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Abstract

We provide an extension of the Condorcet Theorem. Our madkldes both the
Nitzan-Paroush framework of “unequal competencies” arahia&s model of “corre-
lated voting by the jurors”. We assume that the jurors belmfermatively”, that
is, they do not make a strategic use of their information itingp Formally, we
consider a sequence of binary random variatles (X1, X, ..., X, ...) with range
in {0,1} and a joint probability distributior®. The pair(X,P) is said to satisfy
the Condorcet Jury Theore€JT) if lim n_. P (£, X > J) = 1. For a general (de-
pendent) distributior® we provide necessary as well as sufficient conditions for the
CJT. Letpi = E(X), P = (PL+ P2,-.- + pn)/nand X, = (Xg + Xp, ... + X,)/n. A
consequence of our results is that BaT is satisfied if liMh_... /N(Py — 3) = o
and X' ;3 CouX,X;) < 0 for n > No. The importance of this result is that it
establishes the validity of theJT for a domain which strictly (and naturally) in-
cludes the domain of independent jurors. GiNenP), let p = liminf, .. P,, and
P=limsup,_, Pn. Lety=liminfo_o E(Xy—Py)%, y* = liminf,_.. E[X,— P, and
y* = limsup, .., E|X, — P,|. Necessary conditions for ti@JT are thatp > 5 + Jy*,
P> 3+y, and alsop > $ + 3y*. We exhibit a large family of distribution® with
liminf, o mn—];]_)ZP:le7éiC0\/(>(i,Xj) > 0 which satisfy theCJT. We do that by ‘in-
terlacing’ carefully selected paif¥X,P) and(X’,P’). We then proceed to project the
distributionsP on the planegp,y*) and(p,y), and determine all feasible points in
each of these planes. Quite surprisingly, many importaatltgon the possibility of
theCJT are obtained by analyzing various regions of the feasililingbese planes.



Introduction

The simplest way to present our problem is by quoting Coretsrelassic result (see
Young(1997)):

Theorem 1. (CJT—Condorcet 1785) Let n voters (n odd) choose between
two alternatives that have equal likelihood of being cotr@priori. Assume
that voters make their judgements independently and thet bas the same
probability p of being correc(% < p < 1). Then, the probability that the
group makes the correct judgement using simple majority isul

n

[nt/h(n—h)1Jp(1—p)" "
h=(n+1)/2

which approache& as n becomes large.

We generalize Condorcet’s model by presenting it gsume with incomplete infor-
mationin the following way: Letl = {1,2,...,n} be a set of jurors and ldd be the
defendant. There are twatates of natureg — in which D is guilty andz— in whichD is
innocent. Thus the set of states of natur8is {g, z}. Each juror has an action s&with
two actions:A = {c,a}. The actiorc is to convict D The actiora is to acquit D. Before
the voting, each jurorgets a private random sigrale T' := {t! t!}. In the terminology
of games with incomplete informatiof; is thetype sebf jurori. The interpretation is
that jurori of typeté thinks thatD is guilty while jurori of typet! thinks thatD is innocent.
The signals of the jurors may be dependent and may also depetit the state of na-
ture. In our model the jurors acirfformatively (not “strategically”) that is, the strategy
of juroriis o' : T' — A given byd' (t}) = canda'(t}) = a. The definition of informative
voting is due to Austen-Smith and Banks (1996) who questiervalidity of the CJT in a
strategic framework. Informative voting was, and is siisumed in the vast majority of
the literature on th€JT, mainly because it is implied by the original Condorcet agsu
tions. More precisely assume, as Condorcet did, gl = P(z) = 1/2 and that each
juror is more likely to receive the ‘correct’ signal (that R(tj|g) = P(t}|z) = p > 1/2),
then the strategy of voting informatively maximizes thehability of voting correctly,
among all four pure voting strategies. Following Austeni#Brand Banks, strategic vot-
ing and Nash Equilibrium were studied by Wit (1998), Myerg®898) and recently by
Laslier and Weibull (2008) who discuss the assumption ofepgaces and beliefs under
which sincere voting is a Nash equilibrium in a general dsigistic majoritarian voting
rule. As we said before, in this work we do assume informatiéing and leave strate-
gic consideration and equilibrium concepts to the next pledour research. The action
taken by a finite society of jurorgl, ..., n} (i.e. the jury verdict) is determined by a sim-
ple majority (with some tie breaking rule e.g. by coin togginWe are interested in the
probability that the (finite) jury will reach the correct dgon. Again in the style of games
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with incomplete information le®, = Sx T1x, ..., xT" be the set ostates of the world
A state of the world consists of the state of nature and a fish® types of all jurors.
Denote byp(" the probability distribution oif2,. This is a joint probability distribution
on the state of nature and the signals of the jurors. For esohijlet the random variable
X; : Sx T' — {0,1} be the indicator of his correct voting i.&(g,t) = Xi(z ;) = 1 and
Xi(g,th) = Xi(z, tg) = 0. The probability distributiop™ on Q, induces a joint probability
distribution on the the vectot = (X4, ..., X,) which we denote also bg™. If nis odd,
then the probability that the jury reaches a correct degisio

p" <i><. > g)

Figure 1 illustrates our construction in the caise 2. In this example, according to
p@ the state of nature is chosen with unequal probabilitiegHertwo statesP(g) =
1/4 andP(z) = 3/4 and then the types of the two jurors are chosen accordingdinta
probability distribution which depends on the state of natu

Nature
1/4 3/4
g Z
2 42 2 2 2
1 tg z 1 tg t;
2 x| 2 g 1 | O
| | 2 2] 0] 0

Figure 1 The probability distributiorp(?.

Guided by Condorcet, we are looking for limits theorems a&stkie size of the jury
increases. Formally, asgoes to infinity we obtain the sequence of increasing seguainc
‘worlds’, (Qn)x_;, such that for alh, the projection of2,,1 on Q, is the wholeQ,. The
corresponding sequence of probability distribution(sp'%‘))‘r’f:1 and we assume that for
everyn, the marginal distribution op™*Y) onQ,, is p(". It follows from the Kolmogorov
extension theorem (see Loeve (1963), p. 93) that this dedinegjue probability measure
P on the (projective, oinversg limit

Q=1imQ,=SxTIx...xT"...

00—

such, for alln, that the marginal distribution & on Q,, is p(".



In this paper we address the the following problem: Whicltbptolity measureP de-
rived in this manner satisfy th@ondorcet Jury Theore€JT) that is, Which probability
measure® satisfy

. n
lim P (271 > 5) ~1

As far as we know, the only existing result on this generabf@m is that of Berend and
Paroush (1998) which deals only with independent jurors.

Rather than working with the spa€eand its probability measure, it will be more
convenient to work with the infinite sequence of binary randa@riables
X = (Xg, X2, ..., Xn, ...) (the indicators of ‘correct voting’) and the induced proltifbmea-
sure on it, which we will denote also B Since the paifX, P) is uniquely determined by
(Q,P) , in considering all pair$X,P) we cover all pairgQ,P). A secondary advantage
of working with (X, P) is that our results can be interpreted also as forms of lakargé
numbers folgeneralinfinite sequences of binary random variables.

1 Sufficient conditions

Let X = (X1, X2, ..., Xn, ...) be a sequence of binary random variables with rand®ja}
and with joint probability distributiof®. The sequencX is said to satisfy th€ondorcet
Jury Theorem(CJT) if 0
lim P (7% > é) =1 (1)

We shall investigate necessary as well as sufficient camgitiorCJT.

Given a sequence of random binary variabfes (X1, Xp, ..., Xn, ...) with joint distri-
bution P denotep; = E(X;), Var(X) = E(X — pi)? andCovX;,X;) = E[(Xi — pi)(Xj —
pj)], for i # j, whereE denotes, as usual, the expectation operator. Als@jet

(pL+ P2, ... + pn)/NnandX, = (Xg + Xz, ... +Xn) /n.
Ouir first result provides a sufficient condition ©0JT:

Theorem 2. Assume thatz! , pj > 3 for all n > Np and

. EXn—p,)?
im EXn =P g @
e (pn_§>
or equivalently assume that:
D._ 1
lim Z__=oo 3)

n
e JEKn—Pn)?

then the CJT is satisfied.



Proof.

n n n n
! < — .y >
P(z,:m = 2) P( =X 2 2)
n
= P (Zinzlpi — L% > 2L pi - é)
n
< P <|Zin=1pi —ZL X > L pi— 5)
By Chebyshev’s inequality (assumid_; p; > 5) we have
2 —
E(ZLaX—51p)° _ E(Xn—Py)?
(Z,p—5)° (Pn—3)?
As this last term tends to zero by (2), 88T (1) then follows. O

n
P (|Zin=1pi — 3L X > 2 pi— é) <

Corollary 3. If 2 ;Zj4CovX;, Xj) < 0for n> Np (in particular if Cou(X;, Xj) < O for
all'i # j) andlimp_e /N(P, — %) = oo then the CJT is satisfied.

Proof. Since the variance of a binary random variakle/ith meanp is

p(1—p) <1/4 we have fon > Np,

0<E(Rn—Pn)? = HE(ELL0%—p))

= n_12 (ZLavar(X) + 2L 4CouX;, X)) < 4—1n
Therefore if im0 /N(Py — 3) = o, then
E (X~ Pn)* <lm—21 _—o0

OSr!mo (_ _ )2 _n—>oo4n(— _ )2
Pn Pn

ol

Nl
Nl

O

Remark 4. When X, Xo, ..., Xp, ... are independent then, under mild conditions,
limp—e /NPy — %) = oo IS a necessary and sufficient condition for CJT (see D.Berend
and J. Paroush (1998)).

Given a sequencé = (Xg,Xo, ..., Xn, ...) of binary random variables with a joint prob-
ability distributionP, we define the following parameters ©f, P):

p = liminfp, (4)
p = "Tfo?pb” (5)
y = liminfE(Xn—py)? (6)
y = limsupE(X,—ppy)* (7
y© = |i£r£gf5|¥n_r)n| (8)
yoi= IimngIYn—bn\ (9)
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We first observe the following:

Remark 5. If p > 1/2 andy = 0 then the CJT is satisfied.

Proof. As E(Xy—Pp)? > 0, if y= 0 then lim_.. E(Xn — Py)? = 0. Sincep > 1/2, there
existsng such thap,, > (1/2+ p)/2 for alln > ng. The result then follows by Theorem 2.
O

2 Necessary conditions using the;-norm

Given a sequencé = (X1, X2, ..., Xn, ...) of binary random variables with a joint probabil-
ity distributionP, if y > 0, then we cannot use Theorem 2 to conclGda.
To derive necessary conditions for @8T, we first have:

Proposition 6. If the CJT holds then p 1.

Proof. Define a sequence of ever(B,)_, by By = {w|Xn(w) —1/2 > 0}. Since the
CJT holds, lim—« P (=, X > 3) = 1 and hence lif P(By) = 1. Since

1 - 1 1
P35 = E(Xn— 5)) > —EP(Q\Bn)a
taking the liminf, the right hand side tends to zero and waiobt

We shall first consider a stronger violation of Theorem 2 thanO namely assume
thaty > 0. We shall prove that in this case, there is a range of digtabhsP for which
theCJT is false.

First we notice that for-1 < x < 1, |x| > x2. HenceE|X,,—p,| > E(Xn —P,)? for
all nand thusy > 0 impliesy* > 0

We are now ready to state our first impossibility theorem Witian readily translated
into a necessary condition.

Theorem 7. Given a sequence % (X, Xp, ..., X, ...) of binary random variables with
joint probability distribution P. If p< % + % then the(X, P) violates the CJT .

Proof. If y* = 0, then theCJT is violated by Proposition 6. Assume then tlyat> 0
and choosg 3uch that 0< § < y* and 2 := § + 5 — p > 0. First we notice that, since
E(Xn—Pn) = 0, we haveE max(0, p, — Xn) = Emax0, X, —Py), thus since/* > 0, we
have

~

Emax0,p, — Xn) > 5 for n>n. (10)

If (Q,P) is the probability space on which the sequeKads defined, fom > n define
the events

B = (@[T~ Xn(®) > max0. > 1)} (11)
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By (10) and (11)P(By) > g > 0 for somegq and

Pr— Xn(w) > 3—2/—t for we By, N> 1. (12)
Choose now a subsequer(eg)y_, such that
1
Tn, < ;+§—t—p+t k=12, (13)
By (12) and (13), for altw € B, we have,
_ oy 1
Xnk(w) S pnk - §+t < é:
and thusP(X,,, > 3) < 1—q< 1 which implies thaP violates theCJT. O

Corollary 8. If liminfn_... P, < 3 andliminfn_.e E[Xn—P,| > 0, then P violates the CJT.

3 Necessary conditions using the,-norm

Let X = (X1, X, ..., Xn, ...) be a sequence of binary random variables with a joint proba-
bility distribution P. In this section we take a closer look at the relationshipvben the
parametery andy*(see (7) and (9)). We first notice th_ab 0 if and only ify* > 0. Next

we notice thap,, > % for n > nimplies thatX,, — p, < for n > n. Thus, by corollary 8,

if y> 0 and theCJT is satisfied then md®, X, — p,) < < 1 5 for n>n. Finally we observe
the following Lemma, the proof of which is stralghtforward

Lemma 9. If liminf_. P{w|P, — Xn(w) > P,/2} > 0then the CJT is violated.
We now use the previous discussion to prove the followingttie:

Theorem 10. If () liminf,_.. P, > 3 and
(ii) liminfy ... P(Xn > Py/2) = 1, theny > 2y.

Proof. As we have observedi)(implies that max0, X, — py) < % Also (i) implies that
liMn—eo P(Pn — Xn < 3) = 1, thus

- 1
< Xn—"Pn §§> (14)

limin (Xn—Pn)%dP=y (15)
—> 00 Bn =
and
Iirrpinf/ Xn—Po|dP=y". (16)
— 00 Bn -

Since anyu € [—3, 3] satisfiegu| > 2u?, it follows from (15) and (16) thag* >2y. [
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Corollary 11. Let p=liminf, P, and y= liminf,_.. E(Xn —P,)% Then if p< %+)_/
then P does not satisfy the CJT.

Proof. Assumep < %er. If y=0, thenCJT is not satisfied by Proposition 6 Hence we
may thus assume thgt> 0 which also implies thay* > 0. Thus, if liminf,_.. P, < %
thenCJT fails by Corollary 8. Assume then that lim ipf. p,, > % By Lemma 9 we may
also assume that limipf., P (X, > Pn/2) = 1 and thus by Theorem 10 we haye> 2y

and hencp < 3+y< 3+ % and theCJT fails by Theorem 7. ]

4 Dual Conditions

A careful reading of sections (2) and (3) reveals that it s5ilale to obtain “dual” results to
Theorems 7 and 10 and Corollary 11 by replacing "liminf” byxfsup”. More precisely
for a sequenc&X = (Xg,Xo, ..., Xn, ...) Of binary random variables with joint probability
distributionP, we letp = limsup,_,., P, andy* = limsup,_.., E|Xn — Py|, and we have:

Theorem 12.1f p< 3+ %, then the(X, P) violates the CJT.

Proof. As we saw in the proof of Corollary 11, we may assume that
liminfn_« P, > 3 and hence also

Y

NI =

P = limsupp, > Iinm infp, >

Nn—oo

NI

and hencg* > 0. Chooseg/Suchthat< y<y*and 2 =2 + % —P>0. Let(Xq ), be

a subsequence of such that
I!i_'T!oE‘Ynk _bnk| =y
As in (10) we get

Emax0, Py, — Xn,) > 3—2/ for k> k. (17)
Define the event&B,, )y_; by
Bn, = {0lPn, — X (@) = 3 ~t}. (18)
By (17) and (18)P(By,) > q for someq > 0 and
Pn, — Xn (@) > 3—2/—t for we By, and k> K. (19)
Now ~
: .y 1
limsupp,=p< =+ —t. (20)
n—oo 2 2
Thus, forn sufficiently largep,, < 3—27+ % —t. Hence, fok sufficiently large and all € By,
_ Y 1
X () <P~ 3 +1 < 5. (21)

ThereforeP(Xp, > %) < 1-—q< 1 for sufficiently largek in violation of theCJT. O
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Similarly we have the "dual” results to those of Theorem 10 &orollary 11:

Theorem 13.If (i) liminfn_. P, > 3 and
(ii) liminf, . P(Xn > Pn/2) = 1, theny* > 2y.

Corollary 14. If p< 3+ then P does not satisfy the CJT.

The proofs which are similar respectively to the proofs oeditem 10 and Corol-
lary 11 are omitted.

5 Existence of distributions satisfying theCJT

In this section we address the issue of the existence oitdiftvns that satisfy th€JT. In
particular we shall exhibit a rather large family of distrilonsP with y > 0 (andp > 1/2)
for which theCJT holds. Our main result is the following:

Theorem 15. Lette [0, %]. If F is a distribution with parameter§p,y*), then there exists
a distribution H with parameter = 1 —t +tp andy* = ty* that satisfy the CJT.

Proof. To illustrate the idea of the proof we first prove (somewh#&brimally) the case
t=1/2. LetX = (Xg,Xg, ..., Xn, ...) be a sequence of binary random variables with a joint
probability distributiorF. Let G be the distribution of the sequente= (Y1,Ya,...,Yn,...),
whereEY, =1 for alln (thatis,Y1 = Y> = ...Yy = ... andP(Y; = 1) = 1Vi). Consider now
the following “interlacing” of the two sequencesandY:

Z= (Y17Y27X17Y37X27Y47X37 ~~~7Yn7xn—17Yn+17Xn~~~)»

and let the probability distributiorl of Z be the product distributiorl = F x G. It is
verified by straightforward computation that the paransetdrthe distributiorH are in
accordance with the theorem foe= % namely, p'= %—‘r %E andy* = %X*- Finally, as
each initial segment of voters ihcontains a majority oY;’s (thus with all values 1), the
distributionH satisfies th&€ JT, completing the proof for = %

The proof for a generale [0,1/2) follows the same lines: We construct the sequence
Z so that any finite initial segment ofvariables, includes “about, but not more” than the
initial tn segment of th&X sequence, and the rest is filled with the cons¥anariables.
This will imply that theCJT is satisfied.

Formally, for any reak > 0O let | x| be the largest integer smaller or equaktand let
[X] be smallest integer larger or equabktaNote that for anyn and any 0<'t < 1 we have
|tn] 4+ [(1—t)n] = nthus, one and only one of the following holds:

() ltn] < [t +1)] or
(i) T(1-t)n] < [(1-t)(n+1)]



From the given sequeneéand the above defined sequeicf constant 1 variables) we
define now the sequen@e= (Z1,2, ...,Z,,...) as follows:Z; =Y; and for anyn > 2, let
Zn= XLt(nJrl)J if (I) holds andZ, = Y[(lft)(nJrlﬂ if (II) holds. This inductive construction
guarantees that for afl, the sequence containsn| X; coordinates and(1—t)n] Y;
coordinates. The probability distributidth is the product distributior x G. The fact
that(Z,H) satisfies th&€JT follows from:

[(1-t)n] > (1—t)n>tn> |tn],
and finallypg'=1—t+tpandy* =ty* is verified by straightforward computation. []

Remark 16. The “interlacing” of the two sequences X and Y described & phoof of
Theorem 15 may be defined for any 0, 1]. We were specifically interested ig{0,1/2]
since this guarantees the CJT.

6 Feasibility considerations

The conditions developed so far for a sequeKce (X, X, ..., Xn, ...) With joint proba-
bility distribution P to satisfy theCJT involved only the parameterg p,y,y,y* andy*.

In this section we pursue our characterization in the spatieese parameters. We shall

look at the distributions in two different spaces: The spzfqeoints(p,y*), which we call
thel, space, and the spacp,y), which we call the_, space.

6.1 Feasibility and characterization inL4

With the pair(X, P) we associate the poiip,y*) in the Euclidian plané&?. It follows
immediately that 6< p < 1. We claim thay* < 2p(1— p) holds for all distributionsP.
To see that we first observe tHagX; — pi| = 2p;j(1— p;) hence

- 1_ 2 1 N 22
_n|l== )< Z N < Z ) —ni).
E[Xn—Pnl nE‘i;(Xl pi)| < nE <i;|xl p.|> S ni;p'(l pi)
The functiony ! ; pi(1— pi) is (strictly) concave hence:
_ n1
E|Xn—Pnl SZ_Zlﬁpi(l_pOSZr)n(l_bn)- (22)
1=
Finally let p = limy_.. Py, , then

y' = ”r@gf E|Xn —Pnl < ”Eligf E‘Ynk _bnk| < Zk”_rﬂobnk(l_r)nQ = ZE<1_E>~

The second inequality is due to (22).
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Thus, if (u,w) denote a point ifR? then any feasible paip,y*) is in the region
FE;={(uw)|0<u<1 0<w<2u(l-u)} (23)

We shall now prove that all points in this region are feasthk is, any point irFE; is
attainable as a paip,y*) of some distributiorP. Then we shall indicate the sub-region
of FE; where theCJT may hold. We first observe that any poiib, W) € FE; on the
parabolaw = 2u(1—u), for 0 < u < 1, is feasible. In fact sucfup, wp) is attainable by
the sequenc¥ = (X1, Xp, ..., Xn, ...) with identical variables§, X; =Xo = ... = Xp... and
EXy = up (clearly p = up, andy* = 2up(1 — up) follows from the dependence and from
E[Xi —pil = 2pi(1— pi) = 2Up(1 - o).

Let again(up,Wp) be a point on the parabola which is thus attainable. Assuate th
they are the paramete(,y*) of the pair(X,F). Let (Y,G) be the pair (of constant
variables) described in the proof of Theorem 15 and lef0,1]. By Remark 16 the-
interlacing of(X,F) and(Y, G) can be constructed to yield a distribution with parameters
p=tp+(1—t) andy* =ty* (see the proof of Theorem 15). Thus, the line segment defined
by (0 = tug+ (1—t) andw = twp for 0 <t < 1, connectingup, Wo) to (1,0) consists of
attainable pairs contained iFE. Since any poinfu,w) in FE lies on such a line segment,
we conclude thagvery point in FE is attainableNe shall refer td-E asthe feasible set
which is shown in Figure 2.

A
12 w=2u(l-u)
1_
(U / W= ( : u)w,
FE, M
0 : — U =P
0 1/2 1 -

Figure 2 The feasible sdfE;.

We now attempt to characterize the points of the feasiblaszirding to whether the
CJT is satisfied or not. For that we first define:

Definition 17.

e ThestrongCJT set, denoted by sCJT is the set of all pointsv) € FE; such that
any pair (X, P) with parameters p= u and y = w satisfies the CJT.

11



e TheweakCJT set, denoted by wCJT is the set of all po{tsv) € FE; for which
there exists a paifX, P) with parameters p= u and y = w which satisfies the CJT.

We denote-sCJT= FE;\sCJT and—wCJT=FE;\wCJT.
For examplg1,0) € sCJTand(1/2,0) € wCJT.

By Theorem 7, ifu < 1/2+4 1/2w, then(u,w) € —wCJT. Next we observe that if
(up,Wp) is on the parabola = 2u(1—u) andM is the midpoint of the segmef{tip, Wp), (1,0)]
then, by the proof of Theorem 15 (adaptedlfgsreplacingy by y*), the segmeriM, (1,0)] C
WCJT (see Figure 2). To find the upper boundary of the union of a$¢hsegments that
is, the locus of the mid point¥! in Figure 2, we eliminatéup, wp) from the equations
Wo = 2Up(1— up), and(u,w) = 1/2(ug, W) + 1/2(1,0) and obtain

w=2(2u—1)(1—u) (24)

This is a parabola with maximuny4 atu= 3/4. The slope of the tangentat1/2 is
2 that is, the tangent of the parabola at that point is theire2u — 1 defining the region
—wCJT. Finally, a careful examination of the proof of Theorem Eyvgals that for every
(up,Wp) on the parabolav = 2u(1— u), the line-segmenitup, wp),M] is in —sCJT (see
Figure 2).

Our analysis so far leads to the conclusions summarizedgar€&i3 describing the
feasibility and and regions &JT possibility for all pairs(X, P).

1/2 &/‘
1/4, ,,,,,,,,,,,,,,,,,,,, —WCJT ,,,,,,,,,,, ~ SC‘]T W= 2(2u - 1)(1 -u
wCJT
0 i ‘ = UuU=p
0 1/2 3/4 1 -

Figure 3 Regions of possibility o€JT in L;.

Figure 3 is not complete in the sense that the regn®3T and—sCJTare not disjoint
as it may mistakenly appear in the figure. More precisely waplete Definition 17 by
defining:

Definition 18. ThemixedCJT set, denoted by mCJT is the set of all pofotsv) € FE;
for which there exists a paiiX, P) with parameters p= u and y = w which satisfies the

CJT, and a pair(X, P) with parameters = u andy* = w for which the CJT is violated.

12



Then the regionsCJT, —wCJT and mCJT are disjoint and form a partition of the
feasible set of all distributioRE;

FE; = —wCJTUSCJTUMCJT (25)

To complete the characterization we have to find the regibtis®partition, and for
that it remains to identify the regianCJT since by definitionwCJT\mCJTC sCJTand
—sCIJT\mCJT C —wCJT.

Proposition 19. All three regions sCJT—wCJT and mCJT are not empty.

Proof. As can be seen from Figure 3wCJTis clearly not empty; It contains for example
the points(0,0) and(1/2,1/2). The regiorsCJT contains the pointl, 0) since this point
corresponds to a unique pdiX,P) in which X; = 1 for all i with probability 1. This
trivially satisfies theCJT. Finally we observe that the poirii/2,0) is in the region
mCJT. To see that we use the Berend and Paroush necessary an@sudfandition for
CJT in the independent case (see Remark 4) namely:

lim \/A(p, -~ 3) = <o (26)
First consider the paifX,P) in which (%), arei.i.d with P(X; = 1) = 1/2 and
P(X =0) = 1/2. Clearly,/n(p,— 3) = 0 for alln and hence condition (26) is not satisfied

implying thatCJT is not satisfied.
Now consider(X,P) in which X = (1,1,0,1,0,1---) with probability 1. This pair
corresponds to the poit/2,0) since

1.1 5 ni
v _— [ 3+= |if niseven
Xn—pn—{§+% if nisodd ’

and hence = 1/2 andy* = 0. Finally this sequence satisfies 88T asXp > % with
probability one for alh. ]

6.2 Feasibility and characterization inL,

Replacingy* = liminfy_« E|X, — Py| by the parametey = liminf, . E(Xn — Pp)?, we
obtain results in the space of poirf{s y) similar to those obtained in the previous section

in the spacép,y”).
Given a sequence of binary random variaKlevith its joint distributionP, we first
observe that for any+# |,

CouXi,Xj) = E(XiXj) — pip; < min(pi, pj) — Pipj-

13



Therefore,

. _ 1 n n
E(Xn—Pp)? = p{i;;CO\(N,Xj)ﬂLi;pi(l—pi)} (27)

< n—lz{é;[mi“(pi,pj)—pipj]Jrépi(l—pi)}. (28)

We claim that the maximum of the last expression (28), urfderconditions !, pi = Py

iSs Pr(1—P,). This is attained whem, = --- = p, = P,. To see that this is indeed the
maximum, assume to the contrary that the maximum is attaah@d= (pi,-- -, Pn) with

i # pj for somei andj. Without loss of generality assume thai: < pp < --- < pp with

P1 < Pjandpy = py for £ < j. Let 0< € < (pj — P1)/2 and definep* = (pj,- -, py)
by p; = p1+¢, pj=pj—€andp; =p, for £ ¢ {1,]j}. Atedious, but straightforward
computation shows that the expression (28) is highepfahan forg'in contradiction to
the assumption that it is maximized@t\We conclude that

Let now (P, )i_, be a subsequence convergingtthen

y = liminf E(Xq—Pp)? < liminf E(Xn, — Py, )2

= n—oo k— o0

< liminf Py (1-Pn) = p(1—p).
We state this as a theorem:

Theorem 20. For every pair(X,P), The corresponding paramete(p, y)
satisfy y< p(1—p).

Next we have the analogue of Theorem 15, proved in the same way

Theorem 21.Lette [0,3]. If F is a distribution with parametergp,y), then there exists
a distribution H with parameter =1 -t +tpandy = t23_/ that satisfy the CJT.

We can now construct Figure 4 which is the analogue of Figimett#e L, spacgp,y).
The feasible set in this space is

FE;={(uw)|0<u<1, 0<w<u(l-u)} (29)
The geometric locus of the midpointsin Figure 4 is derived from:
(D) u=2uo+3; (2) w= 2w and(3) wp = up(1— up) and is given by
w = 3(2u—1)(1—u). This yields Figure 5 which is the analogue of Figure 3. Note,
however, that unlike in Figure 3, the straight line= u —% is not tangento the small
parabolav = (u—3)(1—u) at(3,0).

14



A
1/4
0
0
Figure 4 The feasible sdfEp.
w=y
A w=u(l-u) w=u-1/2
1/4 Q &/
1/81 _ w=(u-1/2)(1-u
WeIT /_scar
1/161 /e
wCJT _
0 1 T L U - p
0 1/2 3/4 1 -

Figure 5 Regions of possibility o€JT in L.
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The next step toward determining the regio@JT in the L, space (Figure 5) is the
following:

Proposition 22. For any (u,w) € {(u,w)[3 <u<1; 0<w<u(l1-u)},
there is a pair(Z,H) such that:

(i) E(Z)=uVi.
(i) liminfn o E(Zn—u)?2=w.
(i) The distribution H does not satisfy the CJT.

Proof. Let (X,F) be given byX; = X; =... =X, =... andE(X;) = u. Thatis,(X,F)
corresponds to the poiiftl,u(1 — u)) on the large parabola in Figure 5. Further,YeG)
be a sequence of @fi.d. random variablegY;)” ; with expectatioru. We first observe
that

n

_ 1 1
. . 2 -+ 2: -+ . _
S E(Vn— )= lim 55 5 of = im, & nu(1—u) =0,

Thus(Y, G) corresponds to the poift, 0) in Figure 5.

Let S, = {0,1}* be the space of infinite binary sequences (or equivalehiyspace
of all the realizations of infinite sequences of binary Vales), and consider the product
probability spac€S, x Sy,F x G) and denoted = F x G. The idea of the desired con-
struction is along the following lines: In a sequeriZg);> ; consisting of blocks ok; and
Y;, the averag®,, is constantlyu and

e The sequenceX, F) satisfies (X, > 3) =u < 1.

e Assoon as there is a majority ¥fs in the sequencg = (Z, - - - , Z,), the probability
that the majority votes O is at least-1u. HenceH (Z, > 3) < u.

¢ Adding more variableX; increase& (Z, — u)? (in steps that can be made arbitrarily
small withn).

e Adding more variable¥ decreaseg (Z, —u)? (in steps that can be made arbitrarily
small withn).

e By starting with a block o¥; and appropriately choosing the sizes of the blocks we
get:

— E(Zy—u)?>wforall n.
— For a subsequendey)y_; (namely the ends of thg blocks)E(Z, — u)?

approaches. Combined with the previous point this implies
y = liminfy .. E(Zn—u)? = w.

— For a subsequendeny)y_, (namely the ends of th¥ blocks)E(Zm, — u)?
approaches(1—u), that is, the sequence has a majorityXt§ and hence the
probability the majority votes 0 is at lea&t — u) implying H(Zm, > 3) <u
on the subsequenday)y_;. Consequently,Z,H) does not satisfy th€ JT.
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Formally, we define a sequence of random variatigs’ ; in the following way: Let
Z1 = X1, Z = Xz and sek; = 2 (the length of the first block) ar8y = {1,2} (the set of
indices of the first block). Then

H(Z;>-)=F(X1=1) =u<1

Next, we choose the second bloBk = {k; +1,--- ,k; + ko} of kx variablesy; so that

if Z=Y_ a; i € By, thenE(Zj —u)? > w for all j < k; +kp and E(Zy, 1k, — U)? €

[WwW+ e k |, whereK is some constant, fixed throughout our construction. We show

below that such choice & is possible. We now continue to choose alternated blocks of

X’s andY’s. The third block, whichis a block of’s, isBz = {ky + ko +1,--- .k + ko +ks}

is chosen such th#t + ks > ko andZ = Xi_y,—k,, | € B3. So, in the first three blocks

there is a majority oK's which imply H (Zy, 1k, 1k, > 3) < U< 1. Next,Bs = {zf‘:lki +
-, 3 ki} is chosen an@; = X _ 53k , fori € By, so thatE(Z sk —u)? € ww+

5 k.] andE(Z; —u)? > wfor all j < yi ,k. We continue to construct the sequence

Z in this manner: At the end of each odd block ¥0§) there is a majority oX's which
guarantees that at the end of each odd ¢k, we haveH (Zz?itlka > 1) <u<1. Atthe

end of an even blocky we haveE (Zya | —u)? € w,w+ ﬁ] andE(Z; —u)2 > wfor
1= i=1

all | < Zizilki- The result of the construction is the desired g&irH). Note that by our
construction, an even blod;, may be empty because of the constratf{Z  — u)? >w
for all j < 52, ki, (however,5{ 1 ky = o if w< u(1—u)). On the other hand odd
blocks can be made all non empty since adding nhxdsd¢o an odd block with the desired
properties maintains those properties.

It remains to show that such a construction is possibleZlet(Z;, - - - ,Z,) be afinite
of binary random variables consisting wivariablesX; andy variablesy;, whose joint
distribution is the marginal of the product distributibh= F x G. Then, assuming that
bothx andy are at least 2,

_ x2u(1—u) +yu(1—u)

E(Zn—u)? =
(n U) (X+Y)
32
+Yy
= ul-u—=, for x,y>2.
( ><><+y) 7=
X2ty

The functionf (x,y) := has the following properties:

(x+y)?

() Itis (strictly) increasing irx for fixedy (% = 28)’5:%?)

(ii) Itis (strictly) decreasing iry for flxedx< 2y X(%X_ f;())a_ y).

(i) There exist a constait > 0 such that ma{\ Y1, \dy(x y)|} <y %Y >2.
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These properties make our previous construction possitdeede (Z; — u)?is strictly
decreasing withj in a block ofY’s, sayj € B, and goes to zero if the size of the block
is infinite, so there is a maximgl for which E(Zj —u)2 > w. As for the size of the
X blocks, these have to be large enough so as to have a majbriis @t the end of
the block. For example, the size B% is ks which satisfiek; + k3 > ko (which implies
H (Z, kot ks > %) < u < 1). The same argument guarantees, inductively, the pbssibi
of the construction of all steps. ]

Combining Proposition 22 and Theorem 21 yields the follgpwonclusions which
are also presented in Figure 6

Corollary 23. 1. The region below the small parabola in Figure 5, with theegption
of the point(1,0), is in mCJT thatis:

{(E,X)I% <p<1; andy< %(29—1)(1—9)} C mCJT.

2. The point(p,y) = (1,0) is theonly point in sCJT. It corresponds to a single se-
quence with X="---=X,=--- with F(X; =1) = 1.

w=u(l-u) w=u-1/2

1/4

w=(Uu-1/2)(1-u

1/8
1/16 sCJT
mCJT
0 1 T /= U = p
0 1/2 3/4 1 -

Figure 6 mCJTandsCJTin theL, space.

7 General interlacing

We now generalize the main construction of the proof of Teeol5. This may be useful
in advancing our investigations.

Definition 24. Let X = (X1, X2, ..., Xn, ...) be a sequence of binary random variables with
joint probability distribution F and let ¥= (Y1, Y>, ..., Yn, ...) be another sequence of binary
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random variables with joint distribution G. Ford [0, 1], the tinterlacingof (X,F) and
(Y,G) is the pair(Z,H) := (X,F) % (Y,G) where forn=1,2,.. .,

Xitn it |tn]>[t(n-1)]
7 — [tn] ) 30
f {Ym_t)m if [(@-tn>[2-tHmn-1)] (30)

and H=F x G is the product probability distribution of F and G.
The following lemma is a direct consequence of Definition 24.

Lemma 25. If (X,F) and (Y, G) satisfy the CJT then for anya [0, 1] the pair(Z,H) =
(X,F) ¢ (Y,G) also satisfies the CJIT.

Proof. We may assume that (0,1). Note that

{w|2n(w) > %} ) {w|m<w> > %}ﬂ{me—t)m(w) > %}

By our construction and the fact that bdik, F) and(Y, G) satisfy theCJT,

: < 1 . - 1
r!moF (XM > E) =1 and nL'rQG (Ym_t),ﬂ > E) =1

As

the proof follows. ]

Corollary 26. The region wCJT istar-convexn the Ly space . Hence, in particular, itis
path connected in this space.

Proof. Let (u,w) be a point inwCJT in the L; space. Then, there exists a péX,F)
which satisfie€JT, whereX is the sequence of binary random variables with joint prob-
ability distributionF satisfyingp = u andy* = w. By Remark 16, Lemma 25 and the
proof of Theorem 15, the line segmefi, w), (1,0)] is contained inrwCJT proving that
wCJT is star-convex. O

Corollary 27. The region wCJT ipath connectedn the L, space.

Proof. In the L, space a poinfu,w) corresponds t@ = u andy = w. By the same

arguments as before, the arc of the paraheta ((1—u)/(1— ug))?wp connecting u, w)
to (1,0) (see Figure 4) is contained wiCJT, and thusvCJT is path connected. O
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Appendix
CJT in the space of all probability distributions.

We look at the spac&, = {0,1} already introduced in the proof of Proposition 22 on
page 16. We conside®, both as a measurable product space and as a topologicalcprodu
space. Let” be the space of all probability distributions 8n &7 is a compact metric space

in the weak topology.

Lemma 28. If P; and B are two distributions in#?, and if B does not satisfy the CJT then for
any0 <t < 1, the distribution B=tP; + (1—t)P, does not satisfy the CJT.

Proof. Forn=1,2,--- let
n
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There exists a subsequend, )y_, ande > 0 such that»(B, ) <1—-¢cfork=1,2,---.
then

Ps(Bn,) =tPi(Bp,) + (1 —t)P(Bp,) <t+(1—-t)(1—€)=1—¢g(1-1),

implying thatPs; does not satisfy th€JT. L]

Corollary 29. The set of probability distributions that do not satisfy @&T is dense i®? (in the
weak topology), and is convex.
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