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Abstract

We argue that it is possible to adapt the approach of imposing restrictions on available
plans through finitely effective debt constraints, introduced by Levine and Zame (1996),
to encompass models with default and collateral. Along this line, we introduce in the
setting of Araujo, Páscoa and Torres-Martínez (2002) and Páscoa and Seghir (2008) the
concept of almost finite-time solvency. We show that the conditions imposed in these
two papers to rule out Ponzi schemes implicitly restrict actions to be almost finite-time
solvent. We define the notion of equilibrium with almost finite-time solvency and look on
sufficient conditions for its existence. Assuming a mild assumption on default penalties,
namely that agents are myopic with respect to default penalties, we prove that existence
is guaranteed (and Ponzi schemes are ruled out) when actions are restricted to be almost
finite-time solvent. The proof is very simple and intuitive. In particular, the main existence
results in Araujo et al. (2002) and Páscoa and Seghir (2008) are simple corollaries of our
existence result.
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1 Introduction

A central issue that arises in sequential markets models with an infinite horizon is the nature
of the borrowing constraints imposed on the participants of the economy. This problem has
no counterpart in finite horizon economies, since the requirement that agents must balance
their debts at the terminal date implies limits on debt at earlier dates. In the absence of a
terminal date agents will seek to renew their credit by successively postponing the repayment
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of their debts until infinite. The existence of such schemes (so-called Ponzi schemes) causes
agents’ decision problem to have no solution even in cases where the system of prices does not
offer (local) arbitrage opportunities. Therefore, for an equilibrium to exist when time extends
to infinite, one must impose a mechanism (i.e., specify borrowing constraints) that limits the
rate at which agents accumulate debt, namely that avoids the existence of Ponzi schemes.

Roughly speaking, three approaches have been proposed in the literature to deal with the
specification of debt constraints in infinite horizon sequential markets models. The crucial
difference among these lines of research hinges on the specific assumptions made about the
enforcement of payments (the possibility of default) as well as the proposed default punish-
ment.

The first approach, due to Magill and Quinzii (1994), Levine and Zame (1996) and
Hernández and Santos (1996), assumes full enforcement of payments (i.e., default is not al-
lowed). Magill and Quinzii (1994) argue for self-imposed debt constraints that prevent agents
from considering trading strategies that lead to unlimited debt. In Magill and Quinzii (1994)
the budget constraint is defined according to a particular set of subjective current value price
processes. The problem with this characterization of budget sets is that this set of personal-
ized prices is somehow related to marginal utilities which are not typically observable objects
and therefore cannot be monitored by an agency. The specification of budget sets proposed by
Hernández and Santos (1996) does not suffer from this weakness since the valuation operator
takes into account the whole set of non-arbitrage price systems. Levine and Zame (1996) (See
also Levine and Zame (2002)) offer an alternative formulation, based on the idea that at each
node, all the debt can be repaid in finite time, that is, they require the debt constrains to be
finitely effective. The formulation makes perfect sense in an incomplete markets setting, and
it has the nice characteristic that a broad class of debt constraints are equivalent or reduced
to the finitely effective debt constraints.1

The second approach builds on the work of Kehoe and Levine (1993), Zhang (1997) and
Alvarez and Jermann (2000). In this framework default is permitted but there is a tough
punishment for it: if agents do not honor their debts, they are excluded from participating in
the credit markets in future periods. In such a framework the authors focus on constraints
(so-called participating constraints) that are tight enough to prevent default at equilibrium but
simultaneously to allow as much risk sharing as possible.

The final approach argues for debt constraints that do not necessarily imply full enforce-
ment of payment at equilibrium, namely it treats default as an equilibrium phenomenon. In
Araujo et al. (2002) and Kubler and Schmedders (2003) borrowers are required to consti-
tute collateral either in terms of durable goods or in terms of physical financial assets which
are in positive net supply and cannot be sold short (e.g., Lucas’ trees). When the repos-
session of collateral is the only enforcement mechanism, then an equilibrium always exists.
Combining short-sales with the purchase of collateral constitutes a joint operation that yields

1See Levine and Zame (1996) Section 5 and Hernández and Santos (1996) Section 3.
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non-negative returns. By non-arbitrage, the price of the collateral exceeds the price of the
asset. Therefore, agents cannot transfer wealth from tomorrow to the current period and in
that way Ponzi schemes are ruled out.

In a recent paper, Páscoa and Seghir (2008) have shown that Ponzi schemes may reap-
pear in collateralized economies when there is an additional enforcement mechanism besides
collateral guarantees. The additional enforcement mechanism in Páscoa and Seghir (2008)
takes the form of the linear utility penalties introduced by Shubik and Wilson (1977) and
used, among others by Dubey and Shubik (1979), Dubey, Geanakoplos and Shubik (1990),
Zame (1993), Araujo, Monteiro and Páscoa (1996), Araujo, Monteiro and Páscoa (1998) and
Dubey, Geanakoplos and Shubik (2005). Default penalties might be interpreted as the con-
sequence in terms of utility of extra-economic punishment such as prison terms or pangs of
conscience. Páscoa and Seghir (2008) proved that existence of equilibria is compatible only
with moderate default penalties. Harsh default penalties may induce payments besides the
value of the collateral leading to Ponzi schemes. In the same spirit Revil and Torres-Martínez
(2007) show that the non-existence result established in Páscoa and Seghir (2008) goes be-
yond the specific enforcement mechanism these authors consider. Existence of Ponzi-schemes
is consistent with any other enforcement mechanism that is effective, i.e., it enforces payments
besides the value of the collateral.

The purpose of this paper is twofold. First, our aim is to show that there is a close rela-
tion between the budget sets defined by finitely effective debt constraints (Levine and Zame
(1996)), and the budget sets defined through collateral obligations (Araujo et al. (2002) and
Páscoa and Seghir (2008)). In that respect, we link two approaches that have been considered
to be distinct to each other. Finitely effective debt constraints are relevant in models where
payments can be fully enforced. However, when full enforcement is not possible, requiring
finite-time solvency does not make sense since agents can default at any period. We appropri-
ately modify the definition of finitely effective debt constraints to encompass economies with
default. When payments are fully enforced, our concept of finite effective debt coincides with
the concept introduced by Levine and Zame (1996). We subsequently show that the condi-
tions imposed in Araujo et al. (2002) and Páscoa and Seghir (2008) implicitly restrict actions
to be almost finite-time solvent.

Equipped with the appropriate definition of debt constraints our second objective is to
show the existence of what we term equilibrium with almost finite-time solvency. Assuming a
mild assumption on default penalties, namely that agents are myopic with respect to default
penalties, we prove that existence is guaranteed (i.e., Ponzi schemes are ruled out) when
actions are restricted to be almost finite-time solvent. The proof is very simple and intuitive.
Moreover, it turns out that the existence results in Araujo et al. (2002) and Páscoa and Seghir
(2008) are straightforward corollaries of our existence result.

The paper is structured as follows. In Section 2 we set out the model, notation and stan-
dard equilibrium concept. Section 3 contains the assumptions imposed on the characteristics
of the economy. In Section 4 we present and discuss the new constraint we imposed on bud-
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get feasible plans. We define the concept of competitive equilibrium with almost finite-time
solvency and highlight its relation with the other equilibrium concepts introduced in Araujo
et al. (2002) and Páscoa and Seghir (2008). Section 5 is devoted to the main condition we
impose on default penalties: myopia of agents and we prove in Section 6 that this condition
is sufficient for existence of a competitive equilibrium with almost finite-time solvency.

2 The Model

The model is essentially the one developed in Araujo et al. (2002). We consider a stochastic
economy E with an infinite horizon.

2.1 Uncertainty and time

Let T = {0,1, . . . , t, . . .} denote the set of time periods and let S be a (infinite) set of states of
nature. The available information at period t in T is the same for each agent and is described
by a finite partition Ft of S. Information is revealed along time, i.e., the sequence (Ft)t∈T is
increasing. Every pair (t,σ) where σ is a set in Ft is called a node. The set of all nodes is
denoted by D and is called the event tree. We assume that there is no information at t = 0
and we denote by ξ0 = (0, S) the initial node. If ξ= (t,σ) belongs to the event tree, then t is
denoted by t(ξ). We say that ξ′ = (t ′,σ′) is a successor of ξ= (t,σ) if t ′ ¾ t and σ′ ⊂ σ; we
use the notation ξ′ ¾ ξ. We denote by ξ+ the set of immediate successors defined by

ξ+ = {ξ′ ∈ D : t(ξ′) = t(ξ) + 1}.

Because Ft is finer than Ft−1 for every t > 0, there is a unique node ξ− in D such that ξ
is an immediate successor of ξ−. Given a period t ∈ T we denote by Dt the set of nodes at
period t, i.e., Dt = {ξ ∈ D : t(ξ) = t}. The set of nodes up to period t is denoted by Dt , i.e.,
Dt = {ξ ∈ D : t(ξ)¶ t}.

2.2 Agents and commodities

There exists a finite set L of durable commodities available for trade at every node ξ ∈ D.
Depreciation of goods is represented by a family (Y (ξ))ξ∈D of linear functionals Y (ξ) from
RL
+ to RL

+. The bundle Y (ξ)z is obtained at node ξ if the bundle z ∈ RL
+ is consumed at node

ξ−. At each node there are spot markets for trading every good. We let p = (p(ξ))ξ∈D be the
spot price process where p(ξ) = (p(ξ,`))`∈L ∈ RL

+ is the price vector at node ξ.
There is a finite set I of infinitely lived agents. Each agent i ∈ I is characterized by an

endowment process ωi = (ωi(ξ))ξ∈D where ωi(ξ) = (ωi(ξ,`))`∈L ∈ RL
+ is the endowment

available at node ξ. Each agent chooses a consumption process x = (x(ξ))ξ∈D where x(ξ) ∈
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RL
+. We denote by X the set of consumption processes. The utility function U i : X −→ [0,+∞]

is assumed to be additively separable, i.e.,

U i(x) =
∑

ξ∈D

ui(ξ, x(ξ))

where ui : R+ −→ [0,∞).
Remark 2.1. As in Araujo et al. (2002), we allow U i(x) to be infinite for some consumption
process x in X . In Levine and Zame (1996) and Levine and Zame (2002), the consumption
set is restricted to uniformly bounded from above consumption processes and the function U i

is assumed to have finite values.

2.3 Assets and collateral

There is a finite set J of short-lived real assets available for trade at each node. For each asset
j, the bundle yielded at node ξ is denoted by A(ξ, j) ∈ RL

+. We let q = (q(ξ))ξ∈D be the asset
price process where q(ξ) = (q(ξ, j)) j∈J ∈ RJ

+ represents the asset price vector at node ξ. At
each node ξ, denote by θ i(ξ) ∈ RJ

+ the vector of purchases and denote by ϕi(ξ) the vector of
short-sales at node ξ.

Following Araujo et al. (2002) (see also Geanakoplos (1997) and Geanakoplos and Zame
(2002)), assets are collateralized in the sense that for every unit of asset j sold at a node ξ,
agents should buy a collateral C(ξ, j) ∈ RL

+ that protects lenders in case of default. Implicitly
we assume that payments can be enforced only through the seizure of the collateral. At a
node ξ, agent i should deliver the promise V (p,ξ)θ i(ξ−) where

V (p,ξ) = (V (p,ξ, j)) j∈J and V (p,ξ, j) = p(ξ)A(ξ, j).

However, agent i may decide to default and chooses a delivery d i(ξ, j) in units of account.
Since the collateral can be seized, this delivery must satisfy

d i(ξ, j)¾ D(p,ξ, j)ϕi(ξ−, j)

where
D(p,ξ, j) =min{p(ξ)A(ξ, j), p(ξ)Y (ξ)C(ξ−, j)}.

Following Dubey et al. (2005), we assume that agent i feels a disutility λi
j(s) ∈ [0,+∞] from

defaulting. If an agent defaults at node ξ, then he suffers at t = 0, the disutility

∑

j∈J

λi(ξ, j)

�

V (p,ξ, j)ϕi(ξ−, j)− d i(ξ, j)
�+

p(ξ) · v(ξ)
.

where v(ξ) ∈ RL
++ is exogenously specified.
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In that case, agent i may have an incentive to deliver more than the minimum between
his debt and the depreciated value of his collateral, i.e., we may have

d i(ξ, j)> D(p,ξ, j)ϕi(ξ−, j).

The possibility of default forces us to add delivery rates κ(ξ) = (κ(ξ, j)) j∈J . Each asset j
delivers to lenders the fraction V (κ, p,ξ, j) per unit of asset purchased defined by

V (κ, p,ξ, j) = κ(ξ, j)V (p,ξ, j) + (1−κ(ξ, j))D(p,ξ, j).

2.4 Solvency constraints

We let A be the space of adapted processes a = (a(ξ))ξ∈D with

a(ξ) = (x(ξ),θ(ξ),ϕ(ξ), d(ξ))

where
x(ξ) ∈ RL

+, θ(ξ) ∈ RJ
+, ϕ(ξ) ∈ RJ

+, d(ξ) ∈ RJ
+

and by convention

a(ξ−0 ) = (x(ξ
−
0 ),θ(ξ

−
0 ),ϕ(ξ

−
0 ), d(ξ−0 )) = (0,0, 0,0).

In each decision node ξ ∈ D, agent i’s choice ai = (x i ,θ i ,ϕi , d i) in A must satisfy the
following constraints:

(a) solvency constraint:

p(ξ)x i(ξ) +
∑

j∈J

d i(ξ, j) + q(ξ)θ i(ξ)

¶ p(ξ)[ωi(ξ) + Y (ξ)x i(ξ−)] + V (κ, p,ξ)θ i(ξ−) + q(ξ)ϕi(ξ), (2.1)

(b) collateral requirement:
C(ξ)ϕi(ξ)¶ x i(ξ), (2.2)

(c) minimum delivery
∀ j ∈ J , d i(ξ, j)¾ D(p,ξ, j)ϕi(ξ−, j). (2.3)
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2.5 The payoff function

Assume that π = (p, q,κ) is a process of prices and delivery rates. Consider that agent i has
chosen the plan a = (x ,θ ,ϕ, d) ∈ A. He gets the utility U i(x) ∈ [0,∞] defined by

U i(x) =
∑

ξ∈D

ui(ξ, x(ξ))

but he suffers the disutility W i(p, a) ∈ [0,∞] defined by

W i(p, a) =
∑

ξ>ξ0

∑

j∈J

λi(ξ, j)

�

V (p,ξ, j)ϕ(ξ−, j)− d(ξ, j)
�+

p(ξ)v(ξ)
.

We would like to define the payoff Πi(p, a) of the plan a as the following difference

Πi(p, a) = U i(x)−W i(p, a).

Unfortunately, Πi(p, a) may not be well-defined if both U i(x) and W i(p, a) are infinite. We
propose to consider the binary relation �i,p defined on A by

ea �p,i a⇐⇒∃ε > 0, ∃T ∈ N, ∀t ¾ T, Πi,t(p, ea)¾ Πi,t(p, a) + ε

where
Πi,t(p, a) = U i,t(x)−W i,t(p, a), U i,t(x) =

∑

ξ∈Dt

ui(ξ, x(ξ))

and

W i,t(p, a) =
∑

ξ∈Dt\{ξ0}

∑

j∈J

λi(ξ, j)

�

V (p,ξ, j)ϕ(ξ−, j)− d(ξ, j)
�+

p(ξ)v(ξ)
.

Observe that if Πi(p, ea) and Πi(p, a) exist in R then

ea �p,i a⇐⇒ Πi(p, ea)> Πi(p, a).

The set Prefi(p, a) of plans strictly preferred to plan a by agent i is defined by

Prefi(p, a) = {ea ∈ A : ea �i,p a}.

2.6 The equilibrium concept

We denote by Π the set of prices and delivery rates (p, q,κ) satisfying

∀ξ ∈ D, p(ξ) ∈ RL
++, q(ξ) ∈ RJ

+, κ(ξ) ∈ [0,1]J (2.4)
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and
∑

`∈L

p(ξ,`) +
∑

j∈J

q(ξ, j) = 1.

We denote by clΠ the closure of Π under the weak topology.2

Given a process (p, q,κ) of commodity prices, asset prices and delivery rates, we denote
by Bi(p, q,κ) the set of plans a = (x ,θ ,ϕ, d) ∈ A satisfying constraints (2.1), (2.2) and (2.3).
The demand d i(p, q,κ) is defined by

d i(p, q,κ) = {a ∈ Bi(p, q,κ) : Prefi(p, a)∩ Bi(p, q,κ) = ;}.

Definition 2.1. A competitive equilibrium for the economy E is a family of prices and delivery
rates (p, q,κ) ∈ Π and an allocation a= (ai)i∈I with ai ∈ A such that

(a) for every agent i, the plan ai is optimal, i.e.,

ai ∈ d i(p, q,κ),

(b) commodity markets clear at every node, i.e.,
∑

i∈I

x i(ξ0) =
∑

i∈I

ωi(ξ0) (2.5)

and for all ξ 6= ξ0,
∑

i∈I

x i(ξ) =
∑

i∈I

�

ωi(ξ) + Y (ξ)x i(ξ−)
�

, (2.6)

(c) asset markets clear at every node, i.e., for all ξ ∈ D,
∑

i∈I

θ i(ξ) =
∑

i∈I

ϕi(ξ), (2.7)

(d) deliveries match at every node, i.e., for all ξ 6= ξ0 and all j ∈ J,
∑

i∈I

V (κ, p,ξ, j)θ i(ξ−, j) =
∑

i∈I

d i(ξ, j). (2.8)

The set of allocations a = (ai)i∈I in A satisfying the market clearing conditions (b) and
(c) is denoted by F. Each allocation in F is called physically feasible. A plan ai ∈ A is called
physically feasible if there exists a physically feasible allocation b such that ai = bi . The set of
physically feasible plans is denoted by Fi . We denote by Eq(E ) the set of competitive equilibria
for the economy E .

2The process (p, q,κ) belongs to clΠ if the condition p(ξ) ∈ RL
++ in (2.4) is replaced by p(ξ) ∈ RL

+.
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3 Assumptions

For each agent i, we denote by Ωi = (Ωi(ξ))ξ∈D the process of accumulated endowments,
defined recursively by

Ωi(ξ0) =ω
i(ξ0) and ∀ξ > ξ0, Ωi(ξ) = Y (ξ)Ωi(ξ−) +ωi(ξ).

The process
∑

i∈I Ω
i of accumulated aggregate endowments is denoted by Ω. This section

describes the assumptions imposed on the characteristics of the economy. It should be clear
that these assumptions always hold throughout the paper.

Assumption 3.1 (Agents). For every agent i,

(A.1) the process of accumulated endowments is strictly positive and uniformly bounded
from above, i.e.,

∃Ωi ∈ RL
+, ∀ξ ∈ D, Ωi(ξ) ∈ RL

++ and Ωi(ξ)¶ Ωi
,

(A.2) for every node ξ, the utility function ui(ξ, ·) is concave, continuous and strictly increas-
ing with ui(ξ, 0) = 0,

(A.3) the infinite sum U i(Ω) is finite.

Assumption 3.2 (Commodities). For every node ξ the depreciation function Y (ξ) is not zero.

Assumption 3.3 (Financial assets). For every asset j and node ξ, the collateral C(ξ, j) is not
zero.

Remark 3.1. Assumptions (3.1), (3.2) and (3.3) are classical in the literature of infinite hori-
zon models with collateral requirements (see e.g., Araujo et al. (2002) and Páscoa and Seghir
(2008)).

Remark 3.2. Observe that Assumptions (A.2) and (A.3) imply that when restricted to the order
interval [0,Ω], the function U i is weakly continuous. For the sake of completeness, we give
the straightforward proof in Appendix A.1.

We recall a particular case of our framework that is widely used in the literature (see e.g.
Araujo and Sandroni (1999)).

Definition 3.1. The economy E is said standard if Assumptions (3.1), (3.2) and (3.3) are
satisfied and if for each agent i, there exists

(S.1) a discount factor βi ∈ (0, 1),

(S.2) a sequence (P i
t )t¾1 of beliefs about nodes at period t represented by a probability P i

t ∈
Prob(Dt),
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(S.3) an instantaneous felicity function v i : D×RL
+→ [0,∞),

(S.4) an instantaneous default penalty µi(ξ, j) ∈ (0,∞) for each node ξ > ξ0,

such that for each node ξ ∈ D,

ui(ξ, ·) = [βi]
t(ξ)P i

t(ξ)(ξ)v
i(ξ, ·)

for each j ∈ J,
λi(ξ, j) = [βi]

t(ξ)P i
t(ξ)(ξ)µ

i(ξ, j)

and the processes (A(ξ, j))ξ>ξ0
, (µi(ξ, j))ξ>ξ0

and (G(ξ, j))ξ∈D are uniformly bounded from
above, where

G(ξ, j) =
1

max`∈L C(ξ, j,`)
.

4 Almost finite-time solvent plans

Observe that if λi(ξ, j) is zero for every asset j at every node ξ, then our model reduces to the
one in Araujo et al. (2002). In this setting equilibrium always exists. Combining short-sales
with the purchase of collateral constitutes a joint operation that yields non-negative returns.
By non-arbitrage, the price of the collateral exceeds the price of the asset. Therefore, agents
cannot transfer wealth from tomorrow to the current period and Ponzi schemes are ruled out.
In a recent paper, Páscoa and Seghir (2008) proved that harsh default penalties may induce
effective payments over collateral requirements and lead to Ponzi schemes.

When the default penalty is infinite and the collateral requirement is zero, our model re-
duces to the standard one as in Magill and Quinzii (1994) and Levine and Zame (1996). If no
additional (possibly endogenous) debt constraints were imposed, then an equilibrium could
not possibly exist: all traders would attempt to finance unbounded levels of consumption by
unbounded levels of borrowing. Levine and Zame (1996) (see also Levine and Zame (2002))
formalize the so-called finitely effective debt constraints by requiring that agents should be
capable of repaying almost all the debt in finite time.

We propose to adapt in our setting these endogenous debt constraints. Fix a process
π = (p, q,κ) of prices and delivery rates. At the initial node ξ0, agent i makes plans for
infinite consumption and investment. Consider the case where agent i anticipates (or fears)
that, at every possible node ξ, his demand for credits at this node may be questioned by an
authority. In order to convince this authority that he is reliable, he must prove that he can pay
back his debt in at most a finite number of periods after t(ξ), i.e., he must prove that there
is a possible plan of consumption and investment from period t(ξ) + 1 to T ¾ t(ξ) + 1 such
that, at the virtually terminal node T , he does not need to ask for new loans in order to pay
his debt. More formally, we may consider the following definition.
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Definition 4.1. A plan a ∈ Bi(p, q,κ) is said to have finitely effective debt, if for each period
t ¾ 0, there exists a period T > t and a plan ba also in the budget set Bi(p, q,κ) such that

(i) up to period t both plans coincide, i.e.,

∀ξ ∈ Dt , ba(ξ) = a(ξ),

(ii) at every node in period T , there is solvency without new loans, i.e.,

∀ξ ∈ DT , bϕ(ξ) = 0,

(iii) the plan ba is a T-horizon plan, i.e.,

∀ξ ∈ D, t(ξ)> T =⇒ ba(ξ) = 0.

Consider the following notation. If a is a plan in A and t is a period, we denote by a1[0,t]
the plan in At which coincides with a for every node ξ ∈ Dt . In other words, a plan a has a
finitely effective debt if for each period t ¾ 0, there exists a subsequent period T > t and a
plan ba such that

ba ∈ Bi(p, q,κ)∩ BT and a1[0,t] = ba1[0,t]

where BT is the set of plans a in A satisfying

∀ξ ∈ DT , ϕ(ξ) = 0 and ∀ξ ∈ D, t(ξ)¾ T + 1=⇒ a(ξ) = (0,0, 0,0).

This concept was introduced by Levine and Zame (1996) for models without default, i.e.,
models for which the financial authority can enforce payments: it may force agents to sell
their current and future endowments (by short-selling assets). However, when the authority
is not capable of enforcing payments, imposing finitely effective debt constraints does not
make sense since agents can default at any period. Indeed, let a = (x ,θ ,ϕ, d) be a plan in
Bi(p, q,κ) and t be any period. Consider the plan ba defined by

∀ξ ∈ D, ba(ξ) =















a(ξ) if t(ξ)¶ t

(ωi(ξ), 0, 0, D(p,ξ)ϕ(ξ−)) if t(ξ) = t + 1

(0,0, 0,0) if t(ξ)> t + 1.

This plan belongs to the budget set Bi(p, q,κ) and coincides with a on every node up to
period t.

In our framework, enforcement mechanisms are limited to the seizure of collateral. Agents
can always default up to the minimum value between their debt and the depreciated value of
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their collateral. Therefore, there is no room for an authority to control debt along time. We
propose another interpretation of endogenous debt constraints. Assume that the authority has
the legal ability, when the debt carried out by an agent becomes larger and larger, to impose
at any period t that agents can participate in the financial market only for a finite number
τ of periods after t. Assume that a negotiation is possible between agents and the financial
authority such that the number τ of periods can be chosen by agents. Each agent anticipates
this possibility and behaves accordingly in the following sense. When making a plan ai , agent
i takes in consideration that the financial authority may force him, at any period t, to stay in
the financial market no more than a finite number τ of periods, i.e., at date T = t +τ, agent
i must leave the market. Therefore, agent i also plans that, for every period t, he can find
another plan ba and a terminal date T > t, such that

ba ∈ Bi(p, q,κ)∩ BT and a1[0,t] = ba1[0,t]

but also that the payoff he gets at the terminal node T with the plan ba is not too far from the
payoff he would get with the initial plan a.

The formal definition is as follows.

Definition 4.2. A plan a in the budget set Bi(p, q,κ) is said to be almost finite-time solvent if
for every period t ¾ 0 and every ε > 0 there exists a subsequent period T > t and a plan ba such
that

ba ∈ Bi(p, q,κ)∩ BT , a1[0,t] = ba1[0,t] and Πi,T (p, ba)¾ Πi,T (p, a)− ε.

When the default penalty is infinite, our concept of almost finite-time solvent plans coin-
cides with the concept introduced by Levine and Zame (1996) of plans with finitely effective
debt.

Proposition 4.1. Assume that the default penalty is infinite and consider a budget feasible
plan a ∈ Bi(p, q,κ) with a finite utility U i(x) <∞. The plan a is almost finite-time solvent if
and only if it has a finitely effective debt.

Proof of Proposition 4.1. Let a be a budget feasible plan, i.e., a ∈ Bi(p, q,κ)with a finite utility
U i(x)<∞. Since the default penalty is infinite, agent i never plans to default and we get

Πi(p, a) = U i(x).

It is obvious that if a is almost finite-time solvent then it has a finitely effective debt. The
converse deserves more details. Assume that the plan a has a finitely effective debt. Fix a
period t and ε > 0. If we apply the definition to the period t, we get the existence of a period
T > t and a plan ba such that

ba ∈ Bi(p, q,κ)∩ BT and a1[0,t] = ba1[0,t].
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Unfortunately, we don’t know if U i,T (bx) ¾ U i,T (x)− ε. However, we know that the utility
U i(x) is finite. Therefore, there exists t ′ > t such that

∑

s>t ′

∑

ξ∈Ds

ui(ξ, x(ξ))¶ ε. (4.1)

Now, applying the definition of finitely effective debt for the period t ′, there exist a period
T > t ′ and a plan ba such that

ba ∈ Bi(p, q,κ)∩ BT and a1[0,t ′] = ba1[0,t ′].

Since T > t ′ we can use (4.1) to get

U i,T (bx) ¾ U i,t ′(bx)

¾ U i,t ′(x)

¾ U i,T (x)−
∑

t ′<s¶T

∑

ξ∈Ds

ui(ξ, x(ξ))

¾ U i,T (x)− ε.

We denote by Bi
?(p, q,κ) the set of all plans in Bi(p, q,κ) which are almost finite-time

solvent.

Definition 4.3. A competitive equilibrium with almost finite-time solvency for the economy E , is
a family of prices and delivery rates (p, q,κ) ∈ Π and an allocation a = (ai)i∈I with ai ∈ A such
that conditions (b), (c) and (d) are satisfied together with

(a’) for every agent i, the plan ai is almost finite-time solvent and optimal among all almost
finite-time budget feasible plans, i.e.,

ai ∈ d i
?(p, q,κ) := {a ∈ Bi

?(p, q,κ) : Prefi(p, a)∩ Bi
?(p, q,κ) = ;}.

We denote by Eq?(E ) the set of competitive equilibria with almost finite-time solvency
for the economy E . We propose to compare our equilibrium concept with those proposed in
Araujo et al. (2002) and Páscoa and Seghir (2008).
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4.1 No default penalty

Observe that if default is not allowed or if there are default penalties for it, then Bi
?(p, q,κ)

may be a strict subset of Bi(p, q,κ). However, in the model proposed in Araujo et al. (2002),
any budget feasible allocation with a finite utility is finite-time solvent. This is a consequence
of the absence of default penalties or explicit economic punishments.

Proposition 4.2. Assume that there is no default penalty and let a = (x ,θ ,ϕ, d) be a plan in
the budget set Bi(p, q,κ). If U i(x) is finite then a is almost finite-time solvent, i.e., a belongs
to Bi

?(p, q,κ).

Proof of Proposition 4.2. Fix an agent i and consider a plan a that is budget feasible, i.e.,
a ∈ Bi(p, q,κ) with a finite utility, i.e.,

∑

ξ∈D

ui(ξ, x(ξ))<∞.

Fix a period t ¾ 1 and ε > 0. Since U i(x) is finite, there exists T ¾ t + 1 such that
∑

ξ∈DT

ui(ξ, x(ξ))¶ ε.

Consider now the plan ba defined by

ba(ξ) =















a(ξ) if t(ξ)< T

(ωi(ξ), 0, 0, bd(ξ)) if t(ξ) = T

(0, 0,0, 0) if t(ξ)> T

where
∀ξ ∈ DT , ∀ j ∈ J , bd(ξ, j) = D(p,ξ, j)ϕ(ξ−, j).

Observe that the plan ba is budget feasible, belongs to BT and satisfies

ba1[0,T−1] = a1[0,T−1].

In order to prove that the plan a is almost finite-time solvent, we need to compare U i,T (bx)
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and U i,T (x). Observe that

U i,T (bx) = U i,T−1(x) +
∑

ξ∈DT

ui(ξ,ωi(ξ))

¾ U i,T−1(x)

¾ U i,T (x)−
∑

ξ∈DT

ui(ξ, x(ξ))

¾ U i,T (x)− ε.

Since T − 1¾ t, this implies that the plan a is almost finite-time solvent.

In general the two sets Eq(E ) and Eq?(E ) are not comparable. Actually, when there is no
loss of utility in case of default, both sets coincide.

Proposition 4.3. If there is no default penalty then (π,a) is a competitive equilibrium if and
only if it is a competitive equilibrium with almost finite-time solvency, i.e., the sets Eq(E ) and
Eq?(E ) coincide.

Proof of Proposition 4.3. Let (π,a) ∈ Eq(E ) be a competitive equilibrium. Fix an agent i ∈ I .
In order to prove that ai belongs to the demand d i

?(π), it is sufficient to prove that ai is an
almost finite-time solvent plan. Since a is feasible we have x i(ξ)¶ Ω(ξ). From (A.3), we get
that U i(x i) is finite. The desired result follows from Proposition 4.2.

Now let (π,a) ∈ Eq?(E ) be a competitive equilibrium with almost finite-time solvency. We
only have to prove that ai belongs to d i(π) for each agent i. Fix an agent i and assume by
contradiction that there exists a plan a in Bi(π) such that U i(x) > U i(x i). If U i(x) is finite
then, applying Proposition 4.2, we get that a ∈ Bi

?(π): contradiction. Therefore, we must
have U i(x) =∞, implying that there exists T ¾ 1 such that

U i,T (x)> U i(x i).

Consider the plan ba defined by

ba(ξ) =















a(ξ) if t(ξ)¶ T

(ωi(ξ), 0, 0, bd(ξ)) if t(ξ) = T + 1

(0,0, 0,0) if t(ξ)> T + 1

where
∀ξ ∈ DT+1, ∀ j ∈ J , bd(ξ, j) = D(p,ξ, j)ϕ(ξ−, j).
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Since the plan ba is budget feasible and has a finite horizon, it is almost finite-time solvent and
belongs to Bi

?(p, q,κ). Moreover we have

U i(bx) = U i,T (x) +
∑

ξ∈DT+1

ui(ξ,ωi(ξ))> U i(x i).

This contradicts the optimality of x i in Bi
?(p, q,κ).

4.2 α-moderate default penalties

Before introducing the main condition imposed on default penalties by Páscoa and Seghir
(2008), we need to introduce some notations. For each asset j and node ξ, we denote by
M(ξ, j) the real number

min
`∈L

Ω(ξ,`)
C(ξ, j,`)

.

Observe that under Assumption 3.2, we have M(ξ, j) <∞. Finally, for every node ξ 6= ξ0 we
let

H(ξ, j) = M(ξ−, j) sup
p∈∆(L)

�

pA(ξ, j)− pY (ξ)C(ξ−, j)
�+

pv(ξ)
.

The quantity H(ξ, j) is the maximum amount in real terms that an agent may default on asset
j if his plan is feasible. The proof of the following proposition is straightforward and omitted.

Proposition 4.4. If a in A is a plan physically feasible and (p, q,κ) in Π is a process of prices
and delivery rates, then for each node ξ and each asset j, we have

ϕ(ξ, j)¶ M(ξ, j) and
�

V (p,ξ, j)ϕ(ξ−, j)− d(ξ, j)
�+
¶ H(ξ, j).

Páscoa and Seghir (2008) introduced the concept of α-moderate default penalties. Fix a
process α= (α(ξ))ξ∈D with α(ξ) ∈ (1,∞)J .

Definition 4.4. Default penalties are said α-moderate with respect to utility functions, if for each
agent i, for each period t, there exists T > t such that

∑

ξ∈DT

∑

j∈J

λi(ξ, j)α(ξ, j)H(ξ, j)¶
∑

ξ∈DT

ui(ξ,ωi(ξ)). (4.2)

In other words, when default penalties are α-moderate then, sometime in the future, the
penalty associated with a maximal default for a feasible plan, is less than the utility from
consuming the current endowment.
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Remark 4.1. Actually Páscoa and Seghir (2008) replace condition (4.2) by the following more
restrictive condition:

∀ξ ∈ DT ,
∑

j∈J

λi(ξ, j)α(ξ, j)H(ξ, j)¶ ui(ξ,ωi(ξ)).

We let Aα be the set of all of processes a in A satisfying

∃λ¾ 0, ∀ξ ∈ D, ∀ j ∈ J , ϕ(ξ, j)¶ λα(ξ, j)M(ξ, j).

A plan a belonging to Aα is said to be α-constrained. We denote by Bi
α(p, q,κ) the set of all

plans in Bi(p, q,κ) which are α-constrained.

Remark 4.2. Observe that the constraints imposed in the definition of Aα are not binding at
equilibrium since α(ξ, j) > 1. Actually, if a in AI is a physically feasible allocation then each
plan ai is automatically α-constrained for each i, more precisely, we have

∀ξ ∈ D, ∀ j ∈ J , ϕ(ξ, j)< α(ξ, j)M(ξ, j).

Definition 4.5. An α-constrained competitive equilibrium for the economy E , is a family of prices
and delivery rates (p, q,κ) ∈ Π and an allocation a = (ai)i∈I with ai ∈ A such that conditions
(b), (c) and (d) are satisfied together with

(aα) for every agent i, the plan ai is α-constrained budget feasible and optimal among all α-
constrained budget feasible plans, i.e.,

ai ∈ d i
α(p, q,κ) = {a ∈ Bi

α(p, q,κ) : Prefi(p, a)∩ Bi
α(p, q,κ) 6= ;}.

We denote by Eqα(E ) the set of α-constrained competitive equilibria for the economy E . In
general the two sets Eqα(E ) and Eq?(E ) are not comparable. Actually, when default penalties
are α-moderate, the set Eq?(E ) is a subset of Eqα(E ).

Proposition 4.5. If default penalties are α-moderate, then every competitive equilibrium with
almost finite-time solvency is actually an α-constrained competitive equilibrium, i.e.,

Eq?(E )⊂ Eqα(E ).

Proof of Proposition 4.5. Let (π,a) ∈ Eq?(E ) be a competitive equilibrium with almost finite-
time solvency. Fix an agent i ∈ I . Since ai is physically feasible, we already know that it is
α-constrained, i.e., ai ∈ Bi

α(π). Let us prove that ai belongs to the demand d i
α(π). Assume

by way of contradiction that there exists an α-constrained plan a in Bi
α(π), ε > 0 and T1 ∈ N

satisfying
∀T ¾ T1, Πi,T (p, a)> Πi,T (p, ai) + ε. (4.3)
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Since ai is physically feasible, we have

∀ξ ∈ D, x i(ξ)¶ Ω(ξ).

It follows from Assumption (A.2) and (A.3) that

U i(x i)¶ U i(Ω)<∞.

Hence
lim

T→∞
Πi,T (p, ai) = Πi(p, ai).

Therefore, there exists T2 ¾ T1 such that

∀T ¾ T2, Πi,T (p, ai) + ε > Πi(p, ai). (4.4)

Combining (4.3) and (4.4) we get

∀T ¾ T2, Πi,T (p, a)> Πi(p, ai).

Let β ∈ (0, 1) and pose
ea = βa+ (1− β)ai .

Observe that we still have

∀T ¾ T2, Πi,T (p, ea)> Πi(p, ai).

Recall that there exists λ¾ 0 such that

∀ξ ∈ D, ∀ j ∈ J , ϕ(ξ, j)¶ λα(ξ, j)M(ξ, j).

Recall that ai is physically feasible, implying that ϕi(ξ, j)¶ M(ξ, j) for each node ξ and each
asset j. It then follows that

∀ξ ∈ D, ∀ j ∈ J , eϕ(ξ, j)¶
�

βλα(ξ, j) + (1− β)
�

M(ξ, j).

Since α(ξ, j)> 1, we can choose β close enough to 0 such that

∀ξ ∈ D, eϕ(ξ, j)¶ α(ξ, j)M(ξ, j).

Since default penalties are α-moderate, there exists T3 > T2 such that

∑

ξ∈DT3






ui(ξ,ωi(ξ))−

∑

j∈J

λi(ξ, j)α(ξ, j)H(ξ, j)






¾ 0.
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Let now ba be the plan defined by

ba(ξ) =















ea(ξ) if t(ξ)¶ T3− 1

(ωi(ξ), 0, 0, bd(ξ)) if t(ξ) = T3

(0,0, 0,0) if t(ξ)> T3

where
∀ξ ∈ DT3 , ∀ j ∈ J , bd(ξ, j) = D(p,ξ, j) eϕ(ξ−, j).

By construction, the plan ba is finite-time solvent and budget feasible. In particular, it is almost
finite-time solvent and belongs to Bi

?(π). We propose to compare the payoffs of ba and ai .

Πi(p, ba) ¾ Πi,T3−1(p, ea) +
∑

ξ∈DT3






ui(ξ,ωi(ξ))−

∑

j∈J

λi(ξ, j)α(ξ, j)H(ξ, j)







¾ Πi,T3−1(p, ea)> Πi(p, ai).

This contradicts the optimality of ai in Bi
?(p, q,κ).

5 Myopic agents and equilibrium existence

It was proved in Levine and Zame (1996) that finitely effective debt constraints are compat-
ible with equilibrium when the default penalty is infinite and no collateral is required. A
natural question concerns the possible extension of this existence result to our framework
when default penalties are not infinite and collateral requirements are not zero. The answer
is yes, provided that agents are myopic with respect to default penalties as defined hereafter.

Definition 5.1. Agent i is said to be myopic with respect to default penalties if for each agent i,
we have

lim inf
T→∞

∑

ξ∈DT

∑

j∈J

λi(ξ, j)H(ξ, j) = 0.

Remark 5.1. Assuming myopic agents with respect to default penalties is a very mild assump-
tion since it is automatically satisfied for every standard economy.

Observe that if default penalties are moderate with respect to utility functions then, for
each i we have

lim inf
T→∞

∑

ξ∈DT

∑

j∈J

λi(ξ, j)H(ξ, j) ¶ lim inf
T→∞

∑

ξ∈DT

ui(ξ,ωi(ξ))

¶ lim inf
T→∞

∑

ξ∈DT

ui(ξ,Ωi(ξ)). (5.1)
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It then follows from Assumption (A.3) that every agent is myopic with respect to default
penalties.

Proposition 5.1. If default penalties are moderate then every agent is myopic with respect to
them.

When agents are myopic with respect to default penalties, any budget and physically
feasible plan a ∈ Bi(p, q,κ)∩ Fi is actually almost finite-time solvent. This result will turn out
to be crucial when proving existence of equilibrium.

Proposition 5.2. If agent i is myopic with respect to default penalties, then every budget and
physically feasible plan is actually almost finite-time solvent. In other words, we have

Bi(p, q,κ)
⋂

Fi ⊂ Bi
?(p, q,κ).

Proof of Proposition 5.2. Fix an agent i and consider a plan a that is budget and physically
feasible, i.e., a ∈ Bi(p, q,κ) ∩ Fi . Fix a period t ¾ 1 and ε > 0. Since the allocation a is
physically feasible, we have x(ξ)¶ Ω(ξ), implying that

∑

ξ∈D

ui(ξ, x(ξ))<∞.

Therefore there exists T0 ¾ 1 such that

∀T ¾ T0,
∑

ξ∈DT

ui(ξ, x(ξ))¶
ε

2
.

Since agent i is myopic with respect to default penalties, there exists T > max{t, T0} such
that

∑

ξ∈DT

∑

j∈J

λi(ξ, j)H(ξ, j)¶
ε

2
.

Consider now the plan ba defined by

ba(ξ) =















a(ξ) if t(ξ)< T

(ωi(ξ), 0, 0, bd(ξ)) if t(ξ) = T

(0, 0,0, 0) if t(ξ)> T

where
∀ξ ∈ DT , ∀ j ∈ J , bd(ξ, j) = D(p,ξ, j)ϕ(ξ−, j).
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Observe that the plan ba satisfies

ba ∈ Bi(p, q,κ)∩ BT and ba1[0,T−1] = a1[0,T−1].

Moreover,

Πi,T (p, ba) = Πi,T−1(p, ba)

+
∑

ξ∈DT






ui(ξ,ωi(ξ))−

∑

j∈J

λi(ξ, j)

�

V (p,ξ, j)− D(p,ξ, j)
�

ϕ(ξ−, j)
p(ξ)v(ξ)







¾ Πi,T−1(p, a)−
∑

ξ∈DT

∑

j∈J

λi(ξ, j)H(ξ, j)

¾ Πi,T−1(p, a)−
ε

2

¾ Πi,T (p, a)−
ε

2
−
∑

ξ∈DT

ui(ξ, x(ξ))

¾ Πi,T (p, a)− ε.

Since T − 1¾ t, this implies that the plan a is almost finite-time solvent.

The main result of this paper is the following generalization of Theorem 2 in Araujo et al.
(2002) and Theorem 4.1 in Páscoa and Seghir (2008). We prove that, in order to rule out
Ponzi schemes, it is not necessary to assume that default penalties are moderate with respect
to utility functions. It is sufficient to assume that every agent is myopic with respect to default
penalties.

Theorem 5.1. If every agent is myopic with respect to default penalties then a competitive equi-
librium with almost finite-time solvency exists.

As a direct consequence of Proposition 4.3, we obtain the main existence result in Araujo
et al. (2002, Theorem 2) as a corollary of Theorem 5.1.

Corollary 5.1 (Araujo et al. (2002)). If there is no default penalty then there exists a competitive
equilibrium, i.e., Eq(E ) 6= ;.

As a direct consequence of Proposition 4.5, we obtain the existence result in Páscoa and
Seghir (2008, Theorem 4.1) as a corollary of Theorem 5.1.

Corollary 5.2 (Páscoa and Seghir (2008)). If default penalties are moderate with respect to
utility functions then there exists a constrained competitive equilibrium, i.e., the set Eqα(E ) 6= ;.
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Remark 5.2. Páscoa and Seghir (2008) claim to prove that not only the set Eqα(E ) is non-
empty when default penalties are α-moderate, but also that the set Eq(E ) is non-empty. How-
ever, in order to get existence of eT in the arguments of the proof of their main result (Páscoa
and Seghir (2008, Theorem 4.1, p. 15)), they implicitly consider α-constrained plans.

6 Proof of Theorem 5.1

Fix τ ∈ T with τ > 0. We denote by Aτ the set

∀ξ ∈ D, t(ξ)> τ=⇒ a(ξ) = 0.

Recall that Bτ denotes the set of plans a ∈ Aτ satisfying the additional condition

∀ξ ∈ D, t(ξ) = τ=⇒ ϕ(ξ) = 0.

Given a process (p, q,κ) ∈ Π, we denote by Bi,τ(p, q,κ) the set defined by

Bi,τ(p, q,κ) = Bi(p, q,κ)∩ Bτ.

Definition 6.1. A competitive equilibrium for the truncated economy Eτ is a family of prices and
delivery rates π= (p, q,κ) ∈ Π and an allocation a= (ai)i∈I with ai ∈ Bτ such that

(a) for every agent i, the plan ai is optimal, i.e.,

ai ∈ d i,τ(p, q,κ) = argmax{Πi,τ(p, a) : a ∈ Bi,τ(p, q,κ)}, (6.1)

(b) commodity markets clear at every node up to period τ, i.e.,
∑

i∈I

x i(ξ0) =
∑

i∈I

ωi(ξ0) (6.2)

and for all ξ ∈ Dτ \ {ξ0},
∑

i∈I

x i(ξ) =
∑

i∈I

�

ωi(ξ) + Y (ξ)x i(ξ−)
�

, (6.3)

(c) asset markets clear at every node up to period τ− 1, i.e., for all ξ ∈ Dτ−1,
∑

i∈I

θ i(ξ) =
∑

i∈I

ϕi(ξ), (6.4)

(d) deliveries match up to period τ, i.e., for all ξ ∈ Dτ \ {ξ0} and all j ∈ J,
∑

i∈I

V (κ, p,ξ, j)θ i(ξ−, j) =
∑

i∈I

d i(ξ, j). (6.5)
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Remark 6.1. Observe that if a plan a belongs to Bτ, then Πi,τ(p, a) and Πi(p, a) coincide for
every price process p.

Remark 6.2. Observe that if (π,a) is a competitive equilibrium for the truncated economy
Eτ, then without any loss of generality, we can assume that q(ξ) = 0 and θ(ξ) = 0 for every
terminal node ξ ∈ Dτ.

It is claimed in Páscoa and Seghir (2008) that a competitive equilibrium for every trun-
cated economy Eτ exists, and that commodity prices are uniformly bounded away from 0. For
the sake of completeness, we postpone to Appendix A.2 a simple proof of this result.

Proposition 6.1. There exists a process m= (m(ξ))ξ∈D of strictly positive numbers m(ξ)> 0
such that for every period τ, there exists a competitive equilibrium (πτ,aτ) of the truncated
economy Eτ satisfying



p(ξ)


¾ m(ξ) at every node ξ ∈ Dτ−1.

For each τ ∈ T with τ ¾ 1, we let (πτ,aτ) be a competitive equilibrium for the economy
Eτ where πτ = (pτ, qτ,κτ) and aτ = (ai,τ)i∈I . Each process πτ belongs to clΠ which is
weakly compact as a product of compact sets. Passing to a subsequence if necessary, we can
assume that the sequence (πτ)τ∈T converges to a process π = (p, q,κ) in clΠ. Following
Proposition 6.1, for each node ξ ∈ D, we have



p(ξ)


 ¾ m(ξ) > 0. In particular, for each
period t and every plan a ∈ A, the payoff Πi,t(p, a) is well-defined.

By feasibility at each node ξ, we get for each j

x i,τ(ξ)¶ Ω(ξ), ϕi,τ(ξ, j)¶ M(ξ, j) and θ i,τ(ξ, j)¶ M(ξ, j).

This implies that the sequence (x i,τ(ξ),ϕi,τ(ξ),θ i,τ(ξ))τ∈T is uniformly bounded. By op-
timality, the delivery d i,τ(ξ, j) is always lower than V (pτ,ξ, j)ϕi,τ(ξ−, j) and therefore the
sequence (d i,τ(ξ))τ∈T is uniformly bounded. Passing to a subsequence if necessary, we can
assume that for each i, the sequence (ai,τ)τ∈T converges to a process ai ∈ A.

We claim that (π,a) is a competitive equilibrium with almost finite-time solvency for
the economy E . It is straightforward to check that each plan ai belongs to the budget set
Bi(p, q,κ) and that the feasibility conditions (2.5), (2.6), (2.7) and (2.8) are satisfied. Apply-
ing Proposition 5.2, we get that the plan ai is almost finite-time solvent. We propose now to
prove that ai is optimal among almost finite-time solvent plans, i.e., Prefi(p, ai)∩Bi

?(p, q,κ) is
empty. Assume by way of contradiction that there exists a plan a in the budget set Bi

?(p, q,κ),
ε > 0 and T1 ∈ N satisfying

∀T ¾ T1, Πi,T (p, a)> Πi,T (p, ai) + ε. (6.6)

Since ai is physically feasible, we have

∀ξ ∈ D, x i(ξ)¶ Ω(ξ).
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It follows from Assumptions (A.2) and (A.3) that

U i(x i)¶ U i(Ω)<+∞.

This implies that
lim

T→∞
Πi,T (p, ai) = Πi(p, ai).

It follows that there exists T2 ¾ T1 such that

∀T ¾ T2, Πi,T (p, ai) +
ε

2
> Πi(p, ai). (6.7)

Since the plan a is almost finite-time solvent, there exists T > T2 and ba in the truncated
budget set Bi(p, q,κ)∩ BT such that

ba1[0,T2] = a1[0,T2] and Πi,T (p, ba)¾ Πi,T (p, a)−
ε

4
. (6.8)

Combining (6.6), (6.7) and (6.8) we get

Πi,T (p, ba)> Πi(p, ai) +
ε

4
.

We let ψi be the correspondence from A to AT defined by

∀a ∈ A, ψi(a) =
§

b ∈ BT : Πi,T (p, b)>
ε

4
+Πi(p, a)

ª

.

Let F i be the correspondence from Π× A to AT defined by

∀(π, a) ∈ Π× A, F i(π, a) = Bi,T (π)∩ψi(a).

Following the arguments in Páscoa and Seghir (2008), we have the following continuity result.

Lemma 6.1. The correspondence F i is lower semi-continuous for product topologies on Π× A.

Observe that
ba ∈ F i((p, q,κ), ai).

We proved that there exists a strictly increasing sequence (Tn)n∈N with Tn ∈ N such that

lim
n→∞
((pn, qn,κn), ai

n) = ((p, q,κ), ai)

where
(pn, qn,κn) = (p

Tn , qTn ,κTn), ai
n = ai,Tn .
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Since F i is lower semi-continuous, there exists ν large enough such that

baν ∈ F i((pν , qν ,κν), ai
ν).

In particular we have

baν ∈ Bi,Tν (pν , qν ,κν)∩ BTν and Πi,Tν (pν , baν)¾ Πi(pν , ai
ν) +

ε

4
.

This contradicts the optimality of ai
ν .3

We have thus proved that for each i, the plan ai is almost-finite solvent and satisfies

Prefi(p, ai)∩ Bi
?(p, q,κ) = ;.

This means that ai belongs to the demand set d i
?(π). We already proved that all markets clear.

This means that (π,a) is a competitive equilibrium with almost finite-time solvency.

7 Conclusion

This paper shows that it is possible to adapt the approach of restricting action plans to have
finite effective debt, introduced in the work of Levine and Zame (1996), to models with
default and collateralized promises. Working in this direction we introduce in the framework
developed by Araujo et al. (2002) and Páscoa and Seghir (2008) the concept of almost finite-
time solvency and show that the restrictions imposed in these two papers to rule out Ponzi
schemes imply that plans are almost finite-time solvent. We also define the notion of what
we term equilibrium with almost finite-time solvency and provide sufficient conditions for its
existence. It turns out that the existence results in Araujo et al. (2002) and Páscoa and Seghir
(2008) can be derived as straightforward corollaries of our existence result.

A Appendix

We collect in this appendix the proofs of some technical results.

A.1 Continuity on order intervals

Assumptions (A.2) and (A.3) imply that when restricted to the order interval [0,Ω], the func-
tion U i is weakly continuous.

Proposition A.1. The function U i is weakly continuous on [0,Ωi].

3Recall that ((pν , qν ,κν),aν) is a competitive equilibrium of the truncated economy E Tν .
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For the sake of completeness, we give the straightforward proof of this result.

Proof of Proposition A.1. For every period τ ∈ N, we let U i,τ be the function defined on X by

U i,τ(x) =
∑

ξ∈Dτ
ui(ξ, x(ξ)).

Let (xn)n∈N be a sequence of consumption processes in [0,Ω], weakly converging to x .4 Fix
ε > 0. From Assumption (A.3), the utility U i(Ω) is finite. Then there exists τ ∈ N such that

U i(Ω)− U i,τ(Ω) =
∑

ξ∈D\Dτ
ui(ξ,Ωi(ξ))¶

ε

4
.

Observe that for each n
�

�U i(x)− U i(xn)
�

� ¶
�

�U i,τ(x)− U i,τ(xn)
�

�+ 2
∑

ξ∈D\Dτ
ui(ξ,Ωi(ξ)

¶
�

�U i,τ(x)− U i,τ(xn)
�

�+
ε

2
. (A.1)

From Assumption (A.2), each utility function ui(ξ, ·) is continuous. Since (xn)n∈N converges
weakly to x , there exists nε > 0 large enough such that

∀n¾ nε,
�

�U i,τ(x)− U i,τ(xn)
�

�¶
ε

2
. (A.2)

Combining (A.1) and (A.2), we get the desired result.

A.2 Proof of Proposition 6.1

We consider the following modification of the normalization of the default penalty. For every
ε > 0 and every period τ, we let

W i,τ
ε (π, a) =

∑

ξ∈Dτ\{ξ0}

∑

j∈J

λi(ξ, j)

�

V (p,ξ, j)ϕ(ξ−, j)− d(ξ, j)
�+

p(ξ)v(ξ) + ε


q(ξ)




and
Πi,τ
ε (π, a) = U i,τ(x)−W i,τ

ε (π, a).

When the process π belongs to clΠ, the functions (W i,t
ε )t¾1 are well-defined for every ε > 0.

A pair (π,a) where π ∈ Π and a = (ai)i∈I is an allocation with ai ∈ Bτ, is said to be a
competitive equilibrium of the truncated economy Eτε if market clearing conditions (6.2),
(6.3), (6.4) and (6.5) are satisfied and the optimality condition (6.1) is replaced by

4Remember that the weak topology on X is metrizable.
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(aε) for every agent i, the plan ai is optimal with respect to Πi,τ
ε , i.e.,

ai ∈ d i,τ
ε (p, q,κ) = argmax{Πi,τ

ε (π, a) : a ∈ Bi,τ(π)}.

Observe that for every process π of prices and delivery rates in clΠ, the quantity p(ξ)v(ξ) +
ε


q(ξ)


 is never 0. It is now very easy to adapt the arguments in Araujo et al. (2002) and
prove that a competitive equilibrium (π,a) for the truncated economy Eτε exists for any ε > 0
where π ∈ clΠ. Since utility functions are strictly increasing, we must have p(ξ) ∈ RL

++ for
each node ξ ∈ Dτ. We propose to exhibit an exogenous lower bound m(ξ) for every node
ξ with t(ξ) < τ. Fix a node ξ ∈ Dτ−1, α > 0 and an agent i ∈ I . Let eai

α be the plan in Bτ

defined for every node ζ ∈ Dτ by

eai
α(ζ) =















ai(ζ) if ζ 6∈ {ξ} ∪ ξ+

(x i(ξ) + f (π,ξ)α1L ,θ i(ξ),ϕ(ξ) +α1J , d i(ξ)) if ζ= ξ

(x i(ζ),θ i(ζ),ϕi(ζ), ed i
α(ζ)) if ζ ∈ ξ+

where

f (π,ξ) =



q(ξ)


− p(ξ)C(ξ)


p(ξ)




with C(ξ) =
∑

j∈J

C(ξ, j)

and for every j,
ed i
α(ζ) = d i(ζ, j) +αD(p,ζ, j).

In other words, we propose to short-sell at node ξ an additional quantity α > 0 of each asset j
and to increase consumption of each good by f (π,ξ)α units. At each successor node ζ ∈ ξ+,
we propose to “fully" default on additional short-sales. By doing so, at node ξ we get an
additional amount of α



q(ξ)


 units of accounts from short-selling. In order to satisfy the
constraint imposed by the collateral requirements, we should purchase the bundle αC(ξ) at
node ξ. This is possible if



q(ξ)


¾ p(ξ)C(ξ). In other words, if f (π,ξ)¾ 0 then the plan eai
α

belongs to the budget set Bi,τ(π) for every α > 0. We propose to compare the payoffs of the
two plans ai and eai

α.
First observe that

U i,τ(ex i
α)− U i,τ(x i) = ui(ξ, x i(ξ) + f (π,ξ)α1L)− ui(ξ, x i(ξ)).

Moreover, since for each ζ ∈ ξ+

�

V (p,ζ, j){ϕ(ξ, j) +α} − {d(ζ, j) +αD(p,ζ, j)}
�+

is lower than
�

V (p,ζ, j)ϕ(ξ, j)− d(ζ, j)}
�++

�

V (p,ζ, j)α−αD(p,ζ, j)
�+
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we get

Πi,τ
ε (π, eai

α)−Π
i,τ
ε (π, ai) ¾ ui(ξ, x i(ξ) + f (π,ξ)α1L)− ui(ξ, x i(ξ))

− α
∑

ζ∈ξ+

∑

j∈J

λi(ζ, j)

�

V (p,ζ, j)− D(p,ζ, j)
�+

p(ζ)v(ζ) + ε


q(ζ)




.

Let us denote by δi,τ
ε the real number defined by

δi,τ
ε = lim

α→0+

Πi,τ
ε (π, eai

α)−Π
i,τ
ε (π, ai)

α
,

and let us denote by ∇+ui(ξ, x i(ξ)) the vector in RL
++ which `-th coordinate ∇+

`
ui(ξ, x i(ξ))

is defined by5

∇+
`

ui(ξ, x i(ξ)) = lim
β→0+

ui(ξ, x i(ξ) + β1{`})− ui(ξ, x i(ξ))

β
.

Then

δi,τ
ε ¾



∇+ui(ξ, x i(ξ))


 f (π,ξ)−
∑

ζ∈ξ+

∑

j∈J

λi(ζ, j)

�

V (p,ζ, j)− D(p,ζ, j)
�+

p(ζ)v(ζ) + ε


q(ζ)




¾


∇+ui(ξ,Ωi(ξ))


 f (π,ξ)−
∑

ζ∈ξ+

∑

j∈J

λi(ζ, j)

�

V (p,ζ, j)− D(p,ζ, j)
�+

p(ζ)v(ζ)

¾


∇+ui(ξ,Ωi(ξ))


 f (π,ξ)−
∑

ζ∈ξ+

∑

j∈J

λi(ζ, j)
H(ζ, j)
M(ζ, j)

.

Therefore, if

f (π,ξ)> g(ξ) :=

∑

ζ∈ξ+
∑

j∈J λ
i(ζ, j) H(ζ, j)

M(ζ, j)


∇+ui(ξ,Ωi(ξ))




then Πi,τ
ε (π, eai

α)> Π
i,τ
ε (π, ai) for α > 0 small enough. It follows that we must have

1−


p(ξ)


− p(ξ)C(ξ)


p(ξ)




= f (π,ξ)¶ g(ξ).

Hence there exists m(ξ) > 0 depending only on the primitives of the economy E such that


p(ξ)


¾ m(ξ).

5The existence of∇+` ui(ξ, x i(ξ)) is a consequence of the concavity of ui(ξ, ·). The strict monotonicity of ui(ξ, ·)
implies that ∇+` ui(ξ, x i(ξ)) is strictly positive.
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Consider now the sequence (εn)n∈N defined by

∀n ∈ N, εn =
1

n+ 1
.

For each n ∈ N, there exists an equilibrium (πn,an) of the truncated economy Eτεn
. Following

standard arguments, there exists a process π ∈ clΠ of prices and delivery rates and a process
a of plans ai ∈ Bτ such that, passing to a subsequence if necessary, the sequence (πn,an)n∈N
converges to (π,a). Since for each n, we have



pn(ξ)


 ¾ m(ξ) for every non-terminal node
ξ ∈ Dτ−1, passing to the limit, we get that



p(ξ)


 ¾ m(ξ), in particular p(ξ) > 0 for each
ξ ∈ Dτ.6 Therefore the payoff Πi,τ(p, a) is well-defined for every plan a ∈ Bτ. It is now
standard to prove that the limit (π,a) is actually a competitive equilibrium of the truncated
economy Eτ.
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