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Abstract

We study effects of horizontal integration on firm reputation. In an environment where cus-

tomers observe only imperfect signals about firms’ effort/quality choices, firms cannot maintain

good reputation and earn quality premium forever. Even when firms choose high quality, there

is always a possibility that a bad signal is observed. Thus, firms must give up their quality

premium, at least temporarily, as punishment. A firm’s integration decision is based on the

extent to which integration attenuates this necessary cost of maintaining a good reputation.

Horizontal integration leads to a larger market base for the merged firm, which leads to a more

effective punishment and a better monitoring by eliminating idiosyncratic shocks in many mar-

kets. But it also allows the merged firm to deviate in a more sophisticated way: the merged

firm may deviate only in a subset of markets and pretend that a bad outcome in those markets

is observed by accident. This negative effect becomes very severe when the size of the merged

firm gets larger and there is non-idiosyncratic firm-specific noise in the signal. These effects give

rise to a reputation-based theory of the optimal firm size. We show that the optimal firm size

is smaller when (1) trades are more frequent and information is disseminated more rapidly; or

(2) the deviation gain is smaller compared to the quality premium; or (3) customer information

about firms’ quality choices is more precise.
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1 Introduction

Reputation has long been considered critical for firm survival and success in the business world.

Since the seminal work of Kreps (1990), the idea of firms as bearers of reputation has become

increasingly important in the modern development of the theory of the firm. For example, Tadelis

(1999, 2002), Mailath and Samuelson (2001), and Marvel and Ye (2004) develop models of firm

reputation as tradable assets and study the market equilibrium for such reputation assets. Klein

and Leffler (1981) and Hörner (2002) analyze how competition helps firms build good reputations

when their behavior is not perfectly monitored by customers. These studies provide very useful

insights into how firm reputation can be built, maintained and traded. However, for reputation to

be a defining feature in the theory of the firm, an important question needs to be answered: How

does firm reputation affect the boundaries of the firm?1

In this paper we build a simple model to study the effects of horizontal integration on

firm reputation. We consider an environment where firms produce experience goods in the sense

that customers cannot observe product quality at the time of purchase, but their consumption

experience provides noisy public information about product quality (e.g., consumer ratings).2

Absent proper incentives, firms will tend to shirk on quality to save costs, making customers

reluctant to purchase. Using a model of repeated games with imperfect monitoring, it is easy to

show that as long as firms care sufficiently about the future, they can establish reputations of high

quality and earn quality premium while building customers loyalty.3 However, unlike the case

with perfect monitoring, firm reputation can be sustained only if the public signal about a firm’s

choices is above a certain cut-off point in every period. With positive probability the public signal

will fall below the cut-off point, in which case firm reputation will be lost: either customers will

never buy again or the firm must pay large financial penalties to win back previous customers.

We then consider a situation where several firms, each serving an independent and symmetric

market, merge into one large firm.4 Horizontal integration leads to a larger market base for the

1The boundary of the firm question was first raised by the classical work of Coase (1937). Several influential

theories have been proposed to answer the question, for example, Alchian and Demsetz (1972), Williamson (1985),

and Hart (1995). Holmstrom and Roberts (1998) offer a review and critique of these theories.
2Professional services, food services, and consumer durable goods are standard examples of experience goods.
3Our analysis is an application of the theory of repeated games with imperfect monitoring, see, e.g., Green and

Porter (1984), Abreu, Pearce, and Stacchetti (1986, 1990), and many others.
4Note that we consider horizontal integration of firms that produce similar products (the assumption of symmetric
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merged firm, which allows a more effective punishment and better monitoring by eliminating

all idiosyncratic shocks across the markets. On the other hand, horizontal integration gives the

merged firm more room for sophisticated deviations; it may deviate only in a subset of markets

and pretend that a bad outcome in those markets was observed by an accident. This negative

effect becomes more severe as the firm size gets larger when there is non-idiosyncratic firm-specific

noise in the perfect public signal. These two effects on reputation building give rise to meaningful

trade-offs for horizontal integration, leading to a reputation-based theory of the optimal firm size.

We characterize the optimal level of integration and provide a clear comparative statics result

regarding the optimal size of the firm. We show that the optimal size of the firm is smaller (or,

non-integration is more likely to dominate integration) when (1) trades are more frequent and

information is disseminated more rapidly; or (2) the deviation gain is relatively smaller compared

to the reputation premium; or (3) customers information about firms’ choices is more precise. We

also provide sufficient conditions under which non-integration is optimal.

The results of our paper shed light on the patterns of horizontal integration observed in the

real world. For example, horizontal integration such as franchising is very common in industries

that mainly provide services to travelers, e.g., hotels and car rentals.5 In these industries, customers

interact with a firm infrequently and the customer base of a firm tends to be quite heterogenous,

which corresponds to more discounting (smaller discount factors) and larger communication noises

in our model. As our results show, in such cases independent firms cannot build reputation

effectively, and horizontal integration can improve on reputation building. Similarly, in industries

providing services to both travelers and locals such as taxicabs and convenience stores, horizontal

integration (either as franchising like the Seven-Eleven stores, or mergers of taxicab companies)

seems to be quite common, though less as common as in purely travel industries.

For another example, chains are more common in the fast food sector than they are among

high end restaurants. Fast food restaurants provide more homogenous products than high end

markets). Our model does not directly apply to firms with multiple product lines that are obviously of different

quality levels, e.g., Holiday Inn and Holiday Inn Express, or Toyota’s wide range of models, from Tercel to Lexus.

Such cases (brand expansion) are analyzed by Andersson (2002) from reputation concerns.
5Note that we focus on the reputation pooling aspect of franchising in the paper, and ignore the ownership and

incentives issues of franchising that has been analyzed extensively in the existing literature. Two essential features

common in many franchises, trademark (brand names carrying collective reputation) and quality control, correspond

nicely to our model.
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restaurants, thus their profit margins are on average smaller than high end restaurants. Our

results suggest that if payoffs from maintaining a good reputation are greater relative to deviation

gains (e.g. high profit margin restaurants), non-integration is more likely to dominate integration.6

While other explanations are certainly possible in these examples, our theory provides a new

perspective and offers a new insight into horizontal integration that potentially can be tested

with real world data. In fact, in a recent empirical paper that analyzes reputation incentives for

restaurant hygiene, Jin and Leslie (2004) find evidence consistent with our theory. For example,

they find that restaurant chains are more likely to be found in tourist locations. Moreover, “regions

where independent restaurants tend to have relatively good quality hygiene, the incremental effect

on hygiene from chain affiliation is lower.”

To understand the basic ideas, consider several independent firms serving separate markets

and suppose that they merge into one single firm. The integrated firm makes effort/quality deci-

sions in the production process and allocates products to all the markets it serves. Customers in

each market observe some noisy signal about the firm’s product quality in all the markets. We first

demonstrate that in the best equilibrium, only the average effort or the average signal matters.

Specifically, as long as the average signal is above a certain cut-off point, the firm provides high

quality goods in all the markets; otherwise either customers in all the markets desert the firm

forever or the firm pays large financial penalties to the customers in all markets.7 This cut-off

point determines how long the firm’s reputation will be sustained, thus the level of the optimal rep-

utation equilibrium payoff. The lower the cutoff point is, the more efficient the optimal reputation

equilibrium is. Then the optimal firm size of a firm is the size for which the lowest cut-off point is

obtained so that reputation lasts the longest, thus the expected profit per market is maximized.

In our model, integration has three effects on reputation: a positive size effect, a positive

6The pattern of horizontal integration in the food industry is also consistent with the previous point: compared

to fast food restaurants (especially those along highways or in airports), high end restaurants are more focused on

serving local communities. Thus, less discounting (larger discount factors) and smaller communication noises make

non-integration more attractive for high end restaurants.
7This is consistent with the observation that customers usually care about public signals about a firm’s aggregate

choices or overall performance such as its product quality ranking and rating of consumer satisfaction. Public signals

about each branch’s choice may not be available or too noisy to be useful. For example, it can prove very difficult

to discern accounting records for each of the firm’s divisions since there are numerous ways to allocate costs and

revenues within the firm. But even in cases where public signals of product quality are available in each market, our

result (Lemma 3) suggests that it is sufficient to look at the aggregate signal about the firm’s overall quality.
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information effect, a negative deviation effect. First, a large firm size helps reputation building by

making more severe punishment possible (e.g., shutting down the whole firm in every market) for

a fixed magnitude of deviation (e.g., choosing low quality in only one market). The merged firm

has more to lose, thus has more incentives to maintain reputation for a given cutoff point. This

effect makes it possible to use a lower the cutoff point to make reputation more long lasting.8

The second effect of integration on reputation, the information effect, is that integration may

allow information aggregation across markets and thus make it easier for customers to monitor

a firm serving a large number of markets. Since an integrated firm’s reputation is contingent on

the public signal averaged over the markets it serves, its reputation mechanism depends on the

informativeness of the average signal. Since market-specific idiosyncratic shocks are assumed to

be independent, they are washed away by the law of large numbers as the size of the firm becomes

larger. Thus reputation building becomes relatively easier for large firms.

The last effect of integration on reputation is that the merged firm has more opportunities

for deviation than independent firms. A firm that serves n markets can deviate in any m ≤ n
markets, and thus has to satisfy n incentive constraints to maintain its reputation. This, of course,

impedes reputation-building. This constraint is especially strong when the large firm deviates only

in a tiny fraction of markets because bad outcomes in a few markets are indistinguishable from

noise. Indeed we can show that under mild conditions, the single-market deviation constraint is

the only binding incentive constraint. While market-specific idiosyncratic shocks are washed away

as the firm size increases, the firm-specific technological noise do not disappear. Since the size of

noise in the average signal is approximately constant and the size of one-market deviation gets

smaller (at the rate of 1n) as n→∞, it becomes more difficult to prevent the one-market deviation
for a larger firm.

These three effects of horizontal integration on reputation present meaningful trade-offs

regarding firm size When the positive size effect and information aggregation effect dominate the

negative deviation effect, then we expect firms to optimally choose a greater degree of horizontal

8To be more precise, it is not firm size per se that matters. If an independent firm expands so that its payoffs in

all contingencies simply scale up, its incentives to build reputation will not be affected at all. When two independent

firms merge into one, what is important is that the merged firm makes joint decisions for both branches and its

customers understand this. Hence if it appears that the firm has cheated somewhere, all its customers everywhere

will punish it by desertion. This idea is first shown in Bernheim and Whinston (1990) and appears in subsequent

papers such as Matsushima (2001) and Andersson (2002).
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integration. Otherwise, the optimal size of the firm tends to be smaller, and even non-integration

may be optimal. We show that the optimal size of a firm is bounded under reasonable conditions.

Typically the negative deviation effect eventually dominates the other two effects as a firm becomes

larger and larger. As a result, the optimal firm size can be obtained in our framework. This is in

sharp contrast with the existing literature on reputation building. Although based on the model

of repeated games like our paper, this literature emphasizes only positive aspects of integration as

mentioned below, thus does not provide a theory of the optimal level of integration.

Our paper is closely related to the literature on multimarket contacts, e.g., Bernheim and

Whinston (1990) and Matsushima (2001). Bernheim and Whinston (1990) show that in the perfect

monitoring setting, two firms may find it easier to collude if they interact in multiple markets in

which they have uneven competitive positions than if they interact in a single market. Matsushima

(2001) considers the setting of imperfect monitoring and proves that two firms can approach perfect

collusion when the number of market contacts goes to infinity. In these papers, merger always

dominates independence because each market is completely independent from the other markets.

Thus these models are not suited to analyze the bound of firm size. Our paper demonstrates that

a bound on the firm size may naturally arise when there is a firm-specific production noise which

has some common component across the markets served by the same firm.

In terms of motivations, our paper is perhaps most closely related to Andersson (2002),

Gutman and Yekouel (2002) and Fishman (2005), all of which study the effects of integration on

firm reputation in models with perfect monitoring. In Andersson (2002), a firm producing multiple

products may increase its total profits (relative to independent firms producing those products),

because pooling the incentive constraints in the multiple markets may allow the firm to increase

its prices.9 In Gutman and Yekouel (2002) and Fishman (2005), integration facilitates reputation

formation by increasing the number of consumers each firm serves, which increases the chance that

new consumers learn about the firms’ performance from pervious consumers in their settings.10 In

our model, firm choices are imperfectly monitored, and we consider integration across symmetric

9The applications Andersson (2002) considers are brand extensions or “umbrella branding” whereby a firm pro-

duces different kinds of products under one brand (e.g., Porsche watches). For recent contributions and a summary

of the literature, see Cabral (2000).
10 In their models, each consumer can tell J consumers of the next generation about a firm’s performance, and then

each of them can pass on the information to J consumers of the next next generation, and so on. Thus, monitoring

is not exactly perfect but becomes perfect over time.
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markets.11 In contrast to our model, a firm’s profit can only increase monotonically in its size in

all the papers mentioned above (e.g. the bigger, the better).12

The rest of the paper is organized as follows. The next section presents the model. Then in

Sections 3 and 4, we characterize the best reputation equilibrium of the game for the firm under

non-integration and integration, respectively. Comparing the equilibrium outcomes in the two

cases, in Section 5 we obtain the main results about the optimal firm size and examine how it is

affected by the parameters of the model. Concluding remarks are in Section 6.

2 The Model

There are a large number of separate markets, in each of which a long-lived firm sells its products

to its customers.13 Time is discrete and the horizon is infinite. Customers in each market are

identical, and the firms and their respective markets are symmetric. In each period, the firm in

each market and its customers play the following stage game. At the beginning of a period, the

firm, who we assume has price-setting power, sets the price p for the period.14 Then the firm and

the customers play the following game. The customers decide whether to purchase one unit of the

firm’s products. If they do not buy from the firm, both the customers and the firm get a payoff

of zero. If they decide to buy from the firm, their payoffs depend on the firm’s product quality.

The firm decides whether to exert high effort eh (or, provide high quality) or exert low effort el

(or, provide low quality), where eh and el are both real numbers and eh > el. The firm incurs

an effort/quality cost of ch (cl) for providing high (low) quality, where ch > cl. The customers’

expected benefit is vh if the firm chooses eh and is vl if the firm chooses el, where vh > vl. Given p,

the stage game is depicted below in the normal form. Equivalently one can think of an extensive

11 In both Bernheim and Whinston (1990) and Andersson (2002), firm size will have no effect if all markets are

symmetric. Unlike Gutman and Yekouel (2002) and Fishman (2005), the ratio of consumers to firms does not play

a learning role in our model.
12Fishman and Rob (2002) study a model of investment in reputation in which firms’ product qualities are perfectly

observed by some customers, and show that bigger and older firms have better reputations. Rob and Sekiguchi (2004)

analyze reputation formation under imperfect monitoring in a repeated duopoly setting.
13 It is not difficult to introduce competition across the markets. We chose not to do so just because we like to

focus on the reputation-building effect of integrations rather than the typical anti-competitive effect of integrations.
14Our analysis and the main results of the paper will not be affected significantly if the firm does not have full

price-setting power.
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form game in which the customers move first with their purchase decisions.

Firm

Low High

Customers Don0t Buy 0 , 0 0 , 0

Buy vl − p , p− cl vh − p , p− ch

We assume vh − ch > 0 > vl − cl: high effort/quality is more efficient than no trade,
which in turn is more efficient than low effort/quality. Since ch > cl, el (weakly) dominates eh

for the firm. Hence, for any price p > vl, the unique equilibrium outcome is (Don0t Buy, Low),

resulting in payoffs (0, 0). The outcome (Buy,High) is the first best efficient in terms of total

surplus and Pareto-dominates (Don0t Buy, Low) for p ∈ (ch, vh). However, this efficient outcome
is not attainable without reputation effects. Our stage game is in the spirit of Kreps (1990), who

highlights the firm’s incentive problem in a one-sided Prisoners’ Dilemma game.

We suppose that in each market there are a large number of identical customers that are

anonymous to the firm in the market. Since an individual customer’s behavior is not observable

by the firm, customers will maximize their current period payoffs. Alternatively, we can assume

customers purchase the products only once (i.e., short-lived customers), in which case they also

maximize current period payoffs.15

If the firm’s effort in each period were publicly observable, it would be straightforward

to show that the efficient outcome (Buy, High) can be supported when future is sufficiently

important to the firm. Let δ be the firm’s discount factor. It can be easily checked that for any price

p ∈ (ch, vh], the first best outcome is attainable in every period if and only if δ ≥ (ch− cl)/(p− cl).
To maximize its profit, the firm will set price p = vh.

In many cases, however, the firm’s effort cannot be perfectly observable, especially for experi-

ence goods. For example, given the firm’s effort, there are unavoidable uncertainties (e.g., machine

malfunctioning, human errors) in production processes that introduce random shocks into product

qualities. When customers purchase the products just once (i.e., short-lived), experiences of the

current period customers may be communicated to future customers with substantial noise (e.g.,

consumer on-line ranking/comments). In such cases, the firm’s past effort/quality choices can only

be imperfectly observed by the customers in the future.

15Our assumption that customers maximize current period payoffs implies that the folk theorem result of Fuden-

berg, Levine and Maskin (1994) does not apply.
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Given these observations, we consider an environment in which a firm’s effort is not public

information, but rather its noisy public signal y ∈ < becomes available at the end of each period in
each market. Suppose that this firm is serving market j. Given the firm’s technology, its product

quality in market j is given by qj = ej+η, where η ∼ N(0,σ2η) is a firm-specific production noise and
is independent across periods. Since firms’ technology choices are made independently, production

noise η is assumed to be independent across markets as well. In addition to the production noise,

the public signal also contains a market-specific demand noise component θj ∼ N(0,σ2θ), which
is independent across markets and across periods, and independent from production noise. Thus,

the public signal in market j is yj = ej+η+θj = ej+²j , where ²j ∼ N(0,σ2 = σ2η+σ2θ) represents

the total noise. This information structure is quite natural, and is commonly used in the existing

literature.

We should note, however, that many of our results can be extended to a more general

information structure, where the signal is drawn from a distribution function F (y|e) with a positive
density function f(y|e) that satisfies the strict Monotone Likelihood Ratio Property in the sense
of Milgrom (1981). An earlier version of this paper, Cai and Obara (2004), uses this general

formulation. When presenting our results, we shall point out whether they can be extended to

more general information structure.

Following Green and Porter (1984) and Fudenberg, Levine and Maskin (1994), we focus on

(pure strategy) perfect public equilibria of the game. In a perfect public equilibrium, players’

strategies depend only on the past realizations of the public signals. For periods t = 2, 3, ..., the

public history ht is the sequence of signal realizations and prices in period t− 1 and before. The
customers will base their period t decisions on (ht, pt). The firm’s pricing decision in period t

depends on ht and its effort/quality decision in period t on (ht, pt). In equilibrium, given its full

price setting power, the firm will always set its price equal to either the customers’ expected benefit

from consuming its products or its production cost, whichever is larger.

We will characterize the perfect public equilibria of the game that yield the greatest average

payoff for the firm, first for the non-integration case in which firms are independent, and then for

the integration case, in which firms merge into one big firm which serves multiple markets. Since

firms make decisions about integration or disintegration to maximize their value, by comparing

the best equilibrium outcomes in the non-integration and integration cases, we derive conditions

under which integration is better than non-integration or vice versa. We simply call a perfect

public equilibrium that yields the greatest average payoff for the firm a “best equilibrium”.
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3 Best Equilibrium for the Non-Integration Case

We start with the non-integration case. In the non-integration case, firms are independent decision

makers, so the public signal in one market will not affect the other markets at all, even if it is

observable to the participants in the other markets. Since firms and markets are symmetric, we

focus on a representative firm and its market (thus dropping subscript j).

As is typical in repeated games, there can be many perfect public equilibria in our game,

many of which can involve complicated path-dependent strategies. However, it turns out that

the best equilibria in our game have a very simple structure. Define a cut-off trigger strategy

equilibrium as follows: the firm and its customers play (Buy, High) in the first period and continue

to choose (Buy, High) as long as y stays above some threshold ey, and play the stage game Nash
equilibrium (Don0t Buy, Low) forever once y falls below the threshold ey. The following lemma,
shows that the best equilibrium must be a cut-off trigger strategy equilibrium whenever it is a

nontrivial one.16 This result holds for any general distribution F (y|e) satisfying the Monotone
Likelihood Ratio Property.

Lemma 1 The best equilibrium for the firm is either a cut-off trigger strategy equilibrium with

p = vh in every period, or the repetition of the stage game Nash equilibrium (Don0t Buy, Low).

Proof: See the Appendix.

Note that in our game, the firm’s pricing decision can be treated separately from its quality

decision and customers’ purchase decision. Since customers maximize their current period payoffs,

they will purchase if and only if the price is not greater than their expected valuation (i.e., vh or

vl, depending on their expectation of the firm’s quality choice). Thus, in a best equilibrium for

the firm, it can charge a price that equals to the customers’ expected benefits. When the firm’s

reputation is good and is expected to provide high effort in the current period, it sets price p = vh.

If the firm loses its reputation and is expected to choose low effort, the highest price acceptable

to customers is vl, which is not sufficient to cover cl by our assumption. Therefore, whenever

customers expect the firm to choose low effort, the equilibrium outcome is no trade and price is

trivially indeterminate. Since the firm’s optimal pricing decision is straightforward, we focus our

analysis on its quality decisions and reputation building.

16This is similar to Theorem 7 of Abreu, Pearce, Stacchetti (1990), which proves the necessity of bang-bang

continuation payoffs for optimal equilibria.
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Let us fix some terminology and notation. We will sometimes call a stationary cut-off trigger

strategy equilibrium “reputation equilibrium”. The periods in which the firm’s reputation is good

and can thus earn quality premium are called the “reputation phase”; otherwise they are called

the “punishment phase”. Let π be the firm’s expected profit averaged over all periods in a best

equilibrium. Define r = p − ch (= vh − ch) to be the firm’s current period payoff if it exerts high
effort (“honesty payoff”), and d = ch − cl to be the cost differential of high and low efforts. If
the firm chooses low effort, its current period payoff is p− cl = r + d, so d is the firm’s gain from
deviation.

Let ỹ be the cut-off signal used in the equilibrium. Since the public signal is given by

y = e + ², where ² ∼ N(0,σ2), the probability of reputation continuing conditional on effort e is
1− F (ỹ|e) = 1−Φ

³
ỹ−e
σ

´
, where Φ is the standard normal distribution function. Then the firm’s

average payoff in the equilibrium, π, must satisfy the following value recursive equation:

π = (1− δ)r + δ(1− F (ỹ|eh))π = (1− δ)r + δ

µ
1−Φ

µ
ỹ − eh
σ

¶¶
π (1)

Equation (1) says that the firm’s per period value in the equilibrium is the sum of its current

period profit averaged out over time, (1− δ)r, plus the expected average value from continuation,

δ(1− F (ỹ|eh))π.17

For the firm to be willing to choose eh, the incentive compatibility constraint requires

π ≥ (1− δ)(r + d) + δ(1− F (ỹ|el))π = (1− δ)(r + d) + δ

µ
1−Φ

µ
ỹ − el
σ

¶¶
π (2)

The right hand side of Equation (2) if the firm’s average payoff from choosing el, which consists

of the current period profit averaged out over time, (1− δ)(r+ d), plus the expected average value

from continuation, δ(1− F (ỹ|el))π.
Any pair of (π, ỹ) that satisfies both Equations (1) and (2) gives rise to an equilibrium in

which the firm will choose high effort every period and customers continue to purchase as long as

y ≥ ỹ.

Lemma 2 The IC constraint of Equation (2) must be binding in the best reputation equilibrium.

17Following the convention of the repeated game literature, we measure a firm’s payoff as its expected profit

averaged over the infinite horizon, instead of its total discounted expected payoff. These two measures differ by a

factor of 1− δ, but the former slightly simplifies notation.
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Proof: Consider any cut-off trigger strategy equilibrium with (π, ỹ) such that Equation (2) holds

as a strict inequality. Then we can decrease ỹ without affecting the IC constraint. However, as

is clear from Equation (1), this reduces the value of F (ỹ|eh) , thus increases π. Contradiction.
Q.E.D.

By Lemma 2, we can solve for the cut-off point ỹ and the firm’s average profit π in the best

reputation equilibrium (if it exists) from Equation (1) and Equation (2) as an equality. After some

manipulation of terms we obtain

(1− δ)d = δ [F (ỹ|el)− F (ỹ|eh)]π = δ

∙
Φ

µ
ỹ − el
σ

¶
−Φ

µ
ỹ − eh
σ

¶¸
π (3)

This equation simply says that the current period gain from deviation averaged out over time (the

LHS) equals the expected loss of future profit from deviation (the RHS).

It is convenient to focus on the normalized signal k = y−eh
σ instead of the signal y. Abusing

notation slightly, we shall call k the public signal. Let τ = d/r be the ratio of the deviation gain

to the honesty payoff, and 4 = eh − el be the effort differential. Using Equation (1) to eliminate
π from Equation (3), we obtain the following “fundamental equation:”

G(k) ≡
Φ(k + 4

σ )−Φ(k)
τ

−Φ(k) = 1− δ

δ
(4)

If there is a solution k̃ to the fundamental equation (4), then from Equation (1),

π =
(1− δ)r

1− δ[1−Φ(k̃)]
(5)

Clearly π is a decreasing function of k̃. Hence the smallest solution to Equation (4) constitutes

the cut-off (normalized) signal in the best reputation equilibrium. Thus we have

Proposition 1 There exists a reputation equilibrium if and only if the fundamental equation (4)

has a solution. If that is the case, then the smallest solution is the cut-off point in the best

equilibrium. The firm’s value in the best equilibrium is given by (5).

It can be easily verified that Proposition 1 holds under any signal structure with a general

distribution F (y|e) replacing Φ in Equations (4) and (5).18 By Proposition 1 and Lemma 1, the
18Lemma 2 is completely general. The uniqueness of the best cutoff point follows from the MLRP of F (y|e) .
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existence of reputation equilibria hinges on whether Equation (4) has a solution. It is called the

fundamental equation because its smallest solution determines the best cut-off point, which in turn

determines the best equilibrium payoff for the firm through Equation (5). The characterization of

the firm’s average expected profit in Proposition 1 resembles that of Abreu, Milgrom and Pearce

(1991), who study symmetric perfect public equilibria in repeated partnership games. It can be

verified that Equation (5) is equivalent to

π = r − d

Φ(k̃ + 4
σ )/Φ(k̃)− 1

As in their model, here the firm’s value equals its honesty payoff r minus an incentive cost (the

second term of the RHS) that depends on the deviation gain d and the likelihood ration Φ(k̃ +
4
σ )/Φ(k̃), which measures how easily the public signal can reveal deviations.

It can be verified that the function G(k) defined in Equation (4) is maximized at

k∗ = −4
2σ
− σ ln(1 + τ)

4

Let δ∗ be the discount factor that satisfies 1−δ∗
δ∗ = G(k∗). In the Appendix, we show that the

function G(k) has the shape as shown in Figure 1.

Clearly Equation (4) has either no solution or two solutions, depending on whether δ is above

or below δ∗.19 When there are two solutions, the smaller solution k̃ is the cut-off point in the best

equilibrium. Thus we have the following result:

Proposition 2 There exists a reputation equilibrium if and only if δ ≥ δ∗. When δ > δ∗, the

cut-off point k̃ for the best equilibrium is decreasing in δ and 4, and increasing in τ and σ; the

firm’s average payoff is increasing in r, δ and 4, and decreasing in d and σ.

Proof: See the Appendix.

Proposition 2 says that as long as the firm cares sufficiently about the future, reputation can

be built in equilibrium in our model of imperfect monitoring. However, compared with the case of

perfect monitoring (observable effort choices), reputation works less well. Reputation can break

down with a positive probability (indeed almost surely in the long run) even on the equilibrium

19 In a degenerate case, it has one solution for one particular δ∗.
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Figure 1: Graphic Illustration of the Fundamental Equation

path as in Green and Porter (1984). This is necessary to give the firm an incentive to stick to

good behavior. In the case of perfect monitoring, no actual punishment is incurred in motivating

the firm to choose high effort, since any deviation is perfectly detected.

Proposition 2 also establishes the comparative statics for the best equilibrium, which are all

intuitive. It says that reputation will more likely be sustained if (i) the firm cares more about the

future (greater δ); (ii) the public signal is more revealing about the firm’s effort choice (greater

4); (iii) the gain from deviation in relative terms is smaller (smaller τ), or (iv) the public signal is

less noisy (smaller σ). Note that in Equation (5), a smaller cut-off point leads to a higher average

payoff (with r kept constant). All comparative statics follow from this simple observation. Except

for the comparative statics about σ, the rest of Proposition 2 can be extended to the general

distribution F (y|e) under a technical assumption. 20

So far we have assumed that the stage Nash equilibrium (Don0t Buy, Low) is played forever

20Specifically, the assumption is limy→−∞ f(y|el)/f(y|eh) > 1 + τ . This assumption means that small y is

sufficiently informative about a deviation to low effort. If this inequality is not satisfied, then G becomes a negative,

always decreasing function, thus the fundamental equation has no solution so the only equilibrium of the game is

the repetition of the stage Nash equilibrium (Don0t Buy, Low). This condition is easily satisfied by the normal

distribution with ei being the mean, as the likelihood ratio goes to infinity as y →−∞.
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in the punishment stage. However, both the firm and its customers have strong incentives to

renegotiate and continue with their relationship when the signal falls below the cut-off point

(especially considering that the firm did not do anything wrong on the equilibrium path). In other

words, the above equilibrium is not renegotiation-proof. In Appendix B, we show that the firm’s

minmax payoff of 0 may be implemented in another equilibrium that is renegotiation-proof, in

which the firm offers a large discount to the customers by drastically cutting its price when the

signal is below the cut-off point. Thus, the same equilibrium outcome derived in this section can

be supported in a renegotiation-proof equilibrium.

4 Best Equilibrium for the Integration Case

Now we analyze the integration case in which n firms merge into one big firm. We assume that

the integrated firm adopts a common technology for all n markets (branches). Since the firm

adopts a common technology, all its branches share the same production noise η.21 This seems

consistent with the observation that integrated firms often have centralized quality controls and

try to maintain quality standards across markets and divisions. For example, franchised firms

and chains typically have centralized supply systems and closely monitor branches and stores for

quality controls.22

Once the big firm has chosen its technology, the big firm first chooses a price vector (p1, p2, ..., pn)

and then an effort vector of (e1, e2, ..., en) in the beginning of each period. The public signal in

market jis given by yj = ej + η + θj , where the common production noise η follows N(0,σ2η) and

the idiosyncratic market demand noise θj follows N(0,σ2θ). Hence yj can be interpreted as a noisy

signal of quality qj = ej + η in jth market. Let ²j = η + θj be the total noise in market j., which

is a normal random variable with mean 0 and variance σ2η + σ2θ.

A crucial assumption we make is that all the customers of the integrated firm use a monitoring

strategy based on the average signal yn = ēn + ²̄n, where ēn =
Pn
1 ej/n and ²̄n is the average

21What we really need here is that technology shocks across the markets served by one big firm have some common

components. In particular, our analysis extends to the case in which the production noise has some idiosyncratic

shocks across markets; ηj = η0 + ξj , where ξj are i.i.d. mean-zero random variables.
22An industry expert, Mark Siebert, writes that “Top franchisors know that brand maintenance means more than

just marketing. It also means quality control. The best franchisors typically have field support personnel whose

responsibility is to visit franchisees in the field and determine if they’re living up to brand standards. ....... Beyond

field support, the best franchisors are huge advocates of training. ” (http://www.entrepreneur.com/franchises/)
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noise. Given this assumption, it is straightforward to extend Proposition 1 to the integration case,

that is, we can focus on equilibria in which customers continue to buy if and only if the average

signal is above some cutoff point eyn.
Why customers may use only the average signal

There are two justifications for this assumption. First, customers of an integrated firm

often pay attention to aggregated information about the firm’s overall performance (instead of

disaggregated information about its performance measure in each market or division), such as

its product quality ranking and rating of consumer satisfaction. Because of reasons related to

coordination, information and influence activities, it is usually difficult to isolate divisions or

branches from interventions of the headquarters or influences of other divisions.23 Moreover, if

customers infer the firm’s choices from its accounting books, it can prove very difficult to discern

accounting records for each of the firm’s divisions since there are numerous ways to allocate costs

and revenues within the firm.

The second justification, which is related to the first one, is a theoretical one. It is in fact

without loss of generality to use the average signal if the integrated firm can allocate resources

and products across markets and divisions freely without being observed by its customers, e.g.,

hiring quality control personnel and sending them to individual branches or shipping products from

centralized warehouses or production facilities to different markets. Then, even though customers

may observe signals from all individual markets, they do not know what is really behind the signal

of each market. More formally, suppose that, after (q1, q2, ..., qn) is realized, the integrated firm can

choose any profile of qualities (q01, q
0
2, ..., q

0
n) secretly in the n markets as long as

Pn
1 q

0
j =

Pn
1 qj is

satisfied. Final signals of individual markets are given by yj = q0j + θj . In this case, it is intuitively

clear that only the sum of qualities or the average quality (hence the average signal) is informative

about the big firm’s effort choices.

An informal proof goes as follows. To simplify the argument, suppose that there are only

two markets and the space of signals is <2. The optimal equilibrium must be associated with a

subset of signals Ω ⊂ <2 such that Nash reversion (in every market) occurs with probability 1 if
and only if (y1, y2) ∈ Ω (otherwise (Buy, High) will continue to be played and p = vh is set in

23Milgrom and Roberts (1992, p568-576) discuss the advantages and disadvantages of horizontal integration from

non-reputation perspectives, and present some interesting case studies such as “IBM and EDS” (page 576) that

illustrate the difficulties of maintaining independence for divisions in multidivisional firms.
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all the markets), i.e., the optimal equilibrium must have a bang-bang structure. This is because

concentrating the harshest punishments (e.g. starting Nash reversion) in the most informative

region of signals is more efficient than using weak punishments in less informative regions (cf.

Lemma 1). First note that Ω must be symmetric with respect to the y1 = y2 line. To see this, let

Ω0 be the mirror image of Ω with respect to y1 = y2, i.e. (y01, y
0
2) ∈ Ω if and only if (y02, y01) ∈ Ω0.

Then we can construct an equilibrium which uses Ω and Ω0 as the punishment region with equal

probability and generates the same payoff for the firm. This means that Nash reversion starts with

probability 1
2 when (y1, y2) ∈ Ω or (y1, y2) ∈ Ω0. If Ω 6= Ω0, then this means that there exists an

optimal equilibrium where Nash reversion occurs with probability less than 1 for some realization

of signals. This contradicts the bang-bang property of the optimal equilibrium. Hence Ω and

Ω0 must coincide, that is, Ω must be symmetric. Next, notice that the the optimal equilibrium

remains to be an equilibrium even if the punishment region Ω is replaced by any translate of it

to the direction of (1,−1) such as Ω + λ (1,−1) =
©
z ∈ <2|y + λ (1,−1) , y ∈ Ω,λ ∈ <

ª
. This is

because these punishment regions are effectively identical to the firm that can reallocate its qualities

(q1, q2) freely in the direction of (1,−1) . Since all these equilibria must be optimal, Ω+ λ (1,−1)
must be symmetric for all λ ∈ < by the same reason as before. For Ω to satisfy this requirement,
Ω must look like Ω =

©
(y1, y2) ∈ <2|y1 + y2 ∈ K

ª
for some subset K of the real line. Therefore

continuation payoffs must depend only on the aggregate signal when characterizing the optimal

equilibrium. In this way, we can reduce the dimension of the signals. Note that we do not need

the assumption of normal distributions for this proof. We summarize this discussion below as a

lemma.

Lemma 3 Suppose that the firm and the customers repeat the above modified stage game aug-

mented with an additional stage in which the firm can reallocate qualities across markets ex post.

Then continuation payoffs must be measurable with respect to the aggregate signal for any optimal

equilibrium.

Given this Lemma, the following analogue of Lemma 1 can be immediately obtained, where

the cut-off point for each individual signal is replaced by the cut-off point for the average signal

and the consumers from every market behave in a symmetric way.

Proposition 3 The best equilibrium for the firm is either the repetition of the stage game Nash

equilibrium in every market or a cut-off trigger strategy equilibrium in which the following prop-
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erties hold in every market:24

(i) In the reputation phase, (Buy, High) is chosen and p is set to vh in every market.

(ii) The play starts in the reputation phase and stay there as long as the average signal yn has

been no less than a cutoff point eyn. Otherwise, the play switches to the punishment phase.
(iii) In the punishment phase, (Don0t Buy, Low) is played forever in all the markets.

Proof: See the Appendix.

Proposition 3 shows that the most effective way to maintain reputation is to use the harshest

possible punishment when punishment is called for, which is to punish the firm simultaneously in

all markets. Moreover, it needs to depend only on the average/aggregate signal. Proposition 3 also

says that in a best equilibrium, the integrated firm should choose high efforts in all n markets in

the reputation phase. The idea is that if in an equilibrium customers anticipate that the firm does

not choose high efforts in all n markets, they are not willing to pay as high as vh. Since the firm’s

profit margin is lower, it has smaller incentives to maintain reputation, thus requiring a higher

cut-off point. Since the honesty payoff is lower and the probability of reputation termination is

higher, the firm’s value per market is lower when it does not choose high efforts in all markets

than when it does.

In the following, we focus on such cut-off trigger strategy equilibria.

Characterization

We now characterize the best reputation equilibrium in which the integrated firm chooses

high efforts in all nmarkets. For j = 0, 1, ..., n, denote Fnj = Fn(yn|ē = eh− j
n4) as the distribution

function of yn when the big firm chooses low efforts in j of n markets. Its average payoff per period

in the best reputation equilibrium is given by the following value recursive equation:

Π = (1− δ)nr + δ(1− Fn(ỹn|eh))Π (6)

where ỹn is the cut-off point in the best equilibrium.

For the integrated firm serving n markets, it has n possible deviations by providing low

efforts in m = 1, 2, ..., n of the n markets. The IC constraint associated with the mth deviation is

24The non-integration case (Lemma 1) is a special case (n = 1).
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Π ≥ (1− δ)(nr +md) + δ(1− Fn(ỹn|eh −
m

n
4))Π (7)

To facilitate comparisons, define πn = Π/n as the firm’s value per market. Then Equations

(6) and (7) can be rewritten as

πn = (1− δ) r + δ(1− Fn(ỹn|eh))πn (8)

πn ≥ (1− δ)(r +
m

n
d) + δ(1− Fn(ỹn|eh −

m

n
4))πn (9)

Any pair of (πn, ỹn) that satisfies Equation (8) and all the IC constraints of Equation (9)

gives rise to a reputation equilibrium in which the big firm chooses high efforts in all markets

and customers buy its products as long as the average signal yn is above ỹn. As before, the best

equilibria feature the smallest cut-off point ỹn that satisfies Equation (8) and all the IC constraints

of Equation (9). Similar to Lemma 2, it can be shown that one of the IC constraints must be

binding at the smallest cut-off point. To solve for the smallest cut-off point ỹn, we first need to

determine which IC constraint is binding.

Suppose the mth IC constraint is binding in the best equilibrium. Parallel to Proposition 1

and Equation (4), the cut-off point in the best equilibrium is the smaller solution to the following

fundamental equation:

Gn,m (y) ≡
Fn
¡
y|eh − m

n4
¢
− Fn (y|eh)

τ mn
− Fn (y|eh) =

1− δ

δ
(10)

The effects of horizontal integration on reputation-building can be clearly seen from Equation

(10). Observe that the denominator of the first expression on the LHS is the ratio of the gain

from m deviations to the total honesty payoff in n markets. For any fixed m, a larger n means

that the punishment for deviations is greater, thus increasing the LHS of Equation (10). This size

effect of horizontal integration helps reputation-building by lowering the equilibrium cut-off point

ỹn. On the other hand, a larger n reduces Fn
¡
y|eh − m

n4
¢
− Fn (y|eh), the numerator of the first

expression on the LHS of Equation (10), because deviations in a fixed number of markets are more

difficult to detect with a larger n. This will tend to increase the equilibrium cut-off point ỹn, thus

making reputation-building less effective. Moreover, a larger n also means that the merged firm

has more sophisticated deviations to contemplate, that is, the number of IC constraints grows with

n.
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Let’s call Equation (9) the 1−market deviation constraint when m = 1.25 With our infor-

mation structure yn = ēn + ²̄n, where ²̄n follows N(0, σ̄2n), we have the following result.

Proposition 4 Suppose 0.542/σ2η ≤ ln(1+τ). For any n, only the 1-market deviation constraint

is binding in the best equilibrium for the firm.

Proof: See the Appendix.

Proposition 4 gives a sufficient condition under which the 1-market deviation IC constraint is

the most difficult to satisfy and hence must be binding in the best equilibrium. Roughly speaking,

the condition requires that the production noise is significant. In such cases, smaller deviations

are much more difficult to detect than larger deviations, thus making the 1-market deviation the

most demanding to satisfy.

The condition in Proposition 4 is far from necessary. In particular, normality is not required.

Equation (9) is equivalent to

(1− δ)
m

n
d ≤ δ(Fn(ỹn|eh −

m

n
4)− Fn(ỹn|eh))πn

Note that Equation (9) withm = 1 implies all the other constraints form > 1 as long as Fn(ỹn|eh−
m
n4) − Fn(ỹn|eh)) increases faster than linearly in m. This is satisfied when the density function
fn is increasing around ỹn.26 This is usually satisfied at the lower tail of distribution, which is

the relevant domain when δ is large. In the rest of the paper, we assume that only the 1-market

deviation is binding in the best equilibrium for any n. Then the optimal cut-off point in the best

equilibrium ỹn is the smaller solution to the following fundamental equation:

Gn,1 (y) ≡
Fn
³
y|eh − 1

n4
´
− Fn (y|eh)

τ 1n
− Fn (y|eh) =

1− δ

δ
(11)

With the information structure yn = ēn + ²̄n, the fundamental equation of (11) becomes

Gn (k) ≡
Φ
³
k + 4

nσ̄n

´
−Φ (k)

τ 1n
−Φ (k) = 1− δ

δ
(12)

25Note that since the firm allocates products across markets evenly, product quality in every market becomes

lower if the firm deviates to low effort in one of the n markets.
26Convexity of Fn(ỹn|eh − x4) in x ∈ [0, 1] at ỹn is sufficient for our purpose. Since yn = ēn + ²̄n, this condition

is equivalent to Fn(ỹn + x4|eh) being convex in x ∈ [0, 1], which in turn is equivalent to fn(ỹn + x4|eh) increasing
in x ∈ [0, 1] .
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where k = y−eh
σ̄n
. Note that when n = 1, σ̄1 = σ, and Equation (12) becomes Equation (4).

Let k̃n(δ, τ ,4, σ̄n) be the smaller of the two solutions to Equation (12). It is easy to see that
k̃n(δ, τ ,4, σ̄n) has all the properties of k̃(δ, τ ,4,σ), the smaller of the two solutions to Equation
(4). That is, k̃n(δ, τ ,4, σ̄n) is increasing in τ and σ̄n, and decreasing in δ and 4.

With this transformation of variables, the probability of reputation termination in the best

equilibrium, Fn(ỹn|eh), is simply Φ(k̃n). In summary, the best equilibrium for the firm serving n

markets can be characterized as follows.

Proposition 5 There exists a reputation equilibrium for the firm serving n markets as long as

δ ≥ δ∗n for some δ∗n. The optimal cut-off point in the best equilibrium for the firm, k̃n, is the

smaller solution to the fundamental equation (12). The merged firm’s value per market is

πn =
(1− δ)r

1− δ[1−Φ(k̃n)]

It is increasing in r, δ and 4, and decreasing in d and σ̄n.

From Proposition 5, the construction of the best equilibrium under integration parallels

nicely with that under non-integration. We exploit this in the next section to investigate the

optimal degree of horizontal integration and to conduct comparative statics.

The Case of Independent Technologies

Even though we think common technology seems to fit reality better, we now briefly consider

the case in which the integrated firm adopts independent technologies for all its branches. The

case of independent technologies differs from that of common technology in that the noise in

the average signal ²̄n =
Pn
1 (ηj + θj)/n ∼ N(0, σ̄2n), where σ̄2n = (σ2η + σ2θ)/n. Proposition 3

is clearly still valid, so we can focus on the equilibrium in which consumers use the average

signal to monitor the integrated firm. By Proposition 4, for independent technologies, as long as

0.5n42/σ2η ≤ ln(1 + τ) (i.e., n is not too large), then only the 1-market deviation constraint is

binding in the best equilibrium for the firm. It then follows that the normalized signal threshold in

the best equilibrium can still be characterized by Equation (12), except that now σ̄2n = (σ
2
η+σ

2
θ)/n,

instead of σ2η +σ2θ/n. With this modification, Proposition 5 is still valid. It will become clear that

all of our analysis and basic results in the next section carry through to the case of independent

technologies.
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Suppose instead n is sufficiently large so that the condition in Proposition 4 does not hold

and the one-market deviation constraint is not the binding constraint. Then it can be shown that

the n-market deviation constraint will be binding. Then the normalized signal threshold in the

best equilibrium can be characterized by

Gn (k) ≡
Φ
³
k + 4

σ̄n

´
−Φ (k)

τ
−Φ (k) = 1− δ

δ

The above equation differs from the fundamental equation (4) for the independent firm only

in that here the signal noise σ̄n is scaled down by
√
n. By Proposition 2, the profit per market

for an integrated firm with independent technologies for its branches will be higher than that of

an independent firm. Indeed the complete monopoly is the optimal configuration in this situation

and the first best is achieved as n→∞.
This result is parallel to Matsushima (2001)’s result for multimarket contact, which shows

that the first best is approximately achieved by two big firms when the number of the independent

markets in which they compete becomes larger. The reason is that the size effect (Bernheim and

Whinston, 1990; Andersson, 2002) and the strong information aggregation effect in the case of

independent signals together dominate the deviation effect, making integration always better than

non-integration. Since we assume explicitly that one source of noise comes from the firm’s tech-

nology, complete independence of noise would be an extreme assumption to make here. Managing

all branches with independent technologies could be prohibitively costly. Furthermore, we do not

obtain the interesting result on the bound of firm size when all noises are completely independent.

For this reason, we focus on the case where there is some common component (see footnote 21)

in technology shock across the markets.

5 Optimal Degree of Horizontal Integration

In the two preceding sections we derived the best equilibria under non-integration and integration

of n markets (with common technology). By Proposition 5, it is clear that the comparison of non-

integration and integration depends on the probability of reputation termination in equilibrium

under non-integration, Φ(k̃), and under integration, Φ(k̃n). Hence, for any given n > 1, non-

integration dominates integration (π ≥ πn) if and only if k̃ ≤ k̃n.
Since Equation (4) is a special case of Equation (11), a more general question is: what is

the optimal degree of horizontal integration? Or, in other words, what is the optimal size of the
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firm? Conceptually, the answer is straightforward. For all n = 1, 2, ..., let n∗ be such that k̃n is

smallest. Then the optimal size of the firm is simply n∗. If n∗ = 1, then non-integration is optimal.

If n∗ > 1, then a firm serving n∗ markets can best maintain reputation.

Proposition 6 For any δ, k̃n is bounded from below and n∗ is finite.

Proof: See the Appendix.

Proposition 6 says that the maximum profit level, r, possible under perfect monitoring,

cannot be approximated even if the size of the firm is allowed to go to infinity. It also says that

there exists an optimal size of the firm. This is in sharp contrast with Bernheim and Whinston

(1990), Matsushima (2001), Andersson (2002), Fishman and Rob (2002), and other papers in the

existing literature on reputation, all of which imply that the bigger, the better. Our result differs

from these papers because we introduce a common production noise, η, which does not vanish

with information aggregation when n → ∞.27 The optimal size of the firm can be bounded in

our model because, as the firm size increases, the positive size and information effects become less

and less important, but the negative deviation effect becomes more and more significant since it

is more demanding to “detect” one-market deviations for larger firms.

In fact, we can prove a stronger result.

Proposition 7 Non-integration is optimal when (i) σθ is sufficiently small; or (ii) δ is sufficiently

close to one; or (iii) τ is sufficiently small.

Proof: See the Appendix.

Proposition 7 gives several sufficient conditions under which non-integration is optimal (n∗ =

1). In the first case when the idiosyncratic taste noise is not important, the information aggregation

benefit from integration is gone, so non-integration is optimal. In the last two cases, reputation

can be maintained quite effectively for firms of all sizes in the sense that the cut-off point can be

set at a low level. In such cases, the marginal benefit of the size effect from having more severe

punishments is less important. In addition, it is much more difficult to detect small deviations in

larger firms in the lower tail of the distribution. As a result, integration brings less benefits but

more costs, thus it is dominated by non-integration.

27As long as there exists some common noise component, we can allow idiosyncratic components in the production

noise as well.
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Proposition 8 The optimal degree of integration n∗ is non-increasing in δ.

Proof: See the Appendix.

Proposition 8 shows that as the discount factor increases, the optimal size of the firm will

decrease (at least weakly) and non-integration is more likely to dominate integration. The intuition

behind this result is roughly as follows. As δ increases, the future payoffs are more important and

hence punishments for deviations are larger. This implies that firms of all sizes can maintain

reputation more effectively. That is, the equilibrium cut-off points to continue cooperative actions

can be set at low levels. Relatively speaking, the positive size effect of integration is less important

in the sense that the marginal benefits of increasing punishments for deviation through integration

become smaller. On the other hand, since the equilibrium cut-off points are low, the negative

deviation effect of integration becomes more important because low cut-off points make it more

difficult to detect a small deviation of a large firm. These forces together imply that as δ increases,

the optimal size of the firm will not be larger.

Proposition 9 The optimal degree of integration n∗ is non-decreasing in τ .

Proof: See the Appendix.

Proposition 9 shows that as τ decreases, the optimal size of the firm will decrease (at least

weakly) and non-integration is more likely to dominate integration. Since τ = d/r, it means

that a smaller deviation gain, d, or a greater honesty payoff, r, will favor smaller firms and non-

integration. The intuition behind this result is similar to that of Proposition 8. A smaller τ means

less incentive to deviate and thus smaller or independent firms can build reputation more effectively.

Consequently, the marginal benefits of the size effect of integration become less important, while

the negative deviation effect of integration is more severe. Therefore, the smaller is τ , the smaller

is the optimal size of the firm.

Next we consider how the informativeness of the signal affects the optimal degree of inte-

gration. We say that the public signal is uniformly more informative if 4 is larger (keeping other

parameters constant) or if both σθ and ση are smaller while their ratio is fixed.

Proposition 10 Suppose δ is sufficiently close to one. The optimal degree of integration, n∗, is

non-increasing when the public signal becomes uniformly more informative.
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Proof: See the Appendix.

Proposition 10 shows that for large δ, as the public signal becomes more informative about

the firm’s effort/quality choices, the optimal size of the firm will decrease (at least weakly) and

non-integration is more likely to dominate integration. The intuition behind this result is as

follows. When δ is large, the optimal cut-off point can be set quite low. When the public signal

becomes more informative, small firms benefit more than larger firms because a small deviation

by a larger firm can be “detected" only slightly better with more informative signals. Thus, while

more informative signals make firms of all sizes better, the negative deviation effect of integration

makes smaller firms benefit more. Therefore, the more informative the public signal, the smaller

the optimal size of the firm.

We derive the results of this section under the linear normal information structure. However,

from the proofs and the intuition given above, it is not difficult to see that the insights extend more

generally. With a general information structure, under reasonable conditions, for smaller y, the n∗

that maximizes the function Gn,1(y) will be smaller. That is, it is more difficult to “detect” a one

market deviation by a larger firm if the cut-off point is in the lower tail of the signal distribution.

In such cases, results similar to those obtained here should hold under more general information

structure.

6 Conclusion

In this paper, we build a simple model of firm reputation in which customers can only imperfectly

monitor firms’ effort/quality choices, and then use the model to study the effects of horizontal

integration on firm reputation. Our analysis leads to a reputation theory of the optimal size of

the firm. Our comparative statics results can be helpful for understanding patterns of horizontal

integration in the real world.

This paper has focused on the moral hazard aspects of firm reputation. As is common

in this type of model, the firm maintains good reputation on the equilibrium path until a bad

realization of the public signal, from which point on the firm enters the punishment phase in

which either customers desert the firm or the firm pays large financial penalties. This kind of

equilibrium behavior has some unattractive features. First, firm reputation is relatively constant

and has no real dynamics. Second, the reversion from good reputation to punishment phases,
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which is necessary to provide incentives to maintain reputation, depends heavily on coordination

of beliefs between the firm and its customers. In equilibrium, punishments are triggered purely by

bad luck, not by bad behavior on the firm’s part. In addition, when punishments take the form of

a permanent end to the relationship, they are not renegotiation-proof.

To deal with some of the above shortcomings, we demonstrate in the Appendix B that

there exists an efficient renegotiation-proof equilibrium instead of Nash reversion. However, these

issues may be addressed more suitably by introducing adverse selection into the model. Recent

contributions by Mailath and Samuelson (2001) and Tadelis (2002) have made important progress

in that direction. Introducing adverse selection into our model may not only generate richer

reputation dynamics and serve to relax belief coordination requirements, but also may address

interesting questions such as: does larger firm size help good-type firms build reputation? Can

good-type firms use size to separate themselves from bad types? These questions are left as topics

for future research.

In this paper we consider only separate markets and assume away possible linkages across

markets, e.g., competition or economies of scales. Those linkages create well understood incentives

or disincentives for integration, which we deliberately ignore to focus on how reputation is related

to integration. However, reputation and competition may interact and lead to other interesting

effects. For example, having a competitor in the market may allow consumers to carry out credible

punishment of dishonest behavior by one firm, thus helping the firm build reputation (see, e.g.,

Hörner, 2002). This would generate a disincentive for the two firms to merge (although merge

eliminates price competition and raises joint profit in a static setting). Extending the model in

this paper to competitive markets is an interesting topic for future research.
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Appendix A: Proofs

Proof of Lemma 1: First suppose that (Don0t Buy, Low) is played in the first period in the best

equilibrium. Then it is optimal to play the same equilibrium from the second period on, because the

continuation game is isomorphic to the original game. This implies that one possible best equilibrium is to

play (Don0t Buy, Low) every period independent of history (with price being set high enough), yielding

equilibrium payoffs of (0, 0) . Note that the repetition of (Don0t Buy, Low) is the only equilibrium outcome

which achieves such equilibrium payoffs.

Suppose that the best equilibrium achieves more than (0, 0) .Neither (Buy, Low) nor (Don0t Buy, High)

can be the first period outcome of the equilibrium which maximizes the firm’s payoff. Therefore (Buy, High)

with p ≤ vh should be the outcome of the first period of such equilibrium.

Now we show that such a best equilibrium for the firm must be a cut-off trigger strategy equilibrium

with p = vh.
28 Let V ∗ > 0 be the best equilibrium payoff for the firm, p∗ (≤ vh) be the equilibrium first

period price, and u∗ be the mapping which maps each public signal y to the equilibrium continuation payoff

u∗ (y) ∈ [0, V ∗] . Let U be the set of all measurable functions u : <→ [0, V ∗] . Then the following holds:

V ∗ ≤ max
u∈U

(1− δ) (p∗ − ch) + δE [u (y) |eh]

s.t. (1− δ) (p∗ − ch) + δE [u (y) |eh] ≥ (1− δ) (p∗ − cl) + δE [u (y) |el]

where the first inequality comes from the fact that the true set of continuation equilibrium payoffs may not

be able to take all the values between 0 and V ∗.

However, it is not difficult to show that the (essentially unique) solution ũ ∈ U for this optimization

problem satisfies ũ (y) = 0 for y ∈ (−∞, ey) and ũ (y) = V ∗ for y ∈ [ey,∞) for some ey by the MLRP.29 Then
since both V ∗ and 0 are equilibrium payoffs, the maximized value of this optimization problem can indeed

be achieved as an equilibrium payoff by using the following cut-off trigger strategy (starting in state 1);

• State 1: Play High with p = p∗ and move to State 2 if and only if y ∈ (−∞, ey).
28The best equilibrium payoff exists because the equilibrium payoff set is compact.
29The following perturbation argument might be useful to understand this. Suppose that u (y0) < u (y00)

for some y00 < y0. Consider a perturbation u (y0) + ε0 and u (y00) − ε00 for ε0, ε00 > 0 such that f (y0|eh) ε0 −
f (y00|eh) ε00 = 0. Then the expected continuation payoff given eh is the same as before, but the expected

payoff given el is strictly lower because f (y0|el) ε0 − f (y00|el) ε00 < 0 if f satisfies MLRP.
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• State 2: Play Low with p > vl and stay at state 2.

Since ũ ∈ U is (essentially) the unique solution to the above optimization problem, the equilibrium

continuation payoff function u∗ to achieve V ∗ must be ũ (almost everywhere). Finally, there is no restriction

on p∗ as long as p∗ ≤ vh. Thus the optimal price should be p∗ = vh in every period at State 1. Q.E.D.

Proof of Proposition 2: It is easy to check that limk→−∞G (k) = 0 and limk→∞G (k) = −1. Further-

more, G (k) is unimodal (pseudoconcave). To see this, note that

G0(k) =
φ(k + 4

σ )− φ(k)

τ
− φ(k)

It is easy to check that G0(k∗) = 0 has a unique solution at

k∗ = −4
2σ
− σln(1 + τ)

4

Since the normal distribution satisfies the strict monotone likelihood ration property (Milgrom, 1981; Riley,

1988), it must be that G0(k) > 0 for k ∈ (−∞, k∗) and G0(k) < 0 for k ∈ (k∗,∞). Hence k∗ maximizes

G(k) and G(k∗) > 0. Thus, G(k) is unimodal (pseudoconcave).

Since (1−δ)/δ is strictly decreasing in δ and goes to zero as δ goes to one, Equation (4) has a solution

for all δ ≥ δ∗, where δ∗ satisfies G(k∗) = (1− δ)/δ. For all δ > δ∗, there are two solutions for Equation (4).

By Proposition 1, the cut-off point in the best equilibrium corresponds to the smaller solution for Equation

(4), and its equilibrium payoff is given by Equation (5). For δ > δ∗, all the comparative statics results are

verified immediately from Figure 1. Q.E.D.

Proof of Proposition 3: The proof is almost identical to the proof of Lemma 1 once we reduce the

dimensionality of signals. Now the firm can deviate from eh to el in any subset of the n markets. But the

trick to concentrate punishments in the lower tail of the distribution (cf. Footnote 29) still works because

MLRP holds with respect to every such deviation in the same direction. Other than this, the proof is

completely identical. Q.E.D.

Proof of Proposition 4: For any n, let k = y−eh
σ̄n

. Let eknm be the smaller solution to

Gnm (k) ≡
Φ
³
k + m4

nσ̄n

´
−Φ (k)

τ mn
−Φ (k) = 1− δ

δ
(13)
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Just as G(k) in Proposition 2, Gnm(k) is unimodal and is maximized at

k∗nm = −
1

2

m4
nσ̄n

− nσ̄n
m4 ln(1 + τ

m

n
)

Lemma 4 Suppose ln(1 + τ) ≥ 0.542/σ2η. Then for any n and for any m ≤ n, k∗nm + m4
nσ̄n
≤ 0.

Proof: Let x = m/n ∈ (0, 1]. Define κnm(x) as

κnm(x) = k
∗
nm +

m4
nσ̄n

=
1

2

x4
σ̄n
− σ̄n
x4 ln(1 + xτ)

Under the assumption that ln(1 + τ) ≥ 0.542/σ2η, we have

κnm(x = 1) =
1

2

4
σ̄n
− σ̄n
4 ln(1 + τ) < 0

Also, as x→ 0,

lim
x→0

κnm → − lim
x→0

τσ̄n
4(1 + xτ) = −

τ σ̄n
4 < 0

Note that

x2κ0nm(x) =
1

2

x24
σ̄n

+
σ̄n
4 ln(1 + xτ)− σ̄n

4
τx

1 + xτ

Let μ(x) be the RHS expression. Then μ(x = 0) = 0. Moreover,

μ0(x) =
x4
σ̄n

+
τσ̄n

4(1 + xτ) −
τ σ̄n
4

1

(1 + xτ)2

=
x4
σ̄n

+
τσ̄n

4(1 + xτ)(1−
1

1 + xτ
) > 0

So, μ(x) > 0 and hence κ0nm(x) > 0 for all x ∈ (0, 1]. It follows that κnm(x) < 0 for all x ∈ (0, 1].

Q.E.D.
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Since k̃nm ≤ k∗nm, Lemma 4 implies that for any n and for any m ≤ n, k̃nm + m4
nσ̄n
≤ 0.

Note that

∂Gn,m
∂m

=

m4
nσ̄n

φ
³
k + m4

nσ̄n

´
−Φ

³
k + m4

nσ̄n

´
+Φ (k)

τ m
2

n

=
4

mτ σ̄n

∙
φ

µ
k +

m4
nσ̄n

¶
− φ

¡
k̄
¢¸
]]]]]

where k̄ ∈ (k, k+m4
nσ̄n

). Since for any n and for anym ≤ n, k̃nm+m4
nσ̄n
≤ 0. This implies φ

³
k + m4

nσ̄n

´
> φ

¡
k̄
¢

in the relevant range, and thus Gnm(k) is increasing in m. Therefore, only the 1-shot deviation constraint

is binding in the best equilibria for any n. Q.E.D.

Proof of Proposition 6: We ignore the issue of integer values and treat n as a continuous variable. Since

σ̄2n = σ2η + σ2θ/n, it can be verified that

d 1
nσ̄n

dn
= − 1

n2σ̄n

µ
1− 0.5σ

2
θ

nσ̄2n

¶
= − 1

n2σ̄n
+
0.5σ2θ
n3σ̄3n

d2 1
nσ̄n

dn2
=

2

n3σ̄n
− 2σ2θ
n4σ̄3n

+
3σ4θ
4n5σ̄5n

When n goes to infinity, we have

lim
n→∞

Gn (k) −→ lim
n→∞

φ
³
k + 4

nσ̄n

´
d 4
nσ̄n

/dn

−τ 1
n2

−Φ (k)

=
4φ(k)

τ
lim
n→∞

∙
1

σ̄n
− 0.5σ

2
θ

nσ̄3n

¸
−Φ (k)

=
4φ(k)

τση
−Φ (k)

Hence, when n goes to infinity, the fundamental equation (12) becomes

4φ(k)

τση
−Φ (k) = 1− δ

δ

The solution k̃ for this equation (if it exists) is clearly finite. Hence, limn→∞ k̃n > −∞.
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Next note that Gn (k) =
4
σ̄n

φ(ek)
τ − Φ (k) for some ek ∈ ³k, k + 4

nσ̄n

´
. Remember that relevant k is

negative by Lemma 4. For any negative k, there exists n0 such that Gn0 (k) > limn→∞Gn (k) . This implies

that n0 dominates all large n, which implies that the size of optimal integration is bounded. Q.E.D.

Proof of Proposition 7: Differentiating the LHS of Equation (12) with respect to n gives

τ
∂Gn (k)

∂n
= Φ

µ
k +

4
n σ̄n

¶
−Φ (k) + nφ

µ
k +

4
nσ̄n

¶
d 4
nσ̄n

dn

= Φ

µ
k +

4
n σ̄n

¶
−Φ (k)− φ

µ
k +

4
nσ̄n

¶
4
nσ̄n

µ
1− 0.5σ

2
θ

nσ̄2n

¶

This can be rewritten as

τnσ̄2n

φ
³
k + 4

nσ̄n

´
4
nσ̄n

∂Gn (k)

∂n
= 4σ̄n

Φ
³
k + 4

n σ̄n

´
−Φ (k)− φ

³
k + 4

nσ̄n

´
4
nσ̄n

φ
³
k + 4

nσ̄n

´
( 4
nσ̄n

)2
+ 0.5σ2θ (14)

As σθ → 0, the last term goes to zero. Also, 4σ̄n ≥ 4ση > 0 for all σθ and all n. Let x =
4
nσ̄n
∈

(0, 4σ ). We show that for all x (hence, for all n and all σθ), ∃ ξ < 0 such that

ρ(k, x) =
Φ (k + x)−Φ (k)− φ (k + x)x

φ (k + x)x2
< ξ < 0

Note first that ρ(k, x) < 0 for all x > 0, because the numerator equals (φ(~k)− φ(k+ x))x < 0, where

~k ∈ (k, k + x) (assuming that all the cut-off points are small enough). As x → 0, it can be verified that

ρ(k, x)→ k/2 < 0. Furthermore, one can show that ∂ρ/∂x has the same sign as

−2[Φ (k + x)−Φ (k)− φ (k + x)x] + x(k + x)[Φ (k + x)−Φ (k)]

This function takes a value of zero when x = 0 and has a derivative of (k+x)[Φ (k + x)−Φ (k)−φ (k + x)x]+

x[Φ (k + x)−Φ (k)] > 0. Thus, ρ(k, x) is increasing in x. Let ξ = ρ(4σ ) < 0. Then ρ is uniformly bounded

above by some ξ < 0 (for any small enough k). Therefore, for each fixed k, ∂Gn(k)
∂n < 0 as σθ → 0 for all n.

Let k∗n be the solution of fundamental equation for Gn(k) =
1−δ
δ . If σθ is small enough, G1(k

∗
1) >

Gn(k
∗
1), therefore k

∗
1 < k

∗
n for n = 2, 3..... It follows that non-integration is optimal.

Now consider the case of k → −∞. Note that as k→ −∞, for all x ∈ (0, 4σ ),
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lim
k→∞

ρ(k, x) = lim
k→∞

Φ (k + x)−Φ (k)
φ (k + x)x2

− 1
x

= lim
k→∞

1− exp
¡
kx+ 0.5x2

¢
−(k + x)x2 − 1

x

= − 1
x

Hence, for any n and for a sufficiently small kn, since x =
4
nσ̄n

, the RHS of Equation (14) goes to

−4σ̄n
1

x
+ 0.5σ2θ = −nσ̄n2 + 0.5σ2θ < 0

Furthermore, it can be verified that ∂ρ/∂k has the same sign as

(k + x)[Φ (k + x)−Φ (k)] + φ (k + x)− φ (k)

This function goes to zero as k → −∞, and has a derivative of Φ (k + x)−Φ (k)−xφ (k) > 0. Thus, ρ(k, x)

is increasing in k.

Take k1. We know that the RHS of Equation (14) is negative at x =
4
σ̄ as long as k ≤ k1. Since ρ is

increasing in x, the RHS of Equation (14) must be negative for all x < 4
σ̄ when k = k1. Moreover, since ρ

is increasing in k, this must be true for all x as long as k ≤ k1.

Therefore, for sufficiently small k, it must be that Gn is decreasing in n so that G1(k) > Gn(k) for

all n > 1. Since k̃n goes to −∞ for all n when either δ is sufficiently close to one or τ is sufficiently small,

Non-integration is optimal (n∗ = 1) as before in either of the cases. Q.E.D.

Proof of Proposition 8: We first prove a useful lemma. Define G0(k; t, x) =
Φ(k+x)−Φ(k)

t −Φ(k).

Lemma 5 Let 0 < t0 < t and 0 < x0 < x. There exists a k̂ such that G0(k; t0, x0) ≤ G0(k; t, x) if and only

if k ≤ k̂.

Proof of Lemma 5: Define w(k; t, x, t0, x0) = G0(k; t, x) − G0(k; t0, x0). Note that as k → −∞, both

G0(k; t, x) and G(k; t0, x0) go to zero; and as k →∞, both G(k; t, x) and G(k; t0, x0) go to −1. Thus, w(k)

goes to zero as k → −∞ and as k →∞.
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Differentiating w gives

w0(k) =
φ(k + x)− φ(k)(1 + t)

t
− φ(k + x0)− φ(k)(1 + t0)

t0

=
φ(k)

t
[e−

x2

2 e−kx − 1− t

t0
e−

(x0)2
2 e−kx

0
+
t

t0
]

Let us call the expression in the bracket above η(k). Since x > x0, η(k) → ∞ as k → −∞. When

k →∞, η(k)→ t/t0 − 1 > 0. Furthermore, we have

η0(k) = −xe−x2

2 e−kx + x0
t

t0
e−

(x0)2
2 e−kx

0
= e−kx

∙
−xe−x2

2 + x0
t

t0
e−

(x0)2
2 ek(x−x

0)

¸

Setting η0(k) = 0 we obtain

k̄ =
ln(xt0)− ln(x0t)− 0.5x2 + 0.5(x0)2

x− x0

It is clear that η0(k) < 0 for k < k̄ and η0(k) > 0 for k > k̄. So η(k) reaches its minimum at k̄. If

η(k̄) ≥ 0, then η(k) > 0 for all k 6= k̄. This implies that w0(k) = φ(k)η(k)/t, w0(k) > 0 for all k 6= k̄ and

w0(k) = 0 at k = k̄. Thus w(k) is always strictly increasing except at k̄ as a reflection point. But this

contradicts the fact that w(k) goes to zero as k → −∞ and as k →∞. Therefore, it must be that η(k̄) < 0.

Since η(−∞) =∞ and η(∞) = t/t0 − 1 > 0, there exist k1 and k2, k1 < k̄ < k2, such that η(k) = 0.

So η(k) > 0 for k ∈ (−∞, k1) ∪ (k2,∞) and η(k) < 0 for k ∈ (k1, k2). Since the sign of w0(k) is identical

to that of η(k), w(k) is strictly increasing for k ∈ (−∞, k1) ∪ (k2,∞) and strictly decreasing k ∈ (k1, k2).

Therefore, there must exist a unique k̂ ∈ (k1, k2) such that w(k) = 0. Moreover, w(k) > 0 for k < k̂ and

w(k) < 0 for k > k̂. Q.E.D.

Consider any n < n0. Let t = τ/n, x = 4/(nσ̄n), and t0 = τ/n0, x0 = 4/(n0σ̄n0). Then, t > t0 and

x > x0. Since Gn(k) = G0(k; t, x) and Gn0(k) = G0(k; t
0, x0), by Lemma 5, there exists a k̂nn0 such that

Gn(k) > Gn0(k) if and only if k < k̂nn0 .

Now suppose for some δ, the optimal degree of integration is n∗(δ). This means that at k̃n∗(δ),

Gn∗(δ) ≥ Gn0 for all n0. Therefore, for n0 > n∗(δ), it must be that k̃n∗(δ) < k̂n∗(δ)n0 ; and for n0 < n∗(δ), it

must be that k̃n∗(δ) > k̂n∗(δ)n0 .
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Consider an increase in δ to δ1 > δ. For any n, k̃n decreases in δ. In particular, k̃n∗(δ)(δ1) is smaller

than k̃n∗(δ)(δ). Note that δ does not effect k̂nn0 at all. Hence, for n0 > n∗(δ), we have k̃n∗(δ)(δ1) < k̂n∗(δ)n0 ,

so Gn∗(δ) ≥ Gn0 at k̃n∗(δ)(δ1). Therefore, the optimal degree of integration at δ1, n∗(δ1), cannot be greater

than n∗(δ). For all n0 < n∗(δ), if k̃n∗(δ1) > k̂n∗(δ)n0 , then we must have n∗(δ1) = n∗(δ). Otherwise, if

k̃n∗(δ1) < k̂n∗(δ)n0 for some n0 < n∗(δ), then Gn∗(δ) < Gn0 at k̃n∗(δ1), which implies that n
∗(δ1) must be

smaller than n∗(δ). Q.E.D.

Proof of Proposition 9: The proof is similar to that of Proposition 8. Suppose for some τ , the optimal

degree of integration is n∗(τ). Consider a decrease in τ to τ1 < τ . Since Gn is decreasing in τ , then k̃n is

increasing in τ . Hence, k̃n∗(τ)(τ1) is smaller than k̃n∗(τ)(τ). From the proof of Lemma 5, for any n and n0,

k̂nn0 depends on the ratio of t/t0 but not on t nor t0. Since t/t0 = n/n0 is independent of τ , for any n and n0,

k̂nn0 is independent of τ . That is, the relative positions of Gn are independent of τ . Therefore, a decrease

in τ is like an increase in δ. The same argument in the proof of Proposition 8 applies. Q.E.D.

Proof of Proposition 10: We only need to consider an increase in 4. The argument is identical for a

decrease in σθ and ση of the same proportions. Suppose for some 4, the optimal degree of integration is

n∗(4). Consider an increase in 4 to 41 > 4. Since Gn is increasing in 4, k̃n is decreasing in 4. Hence,

k̃n∗(4)(41) is smaller than k̃n∗(4)(4). From the proofs of Propositions 8 and 9, it suffices to show that for

any n and n0 > n, k̂nn0 is nondecreasing in 4.

Since Gn = Gn0 at k̂nn0 , k̂nn0 is the solution to w(k) = 0, where

w(k) = n

∙
Φ

µ
k +

4
n σ̄n

¶
−Φ (k)

¸
− n0

∙
Φ

µ
k +

4
n0 σ̄0n

¶
−Φ (k)

¸

Exactly as in Lemma 5 and Propositions 8, w crosses zero only once at k̂nn0 as it is decreasing. So to

show k̂nn0 is nondecreasing in 4, we only need to show that w(k) is increasing in 4 at k̂nn0 , or ∂w/∂4 > 0

at k̂nn0 .

Since

∂w

∂4 =
1

σ̄n
φ

µ
k +

4
n σ̄n

¶
− 1

σ̄0n
φ

µ
k +

4
n0 σ̄0n

¶

∂w/∂4 > 0 if R(n) = 1
σ̄n

φ
³
k + 4

n σ̄n

´
is decreasing at k̂nn0 . It can be verified that

∂R

∂n
=

φ
³
k + 4

n σ̄n

´
n2σ̄3n

"
4
µ
k +

4
n σ̄n

¶Ã
σ2η
σ̄n
+
0.5σ2θ
nσ̄n

!
+ 0.5σ2θ

#
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It is easy to see that ∂R
∂n < 0 for all n if k < −

0.5σ2θ
ση4 −

4
σ . If k̂nn0 < −

0.5σ2θ
ση4 −

4
σ , then the proposition holds.

Suppose k̂nn0 ≥ −0.5σ
2
θ

ση4 −
4
σ . For large δ, k̃n∗(4)(41) and k̃n∗(4)(4) are smaller than −0.5σ

2
θ

ση4 −
4
σ . Since

k̂nn0 is independent of δ, then for large δ, k̂nn0 is greater than k̃n∗(4)(41) and k̃n∗(4)(4), so the claim of

the proposition is true. Q.E.D.

Appendix B: Renegotiation-Proof Equilibrium

In this Appendix, we show that the same outcome derived in Section 2 can be implemented in a

renegotiation-proof equilibrium. Consider the following strategy. If the public signal falls below the cut-off

point k̃, in the next period the firm offers customers a (very low) price p0 and continues to provide high

effort, and customers continue to buy from the firm. If the public signal in the punishment period is above

another cut-off point k0, then the firm is “redeemed,” and can switch back to the reputation phase, charging

p = vh in the next period. Otherwise, the firm stays in the punishment phase offering the low price p0.30

Since the firm provides high effort in every period in both reputation and punishment phases, any such

reputation equilibrium is efficient.

For this punishment scheme together with the reputation phase described above to constitute an

equilibrium, we need to have

(1− δ)(p0 − ch) + δ (1−Φ(k0))π = 0 (15)

where π is the firm’s average value as characterized in Proposition 1. The first term, (1− δ)(p0− ch), is the

firm’s (negative) profit per period in the punishment phase averaged over periods; while the second term is

the discounted expected future profit if it redeems itself, which occurs with probability 1−Φ(k0). Therefore

this condition states that p0 and k0 should be chosen so that the firm’s expected payoff is zero once it is in

the punishment phase.

In addition, the firm must be willing to provide high effort in the punishment phase, which requires

the following incentive constraint:

(1− δ)(p0 − ch) + δ (1−Φ(k0))π ≥ (1− δ)(p0 − cl) + δ

µ
1−Φ(k0 + 4

σ
)

¶
π

30This is similar to a “stick and carrot” equilibrium (Abreu, 1988).
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Or, recalling that d = ch − cl, we have

(1− δ)d ≤ δ

µ
Φ(k0 +

4
σ
)−Φ(k0)

¶
π (16)

This simply says that the gain from a one period deviation to low effort during the punishment phase is

less than the loss of future profit from low effort which serves to reduce the probability of switching back

to the high price and high profit of the reputation phase.

Note that the IC constraint of equation (16) is identical to that of the reputation phase, Equation

(2) or (3). Thus, (16) is satisfied if and only if the cut-off point k0 is not less than the smaller solution and

not greater than the larger solution to the fundamental equation (4). For any such k0, if there exists a price

p0 satisfying equation (15), then we have an efficient renegotiation-proof equilibrium

Two remarks are in order here. First, there may be multiple (k0, p0) that satisfy the above two

conditions (15) and (16). Clearly, the larger k0 is, the higher p0 is. Second, to satisfy equation (15) may

require a negative price p0, which may not be feasible in many contexts. By Equation (15), p0 can be

made as high as possible when k0 is the largest among those which satisfy (16). The largest such k0 is

k0 = −
³bk + 4

σ

´
, where bk is the cut-off point in the reputation phase, due to the symmetry of normal

distribution. Thus, there exists (k0, p0 (≥ 0)) that satisfy (15) and (16) if and only if

−(1− δ)ch + δΦ(bk + 4
σ
)π ≤ 0 (17)

This inequality is satisfied when δ is large enough. To summarize, we have the following result.

Proposition 11 There exist k0 ∈ < and p0 ∈ <+ that satisfy (15) and (16) if and only if (17) is satisfied.

Moreover, (17) is satisfied when δ is sufficiently large.31

Proof: We only show that (17) is satisfied when δ is sufficiently large. (17) is equal to

δΦ(bk + 4
σ )π

1− δ
≤ ch

First we can show that Φ(
bk+4

σ )

1−δ → τ as δ → 1 as follows:

lim
δ→1

Φ(bk + 4
σ )

1− δ
= lim

δ→1
−φ(bk + 4

σ
) · ∂

bk
∂δ

31 It can also be shown that if this “stick and carrot” strategy cannot implement the minmax payoff 0 for

the firm, then there is no efficient renegotiation-proof equilibrium that can do so.
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= lim
δ→1

φ(bk + 4
σ )/δ

2

φ(bk+4
σ )−φ(bk)
τ − φ(bk) (by Equation 4)

= lim
δ→1

φ(bk + 4
σ )/φ(

bk)
φ(bk+4

σ )/φ(bk)−1
τ − 1

Since bk → −∞, thus φ(bk + 4
σ )/φ(

bk)→∞ as δ → 1, we have

lim
δ→1

Φ(bk + 4
σ )

1− δ
→ τ

Then, since π → r as δ → 1, we have

lim
δ→1

δΦ(bk + 4
σ )π

1− δ
= d = ch − cl < ch

Q.E.D.

This renegotiation-proof best reputation equilibrium exhibits a particular kind of price dynamic. The

price dynamics of a best reputation equilibrium characterized in this section is shown in Figure 2 below.

An example of such price dynamics is an airline company who just had a bad incident (e.g., a plane crash).

Even if the incident can be purely bad luck, the company typically offers large discounts to “win back”

customers; and such discounts are phased out over time as customers “regain” confidence in the company.

This is similar to the price dynamics of Green and Porter (1984), the first to construct public strategy

equilibria with punishment phases in a model of imperfect monitoring. In their equilibrium construction of

a repeated duopoly model with stochastic demand, firms continue to collude until the price drops below a

threshold level, then they play the Nash Cournot equilibrium for a fixed number of periods before reverting

back to the collusive phase. Our construction of the best equilibrium with efficient punishment phases

differs from theirs because the firm and customers in our model can use prices to transfer utilities, achieving

the efficient outcome at every history.
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