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Abstract

Stochastic �ctitious play (SFP) assumes that agents do not try to
in�uence the future play of their current opponents, an assumption
that is justi�ed by appeal to a setting with a large population of
players who are randomly matched to play the game. However, the
dynamics of SFP have only been analyzed in models where all agents
in a player role have the same beliefs. We analyze the dynamics of
SFP in settings where there is a population of agents who observe only
outcomes in their own matches and thus have heterogeneous beliefs.
We provide conditions that ensure that the system converges to a
state with homogeneous beliefs, and that its asymptotic behavior is
the same as with a single representative agent in each player role.

�We thank Michel Benaïm. Josef Hofbauer, and William Sandholm for very helpful
comments and suggestions.
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1 Introduction

Consider a situation where two agents are playing a known two-player game
in strategic form. The standard practice in most of economic theory, and
almost all of its applications, is to assume that the outcome of the game will
be one of its Nash equilibria, yet rationality alone (and even common knowl-
edge of rationality) is not enough to imply that equilibrium analysis is valid.
To provide a rationale for Nash equilibrium, the literature on learning in
games proposes that Nash equilibrium should be thought of as the result of a
non-equilibrium dynamic process of learning or adaptation. Non-equilibrium
dynamics can be used to discriminate between equilibria of a given game,
and to predict that equilibrium is more likely to be observed in some games
than in others.
This paper contributes to the study of one particular type of non-equilibrium

dynamics, namely the process known as stochastic (or smooth) �ctitious play,
henceforth �SFP.�SFP is an example of a belief-based learning process, in
which agents form beliefs about the play of their opponents, and then update
the beliefs on the basis of their observations. One important aspect of this
model is that the agents act like Bayesians facing a �xed but unknown distrib-
ution over opponents�play, so that once they have a su¢ ciently large sample,
their beliefs are close to the empirical distribution that they have observed.
A second key aspect of this model is that agents do not try to in�uence the
future play of their current opponents. Instead, they take this distribution
as exogenous, and choose their actions on the basis of the expected payo¤s
in the current play of the game; in particular, each agent plays a �smoothed
best response�to the anticipated distribution of opponent�s strategies in the
current play. Thus the agents are engaged in many plays of a stage game
and not a single play of a repeated game.
To motivate the assumption that agents treat opponent�s play as exoge-

nous, and thus the use of �ctitious play as a descriptive model, Fudenberg
and Kreps [1993] appeal to a setting with a large population of agents who
are randomly matched to play the game, with each agent observing only the
outcomes in his own matches, as is common in experimental tests of game
theory.1 In this �local information�setting, the assumption that each agent

1The original work on �ctitious play with exact best responses (starting with Brown
[1951]) viewed it as describing a pre-play thought process as opposed to real-time learning,
so the issue of agents in�uencing each other�s future play did not arise. Moreover, this
literature treated the deterministic two-cycle sequence (A;B;A;B; : : :) as equilvalent to a
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considers only the current payo¤when choosing his action can be justi�ed by
the idea that in a large population of agents, the agent is unlikely to interact
with the same partner, or anyone else who has interacted with that partner,
for a long time, so the discounted value of any e¤ect of current play on oppo-
nents�future actions is small.2 However, the dynamics of SFP have only been
analyzed in �global information�models where all agents in a given role have
the same observations and the same beliefs. This includes models with one
agent in each player role (Fudenberg and Kreps [1993], Benaïm and Hirsch
[1999], Hofbauer and Sandholm [2002], Hofbauer and Hopkins [2005]), mod-
els with a continuum of agents, who behave as if they observe the outcomes
of all matches (Hopkins [1999a], Ellison and Fudenberg [2000]), and models
with a single population playing a symmetric game and using common beliefs
(Hopkins [1999b], Hofbauer and Sandholm [2002]).
To see why it is important to allow for heterogeneous beliefs, recall that

Fudenberg and Levine [1993b] point out that rational Bayesian agents can
maintain heterogeneous beliefs about play o¤ the equilibrium path in an
extensive-form game, and that Fudenberg and Levine [1993a, 1997] show
that this sort of heterogeneity can lead to new equilibrium outcomes and
help explain the results of some game theory experiments. In this paper, we
consider play of a strategic-form game, with the chosen strategies observed
at the end of each round, so the issue of o¤-path beliefs does not arise, but
even so it is easy to see that heterogeneous beliefs matter in some sorts of
non-equilibrium processes: Consider for example a process where agents are
randomly paired each period, and then each agent plays a best response to
his observation in the previous period. In this case, with an even number
of agents in a symmetric anti-coordination game with two actions A and B,
the global-information process oscillates between the extremes �all A�and
�all B,� or possibly is absorbed at a state near the mixed equilibrium. In
contrast, for any k, the local-information process can oscillate between �k A
and the rest B�and �k B and the rest A.�
These examples show that heterogeneous beliefs can persist in some mod-

els, which raises the question of whether heterogenous beliefs can persist when
agents behave as in SFP, and whether past results on the convergence and
stability properties of SFP exend to �nite population settings with initially

50-50 randomization, even though the two sequences are very di¤erent from the perspective
of an agent trying to predict his opponent�s next play.

2Implicit here is the idea that the population size is large compared to the discount
factor. See Ellison [1997] for some calibrations of just what �large�means.
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heterogeneous beliefs.
We address this question in three related models, all of which follow SFP

for the behavior of individual agents, but di¤er in the details of the matching
structure, speci�cally how many agents are drawn from the society in each
period, and whether an agent and his partner are chosen from the same pop-
ulation or two di¤erent populations. In the �rst model, the society consists of
two populations with equal size, and, in each period, every agent in one pop-
ulation plays the stage game with a randomly chosen partner from another
population. The second model is similar except that the society consists of
a single population with an even number of agents. These are models with
�synchronous clocks,�meaning that each agent plays every period, so that
the sample size of every agent is the same, as is the case in most laboratory
experiments. Our third model, and most original, model has a single pop-
ulation and �asynchronous clocks�: Each period, two agents are randomly
drawn to play the stage game, so that some agents end up playing more
often than others. For this model, we generalize from a uniform matching
protocol to one where the probability that a given pair of agents i; j interact
can depend on their indices; this lets us provide the �rst analysis of SFP on
networks.
When agents have a long memory (as in SFP), and are all observing draws

at the same frequency from a common (possibly time varying) distribution,
it is fairly intuitive that they should eventually have the same beliefs, so
that the set of asymptotic outcomes should be the same as in the �unitary,�
one-agent-per-role models. It is less obvious that this is the case when the
distribution faced by di¤erent agents can di¤er, as it does in a one-population
model, or when the distribution is cycling and di¤erent agents observe it at
di¤erent frequencies; we show that this is the case provided that the number
of agents, M , is su¢ ciently large compared to the slope of the smooth best
response function and the matching protocol is stationary. (The reason that
the population sizeM matters here is that agents do not observe and respond
to their own play, so that the distribution faced by any two agents can di¤er
by 1=(M � 1).) We also extend many of the past results on convergence and
stability with one agent per player role to the case of heterogeneous beliefs,
even with asynchronous clocks. One new issue that arises with heterogeneous
agents is that the perturbations used to generate the smoothing may also
be heterogeneous; to handle this possibility, we show that the average of
smoothed best responses is also a smoothed best response.
Our analysis follows past work on SFP in using the techniques of stochas-
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tic approximation to relate the behavior of a discrete-time stochastic system
of interest to that of a deterministic system in continuous time. Because
this approach focuses on the asymptotic behavior of the system, it does not
provide very precise estimates of the e¤ect of the initial condition of the
system. To explore the impact of initial conditions, we present some simu-
lations to illustrate the role of the intensity of prior beliefs on the eventual
long-run outcome. Our �rst set of simulations concerns a pure coordination
game where both actions are equally e¢ cient, and suppose that a majority
of the agents have prior beliefs that make them start out playing action A
with high probability. In this case, the system is very likely to converge to
a state where agents expect action A and play A with probability near 1.
However, if the agents who initially expect action B have a much stronger
conviction about their forecasts (more concentrated priors) than those who
take action A, then the system has a very high probability of convergence
to the state where all agents place probability near 1 on action B. This
phenomenon is observed both in local- and global-information models, but
the impact is stronger in the local one.3 We also present some simulations
of an anti-coordination game that suggest that our result on the minimum
population size for conformity is tight.

2 Preliminaries

2.1 Stage Game

Consider a symmetric m�m game G = (S; u), where S is a �nite set of pure
strategies, and u : S2 ! R is a utility function.4 For each (s; s0) 2 S2, a player
gets payo¤ u(s; s0) if he and his opponent choose strategies s and s0, respec-
tively. Let � be the set of mixed strategies, f� 2 RS j �(s) � 0;

P
s2S �(s) =

1g, where RS is endowed with the sup-norm: jxj = maxs2S jx(s)j for each
x 2 RS. We extend the domain of u to �2 by the expected utility hy-
pothesis: u(�; �0) =

P
s;s02S u(s; s

0)�(s)�0(s0) for each (�; �0) 2 �2. In the
standard abuse of notation, we let s denote both a pure strategy and the

3This set of simulations illustrates a key di¤erence between belief-based learning models
such as SFP, and evolutionary models such as the replicator dynamic: With SFP, the initial
actions played are not a su¢ cient statistic for the future evolution of the system.

4The results in Subsection 3.1 extend to asymmetric games, but since symmetry is
important in Subsections 3.2 and 3.3, we impose it now.
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mixed strategy that puts probability 1 on s.
A best response to strategy �0 is a mixed strategy � that maximizes

u(�; �0). A smoothed best response function BR : � ! � is a twice continu-
ously di¤erentiable function (hence �smooth�) that is bounded away from 0:
regardless of the opponent�s strategy �0, BR(�0) assigns at least some min-
imum probability to every s 2 S. Since BR is continuously di¤erentiable
on a compact domain, it is Lipschitz continuous. Let K > 0 be a Lipschitz
constant for BR, i.e.,

jBR(�)� BR(�0)j � Kj� � �0j

for all (�; �0) 2 �2. For example, the logit best response

BR(�0)(s) =
exp(�u(s; �0))P
~s exp(�u(~s; �

0))

with � > 0 is smoothed.
In the processes we study, agents use smoothed best responses to their

beliefs. The results hold for any strictly positive twice continuously di¤er-
entiable functions, but the intended interpretation relies on the idea that
the smoothed best responses are an approximation of the exact best re-
sponses, as for example in the logit best response with large �. Fudenberg
and Kreps [1993] generate smoothed best responses from i.i.d. payo¤ pertur-
bations {"(s)gs2S in the spirit of Harsanyi�s [1973] puri�cation theorem:

BR(�0)(s) = P (argmax
s0
(u(s0; �0) + "(s0)) = s): (SP)

They point out that �xed points of the smoothed best responses are then
Bayesian Nash equilibria of the incomplete information game, and call these
�xed points Nash distributions; Nash distributions converge to the Nash
equilibria of the unperturbed game as random components converge to 0 in
probability (Hofbauer and Sandholm [2002, Proposition 3.1]).
Smoothed best responses can also be generated from maximizing a per-

turbed utility function that is non-linear in probabilities and penalizes pure
strategies: set

BR(�0) = argmax
�

(u(�; �0) + v(�)) ; (DP)

where v is negative de�nite (so that the perturbed utility function is strictly
concave), and its gradient becomes arbitrarily large near the boundary of
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the simplex (so that the argmax assigns strictly positive probability to all
pure strategies). If v is bounded and sup�;�0 jv(�) � v(�0)j becomes small,
�xed points of BR become close to the Nash equilibria. Any smoothed best
response function generated by an additive random utility model can be
derived from this sort of deterministic non-linear perturbation (Hofbauer
and Sandholm [2002, Theorem 2.1]).

2.2 Stochastic Fictitious Play

The model of stochastic �ctitious play has two components, namely the spec-
i�cation of how beliefs are formed and the speci�cation of how beliefs are used
to determine behavior. In SFP, each agent�s predictions about the play of
his opponents has a simple form derived from Bayesian updating, where the
agent believes that he is facing i.i.d. draws from a �xed but unknown distri-
bution of play, and the agent has a Dirichlet prior over that distribution.5

This leads to a very simple functional form for the forecasted distribution of
play in each period.
Speci�cally, each agent i has an exogenous initial weight function �i;0 : S !

R+ with �i;0(s) > 0 for some s 2 S; this corresponds to the parameters
of the agent�s Dirichlet prior. The agent updates this weight by adding
1 to the weight of each opponent strategy each time it is played, so that
�i;n+1(s) = �i;n(s)+I(s�i;n+1 = s); ��i;0 =

P
s2S �i;0(s) measures the strength

of the agent�s prior. The agent�s beliefs about his opponent�s play at period
n correspond to the relative weights on the various strategies: the probability
the agent assigns to the opponent playing s is

�i;n(s) =
�i;n(s)

��i;n
;

where ��i;n =
P

s2S �i;n(s). This is the expected value of the opponent�s
mixed strategy with respect to the Dirichlet distribution corresponding to
�i;n. This updating rule is asymptotically empirical in the sense that beliefs
converge to the empirical distribution along every sample path.6

5Stationarity is a reasonable �rst hypothesis in many situations. However, we might
expect agents to eventually reject it given su¢ cient evidence to the contrary. In particular,
if the system in which the agents are learning converges to a cycle, then the assumption
that agents ignore the cycle and continue to believe that the environment is stationarity
may not be plausible.

6Fudenberg and Kreps [1993] say that a rule with this property is �asymptotically
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We consider situations where the agents are playing a known two-player
game in strategic form. That is, they know the strategy space and the payo¤
function. All that is unknown is how the other side is going to play. In each
period, some of the agents are randomly drawn from the population, and
matched with each a partner to play the stage game. Each agent believes that
he is playing against a randomly drawn opponent, and that the distribution
of opponents�play is constant over time. Moreover, each agent considers only
the current period�s expected payo¤ when choosing his action.
Classical or exact �ctitious play is then de�ned as any behavior rule that

assigns actions to histories by �rst computing �i;n as above and then picking
any strategy that is an exact best response to �i;n, i.e., any strategy s 2 S
that maximizes u(s; �i;n). Under SFP, agent i computes �i;n in the same way,
but then plays a smoothed best response to it; that is, the agent chooses
strategy s 2 S with probability BR(�i;n)(s). This smoothing of the best
responses results in a learning process with more appealing properties, and
avoids the nonsensical rapid cycling of exact �ctitious play that was pointed
out by Fudenberg and Kreps [1993]. Fudenberg and Levine [1995] point out
that randomization can also be used to satisfy the (non-Bayesian) criterion
of �universal consistency,�in particular the randomization that comes from
maximizing perturbed payo¤ functions of the form (DP).

2.3 Dynamical Systems

Next we review some standard concepts for the study of dynamical systems;
our language and de�nitions are taken from Conley [1976] and Benaïm [1999].
Let X be a nonempty subset of Rm with the Euclidean metric d. A semi-
�ow is a continuous function �: X � R+ ! X such that �0(x) = x and
�s(�t(x)) = �s+t(x) for every x 2 X and s, t 2 R+.7 We extend � to the
subsets of X by de�ning �t(A) = f�t(x) : x 2 Ag and say that A � X is
invariant if �t(A) = A for all t 2 R+. A subset A is an attracting set if A
is nonempty and compact, and there exists some open neighborhood U of A

empirical,� and note that many of the properties of �cititious play extend to other as-
ymptotically empirical rules. Diaconis and Freedman [1990] show that any Bayesian belief
about a series of i.i.d. draws converges to the empirical distribution at a uniform rate if
the prior is �non-doctrinaire.� Dirichlet priors are non-doctrinaire provided that all of the
initial weights are positive.

7We need to consider semi-�ows and not �ows to accommodate the analysis of our third
model.
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such that limt!1 d(�t(x); A) = 0 uniformly in x 2 U . An attractor is an
invariant attracting set. Every attracting set contains an attractor. A globally
attracting set is an attracting set such that limt!1 d(�t(x); A) = 0 for every
x 2 X. The !-limit set of a point x is the set !(x) = fy 2 X : �tk(x) ! y
for some tk ! 1g. The de�nition of !-limit sets extends to discrete-time
sequences in the obvious way.

De�nition 1. For a nonempty invariant set A, a (�; T )-pseudo-orbit from
a to b in A is a �nite series of partial trajectories, f�t(xi) : 0 � t � tig;
i = 1; : : : ; k � 1; ti � T , such that xi 2 A, d(x0; a) < �, d(�ti(xi); xi+1) < �
for all i = 1; : : : ; k � 1, and xk = b. A nonempty compact invariant set A
is internally chain-transitive if, for every a, b 2 A and every � > 0, T > 0,
there is a (�; T )-pseudo-orbit in A from a to b.

Every internally chain-transitive set is connected. Moreover, a nonempty
compact invariant set is internally chain-transitive if and only if the set has
no proper attracting set.8 The internally chain-transitive sets provide a char-
acterization of the possible long-run behavior of the system; Benaïm [1999]
has shown that this particular concept of long-run behavior is useful when
working with stochastic approximation.
The stochastic approximation algorithm is a discrete-time stochastic process

whose step size decreases with time, so that asymptotically the system con-
verges to its deterministic continuous-time limit. The early work on stochas-
tic approximation was done by Robbins and Monro [1951] and Kiefer and
Wolfowitz [1952] and has since been applied and extended by a number of
authors. Benaïm [1999] gives a self-contained presentation of a number of
stochastic approximation results, along with some generalizations and new
proofs. For our purposes, the main results are the following.

Theorem A (Benaïm, 1999). Consider the discrete time process on a non-
empty convex subset X of Rm de�ned by the recursion,

xn+1 � xn =
1

n+ 1
(F (xn) + Un+1 + bn+1); (1)

and the corresponding continuous time semi-�ow � induced by the system of
ordinary di¤erential equations (ODEs)

_x(t) = F (x(t)); (2)
8Benaïm [1999, Proposition 5.3] showed that internal chain-transitivity for a compact

invariant set is equivalent to admitting no proper attractor. We replace �attractor�in this
statement by �attracting set�since every attracting set contains an attractor.
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where

1. F : X ! Rm is continuous and (2) is globally integrable,

2. fUng and fbng are stochastic processes adapted to �ltration fFng, i.e.,
for each n 2 N, Un and bn are random variables that are measurable
with respect to Fn, where Fn is the �-algebra corresponding to the his-
tory of the system up through the end of period n,

3. E(Un+1jFn) = 0 almost surely and E(jUnj2) <1,

4. limn!1 bn = 0 almost surely, and

5. fxn j n � 0g is precompact in X almost surely.9

Then, with probability 1, every !-limit of the process fxng lies in an
internally chain-transitive set for �.

Remark 1. Intuitively, the fact that the step size is of order 1=n means that
the discrete-time system will converge to the continuous-time limit _x = F (x)
when the perturbation terms fUng and fbng are absent. The bound on the
variance of the noise, together with the fact that

P
n 1=n

2 <1, ensures that
the noise term is asymptotically negligible, in the spirit of the martingale
version of the law of large numbers. The conditions on the noise term fUng
are the usual �martingale noise�conditions for stochastic approximation; the
error term fbng permits a slight generalization in that the mean of the dis-
turbance is only 0 asymptotically. Benaïm presents more general conditions
on the step size.

Remark 2. If X is compact and F is Lipschitz continuous, then (2) is globally
integrable and fxng is precompact.
Remark 3. Unlike Benaïm�s original statement, we consider F to be de�ned
only on X, as opposed to the whole space Rm. Accordingly, we modify his
assumption A2 in Proposition 4.2 so that fxng is not only bounded but also
precompact in X.

Proof. Benaïm�s Proposition 4.2 and Remark 4.5 imply that with probabil-
ity 1, the assumptions of Proposition 4.1 hold, i.e., with probability 1, the
interpolated process (which embeds discrete time paths in continuous time)

9A subset of a topological space X is precompact in X if its closure in X is compact.
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is a precompact asymptotic pseudotrajectory of the semi-�ow � induced by
F .10 Theorem 5.7 then implies that every !-limit of the pseudotrajectory is
internally chain-transitive for �.

Theorem A means that the realization of the stochastic process (1) con-
verges to one of the internally chain-transitive sets for the semi-�ow (2) al-
most surely, but it does not exclude unstable equilibria from possible limit
sets. This is because the theorem allows for random noise terms, but does
not actually require that any noise is present. A sharper conclusion can be
drawn when there is a lower bound on the amount of noise in (1). Speci�cally,
we would expect that noise would prevent the process from converging to an
unstable equilibrium, because the noise will move the process o¤ the lower-
dimensional stable manifold. To make this precise, recall that an equilibrium
point x� (i.e., F (x�) = 0) is linearly unstable if the Jacobian matrix of F at x�,
DF (x�), has some eigenvalue with a positive real part. Let Rm = E+ � E�,
where E+ and E� are the generalized eigenspaces of DF (x�) corresponding
to eigenvalues with positive and nonpositive real parts, respectively. If x� is
linearly unstable, then E+ has at least one dimension.

Theorem B (Brandière and Du�o, 1996). Consider (1) on a nonempty open
subset X of Rm. Let x� be a linearly unstable rest point of F and U (r)n be the
projection of Un on E+ in the directions of E�. Assume that

1. F is continuously di¤erentiable and its derivative is Lipschitz continu-
ous on a neighborhood of x�,

2. fUng and fbng are adapted to fFng,

3. E(Un+1jFn) = 0, lim supn!1E(jUn+1j2jFn) <1, and lim infn!1E(jU
(r)
n+1jjFn) >

0 almost surely, and

4.
P1

n=1 jbnj2 <1 almost surely.

Then limn!1 xn = x
� with probability 0.

10A continuous function x : R! X is an asymptotic pseudotrajectory for � if

lim
t!1

sup
0�h�T

d(x(t+ h);�h(x(t)) = 0

for every T > 0.
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Proof. See Brandière and Du�o [1996]. Intuitively speaking, even if xn is
close to x�, since Un+1 has su¢ ciently large components in the unstable
directions of DF (x�), the process cannot stay near x�.

Remark 4. Un+1 is required to have a positive variance in unstable directions
of DF (x�). Hopkins and Posch [2005] apply a version of this to reinforcement
learning models.

Remark 5. A similar nonconvergence result without noise term fbng was ob-
tained by Pemantle [1990]. See also Brandière [1998], Benaïm [1999], and
Tarrès [2000] for results about nonconvergence towards hyperbolic unstable
periodic orbits and other types of repelling sets, under various sets of as-
sumptions.11

Benaïm and Hirsch [1999] show that versions of these theorems apply to
the standard SFP and its continuous-time mean �eld

_�1(t) = BR(�2(t))� �1(t); (Unitary)
_�2(t) = BR(�1(t))� �2(t);

Note that the rest points of this system are exactly the equilibrium distrib-
utions.
By studying this continuous-time system, Benaïm and Hirsch [1999] show

that SFP converges to distributions that approximate one of the two pure-
strategy equilibria in 2�2 coordination games, and not to approximations of
the (unstable) mixed equilibrium, while play converges to the (unique) equi-
librium distribution in 2�2 games with a unique mixed-strategy equilibrium.
They provide extensions to some many-player two-action games, and show
that the unique equilibrium in Jordan�s [1993] three-player matching-pennies
game is linearly unstable. Hofbauer and Sandholm [2002] prove that SFP
converges to the unique equilibrium distribution in all two-player zero-sum
games, and to one of the equilibrium distributions in many-player potential
games if all of the rest points are hyperbolic; they also present results on
supermodular games.
A number of paper have analyzed (Unitary) without deriving it from

SFP. Ely and Sandholm [2005] show that (Unitary) also describes the evo-
lution of the population aggregates in their model of Bayesian population

11We use Brandière and Du�o [1996] rather than Benaïm [1999] or Tarrès [2000] since the
boundedness of fUng assumed in the latter two papers is not satis�ed in our asynchronous-
clock model.
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games. Ellison and Fudenberg [2000] study (Unitary) in 3 � 3 games, in
cases where smoothing arises from a sequence of Harsanyi-like perturbations
of the form (SP), with the �size� of the perturbation going to zero. They
�nd that there are many games in which whether a puri�ed version of the
totally mixed equilibrium is locally stable depends on the speci�c distribu-
tion of the payo¤ perturbations, and that there are some games for which no
�purifying sequence�is stable. Sandholm [2007] re-examines the stability of
puri�ed equilibria under (Unitary); he gives general conditions for stability
and instability of equilibrium, and shows that there is always at least one
stable puri�cation of any Nash equilibrium when a larger collection of puri-
fying sequences is allowed. Hofbauer and Hopkins [2005] prove convergence
of (Unitary) in all two-player games that can be rescaled to be zero-sum, and
in two-player games that can be rescaled to be partnerships;12 they also show
that isolated interior equilibria of all generic symmetric games are linearly
unstable for all small symmetric perturbations of the best response correspon-
dence, where a �symmetric perturbation�means that the two players have
the same smoothed best response functions. This instability result applies
in particular to symmetric versions of the famous example of Shapley [1964],
and to non-constant-sum variations of the game �rock-scissors-paper.�(The
constant-sum case is one of the non-generic games where the equilibrium is
stable.) The results of this paper give conditions that extend all of the above
results to settings with populations of agents who observe only the outcomes
in their own matches.

3 Stochastic Fictitious Play with Personal His-
tories

We now consider three versions of stochastic �ctitious play with random
matching, where agents observe only the outcomes of play in their own
matches. Consider a society with �nitely many agents. In each period,
some of the agents are randomly drawn from the society, and anonymously
matched with each other to play the stage game. Each agent forms a belief
about the distribution of the strategies he will see, based on empirical fre-
quencies of his past partners�plays. Whenever he is drawn from the society,

12These two classes are exhaustive for generic 2 � 2 games but not for generic games
with more actions.
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he randomly chooses a pure strategy according to the smoothed best response
to his current belief about the other agents�strategies. The agents update
their beliefs in a purely decentralized way: they do not observe outcomes
of other matches, nor communicate with other agents. Also note that this
learning process collapses to the standard model of stochastic �ctitious play
if there are only two agents in the society.
The three models we consider di¤er in the details of the matching struc-

ture, speci�cally in (a) how many agents are drawn from the society in each
period, and (b) whether an agent and his partner are chosen from the same
population or two di¤erent populations. In the �rst model, society consists
of two populations with equal size, and, in each period, every agent in one
population plays the stage game a randomly chosen partner from another
population. In the second model, society consists of a single population with
an even number of agents, and, in each period, every agent plays the stage
game with his partner. These two models have �synchronous clocks,�in the
sense that each agent plays every period, so that the sample size of every
agent is the same, and all players have access to a common measure of time.
The third model has a single population and �asynchronous clocks�: Each
period, two agents are randomly drawn to play the stage game. so that some
agents can end up playing more often than others.
In each of these models, we will show that asymptotic behavior of the

pro�le of players�beliefs is well described by the corresponding �unitary�
SFP with one agent in each player role. (In the second and third models,
this requires the assumption that the population is su¢ ciently large.) More
precisely, in each case we use Theorem A to show that the !-limits of our
SFP are almost surely contained in an internally chain-transitive set of a
deterministic continuous-time dynamic with heterogeneous beliefs, and that
the subspace where all agents in a given population have the same beliefs
is a globally attracting set for the heterogeneous system; restricted to this
subspace, the dynamic is the same as the �unitary�dynamic that captures
the long-run behavior of systems with a single agent in each player role. We
then show that an equilibrium that is linearly unstable for the unitary system
is linearly unstable for the system with heterogeneous beliefs. This lets us
use Theorems A and B to argue that the SFP must converge to an internally
chain-transitive set that is not a linearly unstable rest point in the unitary
system. Thus, allowing for multiple agents with heterogeneity in beliefs does
not change the asymptotic results derived from stochastic approximation.
The �rst model, with synchronous clocks and two distinct populations, is
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the simplest. Intuitively, since all agents are observing draws from the same
distribution, a suitable version of the law of large numbers implies that the
di¤erence between two agents�predictions about play converges to 0 almost
surely. Since beliefs determine behavior and the smoothed best response
function is continuous, one can show that the behavior of all agents in a given
population must become the same. Instead of formalizing this intuition, our
proof uses the techniques of stochastic approximation; this sacri�ces a little
generality but makes it easier to compare the analysis here to that of the
subsequent cases.
In the second model, with a single population, the empirical distribution

observed by one agent may be di¤erent from that observed by another even in
the limit, because an agent is never matched with himself. This e¤ect is small
when the population size is large, and we can show that it disappears in the
long run in a large population. (This is in essence a continuity argument, and
the conclusion is false if players use (discontinuous) exact best responses.)
Adding asynchronous clocks does not change the qualitative feature of

these analysis. We will explain this in the third model.

3.1 Synchronous Matching in Two Populations

There are two populations p = 1; 2 in the society, each of which consists ofM
agents. In every period n = 1; 2; : : :, each agent i in population p is matched
with a randomly chosen agent �n(i) in population q = 3� p; that is, there is
probability 1=M of being matched with each agent in the other population,
independent across periods. The matched agents do not observe others�past
histories. When matched, agents 1i and 2j simultaneously choose strategies
that we denote s1i;n and s2j;n; each agent then observes the outcome of their
match at the current period, but not the outcomes in other matchers.
At the end of period n, agent i in population p has a belief �pi;n 2 �

about his opponent�s play in the next period. As in usual �ctitious play, this
is the average of what the agent has observed and his initial weights �pi;0 of
size ��pi;0 =

P
s2S �pi;0(s):

�pi;n =
1

n+ ��pi;0

 
nX
k=1

sq�k(i);k + �pi;0

!
:
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Along any realization of the process, beliefs evolve according to the recursion

�pi;n+1 � �pi;n =
1

n+ ��pi;0 + 1
(sq�n+1(i);n+1 � �pi;n)

=
1

n+ 1
(sq�n+1(i);n+1 � �pi;n + bpi;n+1);

where we introduce the error term

bpi;n+1 = �
��pi;0

n+ ��pi;0 + 1
(sq�n+1(i);n+1 � �pi;n):

Thus we can write the system with an equal step size for each agent although
the �size�of their initial weights can di¤er.
Note that each agent plays a smoothed best response to his beliefs about

play in the other population. Since the agents are di¤erent, they could in
principle have di¤erent smoothed best response functions, corresponding to
di¤erent stochastic or deterministic payo¤shocks. We explore this possibility
below, but for now we suppose that all agents use a common smoothed best
response function.
Next we introduce noise terms Upi to capture the di¤erence between the

realized play of the agent�s opponent and its expected value:

�1i;n+1 � �1i;n =
1

n+ 1

 
1

M

MX
j=1

BR(�2j;n)� �1i;n + U1i;n+1 + b1i;n+1

!
;

(SFP1)

�2j;n+1 � �2j;n =
1

n+ 1

 
1

M

MX
i=1

BR(�1i;n)� �2j;n + U2j;n+1 + b2j;n+1

!
;

where

Upi;n+1 = sq�n+1(i);n+1 �
1

M

MX
j=1

BR(�qj;n):

The �rst step of the analysis is to show that these noise terms satisfy the
conditions of Theorem A.

Lemma 1. fUpi;ng and fbpi;ng de�ned above satisfy the following properties:

1. fUpi;ng and fbpi;ng are adapted to fFng,
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2. E(Upi;n+1jFn) = 0, jUpi;nj � 1,

3. jbpi;nj � ��pi;0=(n+ ��pi;0), and the right-hand side is square-summable.

Proof. 1. Upi;n and bpi;n are obviously measurable with respect to Fn.

2. Since �n+1(i) is uniformly drawn from f1; : : : ;Mg, and, and each player�s
play does not depend on the identity of his current opponent, for each
possible value j of �n+1(i), sqj;n+1 is a random variable whose distri-
bution conditional on that the state of the system at period n and
the realization of matching at period n + 1 is BR(�qj;n). Therefore,
E(sq�n+1(i);n+1jFn) = E(E(sqj;n+1jFn; �n+1(i) = j)jFn) = E(BR(�qj;n)jFn) =
(1=M)

PM
j=1 BR(�qj;n). Thus E(Upi;n+1jFn) = 0.

For every s 2 S, �1 � Upi;n(s) � 1, so we have jUpi;nj � 1.

3. Since jsq�n(i);n � �pi;n�1j � 1, we have jbpi;nj � ��pi;0=(n+ ��pi;0).

Taking the limit as the step size goes to 0, and ignoring the perturbation
terms fUng and fbng, leads to the system of ODEs:

_�1i(t) =
1

M

MX
j=1

BR(�2j(t))� �1i(t); (Hetero)

_�2j(t) =
1

M

MX
i=1

BR(�1i(t))� �2j(t);

which induces semi-�ow � on �2M .
By Theorem A and Lemma 1, we can characterize the long run behavior

of the discrete-time stochastic process f(�11;n; : : : ; �2M;n)g by analyzing the
system (Hetero). Speci�cally, with probability 1, the !-limit of the realization
of (SFP1) is internally chain-transitive under (Hetero).
Let H = f(�11; : : : ; �2M) 2 �2M j �11 = � � � = �1M ; �21 = � � � = �2Mg be

the subspace where all agents in a given population have the same (�homo-
geneous�) beliefs, just as they do in the unitary models with a single agent
in each role. Then the following holds:

Lemma 2. H is a globally attracting set for �.
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Proof. For any p = 1, 2, and i 6= j, we have _�pi(t)� _�pj(t) = �(�pi(t)��pj(t)),
thus j�pi(t)� �pj(t)j � e�tj�pi(0)� �pj(0)j ! 0 as t!1.

Moreover, for any (�11; : : : ; �2M) 2 H, let us denote �1 = �11 = � � � = �1M
and �2 = �21 = � � � = �2M . Then the semi-�ow restricted to H, �jH, reduces
to the system (Unitary).
Let L be an !-limit set for (SFP1); this is a random variable whose

properties depend on the particular realization of the process.

Theorem 1. L is a subset of H and internally chain-transitive for �jH with
probability 1.

Proof. By Theorem A and Lemma 1, L is internally chain-transitive for �
with probability 1. Fix a probability-1 set of realizations on which L is
invariant and internally chain-transitive for �.
For each such realization, pick any � 2 L. Since L is invariant, �t(�) 2 L

for all t 2 R+. Also, since H is a globally attracting set by Lemma 2,
d(�t(�); H)! 0. Thus, by the compactness of L and H, L \H 6= ;.
Again, by Lemma 2, H is an attracting set for �, thus L \H is also an

attracting set for �jL. Since �jL admits no proper attracting set, we have
L � H.
Since the de�nition of internal chain-transitivity depends only on the

semi-�ow restricted to L, L is internally chain-transitive for �jH.

Theorem 1 shows that in the long run all agents have the same beliefs, and
moreover that the system converges to one of the internally chain-transitive
sets of (Unitary), just as it does in the case of a single agent in each popula-
tion, and in the �global information�case where there are several agents in
each population, and each agent observes the outcomes in all matches. The
next step is to rule out convergence to linearly unstable equilibria. Let hx; yi
be the inner product of x and y. If y is a unit vector, then jhx; yij is equal to
the length of the orthogonal projection of x on the y direction. The following
is a simple extension of Theorem 5.1 in Benaïm and Hirsch [1999].

Lemma 3. lim infn!1E(jhUpi;n+1; eijjFn) > 0 almost surely for every unit
vector e 2 RS with

P
s2S e(s) = 0 under (FP1).

Proof. Since E(jhUpi;n+1; eijj(�q1;n; : : : ; �qM;n) = (�q1; : : : ; �qM)) is indepen-
dent of n and continuous in (�q1; : : : ; �qM) 2 �M , it is su¢ cient to show

E(jhUpi;n+1; eijj(�q1;n; : : : ; �qM;n) = (�q1; : : : ; �qM)) > 0
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for every (�q1; : : : ; �qM).
Since (1=M)

P
j BR(�qj) is in the interior of �, there exists s 2 S such

that

hs; ei >
*
1

M

X
j

BR(�qj); e

+
:

Thus

E(jhUpi;n+1; eijj(�q1;n; : : : ; �qM;n) = (�q1; : : : ; �qM))

� min
j
BR(�qj;n+1)(s)

 
hs; ei �

*
1

M

X
j

BR(�qj); e

+!
> 0

since BR(�qj;n+1)(s) > 0 for every j.

Theorem 2. If (��1; �
�
2) is a linearly unstable rest point for (Unitary), then

lim
n!1

�11;n = � � � = lim
n!1

�1M;n = �
�
1;

lim
n!1

�21;n = � � � = lim
n!1

�2M;n = �
�
2

with probability 0.

Proof. Let (��1; �
�
2) be a linearly unstable equilibrium for (Unitary). Every

eigenvector of the Jacobian of (Unitary) at (��1; �
�
2) is an eigenvector of

the Jacobian for (Hetero) at (��1; : : : ; �
�
1; �

�
2; : : : ; �

�
2). Since (Unitary) has

an eigenvalue with a strictly positive real part, so does (Hetero). Hence
(��1; : : : ; �

�
1; �

�
2; : : : ; �

�
2) is a linearly unstable rest point for (Hetero). The

theorem now follows from Theorem B and Lemmas 1 and 3.

Theorems 1 and 2 let us immediately extend the past results on SFP that
were mentioned at the end of Section 2.

Heterogeneous Perturbations Now we relax the assumption that all
agents use the same smoothed best response function, and let each agent i
use a di¤erent function . As Wilcox [2006] points out, this sort of hetero-
geneity can lead econometric estimates of the learning rules to mistakenly
conclude that players are conditioning on their own past choices when they
are in fact following smooth �ctitious play,13 so it is interesting to note that
13Tihis is because the typical econmetric procedure pools data across subjects withut

using subject �xed e¤ects, so that the player�s past choices carry informatoin about the
heterogeneous perturbation parameter.
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small heterogeneous perturbations do not have a substantial impact on the
asymptotic behavior of the system.
To see this, note �rst that heterogeneous perturbations do not make any

di¤erence for Lemmas 1�3, so Theorem A applies and the subspace H of
homogeneous beliefs is a globally attracting set; the semi-�ow �jH is now

_�1(t) =
1

M

MX
i=1

BR1i(�2(t))� �1(t); (HP)

_�2(t) =
1

M

MX
j=1

BR2j(�1(t))� �2(t):

The question now is to relate the asymptotic behavior of this �ow to that of
(Unitary) and thus to past results. The case where all agents in population
1 use BR1, while agents in population 2 use BR2 is trivial because the liter-
ature on �ctitious play with two populations has allowed asymmetric payo¤
functions. The following lemma is useful for the more general case:

Lemma 4. Suppose that, for every p and i, BRpi is derived from maximizing
perturbed utility functions of the form u(�; �0)+vpi(�), where vpi satis�es the
assumptions of (DP). Then there exists vpA that satis�es the assumptions
of (DP) and generates BRpA such that BRpA(�0) = (1=M)

P
i BRpi(�

0) for
every �0 2 �. Thus the system (HP) is equivalent to the system

_�1(t) = BR1A(�2(t))� �1(t); (Aggregate)
_�2(t) = BR2A(�1(t))� �2(t):

Proof. This follows from the proof of Theorem 2.1 in Hofbauer and Sandholm
[2002], which shows that a choice function C : RS ! int(�) can be derived
from (DP):

C(�) = argmax
�

(h�; �i+ v(�))

if and only if its derivative DC(�) is symmetric, negative de�nite, and satis-
�es

P
sDC(�)(s) = 0: these properties are inherited by convex combinations

of such functions.

Several results in the literature on SFP in two-player games hold for
all smoothed best response functions, so they apply to the aggregate best
response function BRpA. This is the case for example for Hofbauer and
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Sandholm�s [2002] global convergence results in two-player zero-sum games
and in potential games with where all of the rest points are hyperbolic, so
in these cases we can conclude that the aggregate system converges to a rest
point of (Aggregate). Moreover, such a rest point is close to Nash equilibria
of the unperturbed stage game if each agent�s stochastic or deterministic
payo¤ perturbations are small enough.

Theorem 3. If (i) every BRpi is derived from additive random utility model
(SP) with vanishing random components, "pi ! 0 in probability, or (ii) every
BRpi is derived from deterministic perturbation model (DP) with vanishing
deterministic perturbation, sup�;�0 jvpi(�)� vpi(�0)j ! 0, then a �xed point of
(BR1A;BR2A) converges to Nash equilibria of the unperturbed stage game.

Proof. See Appendix.

In contrast, in some 3�3 games, the stability of an equilibrium can depend
on the details of the small perturbation used to generate the best response;
at this point it is an open question whether any of the various su¢ cient
conditions for stability and instability are preserved by aggregation.

3.2 Synchronous Matching in One Population

Now we consider SFP in a single population with M agents, and revert to
the assumption that each agent uses the same smoothed best response BR.
Here each agent sees a slightly di¤erent sample since they do not play against
themselves. Intuitively, we expect that this would not make much di¤erence
to play in su¢ ciently large populations, since each agent is only 1=M of the
population; we will see that the right measure of �su¢ ciently large�depends
on the sensitivity of the smoothed best response function to small changes
in beliefs.
Speci�cally, in every period n, each agent i is matched with another

agent �n(i); for each j 6= i, �n(i) = j with probability 1=(M � 1), and �n
is independent across periods. Agent i�s strategy at period n is denoted by
si;n.
Agent i with initial weights �i;0 updates his belief �i;n about his opponent�s
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play in the next period according to

�i;n+1 � �i;n =
1

n+ ��i;0 + 1
(s�n+1(i);n+1 � �i;n)

=
1

n+ 1
(s�n+1(i);n+1 � �i;n + bi;n+1);

where ��i;0 =
P

s2S �i;0(s) and

bi;n+1 = �
��i;0

n+ ��i;0 + 1
(s�n+1(i);n+1 � �i;n):

SinceE(sj;n+1jFn) = BR(�j;n) and �n+1(i) is uniformly drawn from f1; : : : ; i�
1; i+ 1; : : : ;Mg, we have

�i;n+1 � �i;n =
1

n+ 1

 
1

M � 1
X
j 6=i

BR(�j;n)� �i;n + Ui;n+1 + bi;n+1

!
;

(SFP2)
where

Ui;n+1 = s�n+1(i);n+1 �
1

M � 1
X
j 6=i

BR(�j;n):

As in Lemma 1, fUng and fbng are adapted to fFng, E(Ui;n+1jFn) = 0,
jUi;nj � 1, and jbi;nj � ��i;0=n.
Stochastic approximation yields the system of ODEs:

_�i(t) =
1

M � 1
X
j 6=i

BR(�j(t))� �i(t): (Hetero-Sym)

This system induces semi-�ow �0 on �M . The corresponding system with
unitary beliefs is

_�(t) = BR(�(t))� �(t): (Unitary-Sym)

Let H 0 = f(�1; : : : ; �M) 2 �M j �1 = � � � = �Mg be the subspace where all
agents have the same beliefs, and recall that K is a Lipschitz constant for
BR .

Lemma 5. If M > K + 1, then H 0 is a globally attracting set for the semi-
�ow �0 induced by (Hetero-Sym).
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Remark 6. This result follows from a more general result (Lemma 7) in the
next subsection. Intuitively, regardless of the history of play, the maximum
di¤erence j�i��jj in the beliefs of agents i and j is 1=(M�1): This is magni�ed
by the slope K of BR, so that the di¤erence decreases if K=(M � 1) < 1.
Remark 7. The lemma only gives a su¢ cient condition, but as we discuss
in the next section, simulations suggest that the bound is fairly tight and
that forM < K+1 heterogeneous beliefs can persist in an anti-coordination
game.

Hofbauer and Sandholm [2002] show that (Unitary-Sym) characterizes
the long-run behavior of a system where two agents are drawn from a single
population to play each period, all agents observe the outcome each period,
and agents update on the basis of past outcomes, treating observations of
their own past behavior the same as observations of others; this last assump-
tion explains why their results are independent of the population size. This is
not the case here, as we can see by considering M = 2, where (Hetero-Sym)
is equivalent to the system (Unitary) that describes the usual two-population
model, and the symmetric game with payo¤s.

(1; 1) (2; 3)
(3; 2) (1; 1)

In this case the system (Unitary-Sym) converges to the mixed equilibrium,
while the standard two-population SFP converges to a rest point that ap-
proximates one of the asymmetric pure equilibria. Thus not only do the
beliefs of the two agents remain di¤erent, aggregate play in the long run is
di¤erent from that in the unitary symmetric model.
Let L be an !-limit for (SFP2). Replacing Lemma 2 by Lemma 5 and

modifying Lemmas 1 and 3, we obtain the following theorems as in the pre-
vious subsection.

Theorem 4. If M > K + 1, then L is a subset of H 0 and internally chain-
transitive for �0jH 0 with probability 1.

Theorem 5. If �� is a linearly unstable equilibrium for (Unitary-Sym), then

lim
n!1

�1;n = � � � = lim
n!1

�M;n = �
�

with probability 0.
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Theorems 4 and 5 show that the results mentioned at the end of Section
2 apply here provided that M is su¢ ciently large.14 As the smoothed best
responses become close to the exact best responses,M needs to grow to keep
M > K + 1.
Based on Theorems 4 and 5, we can extend some results that are speci�c

to one-population models: Hofbauer and Sandholm [2002] show that play
converges to the unique rest point of (Unitary-Sym) in games with an interior
ESS. On the other hand, Hopkins [1999b] shows that if the payo¤ matrix
corresponding to payo¤ function u is positive de�nite and the smoothed best
response takes the logit form with parameter � su¢ ciently large, then the
equilibrium corresponding to a fully mixed symmetric Nash equilibrium of
the stage game is linearly unstable. Theorems 4 and 5 show that these results
carry over to (SFP2).

Heterogeneous Perturbations Once we introduce heterogeneous smoothed
best responses functions fBRig, the asymptotic behavior of SFP is approxi-
mated by

_�i(t) =
1

M � 1
X
j 6=i

BRj(�j(t))� �i(t):

In this model, the set of homogeneous beliefs, H 0, may not be globally at-
tracting, as each agent is observing and reacting to a di¤erent distribution
of opponents�strategies. For this reason, we cannot extend Theorems 4 or
5 to heterogeneous perturbations. However, since the set of chain-recurrent
points is upper semi-continuous in �,15 if the heterogeneity among agents
is su¢ cently small, the agents� beliefs converge near an internally chain-
transitive set of (Hetero-Sym) with some smooth best response function BR;

14As we have seen, the aggregate outcome of (Hetero-Sym) can di¤er from that of
(Unitary-Sym) if M < K + 1. However, we conjecture that the two models have the
same implications when the unitary model has a globally attracting equilibrium whenever
both M and K are large. In particular, suppose that under (Unitary-Sym) with logit best
response, for all � > ��; there is ��� that is globally stable, and that �

�
� ! �� as � ! 1.

Then we conjecture that there is �M such that for all M > �M; and all � > ��, there is
���;M such that the submanifold where average play corresponds to ���;M is globally stable
under (Hetero-Sym) with d(���;M ; �

�
�) < ". In this case, with large populations the unitary

model is a good approximation to aggregate play regardless of the relative magnitudes of
M and K.
15This will be proved in a forthcoming paper by Benaïm, Hofbauer, and Sorin.
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our previous results imply that this is near an internally chain-transitive set
of (Unitary-Sym) with the same BR.

Theorem 6. Fix a smoothed best response function BR with Lipschitz con-
stant K. Assume that M > K + 1. For any " > 0, there exists � > 0
such that, if jBRi(�) � BR(�)j < � for every i = 1; : : : ;M and � 2 �, then
(�1; : : : ; �M) converges to an "-neighborhood of an internally chain-transitive
set for �0jH 0 with probability 1.

3.3 One Population� Asynchronous Clocks

The models we have considered so far suppose that all agents play every
period, so that every agent knows that his current opponent has played the
game exactly as often as he has. This is typically the case in game theory ex-
periments, but in many �eld settings, agents play at varying frequencies, and
do not know how many times their current opponents have played the game.
To model such situations, we now we consider a model with �asynchronous
clocks.�
Specifcally, at each moment, two agents are drawn randomly from a single

population of size M agents; we denote the chosen agents at moment n by
the set Cn. When an agent is chosen, he chooses a smoothed best response
in game G, given his assessment of the opponent�s actions. After the play,
he updates his assessment based on the realized strategy of his partner. If a
player is not chosen, on the other hand, then he keeps the same assessment
as before.
We can describe this situation more formally. As in SFP with synchronous

clocks, at the beginning of period n, each agent i has weights �i;n, and forms
the probability �i;n that agent i assigns to his opponent�s strategy at the
next period. If agent i is drawn from the population as one of the two active
players at period n (i.e., i 2 Cn), then he chooses a strategy sit according to
BR(i;n).
The di¤erence between this system and the usual SFP is that each agent

only updates his assessment when he is drawn to play:

�i;n+1(s
0) =

(
�i;n(s

0) + 1 if Cn = fi; jg and sj;n�1 = s0 for some j,
�i;n(s

0) otherwise:

Thus, �i;n(s0) is equal to the initial weight on s0, �i1(s
0), plus the number of

periods in which player i was drawn and his opponent chose s0 before period
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n. Set ��i;n =
P

s2S �i;n(s); then 1=�i;n is agent i�s step size at period n,
which governs the size of in�uence of a new observation. In order to control
di¤erent step sizes for di¤erent agents, we introduce variables that count the
step size for each agent, and then apply stochastic approximation to this
extended state space; these step size variables cannot be �run backwards�to
time negative in�nity, which is why we need to consider semi-�ows and not
�ows.
Let

yi;n =
��i;n + 1

n+ 1

be the ratio between the step sizes of synchronous and asynchronous clock
models. Using this variable, we write the recursion for f�i;ng as follows:

�i;n+1 � �i;n = I(i 2 Cn+1)
1

n+ 1

1

yi;n
(sj;n+1 � �i;n)

=
1

n+ 1

"
2

M

1

yi;n

 
1

M � 1
X
j 6=i

BR(�j;n)� �i;n

!
+ Ui;n+1

#
;

(SFP3)

where I is the indicator function, and

Ui;n+1 =
1

yi;n

"
I(i 2 Cn+1)(sj;n+1 � �i;n)�

2

M

 
1

M � 1
X
j 6=i

BR(�j;n)� �i;n

!#
:

Note that fyi;ng satis�es the following recursion:

yi;n+1 � yi;n =
1

n+ 2
(I(i 2 Cn+1)� yi;n)

=
1

n+ 1

�
2

M
� yi;n + U 0i;n+1 + b0i;n+1

�
;

where

U 0i;n+1 = I(i 2 Cn+1)�
2

M
;

b0i;n+1 = �
1

n+ 2
(I(i 2 Cn+1)� yi;n):
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Wewill apply Theorems A and B to the process f(�1;n; : : : ; �M;n; y1;n; : : : ; yM;n)g
and approximate the process by the following system of ODEs:

_�i(t) =
2

M

1

yi(t)

 
1

M � 1
X
j 6=i

BR(�j(t))� �i(t)
!
; (Uniform-Sym)

_yi(t) =
2

M
� yi(t);

which induces a semi�ow �00 on �M � RM++.

Lemma 6. The process (SFP3) de�ned above satis�es the following proper-
ties:

1. The system of ODEs (Uniform-Sym) is globally integrable,

2. f(Ui;n; U 0i;n)g and fb0i;ng are adapted to fFng,

3. E(Ui;n+1jFn) = E(U 0i;n+1jFn) = 0, lim supnE(jUi;n+1j2jFn) � (M=2)2

almost surely, jU 0i;nj � 1, lim infnE(jhUi;n+1; eijjFn) > 0 almost surely
for every e 2 RS with

P
s e(s) = 0,

4. jb0i;nj � (��i;0 + 1)=(n+ 1), the right-hand side is square-summable, and

5. f(�1;n; : : : ; �M;n; y1;n; : : : ; yM;n)g is precompact almost surely.

Proof. 1. Since min(yi(0); 2=M) � yi(t) � max(yi(0); 2=M) for t � 0,
(Uniform-Sym) is globally integrable in the positive direction, i.e., the
semi�ow �00 is well de�ned.

2. The measurability is obvious.

3. The martingale di¤erence condition follows from the fact that E(I(i 2
Cn+1)jFn) = 2=M and E(sj;n+1jFn; Cn+1 = fi; jg) = BR(�j;n).
It is easy to see that jUi;n+1j � 1=yi;n and jU 0i;nj � 1. Since yi;n ! 2=M
almost surely by the law of large number, lim supn!1E(jUi;n+1j2jFn) �
(M=2)2 almost surely.

Similarly to Lemma 3, we have E(jhUi;n+1; eijjFn) � c=yi;n with some
c > 0. Since yi;n ! 2=M almost surely, lim infnE(jhUi;n+1; eijjFn) �
2c=M > 0 almost surely.
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4. Since I(i 2 Cn) � 1 and yi;n�1 � yi;0 = ��i;0 + 1, we have jbi;nj �
(��i;0 + 1)=(n+ 1).

5. By the law of large number, yi;n ! 2=M is bounded away from 0 and
1 almost surely.

Let L be an !-limit for (SFP3). Using Lemma 6, we can apply Theorems
A and B to (SFP3) to obtain the following results. Recall that �0 is the semi-
�ow induced by (Hetero-Sym), and H 0 = f(�1; : : : ; �M)j�1;n = � � � = �Mg.

Theorem 7. L = L0 � f(2=M; : : : ; 2=M)g for some L0 � �M , and, if M >
K + 1, then L0 is a subset of H 0 and internally chain-transitive for �0jH 0

with probability 1.

Proof. By Theorem A and Lemma 6, L is internally chain-transitive for �00

with probability 1. Since X0 = �M � f(2=M; : : : ; 2=M)g is a globally at-
tracting set for �00, L = L0 � f(2=M; : : : ; 2=M)g for some L0 � �M . Since
�00jX0 is the same as �0 except for the last M components, by Lemma 5,
if M > K + 1, then L0 � H 0. Thus L0 is internally chain-transitive for
�0jH 0.

Theorem 8. If �� is a linearly unstable equilibrium for (Unitary-Sym), then

lim
n!1

�1;n = � � � = lim
n!1

�M;n = �
�

with probability 0.

Proof. The theorem follows from Theorem B and Lemma 6 since the eigenval-
ues of the Jacobian matrix for (Unitary-Sym) at �� are a part of the eigenval-
ues of the Jacobian matrix for (Uniform-Sym) at (��1; : : : ; �

�
M ; 2=M; : : : ; 2=M).

Non-uniform Matching Now we extend the previous analysis to i.i.d.
but non-uniform matching. Assume that, for each period n, Cn = fi; jg with
probability pij. Note that pii = 0, pij = pji � 0, and

P
1�i<j�M pij = 1. Also

assume that, for each agent i, there exists j 6= i such that pij > 0.16 As in the
16This assumption does not lose generality. If, for some i, pij = 0 for all j 6= i, then we

can exclude player i from our analysis.
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related literature on social learning about a common payo¤ parameter (cf.
Ellison and Fudenberg [1993], Bala and Goyal [1998], DeMarzo, Vayanos and
Zweibel [2003], Golub and Jackson [2007]), interaction probabilities fpijg can
be interpreted as a network; for example, the circle model of Ellison [1993]
is roughly analagous to pij = 1=2 for i � j = �1 (mod M) and pij = 0
otherwise.17

Since each agent plays the game with a positive probability, his step size
at period n is approximately proportional to 1=n, which allows us to use
stochastic approximation and obtain

_�i(t) =
1

yi(t)

X
j 6=i

pijBR(�j(t))� �i(t);

_yi(t) =
X
j 6=i

pij � yi(t):

Since yi(t)!
P

j 6=i pij as t!1, it is enough to analyze the following system
of ODEs:

_�i(t) =
X
j 6=i

qijBR(�j(t))� �i(t); (Nonuniform-Sym)

where qij = pij=
P

k 6=i pik is the probability that agent i�s opponent is agent
j conditional on agent i being drawn from the population to play the game.
This system induces semi-�ow �q on �M . We extend Lemma 5 to non-
uniform matching, showing that H 0 is a globally attracting set for �q if the
population is large enough and matching is close enough to uniform.
Let

� = max
1�i<j�M

MX
k=1

max(qik � qjk; 0)

17Of course, the interpretation of the netrwork structure is di¤erent in the two types
of models. Models of myopic best responses on networks, such as Ellison�s, assume that
each agent knows the current actions of all of her neighbors. Each period, each agent
plays a best response to the mixed strategy corresponding to the current actions of the
neighbors, where the action of each agent j gets weight pij , thus the interactoin process
is treated as deterministic, perhaps as the result of a round-robin tournament within each
period. In contrast, random selection of opponents would make our model stochastic even
if each agent played a myopic best response to either her last observation or to the current
opponent�s play in the previous period.
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be the maximum di¤erence between the distributions of two agents�oppo-
nents. For example, � = 1=(M � 1) under uniform matching. This is a
measure of the maximum di¤erence of the beliefs of any two agents, so we
can conclude that the beliefs and play must converge when K� < 1 (Lemma
5).

Lemma 7. If K� < 1, then H 0 is a globally attracting set for the semi-�ow
�q induced by (Nonuniform-Sym).

Proof. See Appendix.

4 Convergence to a Cycle

In some games, the usual SFP converges to a cycle, and never converges to
any of the Nash equilibria. Our results show that the same is true for SFP
with heterogeneous beliefs, even in the case of asynchronous clocks. Specif-
ically, consider the rock-scissors-paper �game B� from Benaïm, Hofbauer,
and Hopkins [2006]:

(0; 0) (�3; 1) (1;�3)
(1;�3) (0; 0) (�2; 1)
(�3; 1) (1;�2) (0; 0)

:

This game has a unique Nash equilibrium �� = (9; 10; 13)=32; Benaïm, Hof-
bauer, and Hopkins show that under the exact best response dynamics, the
mixed equilibrium �� is unstable, and that there is a �Shapley polygon�C
(i.e., a cycle) that attracts all orbits that do not start at the equilibrium.
Now consider logistic best response dynamics with parameter � ! 1

so that the smoothed best response puts weight tending to 1 on the ex-
act best responses, and let �� be the Nash distribution (the �xed point of
the best response functions) as a function of �. Because the set of chain-
recurrent points is upper semi-continuous in �;the only chain-recurrent points
of (Unitary-Sym) for large � are all close to either C or ��. Hopkins [2002]
shows that the Nash distribution �� is linearly unstable for large �, so The-
orem B shows that SFP does not converge to ��. Benaïm, Hofbauer, and
Hopkins use a Lyapunov function to show that �� is a repellor for large �; a
small modi�cation of their argument shows that the repelling neighborhood
does not vanish as � ! 1. This shows that SFP cannot remain even in
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a neighborhood of �� and so (from the upper semi-continuity result) must
converge to a neighborhood of C.

Lemma 8. There are � > 0 and �� such that, for all � > ��, the only chain-
recurrent set of (Unitary-Sym) in the �-neighborhood N� of �� is the Nash
distribution ��.

Proof. See Appendix.

Theorem 9. For every � > 0, there is �� such that for all � > ��, the !-limit
of SFP is in the �-neighborhood of C with probability 1.

Proof. This follows from the lemma, the upper semi-continuity of chain-
recurrent points, and the fact that, if an internally chain-transitive set inter-
sects the basin of an attractor, then it is contained in that attractor (Benaïm
[1999], Corollary 5.4).

5 Simulations: Initial Condition Dependence
and the Role of �Prior Con�dence�

We have shown that, in the long run, the system converges to an internally
chain-transitive set of the unitary system, and that it cannot converge to a
linearly unstable equilibrium. We now use some simulations to explore how
the relative probabilities of various attractors depend on the parameters of
the system, and in particular on its initial conditions. Both sets of simula-
tions are for the model with asynchronous clocks and uniform matching, and
suppose that the agents use the logit best response function with parame-
ter � = 7; with the payo¤ matrices we use, this implies that the maximum
slope of the smooth best response is K = 3:5. The �gures all report the
distribution of the state of the system after 10; 000 periods, where the distri-
bution comes from averaging over 100 runs of simulation for each parameter
con�guration.
Our �rst set of simulations concerns a pure coordination game with payo¤

matrix
A B

A (1; 1) (0; 0)
B (0; 0) (1; 1)

;

where both actions are equally e¢ cient. The population size is set atM = 4,
and we suppose that three of the four agents have prior beliefs �i;0 = (1; 0);
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so they initially believe that A is very likely, but they are not very certain
of that belief. The fourth agent has prior �4;0 = (0; �4;0(B)), where we vary
the parameter �4;0(B) to investigate the impact of the agent�s con�dence
in his prior. Thus, in the initial period, 3 of the 4 agents play A with high
probability, while, in the second round 2, agents play A with high probability,
one agent is indi¤erent and gives each action equal weight, and one agent
plays B with high probability (if �4;0(B) is much larger than 1).
The further development of the system depends on the extent of agent 4�s

prior conviction, and the long-run result is plotted in Figure 1. The y-axis
in this �gure plots two curves: the blue line is the fraction of runs where
at the terminal date N = 10; 000, �i;N(A) > :9 for all agents i; the black
line plots the fraction of runs where �i;N(B) > :9. The sum of the two plots
ranges from .996 to 1, indicating that the system almost always converges to
one of the equilibrium distributions, as predicted by the theoretical results.
From the �gure we see that if �4;0(B) is only 3 or 4, the system converges to
a state where all agents expect action A; this is because agent 4 is likely to
start playing A before other agents become �convinced�of B. When �4;0(B)
is about 15, the system is equally likely to converge to either equilibrium,
while for large values of �4;0(B), play tends to converge to B.
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The next �gure plots the same data for the �global information�model
where agents have the same priors as above, but all agents observe the out-
come of every match. Here all 4 agents shift their priors towards A after the
�rst period outcome, so we expect that the one �very convinced�B-agent
will have less impact and that play should be less likely to converge to B.
The �gure shows that this is the case, though the e¤ect is not pronounced:
when �4;0(B) = 15; A has empirical probability of about :6 instead of :5 and
�4;0(B) = 25 is required for the two equilibria to be equally likely.

We also use simulations to test the tightness of the condition M > K +1
for conformity in the one-population model with uniform matching. This
plot is for the game with payo¤s

0; 0 1; 1
1; 1 0; 0

The initial weights for all agents are �i;0(A) = �i;0(B) = 1.
The x-axis is the population size, M = 2; 3; : : : ; 8; the y-axis plots the

distribution of a measure of the heterogeneity of beliefs, maxi;j j�i;N(A) �
�j;N(A)j; at the end of N = 10; 000 periods. The simulation was run 100
times for each value of M , and the diagram shows the .25, .50, and .75
fractiles of the resulting distribution, along with the outliers. The theorem
predicts that the di¤erence should be 0 once M > K + 1 = 4:5, i.e., M � 5.
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For M = 3, the heterogeneity measure is concentrated with median
:46. To interpret this �nding, we computed the �xed points of (Hetero-
Sym) and tested them for stability. The only linearly stable �xed points are
(�1(A); �2(A); �3(A)) = (:269; :5; :731) and its permutations.18 Because the
heterogeneity measure at these stable �xed points is approximately what we
observe in the simulations, we believe that it would not dissappear if the
simulation was run to a longer horizon. To test this, we increased the time
horizon N from 10,000 to 100,000, and the distribution of the heterogeneity
measure remained about the same. Similarly, for M = 4, the heterogene-
ity measure is concentrated with median :24, which is close to its value in
the linearly stable �xed points (permutations of (:397; :397; :603; :603)). For
M � 5, (1=2; : : : ; 1=2) is a global attractor, so that in the long run the mea-
sured heterogeneity should be zero. The plot shows a marked decrease in
heterogeneity by M = 5, but the measure remains at a non-trivial level even
for M = 8. Thus, even though beliefs converge to uniformity for M � 5, the
speed of convergence seems to be slow. (Consistent with our theorem, the
median of the heterogeneity measure for M � 5 decreased by at least 40%
when we increased the time horizon N by a factor of 10).

The simulations reported so far have all been for � = 7. The plot for
18The homogeneous �xed point (1=2; 1=2; 1=2) is linearly unstable.
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the less sensitive (�atter) best response curve � = 3 shows a sharp decrease
at M � K + 1 = 2:5, which conforms with the theoretical prediction. The
heterogeneity measure here remains non-zero, but falls to a lower level. Intu-
itively, when the agents�best response fuctions are �atter (smaller �), their
play is less sensitive to any di¤erence in beliefs. Then di¤erent agents face
more similar distributions of opposing agents�play, so their beliefs are more
simlar.
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6 Concluding Remarks

6.1 Related Literature

Hopkins [1999a] considers a deterministic model of �population �ctitious
play� with a continuum of agents.19 He supposes that, over a small in-
terval of time �t, agents are matched an �arbitrarily large�number of times,
but that they adjust their beliefs by �t as much as they would in a period
of length 1; this corresponds to an (unmodelled) limit on the frequency of
interaction within each period. He then adds a form of once-o¤ perturbation
to the initial attractiveness of each strategy,20 and takes the continuous-time
limit, which is the same whether players observe the outcomes of all matches
or only the outcomes of their own. He shows that the resulting process is a
positive de�nite dynamic, as is SFP; this means that the eigenvalues of the
linearized versions of both processes are purely imaginary at any fully mixed
equilibrium of a constant-sum game, and that an interior ESS pro�le, if it
exists, is stable under both processes.
Benaïm and Weibull [2003] consider a dynamic where a single agent is

selected each period to revise his strategy choice, where the probability dis-
tribution over choices is the same for all agents, and depends only on the
fractions of agents currently using each strategy. They consider a di¤erent
sort of limit, sending the population size to in�nity to obtain a deterministic
approximation. Benaïm et al. [2006] consider a variant of one-population,
unitary-belief SFP where agents give less weight to older observations, and
use stochastic approximation techniques to analyze the iterated limit where
�rst the �discounting�of past observations vanishes and then the parameter
� in the logit best response goes to in�nity. They show that, in this case,
the time average of play always converges, even though this need not be the
case under SFP (Benaïm and Hirsch [1999]). It would be very interesting to
extend their analysis to models with personal histories considered here.
Hopkins [2002] applies stochastic approximation to a model of perturbed

19Fudenberg and Levine [1993b] also used a deterministic, continuum-population model
to study non-equilibrium Bayesian learning. They allowed for heterogeneous beliefs, which
can persist because the agents�observation functions are endogenous, but they only con-
sider the steady states of the system and do not analyze its dynamics.
20These perturbations do not correspond either to a permanent payo¤ shock (because

their e¤ect asymptotically vanishes) or to a variation in initial beliefs (because they can
make the agents play a strictly dominated strategy). Instead, the perturbations correspond
to a payo¤ shock whose magnitude decreases over time at a given rate.
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reinforcement learning. In the �rst formulation of this model, the step sizes
are stochastic and di¤erent for each agent, as in our acynchronous-clock
model; to obtain convergence to a perturbed equilibrium, he then considers
a version where the step size are normalized to be proportional to 1=n.
Hart and Mas-Colell [2000, 2001] study systems of �regret learners�with

a �xed population of m agents playing an m-player game without trying
to maniplate the future play of their opponents. Just as with SFP, this
strategic myopia can be justi�ed by appeal to a large population of agents and
randommatching, so it would be interesting to know when the Hart and Mas-
Colell convergence results extend to large populations with heterogeneous
histories of play and hence heterogeneous regrets. Foster and Young [2006]
study an aspiration-based learning rule in a two-player game with two agents
in a setting where the agents see only their realized payo¤s, and do not
realize that they are playing a game. When agents are unaware that they
are involved in a speci�c game, the payo¤s they receive may in fact come
from interactions with several di¤erent other agents, so once again it would be
interesting to know when the convergence results extend to large populations
and heterogeneous �beliefs.�
The work of Acemoglu et al. [2007], and Cripps et al. [2006], like ours, is

based on Bayesian learning; the papers di¤er in that what is being observed is
exogenous. In Acemoglu et al., the agents have a common set of observations,
but each one uses a di¤erent likelihood function to interpret the data, and
the question is when all agents come to have the same beliefs about the
distribution of an underlying parameter �. In Cripps et al., agents receive
private signals with a known joint distribution. The signals are assumed to
identify �, so in the long run all agents assign probability converging to 1
to the true value; the focus is on the higher order beliefs of the agents, and
when the true value of � becomes almost common knowledge.

6.2 Conclusion

In addition to the results in the line of Theorems A and B, the literature also
has results of the form �every attractor of the continuous time system has a
positive probability of containing the !-limit of the system,�as in Benaïm
[1999, Theorem 7.3]. We have proved similar results for our synchronous-
clock models with one or two populations, but not for the asynchronous-
clock model; the complication there is that the system is not well behaved in
the neighborhood of yi = 0: Instead, we have used simulations to get more
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precise estimates of the relative probabilities of various attractors.
Since our conclusions are about the long-run behavior of the learning

system, they should be insensitive to the details of play in the initial periods.
For example, the result that beliefs converge to a unitary state should extend
to learning rules that are �asymptotically empirical� and �asymptotically
myopic�in the sense of Fudenberg and Kreps [1993].
Heterogeneous beliefs and private histories seem natural in a number

of other learning models in addition to SFP, for example in models where
agents have a short memory and play a best response to their most recent
observation, or to a subsample of the last few outcomes, as in Young [1993];
we hope to explore this in future work.
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Appendix

Proof of Theorem 3. If every BRpi is derived from (SP), then BRpA is derived
from (SP) with random component "pA whose cumulative distribution func-
tion is the average of the cumulative distribution functions of "pi. Thus, if
"pi ! 0 in probability for every i, then "pA ! 0 in probability as well. There-
fore, the statement follows from Hofbauer and Sandholm [2002, Proposition
3.1].
Suppose that BR

k

pi is derived from (DP) with deterministic perturbation
vkpi such that sup�;�0 jvkpi(�)� vkpi(�0)j ! 0 as k !1. Let (�k1; �k2) be a �xed
point of (BR

k

1A;BR
k

2A) that converges to (�
�
1; �

�
2). For every k, every p 6= q,

and every �p 2 �, we have

u(BRpi(�
k
q); �

k
q) + v

k
pi(BRpi(�

k
q)) � u(�p; �kq) + vkpi(�p)

by the de�nition of BRpi. Since �kp = BRpA(�
k
q), we have

u(�kp; �
k
q) +

1

M

X
i

vkpi(BRpi(�
k
q)) = u(BRpA(�

k
q); �

k
q) +

1

M

X
i

vkpi(BRpi(�
k
q))

=
1

M

X
i

�
u(BRpi(�

k
q); �

k
q) + v

k
pi(BRpi(�

k
q))
�

� u(�p; �kq) +
1

M

X
i

vkpi(�p):

As k !1, we have u(��p; ��q) � u(�p; ��q). Since this holds for any p 6= q and
any �p, (��1; �

�
2) is an exact Nash equilibrium.

We use the following lemma to prove Lemma 7.

Lemma 9. Every linear combination of vectors fxig with zero sum of coe¢ -
cients,

P
i aixi, is equal to a linear combination of fxi�xjg,

P
i;j bij(xi�xj),

with bij � 0 and
P

i;j bij =
P

i<j max(ai � aj; 0).

Proof. This lemma is easily proved by induction on the number of vectors.

Proof of Lemma 7. By (Nonuniform-Sym), we have

et�i(t) = �i(0) +

Z t

0

es
X
k 6=i

qikBR(�k(s))ds:
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Let d(t) = etmax1�i<j�M j�i(t)� �j(t)j. Then, for each pair (i; j), by Lemma
9, we have

etj�i(t)� �j(t)j =
������i(0)� �j(0)�

Z t

0

es
X
k

(qik � qjk)BR(�k(s))ds
�����

=

������i(0)� �j(0)�
Z t

0

es
X
k;l

wi;jk;l(BR(�k(s))� BR(�l(s)))ds
�����

� j�i(0)� �j(0)j+
Z t

0

es
X
k;l

wi;jk;ljBR(�k(s))� BR(�l(s))jds

� 1 +K
Z t

0

es
X
k;l

wi;jk;lj�k(s)� �l(s)jds

� 1 +K�
Z t

0

d(s)ds;

where wi;jk;l � 0 and
P

k;l w
i;j
k;l =

P
kmax(qik � qjk; 0) � �. Thus

d(t) � 1 +K�
Z t

0

d(s)ds:

By the Gronwall inequality, we have d(t) � exp(K�t). Since K� < 1,

j�i(t)� �j(t)j � exp[(K�� 1)t]! 0

as t!1 uniformly in the initial state.

Proof of Lemma 8. We use the same Lyapunov function as in Benaïm, Hof-
bauer, and Hopkins [2006]:

L(�) = (BR(�)� �)TA� + ��1(v(BR(�))� v(�));

where A is the payo¤matrix corresponding to utility function u; and v(�) =
�
P

s �(s) ln(�(s)) is the deterministic payo¤ perturbation that induces the
logistic best response.
Then

_L(�) = (BR(�)� �)TA(BR(�)� �) + ��1(BR(�)� �)T (v0(BR(�))� v0(�));
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and because v00 exists, we can use the mean value theorem to conclude that
in a neighborhood N� of ��; there is �

0(�) such that

_L(�) = (BR(�)� �)T (A+ ��1v00(�0(�)))(BR(�)� �):

Because v00 is bounded on N� and independent of �; we see that _L is positive
for su¢ ciently large �, _L is positive on the set N�=f��g, so the repelling
neighborhood does not vanish as � !1.
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