂xj

∂2V −i /∂(x−i )2
= µ

f(x−i )/g(x−i )(
f(x−i )/g(x−i )

)′ [ g(xj)
λ+ µG(xj)

+
f(xj)

λ+ µ(1− F (xj))

]
< 0

Because reaction functions are negative there can only exist one symmetric equilibrium.
Let R−i (xj) be i’s reaction function. Sufficient conditions for the symmetric equilibrium

to be stable and interior are: R−i (0) > 0, R−i (1) < 1 and ∂x−i
∂xj

∣∣∣
xj=x

−
i

> −1. From (25),

the first and second inequalities can be written as f(0)
g(0) >

p
1−p

1
1+κ and f(1)

g(1) <
p

1−p (1 +κ),
which are weaker than the conditions in footnote ??. The third inequality boils down to
(A3.2). From (5) and (25), we finally get:

f(x−)
g(x−)

λ+ µ(1− F (x−))
λ+ µG(x−)

=
f(x∗)
g(x∗)

=
p

1− p
(28)

Let x̃ be the value that solves F (x̃) +G(x̃) = 1. Combining (27) and (28), we have:

f(z)
g(z)

λ+ µF (z)
λ+ µ(1−G(z))

≷
f(z)
g(z)

≷
f(z)
g(z)

λ+ µ(1− F (z))
λ+ µG(z)

⇔ F (z) +G(z) ≷ 1 ⇔ z ≷ x̃

There exists p̃ such that f(x+(p̃))
g(x+(p̃))

λ+µF (x+(p̃))
λ+µ(1−G(x+(p̃)))

= f(x−(p̃))
g(x−(p̃))

λ+µ(1−F (x−(p̃)))
λ+µG(x−(p̃))

= f(x∗(p̃))
g(x∗(p̃)) = p̃

1−p̃ .
For all p ≷ p̃, then x+(p) ≶ x∗(p) ≶ x−(p) ≶ x̃.
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A9. Proof of Proposition 11

Let α ≡ P (A)P (1|A) = p(1 − G(x)), β ≡ P (B)P (1|B) = (1 − p)(1 − F (x)), γ ≡
P (A)P (0|A) = pG(x), and δ ≡ P (B)P (0|B) = (1 − p)F (x). Also, cell firing being in-
formative, we need p(x) = Pr(A|c > x) > 1/2 ⇒ α

α+β > 1/2 ⇒ α > β. Similarly,
p(x) = Pr(A|c < x) < 1/2⇒ γ

γ+δ < 1/2⇒ δ > γ. We have:

p(x, lH)− p(x) ≡ C
+ =

αβ(2θ − 1)
[αθ + β(1− θ)](α+ β)

,

p(x)− p(x, lL) ≡ C
− =

αβ(2θ − 1)
[α(1− θ) + βθ](α+ β)

It is immediate to see that C− − C+ ∝ α − β > 0. Furthermore, ∂C
+

∂θ ∝ αβ > 0 and
∂C
−

∂θ ∝ αβ > 0. Also,

∂C
+

∂x
∝
(

(1− θ)β2 − α2θ
)(
β
∂α

∂x
− α∂β

∂x

)
.

Given α > β and θ > 1− θ, we have (1− θ)β2−α2θ < 0. Also, β ∂α∂x −α
∂β
∂x = (1− p)p[(1−

G(x))f(x)− (1− F (x))g(x)] > 0 for all x given MLRP. Therefore ∂C+
/∂x 6 0. Last,

∂C
−

∂x
∝
(

(1− θ)α2 − β2θ
)(
α
∂β

∂x
− β∂α

∂x

)
so for each x there exists θ̂ such that ∂C

−

∂x < 0 for all θ < θ̂ and ∂C
−

∂x > 0 for all θ > θ̂.
Similarly,

p(x)− p(x, lH) ≡ C+ =
δγ(2θ − 1)

[δθ + γ(1− θ)](δ + γ)
,

p(x, lL)− p(x) ≡ C− =
δγ(2θ − 1)

[δ(1− θ) + γθ](δ + γ)

It is again immediate to see that C− − C+ ∝ δ − γ > 0. Furthermore, ∂C+

∂θ ∝ δγ > 0 and
∂C−

∂θ ∝ δγ > 0. Also,

∂C+

∂x
∝
(

(1− θ)γ2 − δ2θ
)(
γ
∂δ

∂x
− δ ∂γ

∂x

)
.

Given δ > γ and θ > 1 − θ, we have (1 − θ)γ2 − δ2θ < 0. Also, γ ∂δ∂x − δ ∂γ∂x = (1 −
p)p[G(x)f(x)− F (x)g(x)] 6 0 for all x given MLRP. Therefore ∂C+/∂x > 0. Last,

∂C−

∂x
∝
(

(1− θ)δ2 − γ2θ
)(
δ
∂γ

∂x
− γ ∂δ

∂x

)
so for each x there exists θ̃ such that ∂C−

∂x > 0 for all θ < θ̃ and ∂C−

∂x < 0 for all θ > θ̃.
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