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1 Introduction

Social and economic interactions have been modeled using network structures or graphs,

where agents are represented by nodes and their relationships are represented by arcs

between the nodes. These network structures play an important role in many forms of

economic situations and have been studied widely. For instance, Montgomery (1991)

showed how patters of social ties between individuals play a critical role in labor market

outcomes. Fafchamps and Lund (2003) showed how mutual insurance in rural areas takes

place within networks.

Myerson (1991) proposed a class of link-formation games for modeling network forma-

tion. In this class of games, agents simultaneously choose which agents they want to be

connected to and a link is formed whenever they both agree. This class of games proved

to be successful in the study of many speci�c theoretical problems (Dutta and Jackson,

2001; Jackson, 2003).

However, it is also commonly known that link-formation games can lead to multiple

network con�gurations supported by multiple Nash equilibria (Jackson, 2003). Under

some circumstances, any network within this class of games can be supported by a mul-

tiplicity of Nash equilibria (Slikker and van den Nouweland, 2000).

Jackson (2003) argued that in order to deal with the fact that it takes two players

to form a link, we needed something beyond the traditional non-cooperative re�nements,

such as strong Nash equilibrium (SNE), coalition proof Nash equilibrium (CPNE), or

pairwise strong Nash equilibrium (PSNE) (Dutta and Mutuswami, 1997 and Jackson,

2004).

On the other hand, Bala and Goyal (2000) and Harrison and Muñoz (2007) argued

that, in the same network context, non-cooperative equilibrium selection approaches are

still feasible and meaningful. Using the theory of global games, Harrison and Muñoz

(2007) showed that the multiplicity of Nash equilibria arising in a class of link-formation

games, disappears when the game is perturbed by introducing small amounts of incomplete

information into the payo¤ functions.

The experiment reported here compares the accuracy of the theory of global game and

the alternative cooperative re�nements, such as SNE, predicting the network con�gu-

ration in a link-formation game. In particular, we consider an illustrative link-formation

game where agents obtain bene�ts and bear costs for establishing valuable links and where

the network con�gurations predicted by these re�nements are radically di¤erent. In or-

der to check for robustness, we review di¤erent comparative static predictions for various

parameters of the payo¤ function and di¤erent degrees of players�information.

This paper is related to previous experimental studies on network formation (see Kos-

feld, 2004). In contrast to our paper, most of the research on this topic has concentrated

on testing the predictive power of cooperative re�nements, such as PSNE, (Johnson and
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Gilles, 2004) and non-cooperative re�nements, such as strict Nash equilibrium, (Callander

and Plott, 2005 and Falk and Kosfeld, 2005) without a cross comparison.

There are other experimental studies that tested the accuracy of global games predic-

tions (Heinemann et al., 2004; Cabrales et al., 2007; and Shurchkov, 2007). We depart

from them in two important aspects. First, as far as we know, this is the �rst application

to study network formation. Second, previous studies have shown that the global games

approach is very useful identifying the unique equilibrium under incomplete information,

but it does not work as well as a re�nement of the related complete information game.

The rest of this paper is organized as follows: Section 2 develops the connection

model and derives testable predictions. Section 3 discusses experimental design. Sec-

tion 4 presents laboratory results. Section 5 concludes.

2 The Connection Model

Harrison and Muñoz (2007) consider a simple static link-formation game of complete

information Gx. This game is played by three players in the set N = f1; 2; 3g, indexed by
i. Each player has a set of strategies Ai = f0; 1g2. The strategy for player i is a vector
which identi�es the set of players she wants to be connected to; for example, the strategy

ai = (aij = 1; aik = 0) represents player i�s intention to connect with player j but not

with player k. Players simultaneously choose strategies. Next, a link between two of them

will be formed if and only if both players want to form the link. The resulting network g

is a list of the pairs of players that are linked to each other. Formally, g(a) = fij : i; j 2 N
such that aij = aji = 1g .
The payo¤ structure considered is simple and can be viewed as a variation of the Jack-

son and Wolinsky (1996) connection model where links can be interpreted as friendship

relations.1

�i(ai; a�i; x) = (�x� c)aij + aijaji (x+ ajkakj�x) + (�x� c)aik + aikaki (x+ akjajk�x)
(1)

The variable x de�nes the level of bene�t that agent i obtains for each link she wants to

form. Parameter c is the �xed cost that agent i incurs for each link she wants to form. We

then assume that parameters � and � belong to the interval (0; 1) since linking bene�ts

are scaled down in relation to those obtained from direct reciprocity.

Bene�ts for player i in equation (1) come from three components: independent, direct

and indirect connections to other individuals. The independent component is what player

i receives, (�x�c); by unilaterally requesting a link to another player, even if the link is not
1Alternatively, for agent i agent j does not have an intrinsic value. Instead, what increases agent i�s

payo¤ is the link with agent j. In other words, agent i does not receive bene�ts from j, but from her
friendship with j.
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�nally formed. If player i requests a link to player j, and player j shows the corresponding

link intention to player i, then i�s bene�t increases in x as a result of a direct link created

between i and j. Finally, there also exists bene�ts for player i arising from the indirect

connections with the other agents. For example, if player j has formed a direct link with

player k, then player i gets the indirect bene�t of �x.

The connection model with the above payo¤ structure presents a multiplicity of Nash

equilibria. Figure 1 provides a summary of the di¤erent network structures supported by

a strategy pro�le in the set of Nash equilibria, NE(Gx), for di¤erent values of x. Several

cases are considered:

Case (i): If x < x = c=(1 + �+ �), then the dominant strategy for any player i is to
play ai = (0; 0) � 0 and the empty network emerges.
Case (ii): If c=(1 + � + �) < x < c=(1 + �); it is easy to see that the best response

correspondence of player i depends on the existence of the link between players j and k.

BRi(a�i) =

8>>>>>><>>>>>>:

aij = 1; aik = 1 if aji = aki = ajk = akj = 1

aij = 1; aik = 0 if aji = ajk = akj = 1; aki = 0

aij = 0; aik = 1 if aji = 0; aki = ajk = akj = 1

aij = 0; aik = 0 otherwise

It is possible to prove that in this case, only the empty and the complete network can

be supported by strategy pro�les in NE(Gx).

Case (iii): If c=(1 + �) < x < c=�; the strategies of agents j and k in relation to

their connection do not a¤ect the best response correspondence of agent i.

BRi(a�i) =

8>>>>>><>>>>>>:

aij = 1; aik = 1 if aji = aki = 1

aij = 1; aik = 0 if aji = 1; aki = 0

aij = 0; aik = 1 if aji = 0; aki = 1

aij = 0; aik = 0 if aji = 0; aki = 0

In this case, direct connections are enough to guarantee pro�tability. This characteris-

tic leads to a multiplicity of Nash equilibria. Even more, it is possible to prove that every

feasible network among the three agents can be supported by a pro�le in NE(Gx).

Case (iv): If x > x = c=�, then the dominant strategy is to form links with all the

other players ai = (1; 1) � 1, resulting in a complete network.
As is shown in Figure 1, since multiplicity arises in this link-formation game, we cannot

predict exactly which network structure will emerge in equilibrium.
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Figure 1: Network structures supported by Nash Equilibria in the Connection Model

2.1 Equilibrium Selection Using Cooperative Re�nements

In general, the network literature (see Dutta et al., 1998) has used cooperative approaches,

such as SNE or CPNE, to solve this equilibrium selection problem. This approach is

close to the idea of strong stability. This means that its application relies on the players�

ability to deviate (not necessarily unilaterally) from some pro�le, candidate to be an

equilibrium.2

A strategy pro�le is called a SNE if it is a Nash equilibrium and there is no coalition

of players that can strictly increase the payo¤s of all its members by jointly deviating

(Aumann, 1959; Dutta and Mutuswami, 1997). Another commonly used coalitional re-

�nement is CPNE. A strategy pro�le is a CPNE if no coalition can deviate to a pro�le

that strictly improves the payo¤s of all the players in the coalition. However, the set of

admissible deviations is smaller, because they have to be stable with respect to further

deviations by sub-coalitions (Dutta and Mutuswami, 1997).3

In our three player game Gx, the set of SNE(Gx) coincides with the set of CPNE(Gx).

The application of these coalitional re�nements is very direct and the analysis must be

performed in separated areas. It is easy to see that the strategy pro�le a = (0;0;0) � [0]
is the unique pro�le in SNE(Gx) when x < c=(1+�+�), because for this range of values,

each agent plays 0 as a dominant strategy and, consequently, no coalition of agents can
improve upon it.4

On the other hand, a = (1;1;1) � [1] is the unique pro�le in SNE(Gx) when x >

c=(1 + � + �). In order to understand this, consider any other given strategy pro�leba 6= [1] (Nash equilibrium or not). Because of the complementarities involved in the

2Other cooperative concepts, such as PSNE, can also be applied. However, their predictions are not
unique for this particular game (Harrison and Muñoz, 2007).

3The relations between the sets of strategy pro�les for a general game G is the following:
SNE(G) � CPNE(G)
4 In what follows [0] and [1] represents a matrix full of zeros or ones respectively. The dimensionality is

given by the pro�le they are representing. For example, in this three players case, a = [0] is a 2�3 matrix
of zeros representing a complete strategy pro�le and a�i = [0] is a 2�2 matrix of zeros representing a
strategy pro�le that excludes player i�s strategy.

5



payo¤ function (1), the grand coalition, by playing a = [1], can strictly increase the

payo¤s of all its members. In this case, ba is not in SNE(Gx). Additionally, starting from
a = [1] which is trivially a Nash equilibrium, it is not possible to increase the payo¤ of

any player in a deviation. Finally, if x = x = c=(1 + �+ �), then SNE(Gx) = f[0]; [1]g.

2.2 Equilibrium Selection Using the Global Games Approach

Harrison and Muñoz (2007) were able to select a unique equilibrium pro�le by using

a non-cooperative re�nement, derived from the global games literature (see Morris and

Shin, 2002). The idea is to perturb the payo¤ function by introducing an arbitrarily small

amount of incomplete information. In this way, it is possible to �nd the equilibrium in

the perturbed game and establish implications for the complete information game. In the

following we formally describe the procedure and establish the result that we are interested

in testing.

Suppose that Gx is a game of incomplete information. The amount of incomplete

information is parameterized by �, so we call this game G(�) and we de�ne BNE(G(�))

as the set of Bayesian Nash equilibria of G(�). Player i�s payo¤ function is still given by

equation (1), but now it depends on the private value xi, such that each player�s value has

the following structure: xi = x + �"i, where � > 0 is a scale factor, x is drawn from the

interval [X;X] with a uniform density, and "i is a random variable distributed according

to a continuous density ' with support in the interval [�1; 1]. We also assume that "i is
iid across the individuals. Now, players valuations are related, so that xi also constitutes

a noisy signal of xj for all j 6= i : xj = xi + �("j � "i).
This noise structure has been used in the global games literature for modeling the

conditional distribution of the opponents�values x�i, given player i�s own value, xi. The

conditional distribution admits a continuous density f� and a cdf F� with support in

V � [xi � 2�; xi + 2�]2.
Under incomplete information, the pure strategy for player i is the function si : [X �

�;X+�]! Ai. The set of all these functions is denoted Si. We also de�ne S�i = �j 6=iSj .
Thus, a complete strategy pro�le s = (si; s�i) 2 S � Si � S�i. Therefore, the switching
strategy between the lowest and the highest action with threshold ki is the pure strategy

satisfying:

skii (xi) =

8<: 1 if xi > ki

0 if xi < ki

The application of this equilibrium selection approach to our problem is described in

the following proposition.
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Figure 2: Networks that player i predicts, given xi:

Proposition 1 (Harrison and Muñoz, 2007) Consider the game G(�): For any � >
0, sk

�

i (xi) is the only strategy pro�le that survives the iterated elimination of strictly dom-

inated strategies in G(�), where:

sk
�

i (xi) =

8<: 1 if xi > k
�

0 if xi < k
�

8i and k� =
4c

2 + 4�+ 4�=3

This result shows that the perturbed connection model G(�) has a unique strategy

pro�le s� played in equilibrium, which is independent of �. In this pro�le every player

play a switching strategy sk
�

i (xi), with k
� = 4c

2+4�+4�=3 .

Proposition 1 proves that each player uses switching strategy s�i that is independent of

the noise size �.5 However, the network formed depends on �. In general, if some xi > k�+

2�; then every player receives a value greater than k� and therefore the complete network

is formed. Equivalently, if some xi < k� � 2�, the empty network is formed. Finally, if xi
belongs to interval [k� � 2�; k� + 2�], then any network can be formed depending on the
realization of each player�s value. Following this analysis it is easy to see that as � goes to

zero, just two possibilities remain, the empty and the complete network. The equilibrium

pro�le s� selected in G(�) does not depend on the size of noise �.

Figure 2 shows the networks that player i is able to predict based on her private value

xi. If xi < k� � 2�, then player i can be sure that the signals received by other players
are also lower than k�, and given the equilibrium strategies s�i (xi; k

�); everybody else will

play the action 0. An analogous situation occurs when xi > k�+2�. Then, all the players

will select action 1. However, if the signal received satis�es k� � 2� < xi < k� + 2�, xj
can be higher or lower than k� and then any network can arise. When � goes to zero,

i.e. when the amount of incomplete information tends to disappear, the middle area is

5Note that s�i also is independent of the noise structure '. In addition, we have assumed that the
parameter x is distributed according to a �at prior, but it is possible to prove that any prior can be
treated as a �at prior when � goes to zero.
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reduced to a zone of an arbitrarily small width.

2.3 E¢ cient Allocation of the Game

A strategy pro�le ax is e¢ cient for the game Gx if it maximizes the sum of the payo¤s of

the players. The set of e¢ cient strategy pro�les for the game Gx is denoted by E(Gx). It

is easy to check that in our example the e¢ cient strategy pro�les are:

ax =

8<: [0] if x < c=(1 + �+ �)

[1] if x > c=(1 + �+ �)

and as a consequence, the actions played in the equilibrium selected in the global games

approach are not e¢ cient. Harrison and Muñoz (2007) also proved that the e¢ cient

allocation is a stable allocation under cooperative re�nements, such as SNE.

A summary of the predicted network con�gurations is contained in Figure 3. Part

(a) shows the networks supported by the Nash equilibria (NE) in the connection model.

Part (b) shows the e¢ cient networks, supported by SNE. Part (c) contains the networks

supported by the BNE according to the global games approach when � goes to zero.

(a)

(b)

(c)
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Figure 3: Networks supported by the Nash Equilibria (NE), the Strong Nash Equilibrium,
(SNE) and the Bayesian Nash Equilibrium in the Global Games approach (BNE).
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Table 1: Experimental Design

Treatment Alpha Connection Perturbation Predicted Threshold Number of

(�) Cost (c) Size (�) Global Games (k�) SNE (x) Sessions

1 0.6 120 0 103 67 3
2 0.4 120 0 124 75 3
3 0.6 180 0 154 100 3
4 0.4 180 0 186 113 2
5 0.4 120 10 124 75 2
6 0.4 120 50 124 75 1

Note 1: In all these treatments, the parameter � was equal to 0:2:

Note 2: k� = 4c
2+4�+4�=3 and x =

c
(1+�+�)

3 Experimental Designs

3.1 Structure of the Network Formation Game

Our experimental design looks at the outcomes of a link-formation game. In this game,

each member of a group of three players decides whether to request a link to each of

the other two members of the group after observing her connection value. Our goal is

to experimentally check how powerful the global games re�nement is with respect to

cooperative re�nements, like SNE. Therefore, we implement our experimental design of

this link-formation game under complete information for di¤erent parameters values of

alpha, �, and connection cost, c. This design allows us to check whether subjects are able

to coordinate around speci�c switching thresholds for either requesting or not requesting

a link, and to see how close the actual switching thresholds to theoretical predictions are.

Table 1 summarizes the parameter values, the expected switching thresholds, and the

number of sessions per treatment. The �rst three treatments check the predicted power

of each solution concept. They also check the comparative statics derived from the link-

formation game. The fourth treatment allows us to check the robustness of our results

when the dominant payo¤ region is deleted from the upper support of x.

In the last three treatments, we look at the impact of di¤erent values of the pertur-

bation parameter � on subjects�probability to request links to other members of their

group and on the variability of the actual switching thresholds. Thus, these treatments

will allow us to check the robustness of the global games approach under an incomplete

information setup.

3.2 Design Parameters

This section describes the general experimental procedure.

Participants and Venue. Subjects were drawn from a wide cross�section of undergrad-
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uate and graduate students at Ponti�cia Universidad Católica de Chile (PUC) in Santiago,

Chile. Each subject was only permitted to participate in one session. The experiment was

run using computers.

Number of Periods. To familiarize subjects with the procedures, ten practice periods

were conducted in each session prior to the �fty real (a¤ecting monetary payo¤) periods.6

Matching Procedure and Group Size. At the beginning of each period, the computer

randomly formed groups of three participants, so that each participant formed part of a

new group in each of the following periods. Furthermore, participants did not know who

they were grouped with in any given period. In each session there were 15 participants.

Link Procedure and Payo¤ Structure. All participants were informed that they have to

decide in every period whether to request a link to zero, one, or two members of the group.

They were told that a participant monetary payo¤ for each link-request would be equal

to the sum of the following three components: i) Independent connection component

(= � � x � c): the payo¤ a participant would get if she requested a link to another
participant. ii) Direct (or complete) connection component (= x): the payo¤ a participant

would get if the link is formed. This occurs when both parties requested a link to each

other. iii) Indirect connection component (= � � x): the payo¤ a participant would get if
the agent she linked with has also linked with a third agent from the group. Finally, they

were informed that in the case where a participant decided not to request any links, her

monetary payo¤ would be zero for that period.

Valuation Distribution. In the complete information setup (� = 0), all participants

were informed that, in each period, every group would receive a connection value randomly

generated from the interval 50.00 to 310.00 and that any value would have an equally likely

chance of being drawn. In the incomplete information setup (� > 0), all participants were

informed that every member of her group would privately receive a connection value xi in

every period and that this value would be generated in the following manner: i) In each

period and for every group, a number x0 would be drawn randomly from 50.00 to 310.00.

Any value in this interval would have an equally likely chance of being drawn. ii) Each

group member would receive a private connection value xi independently selected within

the interval [x0 � �; x0 + �], such that any value would have an equally likely chance of
being drawn. Furthermore, participants did not know the values of x0 or the private value

of any of the other participants in their group.

Parameter Values. All participants were informed the values for alpha (�), beta (�),

connection cost (c) and sigma (�) at the beginning of the session.

Minimum Capital and Payo¤ Procedure. Each participant received an initial balance

of 9,000 points. Participants won or lost points from the total. After each round, points

were added or subtracted from the initial balance. At the end of the experiment, points

6 In one session of treatment 4 only 30 periods (out of 50 periods) were actually run since the network
system broke down at that stage.
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were multiplied by $0.33 Chilean pesos per point. The average payo¤ per participant for

the whole session was $5,250 (Chilean pesos), about $11.00 US dollars.

Information Feedback. In every period, each participant observed only her own payo¤,

discriminated by the members of her group and discriminated by each of the three payo¤

components mentioned above. Throughout all of the sessions, communication among the

participants was not allowed. They could not see each others�screens.
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Figure 4: Histograms of Individual Decisions to m-link-request, for di¤erent parameter
values of � and c
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4 Experimental Results

We �rst concentrated our analysis on measuring how di¤erent proportions of connection

bene�ts, �, and connection costs, c, a¤ect individual decisions to m-link-request other

members of the group. Figure 4 shows a set of histograms representing the number of

individual decisions to link-request with respect to the connection values, for di¤erent

parameter values of � and c. For example, the �rst row of graphs shows, where � equals

0.6 and c equals 120, the proportion of individuals requesting zero-links, one-link, and

two-links conditional on the connection value.

Since subjects played the game multiple periods, individual�s actions over time are

clearly non-independent. For this reason, we initially attempted to test our hypotheses

using data from only single periods. However, the results of our statistical analysis using

data from single periods was inconclusive since it does not show much variation. In

what follows, we instead present results of the statistical analysis using data from all

experimental periods. In doing this, we use a multinomial-logit model that accounts for

outcomes that can be considered independent across individuals, but not within a group

of decisions made by one individual (Green, 2000 and Stata, 2007). We consider the

following model for estimating the individual likelihood to link-request:

Pr(Links = m) = F (InterceptmjM + �x;mjMxi + ��;mjMd� + �c;mjMdc + �p;mjMper)

In this model xi represents the connection value that each individual i receives; d� is a

dummy variable that equals one when the proportion of the connection value � is equal to

0.4 and zero otherwise; dc is a dummy variable that equals one when the cost for requesting

a link to another participant c is equal to 180 and zero otherwise; per represents a variable

for every period, treating time as a continuous variable; F (:) is the cumulative logistic

distribution function; Links is equal to the response category m when there are m-link-

request (m = 0; 1; 2); andM indicates the reference category against which other response

categories are compared.

In Table 2 we present the parameter estimates representing all contrasts among all

three link-request categories. A �2 test indicates that the null hypothesis of all estimated

coe¢ cients equal to zero can be rejected for p < 0:0001. Furthermore, the null hypothesis

that alternative categories can be combined is rejected for the same signi�cance threshold.

Result 1 (Comparative Static Predictions on link-request Probability) Higher

connection values induce higher individual likelihood to link-request. For the same con-

nection values, a higher connection cost, or a lower alpha, induces a higher individual

12



One-Link Zero-Links Zero-Links

Coe¢ cients vs. Two-Links vs. One-Link vs. Two-Links

Intercept 2.361��� 4.083��� 6.445���

(0.370) (0.325) (0.467)
xi -0.025��� -0.033��� -0.059���

(0.002) (0.003) (0.004)
d� 0.572� -0.073 0.499�

(0.220) (0.249) (0.201)
dc 1.164��� 0.485 1.650���

(0.239) (0.259) (0.268)
per -0.009�� 0.019��� 0.010�

(0.003) (0.004) (0.004)
Number of Obs. 7,950
Number of Ind. 165
Log Likelihood -3792.5
�: p<0.05, ��: p<0.01, and ���: p<0.001.
Note: Numbers in parentheses below each coe¢ cient represent

the coe¢ cient standard error.

Table 2: Multinomial Logit Model Results for Individual Link-Request Probability, for
Di¤erent Parameter Values of alpha and c

likelihood to zero-links and to one-link requests, and a lower individual likelihood to two-

links request. Finally, for the same connection values, there is over time a higher individual

likelihood to link-request either everyone (two-links) or no-one (zero-links).

Support for Result 1 Connection value coe¢ cients (�x;1j2, �x;0j1; and �x;0j2) are

negative, as expected, and signi�cant. This means that the individual likelihood to link-

request a larger number of agents increases as the connection value increases. For the

contrast of zero-links versus two-links request, the coe¢ cient associated with a higher

connection cost (�c;0j2) is positive, as expected, and signi�cant. This is also true for the

coe¢ cient associated with a lower alpha (��;0j2). This means that a higher connection cost,

or a lower alpha, induces a lower individual likelihood to two-links request and a higher

individual likelihood to zero-links request. For the contrast of one-link versus two-links

request, the coe¢ cient associated with a higher connection cost (�c;1j2) is positive and

signi�cant, as is the coe¢ cient associated with a lower alpha (��;1j2). Since an increment

of the connection cost, or a reduction in alpha, shrinks the upper region of dominance,

it might be more di¢ cult for agents to coordinate when to request two-links instead of

one-link. Our estimation also shows that the time period coe¢ cients (�p;1j2) and (�p;0j1)

are both signi�cant. The negative sign of the �rst coe¢ cient (�p;1j2) and the positive

sign of the second coe¢ cient (�p;0j1) imply that, over time, participants are willing to

13



play homogeneous strategies more often than heterogeneous strategies, requesting links to

either everyone or no-one, rather than just one member of their own group.

Figure 5 shows for each parameter value of � and c the estimated individual link-

request probabilities with respect to di¤erent connection values. Thus, the �rst row of

graphs shows, for � equal to 0.6 and c equal to 120, the probability distributions of

requesting zero-links, one-link, and two-links. Each graph shows two lines representing

each of the probability distributions for the �rst and last periods.

Now we compare the predicted switching thresholds, k� and x, and the estimated mean

switching thresholds bk, and check how the estimated switching thresholds change in terms
of our comparative static predictions. We estimate the mean switching threshold for which

the probability of two-links request is equal to the probability of zero-links request. This

value indicates the mean threshold above which individuals are willing to switch between

these two homogeneous strategies. That is, switching from zero-links to two-links request.

To calculate bk and its standard error, we implement the delta method using the estimated
logistic distributions (Green, 2000). In Table 3 we report the estimated mean switching

threshold for each session, jointly with the estimated standard errors. In the same table,

we present the equilibrium switching threshold k� = (4c)=(2 + 4� + (4=3)�) predicted

by global games and the equilibrium switching threshold x = c=(1 + �+ �) predicted by

SNE. In Figure 6 we present the estimated mean switching thresholds for each treatment,

within the 95% con�dence intervals.

Result 2 (Equilibrium Selection on Switching Threshold) Estimated mean switch-

ing threshold for di¤erent alphas and connection costs do not di¤er from the global games

predicted switching thresholds, when the dominance regions are intersected by the connec-

tion value distribution support. If the upper dominance region is above the upper support

of the distribution (treatment 4), the estimated mean switching threshold is between the

global games and the strong Nash predictions.

Support for Result 2 It can be appreciated in Figure 6 that the predicted k� is within

two standard errors of the estimated mean switching thresholds for Treatments 1, 2 and

3. For Treatment 4, however, the estimated threshold is between the predicted values

of k� and x. This outcome could be a result of the fact that for this treatment the

upper bound of the payo¤ dominance region, x (= c=�), is above the upper bound of the

connection value distribution. If the upper dominance region does not exist, the global

games approach does not guarantee a uniqueness result, because the process of iterated

elimination cannot be made.

Result 3 (Comparative Statics on Switching Thresholds) An increment in con-

nection costs induces an increment in the estimated mean switching thresholds. Mean-
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Figure 5: Estimated Link-Request Probability Distributions, for Di¤erent Parameter Val-
ues of � and c

Treatment Session bk k� x bse
1 116 103 67 4.9

(�; c)=(0.6,120) 2 109 103 67 4.6
3 116 103 67 2.9
4 154 154 100 12.9

(�; c)=(0.6,180) 5 139 154 100 5.3
6 138 154 100 5.7
7 126 124 75 5.2

(�; c)=(0.4,120) 8 120 124 75 6.5
9 122 124 75 4.0
10 157 186 113 6.4

(�; c)=(0.4,180) 11 145 186 113 8.1

Table 3: Estimated Mean Switching Threshold and its Standard Error
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Figure 6: Predicted and Estimated Mean Switiching Strategies (First and Last Periods)

while, there is not enough evidence that a reduction in alpha induces a signi�cant incre-

ment in the estimated mean switching thresholds.

Support for Result 3 It can be seen in Figure 6 that an increment of c induces a

signi�cant increment of the estimated mean switching threshold. A t-test for di¤erences

in means at every period indicates that the null hypotheses that estimates of bk for di¤erent
connection costs are equal can be rejected for p < 0:001. In the same fashion, a reduction

of alpha does not induce an increment of bk. A t-test for di¤erences in means at every

period indicates that the null hypotheses that estimates of bk for di¤erent alpha values are
equal cannot be rejected for p < 0:05.

We now concentrate our analysis on measuring how di¤erent alphas and connection

costs c have an a¤ect on the �nal structure of the network in the link-formation game.

Similar to our individual behavior analysis, the results of our statistical analysis using

data only from the �rst period were inconclusive, as were the results using data from

the last period. In what follows, we present results of the statistical analysis involving

data from all experimental periods. In doing this, we use a multinomial-logit model that

accounts for outcomes that can be considered independent across groups. We consider the

following model for estimating network structure likelihood:

Pr(Structure = n) = F (InterceptnjN + �x;njNx+ ��;njNd� + �c;njNdc + �p;njNper)
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In this model x0 represents the connection value each group receives; d� is a dummy

variable that equals one when the proportion of the connection value � is equal to 0.4

and zero otherwise; dc is a dummy variable that equals one when the cost for requesting a

link to another participant c is equal to 180 and zero otherwise; per represents a variable

for every period, treating time as a continuous variable; F (:) is the cumulative logistic

distribution function; Structure is equal to the response category n when there are n-

connections formed. n will equal to zero if there is an empty network, one if there is

a one-connection network, two if there is a two-connections network, and three if there

is a complete network. N indicates the reference category against which other response

categories are compared.

In Table 4, we present the parameter estimates representing all contrasts among all four

categories. A �2 test indicates that the null hypothesis of all estimated coe¢ cients equal

to zero can be rejected for p < 0:0001. Furthermore, the null hypothesis that alternative

categories can be combined is rejected for the same signi�cance threshold.

Results 4 (Comparative Statics on Network Structure) Higher connection values

induce a higher likelihood for more connected networks. For the same connection values, a

higher connection cost induces a lower likelihood for more connected networks. Meanwhile,

a lower alpha induces a lower likelihood for complete networks against any other network

structure for the same connection values. Finally, over time and for the same connection

values there is a lower likelihood for two-connections and one-connection networks and a

higher likelihood for complete and empty networks.

Support for Result 4 Connection value coe¢ cients (�x;2j3, �x;1j2, and �x;0j1) were

negative, as expected, and signi�cant. This means that the likelihood for more connected

networks increases as the connection value increases. All coe¢ cients associated with a

higher connection cost (�c;2j3, �c;1j2, and �c;0j1) are all positives and signi�cant. This

indicates that for the whole support of connection value distribution, the proportion of

less connected networks increases when connection cost increases. Coe¢ cients associated

with a lower value of alpha for the contrast of zero, one and two-connections networks

against complete networks (��;0j3, ��;1j3 and ��;2j3) are all positive and signi�cant. This

indicates that for a lower value of alpha, the proportion of complete networks decreases and

the proportion of zero, one and two-connections networks increases for the whole support

of the connection value distribution. Our estimation shows that time period coe¢ cients

�p;2j3, �p;1j3, �p;0j2 and �p;0j1 are all individually signi�cant. The negative sign of the �rst

two coe¢ cients (�p;2j3 and �p;1j3) and the positive sign of the last two coe¢ cients (�p;0j2
and �p;0j1) imply that, over time, the proportion of complete and empty networks tend

to increase. This can be seen as a result of the increasing individual likelihood to play

homogeneous instead of heterogeneous strategies over time.
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One-Link Zero-Links Zero-Links

Coe¢ cients vs. Two-Links vs. One-Link vs. Two-Links

Intercept 2.839��� 5.359��� 8.198���

(0.542) (0.421) (0.719)
xi -0.024��� -0.043��� -0.067���

(0.003) (0.004) (0.005)
d�10 0.695� -0.016 0.678�

(0.318) (0.341) (0.319)
d�50 1.160� -1.071� 0.089

(0.539) (0.503) (0.533)
per -0.014�� 0.015�� 0.001

(0.004) (0.005) (0.006)
Number of Obs. 4,500
Number of Ind. 90
Log Likelihood -2177.6
�: p<0.05, ��: p<0.01 and ���: p<0.001.
Note: Numbers in parentheses below each coe¢ cient represent

the coe¢ cient standard error.

Table 5: Multinomial Logit Model Result for Individual Link Request Probability for
di¤erent parameter values of sigma

4.1 Robustness of the Global Games Predictions

We now focus on measuring how di¤erent levels of perturbation, �, in the payo¤ function

a¤ects individual decisions to request a link.

Since subjects played the game multiple periods, individual�s actions over time are

clearly non-independent. We proceed as in the �rst estimation, considering the following

model for estimating the individual likelihood to link-request:

Pr(Links = m) = F (InterceptmjM+x;mjMxi+�10;mjMd�10+�50;mjMd�50+p;mjMper)

In this model xi represents the connection value that individual i receives; d�10 and d�50
are dummy variables when the perturbation level � is equal to 10 and 50, respectively;

per represents a variable for every period, treating time as a continuous variable; F (:)

is the cumulative logistic distribution function; Links is equal to the response category

m when there are m-link-request (m = 0; 1; 2); and M indicates the reference category

against which other response categories are compared.

In Table 5, we present the parameter estimates representing all contrasts among all

three link-request categories. A �2 test indicates that the null hypothesis of all the esti-
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mated coe¢ cients are equal to zero can be rejected for p < 0:0001. Furthermore, the null

hypothesis that alternatives categories can be combined is rejected for the same signi�-

cance threshold.

Result 5 (Perturbation E¤ect on link-request Probability) Higher connection

values induce a higher individual likelihood to link-request. For the same connection

values, larger perturbations induce lower individual likelihood to two-links request. Fi-

nally, for the same connection values, there is over time a higher individual likelihood to

link-requests for either everyone or no-one.

Support for Result 5 Connection value coe¢ cients (x;1j2, x;0j1; and x;0j2) were

negative, as expected, and signi�cant. For the perturbation size equal to �fty, coe¢ cients

for one-link requests versus zero and two-links requests (�50;1j2 and �50;0j1, respectively)

are both signi�cant. A positive sign on the �rst coe¢ cient and a negative sign on the

second indicate that individuals increase the likelihood to one-link request as perturbation

size increases. The same is observed for the coe¢ cient associated with the perturbation size

equal to ten for the contrast between the one-link versus the two-links request (�10;1j2).

However, from the contrast between the one-link versus the zero-links request (�10;0j1)

the coe¢ cient is not signi�cant. The other coe¢ cient signi�cance arises for the contrast

between the zero-links versus the two-links request (�10;0j2), though we have no reasonable

explanation for this result. Similar to our result in the previous section, the negative sign

of the �rst time period coe¢ cient (p;1j2) and the positive sign of the second time period

coe¢ cient (p;0j1) implies that over time participants were willing to play more often

homogeneous instead of heterogeneous strategies, requesting links to either everyone or

no-one, rather than to just one member of their own group.

Figure 7 shows for each parameter value of sigma the estimated individual link-request

probabilities with respect to di¤erent connection values. Thus, the �rst row of graphs

shows for sigma equal to zero the probability distributions of requesting zero-links, one-

link, and two-links, respectively. Each graph shows two lines representing each of the

probability distributions for the �rst and last periods.

Result 6 (Perturbation E¤ect on Switching Threshold and Coordination) Es-

timated mean switching threshold for the di¤erent perturbation levels do not di¤er from

the global games predicted threshold. The estimated mean switching threshold for sigma

equal to zero is similar at every period to those for sigma greater than zero.

Support for Result 6 In Figure 8 we present the estimated switching threshold of

period one and period �fty with 95% con�dence intervals, jointly with the equilibrium
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Figure 7: Estimated Link-Request Probability Distributions for di¤erent parameter values
of sigma
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Figure 8: Predicted and Estimated Switching Strategies, for Di¤erent Parameter Values
of Sigma (First and Last Periods)

switching threshold k� = (4c)=(2 + 4�+ (4=3)�) predicted by global games and the equi-

librium switching threshold x= c=(1+�+�) predicted by SNE. It can be appreciated in

this Figure that the predicted k� is within two standard errors of the estimated switching

strategies bk; for all values of sigma. Additionally, a t-test for di¤erences in means at every
period indicates that the null hypotheses that estimates of bk for di¤erent values of sigma
are equal cannot be rejected for a p < 0:05.

5 Conclusion

In this paper, we compare experimentally the accuracy of global game and alternative

cooperative re�nements theories, such as SNE and CPNE, that are used to predict

network con�gurations in a link-formation game. Our results indicate that the global

games approach does signi�cantly better than the cooperative games solutions pointwise

predicting the switching thresholds above which individuals are willing to link other players

in the net.

We also check for robustness of these results by testing the comparative static predic-

22



tions derived from changes in the parameter values of the payo¤ function and by intro-

ducing small amounts of perturbation in the payo¤ function. Our results indicate, �rst,

that higher connection values induce a higher proportion of agents requesting one or two

links and, consequently, a higher likelihood of more connected networks. Second, that

higher connection costs, given the support of connection values, induce a lower proportion

of agents requesting a link to the other two members of their groups and, consequently, a

lower proportion of fully connected networks. Third, that lower values of alpha induce a

lower likelihood for complete networks, though at an individual level, it does not have an

e¤ect on the proportion of agents expressing their wish to be connected to. Fourth, for the

same connection values, there is over time a higher proportion of agents willing to request

a link to either everybody or nobody and, consequently, a lower proportion of partially

connected networks. And, �nally, di¤erent levels of noise do not signi�cantly a¤ect the

selected switching threshold, which is accurately predicted by the global games approach.

Even though our results seem to be robust, the experiment is limited to a speci�c

payo¤ function, number of players, and environment of non-repeated interaction. It will

be interesting to see, to what degree, the global game approach preserve its power for

di¤erent game structures.
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A Experimental Instructions

The following is the verbatim translation (from Spanish into English) of experimental instruc-
tions administered to subjects at PUC (the Spanish original is available from the authors upon
request).

A.1 Instructions (Treatment � = 0)

This is an experiment about decision-making. Funding for this research has been provided by
several academic institutions. Instructions are simple and if you follow them carefully and make
good decisions, you can earn a CONSIDERABLE AMOUNT OF MONEY, which will be PAID
WITH A CHECK that you can immediately cash in the Bank o¢ ce inside the campus.

General Proceedings
1. In this experiment you will participate as a member of a group of agents with the opportu-

nity to link each other. The experiment consists of 60 periods: 10 practice periods, which won�t
count for your �nal payo¤, and 50 periods to be played for money.

2. At the beginning of every period, the computer will randomly form groups of three par-
ticipants. Each of you will form part of a new group in each of the following periods. You will
always be identi�ed as agent 1 in the computer screen. Furthermore, you will never know who
you are grouped with in any given period.

3. In every period, you have to decide whether to request a link to each member of your
group.

4. In every period, each member of a group will receive a CONNECTION VALUE (X0).
This CONNECTION VALUE will be identical for all members of the same group and it will
be generated randomly by the computer from the interval 50 to 310 points. Any value in this
interval will have an equally likely chance of being drawn and it will be generated independently
from previous periods.

For example, in each period, the computer will randomly form groups of three participants
and it will assign a random CONNECTION VALUE, X0, to each group. Suppose that a par-
ticular group gets an X0 equal to 200 points. Therefore, all members of this group will have a
CONNECTION VALUE of 200. That is, the CONNECTION VALUE of agent 1 (X1) will be
equal to that of agent 2 (X2) and to that of agent 3 (X3).

X0 = 200

#

"

50 X1 = X2= X3 310

The members of each group should decide whether to connect the other members in their
group.

5. Then, you and every member of your group will have to decide whether to request zero,
one, or two links. The connection costs and the monetary payo¤s that you receive will depend
on your decisions to link-request other members of your group and the decisions of the other
members of your group to link-request you and among themselves. The costs and the monetary
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payo¤s for each link-request you decide to make will be the sum of the following three payo¤
components:

5.1 Independent connection payo¤: For each member of your group you decide to link-request,
you will get the payment of:

ALPHA � Xi � CONNECTION COST

For each agent you decide to NOT link-request, you will get zero as payo¤, even if any other
agent has decided to link-request you.

For example, if agent 1 decides to link-request agent 2 and to NOT link-request agent 3, as
in the �gure above, then agent 1 will get the amount of ALPHA�X1 � CONNECTION
COST for link-request agent 2 and zero for NOT link-request agent 3.

5.2. Direct connection payo¤: If the agent you have link-request decides to link-request you
in return, then you will get the amount of your CONNECTION VALUE (Xi) as an additional
payo¤.

For example, if agents 1 and 2 decide to link-request each other, as in �gure above, then agent
1 will get the amount of ALPHA�X1 � CONNECTION COST plus the amount of her
Xi: That is, (1 +ALPHA)� X1 � CONNECTION COST . The same will happen with
agent 2.

5.3. Indirect connection payo¤: If the agent you have established a direct connection has also
established a direct connection with the third agent of your group, you will get the amount of
BETA�X1 as an additional payo¤.
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For example, if agents 1 and 2 and agents 2 and 3 decide to link-request each other, as in
�gure above, then agent 1 will get the sum of all three payo¤ components: Independent, Direct
and Indirect connection payo¤s. That is, agent 1 will receive the amount of ALPHA�X1�
CONNECTION COST +X1 +BETA�X1: That is, (1 +ALPHA+BETA)�X1�
CONNECTION COST

Notice that agent 1 will get her payo¤ for having an indirect connection with agent 3 through
agent 2 even if she has an independent connection with agent 3. Likewise, the amount an agent
can get might be negative or positive depending on her CONNECTION VALUE.

According to the last �gure above, agent 1 would get the following payo¤.
Payo¤ Table for Agent 1

Agent Independent Direct Indirect Total Payo¤ Total

Connection Connection Connection per Connection Payo¤

Agent 2 ALPHA�X1� X1 BETA�X1 ALPHA�X1+

C:COST X1 +BETA�X1� ALPHA�X1+

C:COST X1+

Agent 3 0 0 0 0 BETA�X1�

C:COST
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Exercise:
Just for clari�cation and as an exercise, �ll the table indicating how much agent 1 will get

given the following graph of connections.
Fill up the following table assuming that the individual CONNECTION VALUE is X1.

Agent Independent Direct Indirect Total Payo¤ Total

Connection Connection Connection per Connection Payo¤

Agent 2

Agent 3

6. Initial Capital Balance, Capital Accumulation, and Minimum Capital Balance
Each agent will begin the experiment with a capital balance of 9000 points. Total gains (or

loses) in each period will be added (or subtracted) from the previous accumulated capital. If
your capital balance in any period is lower than 4500 point, you will not be able to continue
participating in the experiment. You will get your capital balance and will have to leave the
room.

7. Payment Procedure
Your �nal payo¤ will be equivalent to the �nal capital balance multiplied by 0.33 plus your

participation fee. You will receive the amount in check that you can immediately cash at the
bank o¢ ce inside the campus.

¿Are there any questions?

A.2 Instructions (Treatment � > 0)

This is an experiment about decision-making. Funding for this research has been provided by
several academic institutions. Instructions are simple and if you follow them carefully and make
good decisions, you can earn a CONSIDERABLE AMOUNT OF MONEY, which will be PAID
WITH A CHECK that you can immediately cash in the Bank o¢ ce inside the campus.

General Proceedings
1. In this experiment you will participate as a member of a group of agents with the opportu-

nity to link each other. The experiment consists of 60 periods: 10 practice periods, which won�t
count for your �nal payo¤, and 50 periods to be played for money.
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2. At the beginning of every period, the computer will randomly form groups of three par-
ticipants. Each of you will form part of a new group in each of the following periods. You will
always be identi�ed as agent 1 in the computer screen. Furthermore, you will never know who
you are grouped with in any given period.

3. In every period, you have to decide whether to request a link to each member of your
group.

4. In every period, the computer will randomly generate a value X0 for each group, from the
interval 50 to 310 points. Any value in this interval will have an equally likely chance of being
drawn and it will be generated independently from previous periods. Then each member of a
group will receive a CONNECTION VALUE (Xi), which will be randomly generated from the
interval X0�� and X0+�.

For example, in each period, the computer will randomly form groups of three participants
and it will assign a random X0 to each group. Suppose that a particular group gets an X0
equal to 200 points. Therefore, all members of this group will have a CONNECTION VALUE
(Xi) from the interval of 200-� and 200+�. That is, the CONNECTION VALUES of agent 1
(X1), agent 2 (X2), and agent 3 (X3) will be randomly selected from the interval of 200-� and
200+�. You will know just your private Xi. You won�t know the value of X0 nor will know the
CONNECTION VALUES of the other members of your group.

X0 = 200

#

" " "

50 X0 � � X2 X3 X1 X0 + � 310

The members of each group should decide whether to connect the other members in their
group.

5. Then, you and every member of your group will have to decide whether to request zero,
one, or two links. The connection costs and the monetary payo¤s that you receive will depend
on your decisions to link-request other members of your group and the decisions of the other
members of your group to link-request you and among themselves. The costs and the monetary
payo¤s for each link-request you decide to make will be the sum of the following three payo¤
components:

5.1 Independent connection payo¤: For each member of your group you decide to link-request,
you will get the payment of:

ALPHA � Xi � CONNECTION COST

For each agent you decide to NOT link-request, you will get zero as payo¤, even if any other
agent has decided to link-request you.
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For example, if agent 1 decides to link-request agent 2 and to NOT link-request agent 3, as
in the �gure above, then agent 1 will get the amount of ALPHA�X1 � CONNECTION
COST for link-request agent 2 and zero for NOT link-request agent 3.

5.2. Direct connection payo¤: If the agent you have link-request decides to link-request you
in return, then you will get the amount of your CONNECTION VALUE (Xi) as an additional
payo¤.

For example, if agents 1 and 2 decide to link-request each other, as in �gure above, then agent
1 will get the amount of ALPHA�X1 � CONNECTION COST plus the amount of her
Xi: That is, (1 +ALPHA)� X1 � CONNECTION COST . The same will happen with
agent 2.

5.3. Indirect connection payo¤: If the agent you have established a direct connection has also
established a direct connection with the third agent of your group, you will get the amount of
BETA�X1 as an additional payo¤.
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For example, if agents 1 and 2 and agents 2 and 3 decide to link-request each other, as in
�gure above, then agent 1 will get the sum of all three payo¤ components: Independent, Direct
and Indirect connection payo¤s. That is, agent 1 will receive the amount of ALPHA�X1�
CONNECTION COST +X1 +BETA�X1: That is, (1 +ALPHA+BETA)�X1�
CONNECTION COST

Notice that agent 1 will get her payo¤ for having an indirect connection with agent 3 through
agent 2 even if she has an independent connection with agent 3. Likewise, the amount an agent
can get might be negative or positive depending on her CONNECTION VALUE.

According to the last �gure above, agent 1 would get the following payo¤.
Payo¤ Table for Agent 1

Agent Independent Direct Indirect Total Payo¤ Total

Connection Connection Connection per Connection Payo¤

Agent 2 ALPHA�X1� X1 BETA�X1 ALPHA�X1+

C:COST X1 +BETA�X1� ALPHA�X1+

C:COST X1+

Agent 3 0 0 0 0 BETA�X1�

C:COST

31



Exercise:
Just for clari�cation and as an exercise, �ll the table indicating how much agent 1 will get

given the following graph of connections.
Fill up the following table assuming that the individual CONNECTION VALUE is X1.

Agent Independent Direct Indirect Total Payo¤ Total

Connection Connection Connection per Connection Payo¤

Agent 2

Agent 3

6. Initial Capital Balance, Capital Accumulation, and Minimum Capital Balance
Each agent will begin the experiment with a capital balance of 9000 points. Total gains (or

loses) in each period will be added (or subtracted) from the previous accumulated capital. If
your capital balance in any period is lower than 4500 point, you will not be able to continue
participating in the experiment. You will get your capital balance and will have to leave the
room.

7. Payment Procedure
Your �nal payo¤ will be equivalent to the �nal capital balance multiplied by 0.33 plus your

participation fee. You will receive the amount in check that you can immediately cash at the
bank o¢ ce inside the campus.

¿Are there any questions?
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