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“There is very likely no unique method used by minds to make decisions.
It is well known that individuals are generally not very logical, and
that their decision behavior can be modified by the surrounding culture
or by the acquisition of some special skill. In spite of this, it has to
be admitted that, given a specific decision, a specific mind will use a
specific method”
- Kenneth J. Arrow and Hervé Reynaud (1986)

1 Introduction

The classical model of choice endows the decision-maker (DM) with a single pref-

erence relation that she uses to select the best element from any set of alternatives.

The single implication of this model is context-independent behavior, or the Inde-

pendence of Irrelevant Alternatives (IIA), which dictates that if an alternative is

deemed optimal in a set, it must remain optimal in any subset.1 Consequently, a

growing body of evidence suggesting that behavior is prone to context-dependence

has spurred interest in alternative models of decision-making that can facilitate vi-

olations of IIA. In particular, since the seminal work of May (1954), many papers

have proposed models of multi-self decision making to accommodate such behav-

iors.2 This literature includes Kalai, Rubinstein and Spiegler (2002), Fudenberg

and Levine (2006), Manzini and Mariotti (2007), and Green and Hojman (2007)

in economics; Tversky (1969), Shafir, Simonson and Tversky (1993) and Tversky

and Simonson (1993) in psychology; and Kivetz, Netzer and Srinivasan (2004) in

marketing.3 Often these models are motivated by the desire to explain a particular

empirically observed choice behavior not consistent with rational choice. Some fix

the number of selves (e.g., the dual-self model of Fudenberg and Levine (2006))

while others leave the number unrestricted (e.g., Kalai et al. (2002)).

1This also implies transitive choice behavior, which is often violated in experimental settings
(e.g., see Tversky (1969) and Lee, Amir and Ariely (2007)).

2Another approach, developed in Bernheim and Rangel (2007) and Salant and Rubinstein
(2008), allows for context-dependence by considering extended choice situations where behavior
can depend on unspecified ancillary conditions or frames. While information effects can explain
some context dependence (Sen (1993), Kochov (2007), Kamenica (forthcoming)), they cannot
explain many systematic violations of IIA (Tversky and Simonson (1993)).

3An expanded shortlist of the multiple-selves or multiple-utility literature includes Benabou
and Pycia (2002), Masatlioglu and Ok (2005), Evren and Ok (2007), and Chatterjee and Krishna
(forthcoming). This literature is also related to the application of social choice tools in multi-
criteria decision problems, as in Arrow and Raynaud (1986), and is related more generally to the
theory of multiattribute utility (see Keeney and Raiffa (1993)).
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There has been little effort to connect the various models, or to conduct an

analysis of multi-self decision-making using a more systematic approach. In this

paper, we develop a framework to examine a DM with multiple selves, when choice

sets themselves serve as frames that influence how the preferences of different selves

get aggregated. More formally, we propose to model the DM as a collection of

utility functions U (selves or rationales) and an aggregation rule f (decision-making

method) that combines these utility functions in a possibly context-dependent way.

That is, given a choice set A, and selves U , aggregator f specifies an aggregated

utility for every alternative in A. An aggregator corresponds to a theory of how

selves are activated by choice sets. We posit only that the aggregator satisfies five

simple axioms from social choice theory. The multi-self models proposed in the

literature can be translated into this framework, and many of them satisfy the

axioms we impose on the aggregation rule.

Our main point of interest is investigating the set of behaviors that a specific

model of multi-self decision-making, as captured by a given aggregation rule f ,

can rationalize (explain). We address this question both with a fixed number of

selves, as well as with no a priori restriction. Formally, we assume that the DM’s

behavior is described by a choice function c, which specifies the alternative she

selects in each subset of some grand set of alternatives X. We say that a DM’s

choice function is rationalized by a finite collection of selves U and an aggregator

f if the choice function selects the unique maximizer of aggregate utility f ◦ U

in every choice set. For some aggregators, it is straightforward to determine the

set of choice functions that can be rationalized. For example, if the DM’s method

of aggregating the utilities of her various selves is simple utilitarianism, then the

set of choice functions is exactly the set of rational choice functions, regardless of

the number of selves. But what if the aggregator is the “normalized contextual

concavity model” proposed in Kivetz et al. (2004),

n∑
i=1

(max
a′∈A

ui(a
′)−min

a′∈A
ui(a

′)) ·
[ ui(a)−mina′∈A ui(a

′)

maxa′∈A ui(a′)−mina′∈A ui(a′)

]ci
?

Our main result establishes that for a large class of aggregators, including

various aggregators proposed in previous papers (and the example above), if there

is no restriction on the number of selves, the model can rationalize any choice

function. Hence, without knowledge of the number of motivations, the model has

no testable restrictions on behavior. For the same set of aggregators, we provide
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a lower bound on the set of choice functions that can be rationalized given a fixed

number of selves. In particular, we show that the model can rationalize any choice

function that exhibits no more IIA violations than a certain linear function of

the number of selves, where the number of IIA violations is defined by a simple

accounting procedure.

The question of what range of behaviors a given aggregator can rationalize

with a given number of selves can be asked in an alternative way, as what is the

minimum number of selves required to rationalize a given choice function, with

a given aggregator. Hence, our results also address the required complexity of a

rationalization and connect it to the extent to which the choice behavior in question

deviates from rationality, as measured by the number of IIA violations.4

Our main interpretation of the framework is one of individual decision-making

with multiple motives. Psychologists have long viewed the multiplicity of self as a

normal feature instead of a sign of pathology; and even psychologists who prefer a

unitary view of the self accept that “the singular self is a hypothetical construct,

an umbrella under which experiences are organized along various dimensions or

motivational systems” and which “is fluid in that it shifts in different contexts

as various motivations are activated” (Lachmann (1996)). This interpretation,

namely that the decision-maker has multiple goals and resolves trade-offs among

these in a manner affected by the choice set, fits our model as well as the more

literal interpretation of multiple selves.

In line with the notion of aggregation in our model, psychologists believe that

a fluid form of compromise among selves is necessary for healthy behavior.5 The

possibility of compromise is an important sense in which our model differs from

Kalai et al. (2002) (henceforth KRS), who were the first to address whether a given

choice behavior can be rationalized and to examine the complexity of the required

rationalization. KRS propose that a collection of strict preference relations ratio-

nalizes a choice function if the choice from each set is optimal for at least one of

the preference relations; they show that if there are n alternatives, then any choice

behavior can be rationalized with n− 1 rationales. In this view, each self serves as

4Complexity according to this approach is measured by the number of selves, which is anal-
ogous to measuring the complexity of finite automata by the number of states (e.g., see Salant
(2007) in the decision-theoretic literature).

5This is as opposed to disassociated selves (i.e., overly autonomous selves), or a high self-
concept differentiation (a lack of interrelatedness of selves across contexts) both of which are
connected to pathological or unhealthy behavior; see Power (2007), Donahue, Robins, Roberts
and John (1993), and Mitchell (1993).
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a dictator for some subset of choices. In contrast, in our framework it can happen

that the choice is not the most preferred alternative of any of the selves, but the

best compromise, in the sense that it maximizes aggregate utility.

There are several recent contributions to the literature on multi-self decision-

making which mostly focus on a different set of questions than we do. Of these,

the most related is Green and Hojman (2007) (henceforth GH), who also explain

choice behavior using certain structured aggregation methods. They consider scor-

ing rules, a parametric family of ordinal voting rules able to rationalize any social

choice behavior if one allows for any probability measure on strict preference or-

derings - a result shown in both Saari (1999) and GH. Scoring rules are ordinal

and do not fall within our class of aggregation methods; furthermore, GH do not

address the question of rationalizing choice functions using a restricted domain

of selves, instead focusing attention on welfare analysis using sets of possible ra-

tionalizations.6 Other related work includes Manzini and Mariotti (2007) and

Cherepanov, Feddersen and Sandroni (2008), who consider sequential application

of multiple rationales to eliminate alternatives, a process they show can rationalize

certain choice functions. Finally, Fudenberg and Levine (2006) consider a dual-

self model of dynamic choice, where the two selves’ utilities are aggregated in a

menu-dependent way.7

Besides the primary interpretation using multi-self individual decision-making,

our results can also be used to analyze collective household choice. For this reason,

we extend the analysis to incomplete choice functions, such as demand functions.

Our results complement those of Browning and Chiappori (1998) and Chiappori

and Ekeland (2006) in this context. We can also address questions regarding the

size of the subjective state-space in models of choice over menus, complementing

the results of Dekel, Lipman and Rustichini (2001).

This paper is organized as follows. Section 2 presents the framework and exam-

ples thereof. Section 2.4 shows how some rule-of-thumb decision-procedures can be

rationalized within this framework. Section 3 describes our accounting procedure

for IIA violations and Section 4 presents our main results. Section 5 considers

two applications of our model. Finally, Section 6 investigates different ways of

tightening the bounds on rationalization.

6Bernheim and Rangel (2007) also focus on welfare analysis given choices contradicting ratio-
nal decision-making.

7See also Chatterjee and Krishna (forthcoming) for a model of dual-self decision-making.
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2 A framework for rationalizing choice

2.1 Main concepts and definitions

Suppose that we observe a DM’s choice behavior on a finite set of alternatives X.

Denote by P (X) the set of nonempty subsets of X. The DM’s choice function

c : P (X) → X identifies the alternative c(A) ∈ A that she chooses from each A ∈
P (X). A rationalization of the DM’s choice function consists of two components,

a collection of selves U and an aggregator f that combines these. The DM’s selves

represent her conflicting motivations or priorities. The aggregator corresponds to

the DM’s method of “sorting out” her priorities to come to a decision.

Formally, given a basic set of alternatives X, a self (a.k.a. reason, rationale) is

a utility function u : X → R. Hence, each self is an element of the function space

RX , and u(x) is the utility level that self u allocates to x ∈ X. For each positive

integer n, we denote by Un(X) = ×n
i=1RX the set of all n-tuples of selves defined

over X, and by U(X) = ∪∞n=1Un(X) the set of all finite tuples of selves over X.

We will denote a particular collection of selves by U . To denote the number of

selves in U , we use the notation |U | or simply n when no confusion would arise.

An aggregator f specifies an aggregate utility for every alternative a in every

choice set A, given any (finite) basic set of alternatives X and any collection of

selves U defined over these alternatives. Formally, the domain over which f is

defined is {a, A,X, U |X ∈ X , U ∈ U(X), A ∈ P (X), a ∈ A}, where X is the set of

all conceivable basic sets of alternatives, and every X ∈ X is finite. We indicate

X explicitly among the arguments of f because we are interested in investigating

how the number of selves needed to rationalize a given choice rule depends on

the number of alternatives in X. Note that since the choice set is one of the

arguments of the function, f aggregates the utilities of the selves in a possibly

context-dependent way.8

Definition 2.1. We say that a choice function c(·) on X is rationalized by the

aggregator f if there exists a finite collection of selves U ∈ U(X) such that for

every A ∈ P (X), c(A) = arg maxa∈A f(a, A,X, U).

Although aggregation in the above framework is cardinal (intensities of pref-

erences might matter), the model has the ordinal feature that there can be many

8We could also permit aggregators with restricted domains: let R̂X be a convex subset of RX

and define instead Un = ×n
i=1R̂X .
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“equivalent” representations of an aggregator in this context. In particular, if f

rationalizes the choice function c using the selves U , then so does any increas-

ing transformation of f ; and similarly, if f rationalizes c using the selves U , then

f ◦ h−1 rationalizes c using the selves h ◦ U , where h : R → R is invertible on the

appropriate domain.

2.2 Basic axioms of aggregation

We are interested in examining theories of aggregation that are in line with the

underlying selves’ preferences. For this reason, for the rest of the paper we restrict

attention to aggregators satisfying the following properties, most of which are

familiar from the theory of social choice. As we will argue below, imposing these

properties is a natural requirement if the aggregation of utilities is cardinal and the

framing effect of a choice set operates only through the utility levels of alternatives

for different selves.

To state these properties, we let π : X → X be any permutation and define

u ∈ RX to be δ-indifferent if |u(a) − u(b)| < δ for all a, b ∈ X. We define U =

(u1, u2, . . . , un) ∈ U(X) to be δ-indifferent if ui is δ-indifferent for every i. Also,

for any U,U ′ ∈ U(X), (U,U ′) denotes (u1, u2, . . . , u|U |, u
′
1, u

′
2, . . . , u

′
|U ′|) ∈ U(X).

P1 (Neutrality) For any permutation π, f(π(a), π(A), X, U ◦π−1) = f(a, A,X, U).

P2 (Single-self respect) For any u ∈ RX , u(a) ≥ u(b) if and only if f(a, A,X, u) ≥
f(b, A, X, u).

P3 (Separability) If f(a, A,X, U) ≥ f(b, A, X, U) and f(a, A,X, Û) ≥ f(b, A, X, Û)

then f(a, A,X, (U, Û)) ≥ f(b, A, X, (U, Û)), with strict inequality if one of the

above holds strictly.

P4 (Continuity at indifferent selves) If f(a, A,X, U) > f(b, A, X, U) then for any

k ∈ Z+ there is δk > 0 such that f(a, A,X, (U,U ′)) > f(b, A, X, (U,U ′)) for any

δk-indifferent U ′ ∈ Uk(X).

P5 (Duplication) If U(a) = U(â) then f(·, A ∪ {a}, X, U) = f(·, A ∪ {â}, X, U).

Neutrality implies that the particular names of elements do not affect their

ranking. Single-self respect is a minimal consistency requirement. Separability

requires that if two collections of selves each prefer the alternative a to the alter-

native b, then these selves combined also prefer a to b. We note that Single-self

7



respect and Separability together imply Pareto-optimality. Continuity at indif-

ferent selves requires strict preference orderings implied by the aggregator to be

robust to the addition of nearly-indifferent collections of selves. This is the axiom

that separates the class of aggregators we study from ordinal ones, since repeated

application of the axiom implies that one self’s strict preference ordering is not

reversed by arbitrarily many finite number of other selves, provided that the latter

selves are all close enough to be indifferent (which only makes sense in a cardinal

setting). Finally, Duplication says that aggregation is only affected by the utility

levels of the alternatives in a given choice set. In particular, choice is not affected

by which of two alternatives is adjoined to a set as long as those two alternatives

yield exactly the same utility to all of the selves.

2.3 Examples of aggregators

The following are examples of context-dependent aggregators satisfying P1-P5,

that are equivalent or closely related to models proposed in the existing literature.

Example 2.2 (Passion-driven and passion-muted models). Suppose there is a

strictly monotonic and continuous weighting function g : R → R such that for all

U ∈ U and choice sets A ⊆ X,

f(a, A,X, U) =
n∑
i=1

g
(
max
b∈A

ui(b)−min
b∈A

ui(b)
)

ui(a)

If g(·) is increasing, the model is a passion-driven one in which selves who are

more “passionate” about the alternatives in the set A receive greater weight in

the decision-process because they are more vociferous than selves who are more

or less indifferent among the possibilities. If g(·) is decreasing,9 the model may

be seen as a passion-muted model or a context-dependent version of the models

of relative utilitarianism in Dhillon and Mertens (1999) and Segal (2000), where

a DM’s weight in society is normalized by her utility range over the grand set of

alternatives. Observe that a is preferred to b in the pair {a, b} if and only if

n∑
i=1

g(|ui(a)− ui(b)|)(ui(a)− ui(b))︸ ︷︷ ︸
odd function of ui(a)−ui(b)

> 0

9If g(·) is decreasing, we impose the restriction limx→0+ xg(x) = 0.
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Therefore, for pairwise choices the aggregator is similar to the additive difference

model of Tversky (1969), which accounts for potentially intransitive pairwise choice

behavior by positing utilities v1, v2, . . . , vn and an odd function φ : R → R such

that x � y if and only if
∑n

i=1 φ(vi(xi) − vi(yi)) > 0. For larger choice sets, the

aggregator can be thought of as a generalization of the additive difference model

that permits context-dependence.

Example 2.3 (Loss aversion). Suppose that the aggregator is given by

n∑
i=1

[
(ui(a)−midpti(A)) · 1ui(a)≥midpti(A) + λi(ui(a)−midpti(A)) · 1ui(a)<midpti(A)

]
,

where midpti(A) is the midpoint of the range of ui on A and λi is the loss aver-

sion parameter for self i. This aggregator is a specific formulation of the model

proposed in Tversky and Kahneman (1991), when the reference point for a self is

the midpoint of the utility range given the choice set.

Example 2.4 (Costly self-control aggregators). Fudenberg and Levine (2006) pro-

pose a dual-self impulse control model with a long-run self exerting costly self-

control over a short-run self. The reduced-form model they derive has an analogous

representation in our framework, with two selves: the long-run self, with utility

given by uRF (the expected present value of the utility stream induced by the

choice in the present), and the short-run self, with utility function u (the present

period consumption utility).10 Using our terminology, the reduced form represen-

tation of their model assigns to alternative a the aggregate utility uRF (a)− C(a),

where term C(a) depends on the attainable utility levels for the short-run self and

is labeled as the cost of self-control. For example, using Fudenberg and Levine

(2006)’s parametrization, C(a) = γ[max
a′∈A

u(a′)− u(a)]ψ.

One way to generalize this aggregator to any number of selves would be to

introduce multiple types of short-term temptations, represented by selves u2, ..., un,

and to define the aggregator

f(a, A,X, U) = u1(a)−
n∑
i=2

γ[max
a′∈A

ui(a
′)− ui(a)]ψ, where u1 = uRF .

10The long-run self’s utility is equal to the short-run self’s utility plus the expected continuation
value induced by the choice. If the latter can take any value, then uRF is not restricted by the
short-run utility u. If continuation values cannot be arbitrary (for example they have to be
nonnegative) then u restricts the possible values of uRF , hence U has a restricted domain. In
Fudenberg and Levine (2006) the utility functions also depend on a state variable y. Here we
suppress this variable, instead make the choice set explicit.
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This is an example of an aggregator in our framework in which different selves are

treated asymmetrically (here the long-run self is treated differently than the rest).

Example 2.5 (Contextual concavity models from marketing). Kivetz et al. (2004)

(henceforth KNS) considers various models capturing the compromise effect docu-

mented in experimental settings. KNS consider goods (e.g., laptops) which have de-

fined attribute levels (e.g., processor speed) and posit utility levels (“partworths”)

for a given attribute. That is, they consider multiattribute alternatives and prede-

fine the number of “selves” according to their selected good attributes. One type

of model considered in KNS is referred to as a contextual concavity model. Using

our notation, the simple contextual concavity model they propose is given by

f(a, A,X, U) =
n∑
i=1

(ui(a)−min
a′∈A

ui(a
′))ci ,

where ci is the concavity parameter and each i corresponds to the i-th attribute.

They also propose a version that is normalized by the range of utilities, which we

featured in Section 1.

In the examples above, the aggregator depends only on utility levels that are

attainable in the choice set. One might also be interested in aggregators that give

greatest weight to selves unhappy with the choice set (e.g., their average utility

over the set is lower than their average utility from other menus). Our framework

permits such dependence on unattainable utility levels, as demonstrated by the

aggregator used in the following section to rationalize a natural decision-rule.

2.4 An example for rationalizing a decision rule

The median procedure is a simple choice rule defined in KRS. There is a strict

ordering � defined over elements of X, and the DM always chooses the median

element of each A ⊆ X according to � (choosing the right-hand side element

among the medians from choice sets with even number of alternatives).

To rationalize this behavior, we consider the following aggregator.

f(a, A,X, U) =
n∏
i=1

(ui(a) + max
a′∈X

ui(a
′)−med

a′∈A
ui(a

′)),

where med
a′∈A

ui(a
′) is the median element of the set {ui(a′)}a′∈A, with the convention
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that in sets with an even number of distinct utility levels, for odd i it is the higher

one among the two median utility levels and for even i it is the lower one. The

geometric aggregation implies that in case of selves having exactly the opposite

preferences, the aggregated utility of an alternative from a given choice set is

maximized when it is closest to the median element of the utility levels from the

choice set.

Indeed, we claim that with the above aggregator, two selves can be used to ra-

tionalize the median procedure. Let a1, a2, ..., aN stand for the increasing ordering

of alternatives in X according to �, and define u1(ai) = i and u2(ai) = N + 1− i

for all i ∈ {1, ..., N}. It is easy to see that it is indeed the median element of any

choice set that maximizes f , since the sum of u1(a)+max
a′∈X

u1(a
′)−med

a′∈A
u1(a

′) and

u2(a) + max
a′∈X

u2(a
′)−med

a′∈A
u2(a

′) is constant across all elements of X, and the two

terms are equal at the median. Therefore the product that defines f is maximized

at the median.

This rationalization is relatively simple and intuitive: the DM is torn between

two motivations, one in line with ordering �, and one going in exactly the opposite

direction. Moreover, the geometric aggregation of these preferences drives the DM

to choose the most central element of any choice set. In contrast, KRS show that in

their framework, in which exactly one self is responsible for any decision, as the size

of X increases, the number of selves required to rationalize the median procedure

goes to infinity.11 While dictator-type aggregators as in KRS do not provide an

intuitively appealing explanation for the median procedure, an aggregator that

captures compromise along selves along the lines of the above-defined f does yield

a model that rationalizes the median procedure in a simple and intuitive way.

There are many variants of the above aggregator that do not select exactly the

median from every choice set, but have a tendency to induce the choice of a cen-

trally located element from any choice set. For example, consider f(a, A,X, U) =
n∏
i=1

(ui(a)−min
a′∈X

ui(a
′)). This aggregator allocates 0 aggregate utility to any element

that is minimal for some self given the choice set, and strictly positive utility to all

other elements (the largest one to the element maximizing the product of utility

surpluses for different selves). In general, if f is menu-dependent and aggregates

11Another simple procedure considered in KRS which in their framework requires a large
number of selves to rationalize is the second-best procedure, suggested first by Sen (1993). It is
again possible to provide an aggregator fitting our framework such that two selves with opposite
interests rationalize the choice rule - please contact the authors for details.
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the utilities of selves through a concave function, the choice induced by f exhibits

a compromise effect or extremeness aversion, as in the experiments of Simonson

(1989): given two opposing motivations, an alternative is more likely to be selected

the more centrally it is located. If, on the other hand, f is menu-dependent and

convex, then it can give rise to a polarization effect, as in the experiments of Simon-

son and Tversky (1992): the induced choice is likely to be in one of the extremes

of the choice set. Hence, our model can be used to reinterpret experimental choice

data in different contexts, in terms of properties of the aggregator function.

3 Counting IIA violations

The examples of decision-rules presented in the previous section violate the Inde-

pendence of Irrelevant Alternatives (IIA) because they are context-dependent.12

IIA requires that if a ∈ A ⊂ B and c(B) = a then c(A) = a. This says that if an

alternative is chosen from a set, then it should be chosen from any subset in which

it is contained. It is well known that a choice function can be rationalized as the

maximization of a single preference relation if and only if it has no violations of

IIA. In the next section we connect the choice functions that a given aggregator

can rationalize with a fixed number of selves to the number of IIA violations that

a choice function exhibits. For this reason, below we formally define an accounting

procedure for the number of IIA violations.

The number of IIA violations can be determined straightforwardly for choice

functions over three-element sets; e.g., if the choice over pairs is transitive but the

second-best element according to the pairs is selected from the triple, there is one

violation of IIA. For a larger set of alternatives, there are different plausible ways

to define the number of violations. For example, suppose that

c({a, b, c, d, e, f}) = d

c({a, b, c, d, e}) = b

c({a, b, c, d}) = b

c({b, c, d}) = c.

In light of c({a, b, c, d, e, f}) = d, IIA dictates that the last three choices should be

12Under the restriction of single-valued choice, the IIA condition is equivalent to Sen’s α - see
Sen (1971) - or WARP, the weak axiom of revealed preference.
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d (but they are not). In light of c({a, b, c, d, e}) = b, IIA dictates that the choice

from {b, c, d} should be b (but it is not), and the IIA implication for {b, c, d} is

again violated in light of c({a, b, c, d}) = b. Hence, one way of counting would

indicate five IIA violations with respect to the above four choice sets.

According to the above counting method, a given choice can cause many IIA

violations. Instead, according to our counting procedure, any choice can increase

the number of violations by at most one, and in the above example only the choices

from {a, b, c, d, e} and {b, c, d} are associated with violations. The reason is that

while c({a, b, c, d}) = b does contradict c({a, b, c, d, e, f}) = d, the intermediate

choice c({a, b, c, d, e}) = b itself implies by IIA that c({a, b, c, d}) = b. In sum,

our accounting procedure considers only the first violation of a choice, not further

violations of the same choice in subsets of the set associated with the first violation.

Definition 3.1 (IIA violation). The set A causes an IIA violation under the choice

function c(·) if (1) there exists B such that A ⊂ B and c(B) ∈ A\{c(A)}, and (2)

for every A′ such that A ⊂ A′ ⊂ B, c(A′) 6∈ A.

Then, the total number of IIA violations is defined in the natural way.

Definition 3.2 (Number of IIA violations). The total number of IIA violations of a

choice function c(·) is given by IIA(c) = #{A ∈ P (X) | A causes an IIA violation}.

We remark that one possible alternative measure of the number of IIA violations

is the minimal number of sets at which the choice function would have to be

changed to make it rational. This measure can in general be either larger or

smaller than our measure of the number of IIA violations.13

4 Main results

We now present our main results, which give lower bounds on the choice functions

that an aggregator can rationalize with a given number of selves. For ease of

13Indeed, suppose that pairwise choices exhibit the transitive ranking a preferred to b preferred
to c. Under our measure, there is one violation of IIA if c({a, b, c}) = b, which is defeated once
in the pair {b, c}, and two violations of IIA if c({a, b, c}) = c, which is defeated twice. The
alternative measure counts one violation either way. To see that the alternative measure can also
be larger, consider the choice function over {a, b, c, d, e} which chooses the alphabetically-lowest
alternative in all sets, except that b is chosen in three-element sets in which it is contained as
well as from the pair {a, b}. The alternative measure counts four violations, while ours counts
three. We thank both John Geanakoplos and Bart Lipman for suggesting this measure to us.
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exposition, in this section we restrict attention to aggregators that only depend on

alternatives in the choice set.

P6 (Independence of unavailable alternatives) For any basic sets of alternatives

X, X ′ ∈ X such that A ∈ X ∩X ′, and for any selves UX ∈ U(X) and UX′ ∈ U(X ′)

that agree on A (i.e., UX′
(a) = UX(a) for all a ∈ A), the aggregator satisfies

f(·, A,X, UX) = f(·, A,X ′, UX′
).

In Appendix B we extend our results to aggregators violating P6.

We start in Section 4.1 by demonstrating how to construct selves that rational-

ize a choice function in the case of the passion-driven aggregator. The construction

provides intuition for the connection between the number of selves and the number

of IIA violations. In Section 4.2 we generalize the construction to any aggregator

satisfying a property that we call triple-solvability. This property holds for the ag-

gregators in all of the examples we considered. In Section 4.3, we provide sufficient

conditions for triple-solvability within the class of anonymous, additively separa-

ble and scale invariant aggregators. In particular, we show that triple solvability

is broadly satisfied. For example, it is satisfied if the aggregator can rationalize

“third-place choice,” using the terminology of GH; or more generally if the aggre-

gator “stretches” utility differences in a nonlinear way that we formalize below.

4.1 Rationalizing choice with passion-driven aggregation

Suppose that we are interested in rationalizing some choice function c(·) using the

passion-driven aggregator, which is given by

f(a, A,X, U) =
n∑
i=1

g
(
max
b∈A

ui(b)−min
b∈A

ui(b)
)

ui(a)

where g(·) is increasing. Before considering an arbitrary grand set of alternatives

X, let us first examine how this aggregator behaves on an arbitrary three-element

set of alternatives X̂ = {a, b, c}. Supposing that we were to use f to aggregate

the five selves U = (u1, u2, u3, u4, u5) specified below, how would f evaluate each

14



alternative in each subset of X̂?14

u1 u2 u3 u4 u5

b 2

c 1

a 0

b 2

a 1

c 0

c 2

b 1

a 0

a, c 2

b 0

a 2

b, c 0

It is easy to see that the aggregator selects a from the choice set {a, b}. Observe

that f(a, {a, b}, X̂, U) = 4g(2) + g(1) and f(b, {a, b}, X̂, U) = 2g(2) + 3g(1), hence

f(a, {a, b}, X̂, U) > f(b, {a, b}, X̂, U) if and only if g(2) > g(1), which holds since

g(·) is strictly increasing. By contrast, the aggregator assigns equal utility to all

alternatives in any other menu:

f(a, {a, c}, X̂, U) = f(c, {a, c}, X̂, U) = 2g(0) + g(1) + 2g(2)

f(b, {b, c}, X̂, U) = f(c, {b, c}, X̂, U) = 3g(1) + 2g(2)

f(a, {a, b, c}, X̂, U) = f(b, {a, b, c}, X̂, U) = f(c, {a, b, c}, X̂, U) = 5g(2)

That is, a beats b when the choice set is {a, b}, while the selves cancel each other out

for any other subset of X̂. We call such a collection of selves defined on X̂ a triple-

basis for this aggregator. In the case of this aggregator, the selves above would

still be a triple-basis if we were to scale all the utilities by a common constant.

Given an arbitrary X and any choice function c defined on X, we can use the

triple-basis above to construct a collection of selves that rationalize c using the

passion-driven aggregator f . The procedure works as follows. We examine all

possible choice sets in X from smallest to largest, first going through all choice

sets of size two, then all choice sets of size three, etc. We ignore any choice set

that does not cause an IIA violation. For each choice set A that does cause an IIA

violation, the construction creates a collection of selves UA defined on X such that

1. c(A) is selected under f ◦UA from every subset of A in which it is contained

2. The selves UA cancel each other out under f on every other choice set (that

is, on sets not containing c(A) or sets containing some element of X \ A).

3. The selves UA are “indifferent enough” so that their trickle-down effect does

not overturn the strict preference of previously constructed selves

14In the i-th column, the alternative on the left is assigned the utility number to its right.
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Finally, the construction creates an extra self u∗, that is indifferent enough

never to overturn any of the other selves’ strict preferences, in the standard way:

the self allocates the highest utility to c(X), the next highest utility to X \{c(X)},
and so on. All in all, this procedure constructs a collection of 1 + 5 · IIA(c) selves.

Using the triple-basis above, it is easy to construct the collection of selves UA

associated with a set A that causes an IIA violation. To satisfy the first two

properties above, we simply let c(A) play the role of a in the triple-basis, all the

elements of A\{c(A)} play the role of b, and all the elements of X \A play the role

of c. That is, we extend the utilities from {a, b, c} to the given X such that: each

self allocates the same utility to c(A) as to a in the triple-basis, the same utility

to elements of A/c(A) as to b in the triple base, and the same utility to X/A

as to c in the triple-basis. Neutrality (P1) and duplication (P5) then imply that

the properties of the triple-basis carry over: for each B ⊆ A that contains c(A),

f(c(A), B, X, UA) > f(y, B, X,UA) for all y ∈ B \{c(A)}, and for all other subsets

B′ ⊆ X, f(x, B′A) = f(y, B′A) for all x, y ∈ B′. To satisfy the third property

above, we can use continuity (P4) and scale all the selves in the triple-basis by

some appropriately chosen ε > 0.

This entire collection of selves rationalizes c(·) under f . The construction

ensures that c(A) is selected from any set causing an IIA violation; one need

only check that constructed selves do not interfere with choices associated with

sets that do not cause IIA violations. To loosely illustrate the idea, consider any

nested sequence of choice sets that decreases by one alternative. Given X, or any

set from which c does not contradict the choice from X, all selves besides u∗ are

indifferent, hence by single-self respect (P2) and separability (P3) the preferences

of u∗ prevail. For the first set of the sequence that contradicts the choice from

X, a 5-tuple of selves was created who are passionate enough to overrule u∗ and

guarantee that the c-choice from this set is the f -maximizer (while all other 5-

tuples will be indifferent). Similarly, whenever along the sequence there is a set

that contradicts the choice of the previous set, another 5-tuple of selves was created

that overrules the preferences of all selves created in association with larger sets.

The above construction implies that if we permit the model to have n selves,

any choice function (on any grand set of alternatives) having fewer than n−1
5

IIA-

violations can be rationalized using this aggregator.
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4.2 Main rationalizability result

The construction from the previous subsection can be generalized to any aggregator

having the property that there exists k ∈ Z+ such that there exists a triple-

basis consisting of k selves that are arbitrarily close to being indifferent. As we

showed above, passion-driven aggregators satisfy this requirement with k = 5.

This property is relatively simple to check for a concrete aggregator, since it is

defined for a three-element set. For scale-invariant aggregators, which satisfy the

property that measuring utilities in a different unit does not change the ordering

implied by the aggregator, checking the property is particularly simple, since it

then suffices to construct one triple-basis which can be scaled as needed. For

investigating how large is the set of aggregators satisfying the property, and for

sufficient conditions for the property, see the next subsection.

Definition 4.1. We say Û ∈ U({a, b, c}) is a triple-basis for f with respect to

{a, b, c} if f(a, {a, b}, {a, b, c}, Û) > f(b, {a, b}, {a, b, c}, Û), and f(·, A, {a, b, c}, Û)

is constant for all other A ⊆ {a, b, c}.

Condition (Triple-solvability of f with k selves) There exists a triple {a, b, c} and

k ∈ Z+ such that for every δ > 0, there is a U ∈ Uk({a, b, c}) that is a δ-indifferent

triple-basis for f with respect to {a, b, c}.

Triple-solvability with k selves implies that we can find a sequence of triple-

bases containing k selves that converge to indifference.

Our main theorem applies to all aggregators satisfying P1-P6 and triple-solvability

Theorem 4.2. Suppose f satisfies P1-P6 and is triple-solvable with kf selves.

Then, using n selves, f can rationalize any choice function c, defined on any finite

grand set of alternatives X, that exhibits at most n−1
kf

IIA-violations.

The choice functions exhibiting no more than n−1
kf

IIA-violations constitute a

lower bound on behaviors that an aggregator f satisfying the conditions in the

theorem can rationalize. The result can be restated such that if f satisfies P1-P6

and is triple-solvable with kf selves then it can rationalize any choice function c

with no more than 1 + kf · IIA(c) selves. That is, 1 + kf · IIA(c) is an upper

bound on the number of selves (or complexity) required for rationalizing c with f .

It is therefore evident that, in spite of having a structured form, any aggregator

satisfying these properties can rationalize any choice function if sufficiently many

selves are permitted by the model.
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4.3 Sufficient conditions for the main result

A natural question is how large is the set of aggregators that satisfy the triple-

solvability condition in Theorem 4.2. As for the aggregators featured in Section 2.3,

which are closely related to models proposed in the existing literature, it is straight-

forward to show that all of them satisfy the condition. For example, permuting

the alternatives a and b in the selves in the triple-basis for the passion-driven ag-

gregator featured in the previous section works for passion-muting aggregators.15

Below we formally investigate how large the set of aggregators satisfying the

triple-solvability condition is within the class of anonymous, additive and scale-

invariant aggregators, and find uniform bounds for kf . Formally, we impose the

following additional structure.

P7 (Anonymity) For any U ∈ Un(X) and any permutation π :
(
RX

)n → (
RX

)n
it holds that f(·, ·, X, U) = f(·, ·, X, π(U)).

P8 (Scale invariance) There is an invertible and odd φ : R → R such that

f(·, ·, X, αU) = φ(α)f(·, ·, X, U) ∀ α ∈ R.

P9 (Additive separability) f is additively separable, i.e. f(·, A,X, U) =
n∑
i=1

gAi (ui)

∀ X ∈ X , A ⊂ X and U ∈ Un(X).

Anonymity implies that the aggregation is symmetric with respect to selves.

Scale-invariance implies that the ordering of different elements in the aggregation

does not depend on the scale in which utilities are measured. Additive separability

is a strengthening of P3, and is a common functional form assumption.16

Together, these properties imply that the aggregator f(a, A,X, U) takes the

form
n∑
i=1

f(a, A,X, ui), where f(a, A,X, αu) = φ(α)f(a, A,X, u).17

To measure the difference in aggregate utilities over any two alternatives within

15Contact the authors for triple-basis for aggregators featured in the other examples.
16To break this condition down, consider the following properties:

P9’ (Strong Continuity) The ordering of elements over A implied by f(·, A, X, U) is continuous
in U for every A ⊂ X.
P9” (Independence) For any A ⊂ X and a ∈ A, and any U,U ′, V ′, V ′′ ∈ U , f(a,A,X, (U, V ′)) =
f(a,A,X, (U ′, V ′)) implies f(a,A,X, (U, V ′′)) = f(a,A,X, (U ′, V ′′)).
Note that P9’ implies P3, which requires the ordering of elements implied by f to be continuous
in U only at indifferent selves. Then P1, P2 and P4, together with P9’ and P9” imply P9, by
Debreu’s aggregation theorem. We do not provide the details here, referring the interested reader
to Debreu (1959, Theorem 3) and also Maskin (1978).

17It actually suffices for our results that f is equivalent to such an aggregator (see the discussion
on ordinal properties of our model in Subsection 2.1).
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any choice set, we introduce the shorthand

fac(u) = f(a, {a, c}, {a, b, c}, u)− f(c, {a, c}, {a, b, c}, u),

fa(u) = f(a, {a, b, c}, {a, b, c}, u)

for arbitrary {a, b, c} and any single self u ∈ R{a,b,c}; as well as the shorthand

fac(U) =
∑n

i=1 fac(ui) and fa(U) =
∑n

i=1 fa(ui) for a collection of selves U .

Suppose that there exists a positive constant γ and possibly menu-dependent

constants δA such that the aggregator f takes the form f(a, A, {a, b, c}, u) =

γui(a) + δA for every a and every A ⊆ {a, b, c}. In this case, it is easy to see

that although aggregate utility is affected cardinally by menu-dependence, it is

not affected ordinally, and the resulting choice behavior is always rational. In par-

ticular, for any collection of selves U , knowing how the aggregator acts on any two

pairs (for example, fab(U) and fbc(U)) one may immediately recover fab(U) as the

sum of these. To rule out such degenerate menu dependence, we introduce the

following definition.

Definition 4.3. If U ∈ U({a, b, c}), we say that f ◦U is type-1 nondegenerate (on

{a, b, c}) if fac(U) 6= fab(U) + fbc(U).

As seen from the discussion above, nondegeneracy requires that f “stretch”

utility differences in a manner that depends on the choice set. That is, preference

intensity must be affected by the alternatives at hand.

Observe that for any {a, b, c} and any U ∈ U({a, b, c}), f◦U generates a ranking

of the alternatives in the triple: a is better than b in the triple if fa(U) ≥ fb(U).

If f ◦ U rationalizes a choice function, there is a unique best element in the triple

which is selected by the choice function. The worst elements in the triple are those

x ∈ {a, b, c} such that fx(U) ≤ fy(U) for all y ∈ {a, b, c}. Observe that f ◦ U also

generates a ranking over alternatives from pairwise choice: a is better than b if

fab(U) ≥ 0. If the ranking generated from pairs is transitive, and f ◦ U generates

a choice function, then there exists a unique worst pairwise element.

The next theorem establishes that if there exist selves U , defined on the triple

{a, b, c}, for which f ◦ U is type-1 nondegerate and rationalizes some irrational

behavior where the worst element according to pairwise choice “moves up” in the

triple, then the aggregator is triple-solvable.
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Theorem 4.4. Let f satisfy P1-P9. Consider any {a, b, c} ∈ X , and suppose there

exists U ∈ U({a, b, c}) such that f ◦ U is type-1 nondegenerate and rationalizes

an irrational behavior in which the worst element over the pairs is not among the

worst elements in the triple. Then there is kf such that f is triple-solvable with

kf selves.

In particular, this implies that if f ◦ U is type-1 nondegenerate and satisfies

one of the following two simple “extreme-switching” properties, then it is triple-

solvable: (i) the worst element over the pairs is the best in the triple; or (ii) the

best element over the pairs is the worst element in the triple. The first behavior

corresponds to what GH call “third-place choice.” The second occurs in one type

of “second-place choice.” If the aggregator can rationalize such preference shifts

on a triple, it can rationalize any choice behavior on any grand set of alternatives;

and with a fixed number of selves, the bounds of Theorem 4.2 apply.

The above result does not provide a bound on the number of selves in the

triple-basis. The next theorem gives a uniform bound, under a different but related

assumption on the aggregator using one self defined on the triple.

Definition 4.5. If u ∈ R{a,b,c}, we say that f ◦ u is type-2 nondegenerate (on

{a, b, c}) if [fa(u)− fb(u)] + [fa(u)− fc(u)] 6= fab(u) + fac(u).

This non-degeneracy condition rules out that the same linear relationship holds,

for any possible self, between aggregated utilities given three-alternative and two-

alternative sets.18 These nondegeneracy conditions combined provide a uniform

bound for the number of selves in a triple-basis.

Theorem 4.6. Suppose f satisfies P1-P9. Consider any {a, b, c} ∈ X . If there

exists a single self u on {a, b, c} such that f ◦u is type-1 and type-2 nondegenerate

then f is triple-solvable with no more than 5 selves.

18It is easy to show, for example, that the passion-driven aggregator of Example 2.2 violates
this condition of linear context-dependence whenever g(·) is nonlinear. Contact the authors for
a proof.
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5 Applications

5.1 Choice over menus: a generalized Strotzian model

In this section we apply our model and the results of Section 4 to examine the

situation in which the DM is allowed to choose the menu from which she will pick

an alternative. We will refer to the selection of a menu as the first stage of the

decision problem, and posit the following testable restrictions on first-stage choice

behavior. Denoting the grand set of alternatives by X, we assume that the DM

has a preference relation � on P (X)× P (X) satisfying three simple axioms.

Axiom 1 (Preference Relation) � is complete and transitive

The preference � is a strict ordering on {a}a∈X if for all a, b ∈ X, {a} 6∼ {b}.

Axiom 2 (Strict Ordering) � is a strict ordering on {a}a∈X

In the classical theory of choice, a set is assumed to be indifferent to its best

element. Since then, various authors have relaxed this assumption by assuming,

for example, that there are psychological costs to be borne by the introduction of

unchosen but tempting elements, as in Gul and Pesendorfer (2001). Instead of such

psychological costs, our model emphasizes inner conflict in choosing amongst alter-

natives. The set of alternatives may affect the chosen alternative in a manner that

violates IIA. However, we retain the idea that the set is indifferent to the “best”

element inside it, even if that element may not arise from a menu-independent

ranking. That is, we posit the Independence of Utility to Unchosen Alternatives

(IUUA): taking as given whatever element is chosen, the unchosen alternatives do

not affect the well-being of the DM.

Axiom 3 (IUUA) For all A ∈ P (X), there exists a ∈ A such that A ∼ {a}

Axiom 3 says that given a set of available menus and hence fixed first stage

preferences of the DM, any decision maker maximizing these preferences is indiffer-

ent between the choice set A and getting just a, which we interpret as the element

that is foreseen to be chosen from A.

This implies that for each prize a ∈ X, there is an equivalence class (let us

call these classes “bins”) and that each menu A ∈ P (X) falls into one of these

bins. Axioms 1-3 together ensure that we may uniquely define an induced choice

function c� : P (X) → X by c�(A) = a if a ∈ A and A ∼ {a}. We may then obtain

the following representation theorem for choice over menus, which also provides a
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bound on the second-stage subjective state space.

Theorem 5.1. � satisfies Axioms 1-3 if and only if there exist selves U =

(u1, u2, . . . , un) ∈ U(X) and a utility function W : X → R on prizes such that

� is represented by the utility function V : P (X) → R on sets, defined by

V (A) = W
(

arg max
a∈A

f(a, A,X, U)
)
,

where f satisfies P1-P6 and triple-solvability with k selves, and n ≤ 1+k · IIA(c�).

Proof. Because each menu is indifferent to the alternative chosen by the induced

choice function, the DM’s preferences over menus may be represented by a utility

function W (·) over the alternatives in X. We may then use the result of Theorem

4.2 to rationalize the induced choice function.

The representation may be interpreted as follows. When evaluating a choice

set, the DM considers the various, possibly conflicting interests that will govern

her choice from the set. These interests are represented by the selves U . The

motivations that govern her choices from different menus need not be the same

as W , which governs her choice over menus (although those motivations might be

related to W ). The DM simply picks the set from which the element foreseen to

be chosen yields the greatest first stage utility. Consequently, the representation

may be thought of as a generalized Strotzian preference (Strotz (1955)), where the

DM chooses the best menu subject not to the choice of one self, but rather the

choice maximizing the aggregate utility of multiple selves.19

The model implies that for any pair {a, b}, either {a, b} ∼ {a} or {a, b} ∼ {b}.
However, for larger sets, it may be that A∪B � A, B (interpreted as a preference

for flexibility in Kreps (1979)), that A, B � A ∪ B, or that A � A ∪ B � B

(as in Gul and Pesendorfer (2001)’s betweenness, which they interpret in terms

of costly self-control). The interpretation here is different: the DM is conflicted

when she makes her choice from the menu, and depending on how she resolves

the compromise among selves, might prefer a larger or smaller set that leads to a

better choice according to the ex-ante utility W . How A ∪B stands in relation to

A and B provides information as to when the DM expects to be conflicted.

19We thank Eddie Dekel for suggesting this interpretation. We note that the above conception
can reverse the logic in the branch of temptation and self-control literature begun by Gul and
Pesendorfer (2001), but bears a relation to the separation of decision utility and experienced
utility proposed by Kahneman, Wakker and Sarin (1997).
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Observation 5.1. If A∪B is not indifferent to either A or B then an IIA violation

necessarily occurs in the induced choice function; and when an IIA violation occurs,

the upper bound on the minimal number of states (in our interpretation, selves)

required to rationalize the behavior increases.

Using one of the approximately triple-solvable aggregators introduced in Section

6.1, each IIA violation in the induced choice function corresponds to one additional

state. This is related to Dekel et al. (2001)’s result, where the subjective state

space in a model of unforseen contingencies grows when there is additional desire

for flexibility or self-control.20 Here, “anticipated” IIA violations reveal additional

conflicting motivations.

5.2 Microeconomic models of collective household choice

Empirical evidence on household demand strongly suggests that it cannot arise

from the maximization of a single utility. An extensive literature examines the

microeconomic implications of collective choice in households where each member

is a utility maximizer; and in particular, a branch of this literature examines such

models under the restriction of Pareto-efficient household behavior. One question

addressed in this setting is, given a household demand function over N goods, when

do there exist n utility functions {ui}ni=1 and a continuously differentiable function

µ of prices and income such that the demand arises from the weighted utilitarian

maximization of
∑n

i=1 µ(price,income)ui(·) given the budget set (i.e., weights and

preferences vary independently). Browning and Chiappori (1998) show that if

there are N goods, then any demand data can be explained by an (N − 1)-person

household. In addition, to explain a given demand function using n people, it

is necessary and sufficient that the rank of a certain matrix in a pseudo-Slutsky

matrix decomposition be n− 1, though without further restrictions there can be a

continuum of explanatory n-person models (Chiappori and Ekeland (2006)).21

20It is also related to a trend seen in Gul and Pesendorfer (2005a) and Gul and Pesendorfer
(2005b): the case of no self-control in Gul and Pesendorfer (2005a) (A∪B ∼ A or A∪B ∼ B for
all A,B) can be rationalized with a single utility determining choice from the set, whereas the
less restrictive Betweenness-based model of self-control in Gul and Pesendorfer (2005b), which
only rules out violations in transitivity in an induced choice correspondence, can be rationalized
with two utilities.

21The pseudo-Slutsky matrix is formally defined in Chiappori and Ekeland (2006); the rank
condition they give, SR(n−1), is that this matrix can be decomposed as the sum of a symmetric
negative semi-definite matrix and another matrix of rank at most n − 1. One intuition for the
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To apply our framework in this context, we reinterpret selves as individuals of

the household, and the aggregator as the mechanism that translates the individ-

uals’ preferences to household choice (this might be the outcome of a particular

household bargaining procedure). Our approach differs in a number of ways from

Browning and Chiappori (1998) and Chiappori and Ekeland (2006). First, the

aggregator need not be weighted utilitarianism. Second, we address the question

of rationalization by a concrete aggregator, while the above papers assume that

the modeler does not know the underlying aggregation rule of the household, only

that it belongs to the class of weighted utilitarian aggregators. Finally, we examine

choice functions instead of demand functions. However, given that demand data

is typically finite, suppose we denote by X the (finite) set of all available alloca-

tions, let each budget set correspond to a subset A ⊂ X, and identify the demand

data with a function c that selects the allocation c(A) in the budget set A. Then,

rationalizing the demand data corresponds to rationalizing an incomplete choice

function: c renders a choice to any subset A of X for some collection of subsets

A ⊂ 2X , but data on choices from sets in 2X/A is missing. As we show below, our

results can easily be extended to arbitrary incomplete choice functions.

Rationalizing an incomplete choice function c with aggregator f implies finding

a set of selves U on X such that f(c(A), A,X, U) > f(a, A,X, U) for all a ∈
A/{c(A)} and A ∈ A (it does not matter what choices f and U imply from sets

in 2X/A). To see how our theorems generalize, observe that the only element of

the construction that needs to be modified is the number of IIA violations: in this

more general context we say that an IIA-violation is associated with choice set

A ∈ A if there is a nested sequence of choice sets A1, A2, ..., Ak such that A1 = X,

|Aj| − |Aj+1| = 1 ∀ j ∈ {1, ..., k − 1}, and Ak = A for which the choice from Ak

contradicts the choice from Al for some l < k, and Al′ /∈ A for any l < l′ < k. It

is easy to see that this definition reduces to the original one in case of no missing

data. Once the definition of IIA(c) is modified accordingly, it can be shown that

Theorem 4.2 holds (the proof is analogous).22

This means that for any aggregator satisfying our conditions, the demand data

can be rationalized if there are sufficiently many people in the household. This

proof, which relies on exterior differential calculus, is that the Pareto-frontier for n people is n−1
dimensional, and weights and preferences can be varied independently.

22We note that IIA(c) for an incomplete choice function might be strictly less than IIA(c) for
any completion ĉ of c. That is, it can be that any way of specifying choices for sets in 2X/A
creates new IIA violations. Nevertheless, our theorems apply.

24



complements the result obtained in Browning and Chiappori (1998) and Chiappori

and Ekeland (2006), in that even if the researcher knows how preferences in the

household are aggregated, if the number of individuals in the (extended) household

is large or unknown, then the model does not imply any testable restrictions on

household demand. Our combinatorial approach also permits a simple lower bound

on demand data that a household with a known number of individuals can generate,

in terms of the number of IIA violations implied by the demand data.

6 Tightening the bounds on rationalizability

The bound on the set of rationalizable choice functions provided in our main results

is not tight in general. Below we describe two methods of strengthening the results

while keeping the basic features of our original construction, which in some cases

lead to a tight bound. First, for some aggregators it is possible to find a tighter

bound through a weakening of the triple-solvability requirement. Secondly, it may

be possible to obtain a tighter bound by combining (or collapsing) some of the

selves constructed, especially when the DM tends to make mistakes “in the same

direction.”

6.1 Approximate triple-solvability

For some aggregators a tighter upper bound can be provided for the minimum

number of selves needed to rationalize a choice function, through a weakening of

the triple-solvability requirement. In particular, it suffices for triple-solvability to

hold only approximately, which can yield a triple-basis with a smaller number of

selves. For ease of exposition we only state this property for additively separable

aggregators.

Definition 6.1. We say Û ∈ U({a, b, c}) is a (δ, ε)-approximate triple-basis for

f with respect to {a, b, c} if f(a, {a, b}, {a, b, c}, Û) = f(b, {a, b}, {a, b, c}, Û) + δ

and |f(x, A, {a, b, c}, Û) − f(y, A, {a, b, c}, Û)| < ε for all other A ⊆ {a, b, c} and

x, y ∈ A.

That is, a collection of selves U is a (δ, ε)-approximate triple basis for f if

given choice set {a, b} the aggregated utility of U for a is exactly δ higher than the
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aggregated utility of b, while U is ε-indifferent among all alternatives given every

other choice set.

We say that an aggregator f is approximately triple-solvable with k selves if

there is δ > 0 such that exists a (δ, ε)-approximate triple-basis with k selves for

every δ < δ and ε > 0. That is, for approximate triple-solvability we do not require

that the collection of selves in the triple is exactly indifferent between all elements

in choice sets other than {a, b}, only that they can be arbitrarily close to being

indifferent.

Theorem 4.2 can then be modified as follows.

Theorem 6.2. Suppose f satisfies P1-P6 and P9, and is approximately triple-

solvable with kf selves. Then, for any finite set of alternatives X, and any choice

function c : P (X) → X that exhibits at most n−1
kf

IIA-violations, f can rationalize

c with n selves.

The proof is given in the Appendix.

To see why this result is powerful, take any aggregator of the form f(a, A,X, U) =∑n
i=1 h(maxa′∈A ui(a

′))ui(a), where limx→∞ h(x)x = 0. For example, consider a

context-dependent version of relative utilitarianism,

f(a, A,X, U) =
n∑
i=1

ui(a)

1 +
(
maxb∈A ui(b)

)p , p > 1.

Under such an aggregator, the presence of an alternative with very high utility for

a self means that self is given less say in the decision process (a “populist”-type

model). This can be used to create a single-self approximate triple-basis u: let

u(a) and u(b) such that f(a, {a, b}, {a, b, c}, u) − f(b, {a, b}, {a, b, c}, u) = δ (for

small enough δ this is always possible), and let u(c) be high enough so that u is

ε-indifferent between any two elements given sets containing c. Theorem 6.2 then

implies that the aggregator can rationalize all choice functions with no more than

n− 1 IIA-violations, with n selves.

6.2 Collapsing triple-bases

Our construction allocates a different triple-basis (or approximate triple-basis)

for every IIA-violation. However, there can be IIA-violations not contradicting
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each other, in which case parts of the associated triple-bases can be combined (or

collapsed) together.

For example, recall the triple-basis we found for the passion-driven aggregator,

and fix some alternative a. Observe that every time the choice of a from some

set causes an IIA violation, the triple-basis constructed has a self u5 in which a is

preferred to X \{a}, all elements of which are indifferent to each other. Under the

passion-driven aggregator, all of the u5 selves constructed when the choice was a

can be collapsed into a single-self. That is, there would be a self for each distinct

alternative whose choice causes an IIA violation, and four selves per violation in

general. Consequently, “mistakes” in the same direction (e.g., always in the choice

of a) can require fewer selves.

This effect is particularly pronounced when the triple-basis has only one self,

as in the approximately triple-solvable aggregators introduced above. To illustrate

this, consider the following example: let x∗ ∈ X, and let �1 and �2 be strict

orderings on X such that x �1 x∗ and x �2 x∗ for every x ∈ X/{x∗}, and y �1 x

for x, y ∈ X/{x∗} if and only if x �2 y. Consider a decision-maker who from choice

sets not containing x∗ selects the best element according to �1, but from choice sets

containing x∗ selects the best element according to �2. This behavior describes,

for example, a customer in a restaurant who chooses the tastiest item from a menu

if the menu does not contain onion rings, while choosing the healthiest item in the

presence of onion rings, because they are so greasy as to make the customer feel

guilty about his eating habits.23

The above simple behavior generates a large number of IIA-violations if X is

large.24 However, these IIA-violations do not contradict each other: if choice from

set B contradicts the choice from A ⊃ B, then there is no B′ ⊂ B such that the

choice from B′ contradicts the choice from B. As we show below, this can be used

to merge all collections of selves into a single collection, drastically reducing the

number of selves required to rationalize the above choice function.

Consider the context-dependent version of relative utilitarianism introduced in

the previous subsection, which was shown to be approximately triple-solvable with

a single self. Our construction calls for (i) creating a self whose utility function is

in line with �2; and (ii) creating a self for all sets associated with an IIA-violation,

23We thank Ran Spiegler for suggesting that we consider an example along these lines.
24The number of IIA-violations is 2n−1 − n − 1: the choice from every set B having at least

two elements and not containing x∗ contradicts the choice from B ∪ {x∗}.
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such that the self attaches high enough utility to x∗ such that the self becomes

close enough to indifferent in the presence of x∗, and among the other alternatives

allocates the highest utility to the choice from the given set. However, the latter

selves can all be collapsed into a single self, such that the utility function of the self

is in line with �1 over X/{x∗} (while keeping the utility of x∗ at a level that makes

the self nearly indifferent in the presence of x∗). This implies that the above choice

function can be rationalized with two selves, which is obviously a tight bound.

7 Conclusion

The framework we propose in this paper provides a flexible environment for ax-

iomatic investigation of multi-self models. As we pointed out, many of the models

proposed in the existing literature can be translated into our framework such that

the resulting aggregators satisfy the basic axioms we posited. However, there are

other classes of aggregators that might be of interest, for example ordinal ones,

which do not satisfy all our axioms. Our framework can still be useful to exam-

ine these aggregators, only some of our axioms need to be replaced by axioms

that reflect the defining characteristics of the aggregators at hand. Furthermore,

our set of axioms can also be supplemented with additional ones, leading to more

specific classes of aggregators instead of the broad class of aggregation rules that

we investigated in this paper, and hence to sharper predictions on implied choice

with a fixed number of selves. We leave this direction, as well as extending our

framework to dynamic settings, to future research.
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Appendices

Appendix A: Proofs

Proof of Theorem 4.2. For an arbitrary choice function c we will construct a col-

lection of 1 + k · IIA(c) selves which will be shown to rationalize c. This implies

the claim in the theorem. In particular, we will construct k selves for each set with

which an IIA-violation is associated, and an extra self for X.

Let I1 = {A1
1, ..., A

1
i1
} be the subsets of X such that there is an IIA-violation

associated with the set, but there is no proper subset of the set with which an

IIA-violation is associated. For j ≥ 2, let Ij = {A1
1, ..., A

1
ij+1

} be the subsets of X

such that there is an IIA-violation associated with the set, but there is no proper

subset of the set outside
j−1⋃
l=1

Il with which an IIA-violation is associated. Let j∗ be

the largest j such that Ij 6= ∅.

We will now iteratively construct a k-tuple of selves for each set associated

with an IIA-violation, starting with sets in I1. Consider any k-tuple of selves

Ū1 = (ū1
1, . . . ū

1
k) that solves the triple {a, b, c} (the existence of such a triple

follows from triple-solvability). For every A ⊂ I1, construct now the following

collection of selves UA = (uA1 , . . . uAk ):

uAi (x) =


ū1
i (a) if x = c(A)

ū1
i (b) if x ∈ A, x 6= c(A)

ū1
i (c) if x 6∈ A

for every i = 1, ..., k.

Suppose now that UA is defined for every A ∈
j⋃

k=1

Ik for some j ≥ 1. Let

Uk be the collection of selves Uk = (UAk
1 , ..., UAk

ik ), for k = 1, ..., j. Let Ûj =

(U1, ..., Uj). By P4, there exists δ > 0 such that for any k-tuple of δ-indifferent col-

lection of selves U ′, f(a, A,X, Ûj) > f(b, A, X, Ûj) implies f(a, A,X, (Ûj, U
′)) >

f(b, A, X, (Ûj, U
′)). Then by P3 and P6, we know f(a, A,X, Ûj, Ũ1, ..., Ũm) >

f(b, A, X, Ûj, Ũ1, ..., Ũm) implies the relation f(a, A,X, (Ûj, Ũ1, ..., Ũm, U ′)) >

f(b, A, X, (Ûj, Ũ1, ..., Ũm, U ′)) for any Ũ1, ..., Ũm collections of (exactly) indifferent

selves.
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Let now Ij+1 = {A1
1, ..., A

1
ij+1

} be the subsets of X such that there is an IIA-

violation associated with the set, but there is no proper subset of the set outside

Ij with which an IIA-violation is associated. By triple-solvability with k selves,

there is a δ-indifferent k-tuple of selves Ū j+1 = (ūj+1
1 , . . . ūj+1

k ) that solves the

triple {a, b, c}. For every A ⊂ Ij+1, construct now the following collection of selves

UA = (uA1 , . . . uAk ):

uAi (x) =


ūj+1
i (a) if x = c(A)

ūj+1
i (b) if x ∈ A, x 6= c(A)

ūj+1
i (c) if x 6∈ A

for every i = 1, ..., k. Let Uj+1 be the collection of selves (Uj, U
A1

1 , ..., U
A1

ij+1 ).

The above procedure generates a collection of k · IIA(c) selves in j∗ steps. Then

by P3 and P4 there is δj∗ > 0 such that for any δj∗-indifferent u, f(a, A,X, Uj∗) >

f(b, A, X, Uj∗) implies f(a, A,X, (Uj∗ , u)) > f(b, A, X, (Uj∗ , u)). Finally, construct

one more self the following way: let a1 = c(X) and ak = c(X \ {a1, a2, . . . ak−1})
for 2 ≤ k ≤ n. Construct u∗ : X → R such that u∗(a1) > u∗(a2) > · · · > u∗(an)

and u∗ is δj∗-indifferent.

We show the collection of selves Uc ≡ (Uj∗ , u
∗) rationalize c with aggregator f .

Observation. First, note that for any set A with which there is an IIA viola-

tion associated, by the construction of UA and by P1 and P5, f(a, B, X,UA) =

f(b, B, X, UA) ∀ a, b ∈ B and B such that either B/A 6= ∅ or c(A) /∈ B, and

f(c(A), B, X, UA) > f(b, B, X, UA) = f(b′, B, X, UA) ∀ b, b′ ∈ B/{c(A)} and B

such that B/A = ∅ and c(A) ∈ B.

We will now show that the choice induced by f from any choice set is equal to

the choice implied by c. First, note that this holds for X, since by the observation,

f(a, X,X, UA) = f(b, X,X, UA) for every a, b ∈ X and every A with which there

is an IIA-violation associated. Moreover, f(c(X), X,X, u∗) > f(a, X,X, u∗) ∀
a ∈ X/{c(X)} by P2. Then repeated application of P3 implies f(c(X), X,X, Uc) >

f(a, X,X, Uc) ∀ a ∈ X/{c(X)}.

Next, consider any A ( X which causes an IIA violation. Suppose A ∈ Ij. The

observation implies that for any B ∈ (
j⋃
l=1

Il)/A, f(a, A, UB) = f(a′, A, UB) ∀ a, a′ ∈

A, and f(c(A), A,X, UA) > f(a, A,X, UA) ∀ a ∈ A. Then repeated implication

of P3 implies f(c(A), A,X, Uj) > f(a, A,X, Uj) ∀ a ∈ A. By construction then
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f(c(A), A,X, Uc) > f(a, A,X, Uc) ∀ a ∈ A.

There are three cases to check for a set A that does not cause an IIA violation.

Case 1: For all a ∈ A, there is no B ⊃ A such that a = c(B). Then by construction

u∗(c(B)) > u∗(b) ∀ b ∈ B/{c(B)}. Moreover, by the observation, f(b, B, X, UA) =

f(b, B, X, UA) ∀ b, b′ ∈ B and A with which an IIA violation is associated. Re-

peated use of P3, together with P2, implies f(c(B), B, X, Uc) > f(b, B, X, Uc) ∀
b ∈ B.

Case 2: There is a unique a ∈ A such that for some B ⊃ A, c(B) = a. First we

note that a = c(A) is necessary, otherwise A would have caused an IIA violation.

There are two subcases:

Case 2a: For every B such that B ⊃ A and c(B) = a, B did not cause an IIA

violation. This means that for all B ⊃ A, c(B) 6∈ A\{c(A)}. So just like in Case 1,

u∗(c(B)) > u∗(b) ∀ b ∈ B/{c(B)}, and f(b, B, X, UA) = f(b, B, X, UA) ∀ b, b′ ∈ B

and A with which an IIA violation is associated. Hence, f(c(B), B, X, Uc) >

f(b, B, X, Uc) ∀ b ∈ B.

Case 2b: There is B ⊃ A with c(B) = a such that B caused an IIA violation.

Consider any smallest such B, and suppose B ∈ Ij. By Observation 1, for any

A ∈
j⋃
l=1

Il either f(c(B), B, X, UA) > f(b, B, X, UA) ∀ b ∈ B, or f(b, B, X, UA) =

f(b′, B, X, UA) ∀ b, b′ ∈ B. But then repeated application of P3 implies that

f(c(B), B, X, Uj) > f(b, B, X, Uj) ∀ b ∈ B. By construction, f(c(B), B, X, Uc) >

f(b, B, X, Uc) ∀ b ∈ B.

Case 3: There exist at least two elements in A that have each been chosen in some

superset. First, note that one of those elements must be a = c(A), otherwise A

would have caused an IIA violation. Let {bi}i be the set of elements other than

a such that bi ∈ A and bi = c(Bi) for some Bi ⊃ A. Drop any bi’s such that

Bi ⊂ Bm for some m and call the remaining set {bj}. Because A did not cause

an IIA violation by assumption, it must be that for each bj there is A′
j such that

A ⊂ A′
j ⊂ Bj and c(A′

j) ∈ A. Because Bj does not contain any Bk, we know

c(A′
j) = a. For each j there may be multiple such A′

j’s; consider only the maximal

A′
j with respect to the minimal Bj. Now by maximality, for any A′′ such that

A′
j ⊂ A′′ ⊂ Bj, c(A′′) 6∈ A. If there is A′′ such that c(A′′) ∈ A′

j, since c(A′′) 6= a, by

definition A′
j caused an IIA violation with respect to the first such A′′. If for every

A′′ it is the case that c(A′′) 6∈ A′
j, then once again A′

j caused an IIA violation with

respect to B. Either way, since c(A′
j) = a, we added selves to ensure this choice
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for every j. This means that a should be the choice from A unless for some set

B′ between the smallest-sized A′
j and A we have c(B′) ∈ A \ {a} and selves were

added. But by minimality of the Bj’s there cannot be such a set.

For compactness, we use the notation x1 = fa(U)− fb(U), x2 = fb(U)− fc(U),

x3 = fac(U), x4 = fbc(U), and x5 = fab(U). We prove the sufficiency conditions in

the reverse order stated.

Proof of Theorem 4.6. We show a stronger result than stated: under type-1 non-

degeneracy, if any one of the equations 2x1+x2−x3−x5 = 0, x1+2x2−x3−x4 = 0,

or x1−x2 +x4−x5 = 0 fail then the aggregator is triple-solvable (with kf at most

2 + 3|U |).

The first column in the table lists the aggregate values for selves U . But by

neutrality, we know that if we can generate the values in column 1, we can also

generate the values in the 2nd column using the permutation (bc)(a) over the

alternatives, generate the values in the 3rd column using the permutation (ab)(c)

over the alternatives, and so on. By using duplication to evaluate each of the

values f ◦ u and f ◦ u′ each generated by a single self u and u′, with the rankings

given in the 6th and 7th headers, respectively, we can also generate the values in

those respective columns.

1 : U 2 : (bc)(a) 3 : (ab)(c) 4 : (abc) 5 : (acb) 6 : a ∼ b � c 7 : a � b ∼ c

x1 x1 + x2 −x1 x2 −x1 − x2 0 x1

x2 −x2 x1 + x2 −x1 − x2 x1 x1 0

x3 x5 x4 −x5 −x4 x1 x1

x4 −x4 x3 −x3 x5 x1 0

x5 x3 −x5 x4 −x3 0 x1

Then, determinants of three possible 5× 5 matrices, each composed of five of the

columns above, may be calculated to obtain:

Det(1|3|5|6|7) = x2
1(x1 + 2x2 − x3 − x4)(2x1 + x2 − x3 − x5)(x3 − x4 − x5), (1)

Det(1|2|5|6|7) = x2
1(2x1 + x2 − x3 − x5)(x3 − x4 − x5)(x1 − x2 + x4 − x5), (2)

Det(2|3|4|6|7) = −x2
1(x1 + 2x2 − x3 − x4)(x3 − x4 − x5)(x1 − x2 + x4 − x5). (3)

To complete the proof, it suffices to show that there exists U such that defin-

ing x1, x2, . . . , x5 as above, one of the determinants in Equations (1)-(3) must
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be nonzero. If one of those determinants is nonzero, then we have find a vector

(c1, c2, c3, c4, c5) such that the nonsingular matrix times (c1, c2, c3, c4, c5) is equal to

(0, 0, 0, 0, 1). Using scaling, each ci can be pulled in so that the U corresponding to

the i-th column is multiplied by ci. The resulting set of selves provides a triple-basis

(and therefore we can get triple solvability through scaling that triple-basis).

The proof is completed in light of the linear dependence of the equations 2x1 +

x2 − x3 − x5 = 0, x1 + 2x2 − x3 − x4 = 0, and x1 − x2 + x4 − x5 = 0: if any one of

these fails, there must be a second which fails too.

Proof of Theorem 4.4. By neutrality and symmetry of the type-1 nondegeneracy

condition x3 − x4 − x5 6= 0, there are three types of choice behaviors we must

examine to prove the result: one type of second-place choice (i), and both types

of third place choice (ii-iii). The result then follows from the previous proof.

Cases 1: a �P b �P c on the pairs, and b �T c �T a on the triple. If there is U

such that f ◦ U rationalizes this behavior, then x3, x4, x5 > 0 and x1 ≤ 0, x2 > 0.

Observe that 2x1 + x2 < 0 since this is fa(U)− fb(U) + fa(U)− fc(U). Therefore,

2x1 + x2 6= x3 + x5, as the RHS is positive.

Case 2: a �P b �P c on the pairs, and c �T b �T a on the triple. That is,

x3, x4, x5 > 0, with x1 ≤ 0 and x2 < 0. But as above, 2x1 +x2 6= x3 +x5, since the

LHS is negative and the RHS is positive.

Case 3: a �P b �P c on the pairs, and c �T a �T b on the triple. That is,

x3, x4, x5 > 0, with x1 ≥ 0, x2 < 0. If we can find U such that f ◦ U rationalizes

this behavior, then observe that x1 + 2x2 is negative since this is fa(U)− fc(U) +

fb(U)− fc(U). Hence x1 + 2x2 6= x3 + x4 because the RHS is positive.

Proof of Theorem 6.2. The only difference compared to the proof of Theorem 4.2

is in the construction of selves. Recall the definition of (Ij)j=1,...,j∗ from the proof

of Theorem 4.2. Let δ1 ∈ (0, δ). Define iteratively δj for j ∈ {2, ..., j∗ + 1}
such that δj ∈ (0,

δj−1

IIA(c)+1
). Define a self uX such that uX is δj∗+1-indifferent

and the preference ordering of the self is c(X) � c(X/{c(X)}) � ... Let δ∗∗ =

min
x 6=y∈X, A3x,y

|f(x, A, X, uX)| − |f(y, A, X, uX)|. Finally, let ε ∈ (0, δ
∗∗

|X|). Then for

every j ∈ {1, ..., j∗) and A ∈ Ij construct a self uA the following way: take a (δj, ε)-

approximate triple-basis u, and let uA(c(A)) = u(a), uA(x) = u(b) ∀ x ∈ A/{c(A)},
and uA(x) = u(c) ∀ x ∈ X/A. Proving the collection of selves consisting of uX and

uA for each A ∈
j∗⋃
j=1

Ij rationalizes c is analogous to the proof in Theorem 4.2.
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Appendix B: Relaxing P6

Our main results can be extended to aggregators violating P6, that is, to aggrega-

tors that depend in a nontrivial way on alternatives unavailable in a given choice

set. However, the appropriate definition of triple-solvability is more complicated.

The main complication arising in the absence of P6 is that triple-solvability

needs to be defined on a general X, as opposed to just a triple {a, b, c}. It is

convenient to introduce the following notation: for any triple {a, b, c}, any basic

set of alternatives X ⊃ {a, b, c}, and any self u defined on {a, b, c}, define the set

E(u, X) = {û : X → {u(a), u(b), u(c)}|û(x) = u(x) ∀ x ∈ {a, b, c}}. In words,

E(u, X) is the set of extensions of u from {a, b, c} to X for which each element

in X/{a, b, c} receives the same utility as either a or b or c. Similarly, for any

U = (u1, ..., um) ∈ U({a, b, c}), let E(U,X) = {(û1, ..., ûm)|ûi ∈ E(ui, X) for all

i ∈ {1, ...,m}}.

Definition B.1. We say U ∈ U({a, b, c}) is a universal triple-basis for f if for

any X ⊃ {a, b, c} the following holds: for all Û ∈ E(U,X), f(a, {a, b}, X, Û) >

f(b, {a, b}, X, Û), and f(·, A,X, Û) is constant for all other A ⊆ {a, b, c}.

A universal triple-basis solves the triple {a, b, c} whenever the utilities of unattain-

able elements don’t differ from utilities of elements in {a, b, c}, for all selves in the

triple-basis. An aggregator f is universally triple-solvable if the following condi-

tion is satisfied.

Condition (Universal triple-solvability of f) There exists a triple {a, b, c} and k ∈
Z+ such that for every δ > 0 there is a δ-indifferent U ∈ Uk({a, b, c}) constituting

a universal triple-basis for f with respect to {a, b, c}.

It is easy to see that for aggregators satisfying P6, universal triple-solvability is

equivalent to triple-solvability. If f satisfying P1-P5 is universally triple-solvable

with k selves, then the same construction can be applied as in the proof of Theorem

4.2 to obtain an analogous lower bound on the set of choice functions that f can

rationalize with a given number of selves. The proof of this result is analogous to

the proof of Theorem 4.2 and hence omitted.

Theorem B.2. Suppose f satisfies P1-P5 and is universally triple-solvable wrt

to X with kf selves. Then, using n selves, f can rationalize any choice function,

on any grand set of alternatives X, that exhibits at most n−1
kf

IIA-violations.
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