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Abstract
In this paper we view bargaining and cooperation as an interaction superimposed on a game in
strategic form. A multistage bargaining procedure for N players, the “proposer commitment”
procedure, is presented. It is inspired by Nash’s two-player variable-threat model; a key feature
is the commitment to “threats.” We establish links to classical cooperative game theory solu-
tions, such as the Shapley value in the transferable utility case. However, we show that even
in standard pure exchange economies, the traditional coalitional function may not be adequate
when utilities are not transferable. (JEL: C70, C71, C78, D70)

1. Introduction

The general equilibrium approach to economic modeling has familiarized us with
the idea that the construction of a good theory should be grounded in a sharp con-
ceptual distinction between the underlying data of the economy (e.g., preferences,
endowments, and technologies), to be thought of as fixed, and the institutions that
operate upon them (e.g., markets), which are more variable and subject to design
(with the aim, most frequently, of inducing cooperation and efficient outcomes).
In this paper we focus on bargaining theory and take the position that general
bargaining theory should be viewed in a similar way. Specifically:

(i) There is an underlying physical reality represented by a game in strategic
form; that is, there is a number of players N , and, for each one of them, a set
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of actions and a payoff function that associates a payoff (or utility) to each
combination of actions played by the different players.

(ii) Bargaining is a non-cooperative interaction that acts through an institutional
setup superimposed on the strategic form. In particular, the institutional setup
provides the players with the possibility of reaching binding agreements. We
refer to the whole as a “bargaining procedure.” It is the analog of the markets in
the Walrasian general equilibrium theory. In a First Welfare Theorem fashion
we could then ask, for example, if the “institution,” namely, the bargaining
procedure, induces bargaining processes that lead to a selection of final play
that is (Pareto) efficient. Note that without an institution, and moreover one of
a special sort, there is no reason for strategic interactions to lead to efficiency
(recall for instance the prisoner’s dilemma).

This differs from the existing approaches that first derive a cooperative game
(i.e., a coalitional function) from the given strategic-form game, and then apply
to it either a cooperative solution or a noncooperative bargaining procedure (there
is a large literature here; see, for example, the surveys in the volume edited by
Hart and Mas-Colell (1997)). One advantage of our proposed approach is that it
sidesteps the difficulties that arise in defining the coalitional function, particularly
in the non-transferable utility (NTU) case (more on this subsequently).

It is, of course, befitting to build a general theory of bargaining over a strategic
form. In fact, it was already the position taken by Nash (1953) in his proposal
for the endogeneization of the threat points of his two-person axiomatic theory
of bargaining (Nash 1950), a proposal that was extended to N -person situations
by Harsanyi (1959, 1963).

At a more specific level, our outlook is also inspired by the cooperative
approach in game theory. As in cooperative game theory, we handle situations
with an arbitrary number of players, and, more of the essence, we recognize that for
the bargaining process to be sensible it is all-important to allow for the possibility
of partial breakdown of the negotiation (in cooperative games, partial breakdown
is captured by the fact that the “coalitional function” specifies what can be obtained
by every coalition, thus contemplating the possibility of cooperation by subgroups
smaller than the grand coalition). It is worth mentioning that in cooperative game
theory the need for a strategic-form foundation has been persistently felt. One
suggestion for filling the need was provided for the transferable utility (“TU”)
case by the founders (von Neumann and Morgenstern (1944) proposed to define
what a coalition could reach as the maxmin level for the sum of the payoffs
of the members of the coalition), and later generalized (Aumann 1959) to the
non-transferable utility (“NTU”) case in the guise of two coalitional forms (the
“alpha” and the “beta”). Dissatisfaction with these definitions drew attention
to particular classes of games where the determination of the coalitional form
appeared uncontroversial (the “c-games” of Shapley–Shubik, a leading example
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of which are exchange economies; see Shubik (1983), Section 6.2.2). In such
games, the theory of bargaining could be nicely factored through the coalitional
form. We will have some opportunity to debate this point (see Section 7 below).

Having argued, up to this point, the importance of grounding matters in
the strategic form we shall from now on proceed much more concretely by
considering a special instance of a bargaining procedure, which we call the
“proposer commitment” (PC) procedure. Although stylized, we believe that it
captures some essential features of bargaining, in particular the fact that for par-
ticipants in a bargaining process, putting proposals on the table is on the one
hand a present opportunity (we assume that at any moment the current proposal
has the monopoly of the floor), and on the other hand a risk of an opportunity
lost (we assume that if a proposal is rejected then there is a chance that the
proposer will never be able to make further proposals); clearly, these two con-
siderations need to be balanced. We do not pretend that the PC procedure is the
most general procedure because plainly it is not, but we submit that it is compara-
tively simple and that it captures some important features of bargaining, allowing
one to pose some interesting questions and illuminating a number of significant
phenomena.

The PC procedure has two sources of inspiration. The first one is the bar-
gaining procedure formulated by ourselves (Hart and Mas-Colell 1996a) for the
context where the underlying reality is a game in coalitional form. The sequential
nature of the announcements and proposals we take from there, along with the
idea that a rejected proposer becomes passive for the rest of the game (with some
probability). But the consideration of a strategic form as the underlying reality
allows—and in fact demands—that we enrich the determination of what happens
to the play of a rejected proposer.

Second, the PC procedure is inspired by Nash (1953) in a crucial feature:
We assume that players formulate and commit to threats (and that, therefore,
commitment is possible). We view this commitment feature as going hand in
hand with the set of strong institutions that must be in place if, as we assume, the
outcome of bargaining is enforceable. We depart from Nash (1953) in an important
respect, however: At each step of the negotiation only one player (the “proposer”)
makes threats. We do so because we want a bargaining procedure that, in the spirit
of modern bargaining theory (see, e.g., Binmore, Osborne and Rubinstein 1992),
has as players the players of the original, underlying strategic form. The two-
player simultaneous threats model of Nash (1953) can be made to pass this test
(replace, for example, the axiomatically based part of his solution by bargaining
in the style of Stahl–Rubinstein; see, e.g., Osborne and Rubinstein (1990) and
Houba and Bolt (2002)), but the N -player generalization of Harsanyi (1959, 1963)
does not, at least to our knowledge (Harsanyi defines a sort of noncooperative
bargaining, but it is between fictitious players, one for each coalition—and not
between the original players of the game). Thus, in a sense (reminiscent of Shapley
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1969), we could also present our suggested solution as a simplification of the
Nash–Harsanyi approach.

The paper is organized as follows. In Section 2 the basic model and the
PC bargaining procedure are presented. In Section 3 we establish the standard
existence and optimality properties. In Section 4 we focus on two special cases:
two-person games and games with transferable utility. In Section 5 we discuss,
in a particular context where the threats turn out to be “fixed” in equilibrium, a
general connection of the PC solution with the Shapley value in the TU case. In
Sections 6 and 7 we re-examine the concept of c-games (in particular, in the stan-
dard context of exchange economies) as candidates for the sort of simplification
that would allow the factorization of bargaining analysis through a coalitional
form (deducible from the fundamentals of the game). We discover an impor-
tant difference between TU games—for which the simplification is possible (see
Section 6)—and general NTU games—for which it is not. We show the latter in
Section 7 by means of an example related to the transfer paradoxes of general
equilibrium theory. Finally, Section 8 is devoted to a summary and a discussion
of possible extensions and variations.

2. The Model

The basic data is an N -person game in strategic form G = (N, (Ai)i∈N, (ui)i∈N),
where N is a finite set of players, and each player i ∈ N has a finite set of actions
Ai and a payoff function ui : A → R, with A := ∏

i∈N Ai . A mixed action of

player i is xi ∈ �(Ai), where �(Ai) = {(xi(ai) ∈ RAi

+ : ∑
ai∈Ai xi(ai) = 1} is

the probability simplex on Ai .
For each set of players S ⊂ N (a coalition), let AS := ∏

i∈S Ai denote the set
of pure action combinations of the members of S. A correlated action of S is zS ∈
�(AS), a probability distribution on pure action combinations of S. The payoff
functions are as usual multilinearly extended to mixed and correlated actions.

2.1. The Proposer Commitment (PC) Procedure

We now introduce the basic bargaining procedure.
Let 0 ≤ ρ < 1 be a fixed parameter; think of ρ as the probability of “repeat.”

The bargaining proceeds in rounds. In each round there is a set S ⊂ N of “active”
players, the actions of each “inactive” player j /∈ S being fixed at some bj ∈ Aj ;
put bN\S = (bj )j∈N\S . We will refer to ω = (S, bN\S) as a state. Initially,
everyone is active, that is, S = N (and so the starting state is (N, ·)). Each round,
with state ω = (S, bN\S), proceeds as follows.

1. A “proposer” k ∈ S is selected out of S at random, with all members of S

being equally likely to be selected.
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2. The proposer k chooses a pair (zS, xk), where zS ∈ �(AS) is a correlated
action of coalition S and xk ∈ �(Ak) is a mixed action of player k; think of
zS as a “proposed agreement” for S, and of xk as a “threat.”

3. Each player in S is asked, in some order (deterministic or random), whether
he accepts or rejects the proposed agreement zS .

4. If all players in S agree to zS , then the procedure ends as follows: A joint
action aS ∈ AS is selected according to the distribution zS , and the N -tuple
of actions (aS, bN\S) ∈ A is played in the original strategic game G.

5. If at least one player in S rejects zS , then with probability ρ the state does not
change (it remains ω = (S, bN\S); we call this “repeat”), and with probability
1 − ρ the rejected proposer k becomes inactive.

6. If the rejected proposer becomes inactive, then the randomization xk is per-
formed; let bk ∈ Ak be its realization. The action of player k is fixed from
now on at bk ∈ Ak , and the new state is ω′ = (S\{k}, (bN\S, bk)): the set of
active players is S\{k} and the actions of the inactive players are (bN\S, bk).

7. A new round is started (i.e., one goes back to step 1), with the state being the
same ω in case of repeat, and ω′ from step 6 otherwise.

2.2. Outcomes and Equilibria

We are interested in the (subgame-)perfect equilibria of the PC procedure that
are, in addition, as simple as possible, namely, stationary. This means that the
decisions of the players depend only on the payoff-relevant variables, not on the
history, nor on the “calendar” time. Formally, for each state ω = (S, bN\S) and
proposer k ∈ S, the announcement (zS, xk) of player k depends only on S, bN\S ,
and k; and the decision of each player i ∈ S\k to accept or reject depends only on
S, bN\S, k, zS, xk , and i. Stationary subgame-perfect equilibria will be called
SP equilibria for short.

For simplicity, we will assume that each player uses the tie-breaking rule of
accepting a proposal when indifferent (i.e., when accepting and rejecting gives
the same expected payoff).

The play of the PC procedure ends with probability one (because ρ < 1);
its end result is an N -tuple of actions a ∈ A in the original game G (see step 4
in the PC procedure), which we call the final N -tuple of actions. This final a is
random: It depends on the randomizations of nature (e.g., selecting the proposers
and repeating or not after rejection) and of the players themselves.

Fix an N -tuple of stationary strategies σ = (σ i)i∈N .
For each state ω = (S, bN\S), let αω ∈ �(A) denote the probability distribu-

tion of the final N -tuple of actions in the subgame starting from state ω. Because
the actions of the players outside S are fixed at bN\S , the randomness affects only
the actions of the players in S, and so αω = ζ S

ω × {bN\S} for some ζ S
ω ∈ �(AS).

We refer to ζ S
ω as the outcome of state ω. Similarly, ζ S

ω,k ∈ �(AS) denotes the
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probability distribution of the final actions of S after k ∈ S has been selected as
proposer; we call it the outcome of state ω = (S, bN\S) and proposer k. Because
the proposer is equally likely to be any member of S, we have1

ζ S
ω = 1

|S|
∑
k∈S

ζ S
ω,k (1)

for every state ω = (S, bN\S). The collection of outcomes ζ S
ω and ζ S

ω,k for all

possible states and proposers (i.e., ω = (S, bN\S) for S ⊂ N, bN\S ∈ AN\S , and
k ∈ S) will be called an outcome configuration (obtained from σ) and will be
denoted ζ .

For every k ∈ S and every bk ∈ Ak , let (ω‖bk) := (S\k, (bN\S, bk)) denote
the state obtained from ω when k becomes inactive and his action is fixed at bk;
and, for every xk ∈ �(Ak) let

ηS
ω,k(x

k) :=
∑

bk∈Ak

xk(bk)
(
ζ

S\k
(ω‖bk)

× {bk}) ∈ �(AS) (2)

be the expected outcome for S following the implementation of the threat xk .
We will say that an announcement (zS, xk) ∈ �(AS) × �(Ak) of player k is
“acceptable” if, when the continuation is according to ζ , each responder’s payoff
from accepting zS is no less than his payoff from rejecting it, that is,

ui(zS, bN\S) ≥ ρui(ζ S
ω , bN\S) + (1 − ρ)ui

(
ηS

ω,k(x
k), bN\S)

(3)

for every i ∈ S\k (recall that after rejection the state remains ω with probability
ρ, and with probability 1−ρ player k becomes inactive and his threat is realized).
Let Y ≡ Yω,k(ζ ) denote the set of acceptable announcements of k:

Y := {(zS, xk) ∈ �(AS) × �(Ak) : (3) holds for every i ∈ S\k},
and let Y ∗ ≡ Y ∗

ω,k(ζ ) be the set of those acceptable announcements that maximize
the payoff of the proposer2 k:

Y ∗ := arg max
(zS,xk)∈Y

uk(zS, bN\S).

Finally, denote by Z ≡ Zω,k(ζ ) and Z∗ ≡ Z∗
ω,k(ζ ) the projections of the sets Y

and Y ∗, respectively, on the zS-coordinate:

Z := {zS ∈ �(AS) : (zS, xk) ∈ Y for some xk ∈ �(Ak)}; and

Z∗ := {zS ∈ �(AS) : (zS, xk) ∈ Y ∗ for some xk ∈ �(Ak)}.

1. For a finite set Z, we denote by |Z| the number of elements of Z.
2. We write arg max for the set of maximizers.
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We claim that the SP equilibrium conditions on the outcome configuration ζ

can be stated as

ζ S
ω,k ∈ Z∗

ω,k(ζ ) (4)

for every state ω = (S, bN\S) and k ∈ S. Note that relationship (4) is a fixed-
point-type condition.

Proposition 1. An outcome configuration ζ is obtained from an SP equilibrium
of the PC procedure if and only if ζ satisfies condition (4) for all states ω =
(S, bN\S) and k ∈ S.

Proof. Let ζ satisfy the condition (4). Define an N -tuple of strategies σ as
follows: In state ω = (S, bN\S), when k ∈ S is the proposer he announces
an element (z̃S, x̃k) ∈ Y ∗

ω,k with z̃S = ζ S
ω,k , and when i ∈ S is a responder he

accepts a proposal zS if and only if condition (3) holds. It is straightforward to ver-
ify (using a “one-deviation property” as in, e.g., Osborne and Rubinstein (1994)
Lemma 98.2) that σ constitutes an SP equilibrium, and its outcome configuration
is precisely the given ζ .

Conversely, let σ be an SP equilibrium with outcome configuration ζ . Take
a state ω = (S, bN\S) and a proposer k ∈ S, and consider a single deviation
from σ , at this point only, by player k. We claim that the set of outcomes that k

can induce is precisely Z ≡ Zω,k(ζ ). Indeed, an announcement (zS, xk) yields
acceptance by all players in S\k if and only if condition (3) holds, namely, if
and only if (zS, xk) ∈ Y (by the equilibrium requirement when there is strict
inequality, and by the tie-breaking rule when there is equality). When (zS, xk)

is rejected the continuation outcome is z̄S := ρζS
ω + (1 − ρ)ηS

ω,k(x
k), and here

too we have (z̄S, xk) ∈ Y (condition (3) holds as equalities). Therefore we have
shown that Z, the projection of Y on the zS-coordinate, is indeed the set of all
possible outcomes that k can induce at this point (whether there is acceptance or
rejection). But k maximizes his payoff (since σ is an equilibrium), from which
condition (4) follows.

We note two simple but useful facts. For every state ω = (S, bN\S) let3

C(ω) := {uS(zS, bN\S) ∈ RS : zS ∈ �(AS)}

be the set of feasible payoff vectors for the coalition S at ω (i.e., given the fixed
actions bN\S ∈ AN\S of the players outside S).

3. We write uS(z) for the payoff vector (ui(z))i∈S ∈ R
S .
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Lemma 1. Let σ be an SP equilibrium with outcome configuration ζ . For every
state ω = (S, bN\S) and k ∈ S:

(i) Yω,k(ζ ) is a nonempty polytope; and
(ii) there does not exist c ∈ C(ω) such that c ≥ uS(ζ S

ω,k) with strict inequality

ck > uk(ζ S
ω,k) in the k-th coordinate.4

Proof. (i) The set Y is nonempty because for every xk ∈ �(Ak) we have
(z̄S, xk) ∈ Y , where z̄S := ρζS

ω + (1 − ρ) ηS
ω,k(x

k) (condition (3) holds as
equalities). It is a convex polytope because it is defined by the finitely many
inequalities (3) that are linear in zS and xk (the outcomes ζ S and ζ S\k are fixed).

(ii) Assume that there is zS ∈ �(AS) such that c = uS(zS, bN\S) ∈ C(ω)

satisfies c ≥ uS(ζ S
ω,k) and ck > uk(ζ S

ω,k). Replacing ζ S
ω,k by zS preserves the

inequalities (3): Indeed, the left-hand side increases by δ := ci − ui(ζ S
ω,k) ≥ 0,

whereas the right-hand side increases by less than δ, specifically (ρ/|S|)δ; see
equation (1). Therefore (zS, xk) ∈ Y is also an acceptable announcement (with the
threat xk unchanged), but the payoff of k is strictly higher there, which contradicts
condition (4).

3. General Results

In this section we prove two general results of a standard type. First, we show
that SP equilibria exist; and second, that as the probability of repeat gets close
to 1—that is, as the “cost of delay” goes to zero—the SP equilibrium outcomes
approach Pareto efficiency.

3.1. Existence

Proposition 2. There exists an SP equilibrium.

Proof. We proceed by induction on S. For |S| = 1, say S = {i},
the strategy of player i in state ({i}, bN\i ) consists of choosing zi ∈
arg maxxi∈�(Ai) ui(xi, bN\i ).

Let the state be ω = (S, bN\S), and assume that equilibrium strategies and
outcomes have been determined for all states ω′ = (S

′
, bN\S′

) with S′ � S. For
each c ∈ C(ω) (the set of feasible payoff vectors for S) and k ∈ K , let


k(c) := {(zS, xk) ∈ �(AS) × �(Ak) :
ui(zS, bN\S) − (1 − ρ)ui(ηS

ω,k(x
k)) ≥ ρci for all i ∈ S\k},

4. This implies that uS(ζ S
ω,k) is weakly Pareto efficient in C(ω).
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where ηS
ω,k(x

k) is defined in equation (2) (based on the ζ
S\k
(ω‖bk)

, which have already

been determined by induction). The set 
k(c) is nonempty (take zS ∈ �(AS) with
uS(zS, bN\S) = c; then (z̃S, xk) ∈ 
k(c) where z̃S = ρzS + (1 − ρ)ηS

ω,k(x
k))

and is a convex polytope (note that ηS
ω,k(x

k) is linear in xk); the correspondence

k is continuous on C(ω) (by Lemma 2 below). Therefore


∗
k(c) := arg max

(zS,xk)∈
k(c)
uk(zS, bN\S)

is a nonempty, convex-valued, and upper-semicontinuous correspondence (the
latter by the Maximum Theorem because uk is linear and thus continuous, and

k is a continuous correspondence; see, e.g., Hildenbrand (1974), Corollary to
Theorem B.III.4). Hence the same holds for the correspondences �k and �,
defined by

�k(c) := {
uS(zS, bN\S) : (zS, xk) ∈ 
∗

k(c)
}

and

�(c) := 1

|S|
∑
k∈S

�k(c).

We can therefore apply Kakutani’s Fixed-Point Theorem (see, e.g., Hilden-
brand (1974) C.III (14)) to the correspondence � (with domain C(ω)), to
obtain c̄ ∈ C(ω) with c̄ ∈ �(c̄). This in turn yields c̄k ∈ �k(c̄) with
c̄ = (1/|S|) ∑

k∈S c̄k , and (z̄S, x̄k) ∈ 
∗
k(c̄). It is immediate to verify that the

announcements (z̄S, x̄k) for all k ∈ S constitute equilibrium announcements in
state ω. This completes the induction step, and thus proves our claim.

Remark 1. When ρ = 0 there is no need to use a fixed-point theorem to
prove existence: The SP equilibria can be computed recursively, starting with
singleton S.

In the proof we have used the following:

Lemma 2. Let D be an m × n matrix and put F(w) := {x ∈ Rn : Dx ≥ w}
for every w ∈ Rm. Then F is a continuous correspondence on W := {w ∈ Rm :
F(w) �= ∅}.

Proof. Upper semicontinuity is immediate. For lower semicontinuity, let x0 ∈ Rn

satisfy Dx0 ≥ w0, and let wr → w0 with wr ∈ W for all r; we have to show that
for every r there is xr with Dxr ≥ wr . It suffices to consider the case where only
one coordinate of w0 changes, say, wr = w0 + (δr , 0, . . . , 0). If δr → 0−, then
take xr = x0. If δr → 0+, then let x1 satisfy Dx1 ≥ w1 (recall that w1 ∈ W), and
then xr := (1−δr/δ1)x0+(δr/δ1)x1 satisfies Dxr ≥ w0+(δr , 0, . . . , 0) = wr .
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3.2. Pareto Efficiency

In equilibrium, every individual proposal ζ S
ω,k is (weakly) Pareto efficient (see

Lemma 1 (ii)). Therefore the outcomes ζ S
ω may fail to be efficient only if the

Pareto-efficient boundary is not a hyperplane and the individual proposals of
different proposers are different (see equation (1)). However, if ρ is close to 1—
that is, the “cost of delay” is small—then the early-proposer’s advantage will be
small, and so the individual proposals will be similar and their average almost
Pareto efficient.

To see this, let ζ (ρ) be an SP equilibrium outcome for the PC bargaining
procedure with parameter ρ—we will refer to it as the PC “ρ-procedure.” Consider
a limit point ζ̄ of ζ (ρ) as ρ → 1 (i.e., there is a sequence ρm → 1 such that
ζ (ρm) → ζ̄ as m → ∞). Then we have the following theorem.

Theorem 1. Let ζ̄ = (ζ̄ S
ω )ω be a limit point as ρ → 1 of SP equilibrium

outcomes ζ (ρ) = (ζ S
ω (ρ))ω of the PC ρ-procedures. Then for every state ω =

(S, bN\S) the limit outcome ζ̄ S
ω in state ω is Pareto efficient for S given bN\S .

Proof. Assume for simplicity that ζ (ρ) → ζ̄ as ρ → 1 (otherwise restrict
the arguments to the sequence ρm with ζ (ρm) → ζ̄ ). Put gω,k ≡ gω,k(ρ) :=
uS(ζ S

ω,k(ρ), bN\S), gω ≡ gω(ρ) := uS(ζ S
ω (ρ), bN\S), and ḡω := uS(ζ̄ S

ω , bN\S)

for all k ∈ S; thus gω → ḡω as ρ → 1. Let M be a bound on all possible payoffs
of all players; for each ρ we have

gi
ω,k ≥ ρgi

ω + (1 − ρ)ui
(
ηS

ω,k(x
k), bN\S) ≥ gi

ω − (1 − ρ)2M (5)

(for i �= k it follows from condition (4), the definition of Y , and condition (3);
for i = k, from condition (4) together with (z̃S, xk) ∈ Y for z̃S := ρζS

ω + (1 −
ρ)ηS

ω,k(x
k)). Now gi

ω = (1/|S|) ∑
k∈S gi

ω,k by equation (1), and so adding the
inequalities (5) for all k except some k0 ∈ S (keep i fixed) yields

|S|gi
ω − gi

ω,k0
≥ (|S| − 1)(gi

ω − (1 − ρ)2M),

or

gi
ω,k0

≤ gi
ω + (1 − ρ)(|S| − 1)2M ≤ gi

ω + (1 − ρ)2M|N |
for all k0 ∈ S. Thus

−(1 − ρ)2M ≤ gi
ω,k − gi

ω ≤ (1 − ρ)2M|N |
(replace k0 by k to get the second inequality, and recall condition (5) for the first);
hence, as ρ → 1, we get gi

ω,k − gi
ω → 0, which, because gi

ω → ḡi
ω, implies that

gi
ω,k → ḡi

ω for all i, k ∈ S.
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If ḡω is not Pareto efficient in C(ω), then there exist k ∈ S and c ∈ C(ω)

such that c ≥ ḡω, with strict inequality in the k-th coordinate. Then c(ρ) :=
gω,k(ρ) + (1/2)(c − ḡω) satisfies c(ρ) ≥ gω,k(ρ), with strict inequality in the
k-th coordinate; also, for ρ close enough to 1, we have c(ρ) ∈ C (use the fact that
C is determined by finitely many linear inequalities and gω,k(ρ) → ḡω). But this
contradicts Lemma 1 (ii).

4. Two Reference Cases: Two Players and Transferable Utility

In this section we spell out the nature of our solution for two simple, classical
cases.

4.1. Two-Person Games

The SP equilibria of the PC procedure relate very directly to the Nash bargaining
solution for the case of two players (cf. Hart and Mas-Colell (1996a); see also
Houba and Bolt (2002) for more on two-person bargaining games).

Given a two-person game G with N = {1, 2}, for each player i ∈ N let qi be
the payoff level that the other player j �= i can hold i to, by using pure strategies;
namely,

qi := min
aj ∈Aj

max
ai∈Ai

ui(ai, aj ).

Let

D := {uN(z) : z ∈ �(A)} = co {(u1(a), u2(a)) : a ∈ A}
be the set of feasible payoff vectors. (D, q) is called a two-person pure bargaining
problem, with D the set of “feasible agreements” and q the “disagreement point,”
if q ∈ D and there exists d ∈ D such that d1 > q1 and d2 > q2 (see Nash 1950).

Proposition 3. Let G be a two-person strategic game such that (D, q) is a pure
bargaining problem. If ζ̄ N is a limit point as ρ → 1 of SP equilibrium outcomes,
then uN(ζ̄N) is the Nash bargaining solution of (D, q).

Proof. ζ̄ N is Pareto efficient by Theorem 1. If the Pareto boundary ∂+D of D

contains only uN(ζ̄N) then we are done, because the Nash solution is Pareto effi-
cient. If not, assume first that uN(ζ̄N) is an interior point of ∂+D. Let ω = (N, ·)
be the starting state; because uN(ζN

ω,1(ρ)) is weakly Pareto efficient and it con-

verges to uN(ζ̄N), it follows that uN(ζN
ω,1(ρ)) ∈ ∂+D for all ρ close enough

to 1. For every b1 ∈ A1, the payoff that player 2 gets in the state ({2}, b1) is
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v2(b1) := maxa2∈A2 u2(a2, b1), and so condition (4) says that u1(ζN
ω,1(ρ)) max-

imizes u1(zN) subject to u2(zN) ≥ ρu2(ζN(ρ)) + (1 − ρ)v2(b1). Therefore any
b1 ∈ A1 that has positive probability in the threat x1 ∈ �(A1) that is used by
player 1 must make v2(b1) as small as possible (here we use the Pareto efficiency
of uN(ζN

ω,1(ρ)) ∈ ∂+D); but minb1∈A1 v2(b1) = q2, and so u1(ζN
ω,1(ρ)) maxi-

mizes u1(zN) subject to u2(zN) = ρu2(ζN(ρ))+ (1 −ρ)q2. A similar argument
applies when we interchange the two players; from this it follows by standard
arguments that the limit uN(ζ̄N) of uN(ζN(ρ)) as ρ → 1 is precisely the Nash
bargaining solution of (D, q); see for example Hart and Mas-Colell (1996a, The-
orem 3). Finally, if uN(ζ̄N) is an extreme point of ∂+D—it minimizes, say, player
1’s payoff and maximizes player 2’s payoff on ∂+D—then the above argument
applies only to ζN

ω,1(ρ); for ζN
ω,2(ρ) we get some q̂1(ρ) ≥ q1 such that u2(ζN

ω,2(ρ))

maximizes u2(zN) subject to u1(zN) = ρu1(ζN(ρ)) + (1 − ρ)q̂1(ρ). Therefore
uN(ζ̄N) is the Nash bargaining solution of (D, (q̂1, q2)) where q̂1 ≥ q1 is a limit
point of q̂1(ρ) as ρ → 1; given that uN(ζ̄N) is that extreme point of ∂+D where
player 1’s payoff is minimal, it easily follows that uN(ζ̄N) is also the solution
of (D, q).

Remark 2. One could well have q /∈ D; for example, in the “matching pennies”
game, D is the line segment connecting (1, −1) and (−1, 1), and q = (1, 1). In
this case we have a “reverse pure bargaining problem” and uN(ζ̄N) is its solution
(see the discussion in Section 4 of Hart and Mas-Colell (1996a); uN(ζ̄N) in this
example is (0, 0)).

4.2. Transferable Utility

Given the game G, the individually rational level in pure actions of player i is

ri := max
ai∈Ai

min
aN\i∈AN\i

ui(ai, aN\i ) = max
ai∈Ai

min
zN\i∈�(AN\i )

ui(ai, zN\i );

this is the maximum that i can guarantee by using pure strategies. The payoff of
player i in any equilibrium of the PC procedure will always be at least ri (the
following strategy σ i guarantees ri : When i is the proposer his threat is some
ai ∈ Ai where the max is attained—namely, minaN\i∈AN\i ui(ai, aN\i ) = ri

holds—and when he is the responder he never accepts any payoff less than5 ri).
Thus, only payoff vectors c = (ci)i∈N that are individually rational—i.e., ci ≥ ri

for each i—matter.

5. The intuitive reason why ri is based on pure actions of i (rather than mixed ones) is that if i’s
proposal is rejected then the randomization in his threat xi ∈ �(Ai) is realized, and from then on i
is fixed at a pure action that is known to everyone; see Section 8 (a)(i).
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We say that the game G is a strategic game with transferable utility (a
“strategic TU game” for short) if, for every state ω = (S, bN\S), that is, for
every S ⊂ N and bN\S ∈ AN\S , there exists a number v(ω) ≡ v(S, bN\S)

such that every Pareto efficient and individually rational payoff vector c in
C(ω) := {uS(zS, bN\S) : zS ∈ �(AS)} satisfies

∑
i∈S

ci = v(ω) ≡ v(S, bN\S). (6)

If G is a strategic TU game, then the SP equilibria of the PC procedure
become relatively simple to determine. In particular, no fixed point is needed and
the computation is not recursive, as the threats can be determined independently
for each coalition S.

For every state ω = (S, bN\S), proposer k ∈ S, and mixed action xk ∈
�(Ak), extend the definition of v(·) to mixed actions:

v(S\k, (bN\S, xk)) :=
∑

bk∈Ak

xk(bk) v(S\k, (bN\S, bk)),

and define

τω,k := min
xk∈�(Ak)

v(S\k, (bN\S, xk)) = min
bk∈Ak

v(S\k, (bN\S, bk)); and (7)

Xk
ω := arg min

xk∈�(Ak)
v(S\k, (bN\S, xk)) (8)

(note that Xk
ω consists of all pure actions bk ∈ Ak that are minimizers of

v(S\k, (bN\S, bk)), along with all their probabilistic mixtures). Finally, put

Dkv(ω) := v(ω) − τω,k = v(S, bN\S) − min
bk∈Ak

v(S\k, (bN\S, bk)); (9)

this is the “marginal contribution” of player k ∈ S in state ω = (S, bN\S).
A threat configuration x = (xk

ω)ω,k is a collection of mixed actions xk
ω ∈

�(Ak) for every state ω = (S, bN\S) and every k ∈ S; every N -tuple of sta-
tionary pure strategies σ generates such an x: take the second coordinate of the
announcements (in state ω a proposer k announces (ζ S

ω,k, x
k
ω) ∈ �(AS)×�(Ak)).

Next, let � be the set of all |N |! orders of the players. For each order π =
(i1, i2, . . . , iN ) ∈ � and threat configuration x define a probability distribution
Qπ ≡ Qx

π on A as follows:

Qπ(b) :=
N∏

m=1

xim
ωm

(bim) (10)
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for every b ∈ A, where, for each m = 1, 2, . . . , N , we put Sm :=
{im, im+1, . . . , iN }, bN\Sm := (bi1, bi2, . . . , bim−1), and ωm := (Sm, bN\Sm). Tak-
ing the order π ∈ � to be random, with all |N |! orders equally likely, yields a
joint probability distribution Q ≡ Qx on � × A:

Q(π, b) := 1

N !Qπ(b) (11)

for every π ∈ � and b ∈ A. For each (π, b) ∈ � × A and player i ∈ N , let P i
π

denote the set of predecessors of i in the order π , and let ωi
π,b = (N\P i

π , bP i
π )

be the state where each predecessor j ∈ P i
π has his action fixed at the

corresponding bj .
Finally, let

φi := E
[
Div

(
ωi

π,b

)]
(12)

be the “expected marginal contribution” of player i to his predecessors, where E
denotes expectation with respect to the distribution Qx on �×A, and ωi

π,b is the
state determined as above.

Proposition 4. Let G be a strategic TU game with associated function v. If σ is
an SP equilibrium of the PC ρ-procedure, then the resulting threat configuration
x = (xk

ω)ω,k satisfies xk
ω ∈ Xω,k for every ω and k (see equations (7) and (8)).

Conversely, for each x = (xk
ω)ω,k satisfying xk

ω ∈ Xω,k for every ω and k, there
exists an SP equilibrium σ with this threat configuration. Moreover, the payoff
of each player i ∈ N in that equilibrium σ equals φi of formula (12), where the
probability distribution Q ≡ Qx is determined by the collection x = (xk

ω)ω,k

according to equations (10) and (11).

Remark 3. The threats xk
ω and the payoffs do not depend on ρ. Moreover, the

determination of any set Xk
ω can be done independently of any other such set.

This holds here, in the TU case, but not in general, where optimal threats are
determined recursively (i.e., one needs to determine first the optimal threats and
proposals at all states that correspond to the subgames of ω).

Remark 4. In every state, the payoffs and proposals are determined in the same
manner, by considering only the appropriate subgame.

Proof of Proposition 4. Let σ be an SP equilibrium. For each ω = (S, bN\S) and
k ∈ S, let gω := uS(ζ S

ω , bN\S) and gω,k := uS(ζ S
ω,k, b

N\S); because gω,k is
individually rational and Pareto efficient in C(ω) (recall Lemma 1 (ii)), equation
(6) implies that ∑

i∈S

gi
ω,k = v(ω). (13)
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Therefore, by equation (1), the same holds for gω:
∑
i∈S

gi
ω = v(ω). (14)

Moreover, equation (6) implies that maximizing the k-th coordinate gk
ω,k is equiv-

alent to minimizing all the other coordinates gi
ω,k , and so condition (3) is satisfied

as equalities, that is, for every i ∈ S\k,

gi
ω,k = ρgi

ω + (1 − ρ)ui
(
ηS

ω,k

(
xk
ω

))
. (15)

Summing this over i ∈ S\k yields

v(ω) − gk
ω,k = ρ

(
v(ω) − gk

ω

) + (1 − ρ)t (16)

where

t :=
∑

bk∈Ak

xk
ω(bk)

∑
i∈S\k

ui
(
ζ

S\k
(ω‖bk)

, (bN\S, bk)
)

=
∑

ak∈Ak

xk
ω(bk)v(S\k, (bN\S, bk)) (17)

(we have used equation (14) for S\k). Rewrite equation (16) as

(1 − ρ)(v(ω) − t) = gk
ω,k − ρgk

ω =
(

1 − ρ

|S|
)

gk
ω,k − ρ

|S|
∑

j∈S\k
gk

ω,j . (18)

Therefore, in order to maximize gk
ω,k (i.e., to satisfy condition (4)), one must

minimize t (the other terms are fixed here). But t depends only on the threat xk
ω

(and the given function v), and so t = τω,k and xk
ω ∈ Xk

ω; therefore (see equations
(9) and (18)):

gk
ω,k = ρgk

ω + (1 − ρ)Dkv(ω). (19)

Let

hk
ω,i := uk

(
ηS

ω,i

(
xi
ω

)) =
∑

bi∈Ai

xi
ω(bi)gk

(ω‖bi)
(20)

be the payoff of k when i �= k becomes inactive and his threat xi
ω is implemented;

then (by equation (15), interchanging i and k):

gk
ω,i = ρgk

ω + (1 − ρ)hk
ω,i .
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Adding this over all i �= k together with equation (19) yields |S|gk
ω = ρ|S|gk

ω +
(1 − ρ)(Dkv(ω) + ∑

i∈S\k hk
ω,i), or

gk
ω = 1

|S|

⎛
⎝Dkv(ω) +

∑
i∈S\k

hk
ω,i

⎞
⎠ . (21)

Substituting equation (20) yields recursively formula (12).

4.3. Example

At this point it is useful to analyze a simple example.
Let N = {1, 2, 3}, and for each i ∈ N put Ai = {0, 1} × N , with generic

element ai = (ci, di) where ci ∈ {0, 1} and di ∈ N . The payoffs are as follows:
ui(a) = ui

1(c) + ui
2(d), where: u3

1(c) = 1 when c1 = c2 and c3 = 1, and
u3

1(c) = 0 otherwise; ui
1 ≡ 0 for i = 1, 2; and ui

2(d) := |{j : dj = i}| − 1.
Thus, according to the ui

1-part of the payoff functions ui , player 3 gets a payoff
of 1 when he chooses c3 = 1 and the ci-s of players 1 and 2 match; all other
payoffs are 0. The effect of the ui

2-part is to allow transfers and therefore to make
the game TU: dj = i means that player j transfers one unit to player i (i.e., the
payoff of i increases by 1, and that of j decreases by 1; note that dj = j means
that j makes no transfer).

Consider the PC procedure. The optimal threats are determined by equation
(7); this implies that there will never be any transfers (because this only increases
the worth of the remaining players after the proposer becomes inactive), and so
we will specify only the ci coordinate. Player 3 can always guarantee that the
remaining players get 0 (by using the threat c3 = 0). The only case where his
marginal contribution is not D3v(ω) = 1 − 0 = 1 is when the threats of the
players who became inactive before him made v equal to 0; this happens only
when player 3 is last, and then the optimal threat of the second player to become
inactive, say player 2, is the opposite of that of player 1 (i.e., c2 = 1 − c1).
Therefore the SP equilibrium payoffs are (1/6, 1/6, 2/3).

It is interesting to compare this to the more familiar approaches. The von
Neumann–Morgenstern coalitional function is v(N) = 1, v(1, 3) = 1/2 (player
1 plays c1 = 0 and c1 = 1 with (1/2, 1/2) probabilities, and player 3 plays
c3 = 1), v(2, 3) = 1/2, and v(S) = 0 otherwise. The Shapley value of this v is
(1/4, 1/4, 1/2).

When going to the Harsanyi coalitional function we get6 v(N) = 1,
v(1) = 1/4, v(2, 3) = 3/4, v(2) = 1/4, v(1, 3) = 3/4, v(3) =

6. Take for example {1} vs. {2, 3}. The optimal strategies are (1/2, 1/2) for 1, vs. (1/2, 1/2) for 2
and c3 = 1 for 3, which give payoffs of 0 to {1} and 1/2 to {2, 3}. Therefore v(1) = 0 + (1 − 0 −
1/2)/2 = 1/4 and v(23) = 1/2 + (1 − 0 − 1/2)/2 = 3/4.
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1/2, v(1, 2) = 1/2. This is an inessential game, and its value is again
(1/4, 1/4, 1/2).

Interestingly, the SP equilibrium payoffs (1/6, 1/6, 2/3) seem to reflect better
the underlying situation. The payoffs (1/4, 1/4, 1/2) are what one would expect
if {1, 2} acted as one player, and then split the payoff. But it seems natural that the
need to coordinate between 1 and 2 comes at some cost to them, and the payoff
vector (1/6, 1/6, 2/3) captures this better.

5. Equilibria with Fixed Threats

Threats are of the essence of the theory we are presenting in this paper. It is because
of the strategic linkage across coalitions captured by them that, for example,
we cannot in any general and meaningful sense factor our analysis through the
coalitional forms of standard cooperative game theory: there is no “worth” of a
coalition that is independent of the actions—the threats—of the players outside
the coalition.

This difficulty at the foundations of cooperative game theory has, of course,
been recognized for a long time. It has led, on the one hand, to the develop-
ment of extensions of the notion of coalitional form (perhaps the best known
are the “games in partition form” of Thrall and Lucas (1963); see Myerson
(1977), Maskin (2003), de Clippel and Serrano (2008), and Macho-Stadler, Perez-
Castrillo, and Wettstein (2007), for more recent work) and on the other to the
consideration of particular situations where the classical form could be justified
(for example the c-games of Shapley–Shubik; see Shubik (1983), p. 130).

Nonetheless, the discussion of the previous section, and especially expression
(12) for the computation of the SP equilibria, suggests a close connection to the
cooperative game solutions related to the Shapley (1953) value. In this section
we shall throw some light on this connection.

It is certainly the case that along an equilibrium path only the particular
actions that may arise as threats matter. But even then the threat of a proposer
may depend on the current set of active players and on the threats of the preceding
proposers. Still, if the threats happen to be independent of the previous history,
we could indeed associate a coalitional form to the particular equilibrium, and we
could then analyze how the equilibrium payoffs relate to the cooperative game
theory solutions of the coalitional form. This we shall now do.

definition 1. Let G be a strategic game and σ an SP equilibrium of the PC
procedure. For every player k ∈ N let f k ∈ Ak be a pure action of k. We say that
σ has fixed threats (f k)k∈N if for every k ∈ N , the threat of player k (whenever
he is the proposer) is f k in all states where the action of each inactive player j is
f j (i.e., in all states of the form ω = (S, f N\S)).

Observe that we in fact require less than the discussion above suggests;
namely, the threats need to be fixed only along the “backward induction
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equilibrium paths,” and there are no requirements for states (S, bN\S) with
bN\S �= f N\S (these are the states in which a previous threat that was imple-
mented was different from the corresponding f j ). Also, note that each f k is a
pure action, and that having fixed threats is a property of SP equilibria.

Next, given a strategic game G and an SP equilibrium σ with fixed threats
(f k)k∈N , we say that the NTU coalitional game (N, VG,σ ) is derived from G and
σ if

VG,σ (S) = {c ∈ RS : c ≤ uS(zS, f N\S) for some zS ∈ �(AS)}
for every coalition S ⊂ N . We have the following result.

Proposition 5. Let (N, VG,σ ) be a game that is derived from the strategic game
G and the fixed-threat equilibrium σ . Suppose that (N, VG,σ ) is a TU game in the
individually rational region.7 Then the payoffs induced by σ equal the Shapley
values of (N, VG,σ ) and its subgames. Moreover, if ρ is close to 1, then the payoffs
of the proposals made by the different players will also be close to the Shapley
values of (N, VG,σ ).

Thus, when (N, VG,σ ) is a TU coalitional game—let v ≡ vG,σ denote its TU
coalitional function—the outcome configuration ζ of σ satisfies

ui
(
ζ S
(S,f N\S)

) = Shi (S, vG,σ )

for every i ∈ S ⊂ N; moreover, as ρ → 1 we also have

ui
(
ζ S
(S,f N\S),k

) = Shi (S, vG,σ )

for every i, k ∈ S ⊂ N .

Proof. Similar to the proof of Proposition 4; see in particular the explicit com-
putational formula there. Note that the fixed threats imply that what a coalition
can obtain is well defined, in the sense of not depending on the order in which
the inactive players have dropped out.

Proposition 5 does show that in a very natural sense the solution concept we
develop in this paper, the SP equilibrium of the PC procedure, is an extension to
a larger context of the Shapley value solution for TU coalitional form games.

What happens in the general NTU case? One may conjecture, as in Hart and
Mas-Colell (1996a), that as ρ approaches 1 the SP equilibrium payoffs approach
a Maschler–Owen (1992) consistent NTU value of (N, VG,σ ). It is not difficult to
see that this is indeed the case if, for every S, the limit of the SP equilibrium payoffs

7. That is, for every S ⊂ N there is a real number v(S) such that c ∈ VG,σ (S) and ci ≥ ri for all
i ∈ S if and only if

∑
i∈S ci ≤ v(S).
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of S lies in a smooth piece of the efficient boundary of8 VG,σ (S). Because this set
is a convex polytope, the condition amounts to the requirement that each limit lie
in the interior of some (|S|−1)-dimensional face of the polytope. In particular, this
will be automatically satisfied if (N, VG,σ ) is a hyperplane game (see Maschler
and Owen (1989); of course, only the individually rational region matters, as in
Proposition 5 for the TU case). But a general analysis of the non-smooth case is
needed.

6. Games with Damaging Actions

Are there classes of games in strategic form that, from the standpoint of the PC
procedure, lend themselves to being summarized by means of the coalitional form
of cooperative game theory? Presumably, these would be concrete specifications
of the c-games of Shapley–Shubik.

In this section we exhibit one such class of games by presenting a property
of strategic forms that, for TU games, implies the existence of an SP equilibrium
enjoying the fixed-threat property. The NTU case is discussed in the next section.

It is reasonable to expect that the strategic linkage through threats is bound
to be simpler in situations where there is some form of “strategic dominance” or
“universality” in the threats used by players. This suggests the following.

definition 2. Given a game G, a player k ∈ N has a damaging action dk ∈ Ak

if ui(dk, aN\k) ≤ ui(a) for every action profile a ∈ A and every player i �= k. A
game G is a d-game if every player k ∈ N has a damaging action.

That is, a d-game is such that whatever the play is, if player k switches his
action to dk then the payoffs of all the other players decrease or stay the same;
being a d-game is thus a strong requirement. The next proposition shows that,
indeed, the “d” concept helps relate our approach to cooperative game theory.

Proposition 6. Let G be a strategic TU game. Suppose that G is a d-game.
Then there exists a fixed-threat SP equilibrium of the PC procedure where each
player i uses a damaging action as threat.

Proof. Let dk be a damaging action of player k. Recall (Proposition 4) that at an
SP equilibrium of a strategic TU game a proposer k chooses a threat xk ∈ �(Ak)

at state ω = (S, bN\S) so as to minimize v(S\k, (bN\S, xk)), the sum of the
payoffs of the remaining players if the proposer becomes inactive. Obviously, the
pure threat dk will do the job for k, at any state.

8. See Hart and Mas-Colell (1996a), Proof of Proposition 8 (with the correction at
〈http://www.ma.huji.ac.il/hart/abs/nbarg.html〉), for the reason for the smoothness requirement.
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7. Market Games Are Not “c-Games”

Propositions 5 and 6 highlight in a clear way the relationship between the bar-
gaining theory we develop in this paper and classical cooperative game theory:
If threats are “self-evident” then they can be taken as fixed threats, a coalitional
form emerges in the obvious manner, and the analysis can proceed by taking the
coalitional form as the basic datum and appealing to the extensive and rich the-
ory of cooperative games. But Proposition 6 was stated for the TU case. In this
section we shall see by means of an example that the result is no longer true for
the general NTU situation and that this is so for entirely non-pathological rea-
sons, that is, for reasons that seem inherent in the nature of strategic bargaining
among many players. It is therefore very questionable whether, even under the
strong hypothesis of the players having damaging actions, bargaining theory in
the strategic form can justifiably be factored through cooperative game theory
(except in the TU case).

The example will be built over a pure exchange economy satisfying the stan-
dard conditions (no externalities, concavity, and monotonicity of preferences,
etc.). We choose this framework because exchange economies have been thought
to be the paradigmatic cases of c-games, that is, the sort of games where the self-
evident coalitional form was fully adequate (see Shubik 1983, p. 131). We shall
see in the example below that the obvious damaging threat of never sharing your
endowment is not always the optimal threat! The phenomenon is related to the
well-known transfer and endowments paradoxes of general equilibrium theory
(see, e.g., Postlewaite (1979); also Mas-Colell (1976)), but we should emphasize
that here these emerge internally to the theory, namely, within well-specified rules
of a game.

The example is of an exchange economy with 4 commodities and 3 traders.
Let the commodities be b, c, f, g, and the traders, 1, 2, 3. The initial endowments
are

e1 = (0, 0, 1, 1),

e2 = (0, 1, 0, 0),

e3 = (1, 0, 0, 0),

and the utility functions are

u1(b, c, f, g) = b,

u2(b, c, f, g) = b + c − 1,

u3(b, c, f, g) = 1

2
c + max

b′+b′′=b
b′, b′′ ≥ 0

{
1

2
min{b′, f } + min{b′′, g}

}
.
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The goods b and c are mediums of exchange (“money”); player 3 has a “tech-
nology” that takes b as input and transforms it into “utils” subject to capacity
constraints determined by f and g, where the productivity through g is twice as
high as the one through f .

We make the exchange economy into a strategic game in a natural way, as first
formally suggested by Scarf (1971): Each player i distributes his endowment ei

among the 3 players: ei = ∑3
j=1 di,j , where di,j ∈ R4+ is the bundle transferred

from i to j ; the outcome (final holding) of player j is thus hj = ∑3
i=1 di,j , and

his payoff is wj = uj (hj ).
Note that in this game every player has a damaging action: to keep all his

endowment for himself (i.e., di,i = ei). Suppose first that these are indeed the
threats; the resulting coalitional function (in the individually rational region, i.e.,
where all payoffs are nonnegative) is a TU game for all coalitions except {2, 3}.
We get v(i) = 0 for all i, v(1, 2) = 0, and v(1, 3) = v(1, 2, 3) = 1. As for {2, 3},
the Pareto efficient boundary lies on the line w2+2w3 = 1. Computing the payoff
vectors yields9 (0, 0, ·) for {1, 2}, (1/2, · , 1/2) for {1, 3}, and (· , 1/2, 1/4) for
{2, 3}; extending them to efficient payoff vectors for the grand coalition N =
{1, 2, 3} and then averaging gives the final outcome of10 (1/4, 1/6, 7/12).

However, this does not yield an equilibrium, because player 1 has a better
threat when he is the proposer in the grand coalition, namely, to transfer his unit
of the f good to player 3. Notice that this threat does not change the nonnegative
attainable set for coalition {2, 3}, but player 3 now gets by himself 1/2 rather
than 0; see Figure 1. The negotiating terms in coalition {2, 3} have been altered,
and the outcome of this coalition becomes (· , 0, 1/2); this implies that player 1
can make a demand of 1/2 (instead of the 1/4 that he could ask for when the
threat was to keep his own resources). The outcome of the grand coalition is now
(1/3, 0, 2/3)—and so player 1’s payoff has increased from 1/4 to 1/3 by the
above deviation. In a sense, by this action player 1 has successfully manipulated
in his favor the bargaining between 2 and 3 (note that this could not happen in
the TU case, because only the total payoff of {2, 3} matters to 1).

So, what are the SP equilibria in this example? Because the efficient bound-
aries of the attainable sets for {1, 2, 3} and all coalitions except {2, 3} are TU,
keeping one’s endowment is optimal, except for player 1 in the grand coalition.
His threat in this case must minimize the sum of the payoffs of 2 and 3 in the sub-
game after 1 becomes inactive (since 1 gets the difference between v(1, 2, 3) = 1
and that sum). Now this sum is at least 1/2, because the outcome (·, 0, 1/2) is
always feasible for {2, 3} (even without any transfers). By transferring 1 unit of
good f to player 3, player 1 makes sure that (·, 0, 1/2) is necessarily the outcome
of {2, 3}—so this is the optimal threat of player 1 in coalition {1, 2, 3}. Thus

9. A dot (·) is used for the coordinate of the missing player.
10. See Hart (2004, Section 5) for a similar computation.
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Figure 1. The outcomes of the singletons {2} and {3} (small black circle), and the outcome of
coalition {2, 3} (large white circle) for the damaging threats; the same outcomes for the optimal
threats (small black square and large white square).

the unique SP equilibrium payoffs for the grand coalition are (1/3, 0, 2/3), as
seen above. Note in particular that the unique optimal threat of 1 in {1, 3} is to
keep his own endowment, and so the SP equilibria11 do not have the fixed-threat
property.12

In conclusion, strategic market games, a classical instance of the so-called c-
games, are not really c-games: One cannot simply define the coalitional function
as what a coalition can do with the total endowment of its members (except in
the TU case). Our point, however, is more general. In the above example player
1, by using a suitable threat (which is not a damaging threat), can alter—to his
advantage—the relative bargaining powers of players 2 and 3 in the subsequent
negotiation. In the general NTU case, where the specific subsequent agreement
of a coalition of players matters to the proposer (whereas in the TU case only the
sum of payoffs matters to him), this phenomenon is bound to be pervasive.

11. Although the SP equilibrium outcomes are unique, the strategies are not (for example, player
1’s threat in coalition {1, 2} is arbitrary).
12. The curious reader may wonder what the Walrasian equilibrium payoffs are in this example.
They are (0, 0, 1), which arise from zero prices for goods f and g, and a positive price for b that is
no more than twice the price for c.
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From a different perspective, we can view the foregoing analysis as under-
lying the existence of a substantial theoretical gap between the TU and the NTU
situations. One cannot take for granted that the interesting phenomena that may
hold for the former will carry over to the latter (for a different question—the
equivalence principle—we made a similar point in Hart and Mas-Colell 1996b).

Remark 5. We follow tradition and do not define precisely the concept of a
c-game; as Shubik (1983, p. 131) says: “We do not attempt a categorical def-
inition of this term. What is adequate in a given instance may well depend on
the solution concept that we intend to employ. To say that a game is a c-game
is merely a way of asserting that nothing essential to the ultimate purpose of the
model is lost in the process of condensing the extensive or strategic description
into a characteristic function.” Myerson (1984, p. 88) gives a precise definition of
“games with orthogonal coalitions,” a significant class of c-games that includes
exchange economies (without externalities); however, from our point of view, it
has the drawback that it is not tied to a strategic form game (rather, it relies on a
setup where each coalition has its own action set13). How could we attempt a defi-
nition of a c-game within the strategic-form-cum-bargaining-procedure approach
taken in this paper? Because, at a minimum, there should be an obvious method
to construct a natural coalitional form, we could require as part of the definition
the existence of a damaging action for each player (one could of course con-
sider other possibilities to singularize an action to be played by a player outside
a coalition). In addition, it should also be the case that for the given bargaining
procedure (or, for all procedures in some reasonable class), only the coalitional
form matters; more precisely, the damaging actions are the fixed threats of an
SP equilibrium of the bargaining procedure (and therefore any two c-games with
the same “canonical” coalitional form will lead to the same solution). What we
have shown is that for such a definition, exchange economies (viewed as strategic
form games à la Scarf 1971) are c-games in the TU case, but not necessarily in
the NTU case.

8. Summary and Extensions

In this paper we have have provided a bargaining procedure that operates directly
on the strategic form of a game. It is inspired by Hart and Mas-Colell (1996a) and
Nash (1953), and has as an essential feature the use and commitment of players to
threats. We have studied its basic properties, as well as the relationships with the
approaches directly operating on the coalitional form of a game. We have seen that

13. In particular, in the pure exchange case, the set of actions of a coalition coincides with all
possible transfers of goods among its members.
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the connection can be easily made in the TU case, in the sense that for the natural
special case (of strategic games with damaging actions) our procedure could be
viewed as operating directly on a coalitional form. Yet, this is not true for the
general NTU case, even for situations such as exchange economies, traditionally
thought of as very well behaved in this respect.

We view this paper as a first step in a general research program that analyzes
cooperation based on the strategic form. There are many issues in need of further
clarification and study, and there are many avenues for extensions. We mention
some:

1. Relax the commitment-to-threats feature; not to the extent of making it impos-
sible (the theory would then change substantially; see Houba and Bolt 2002),
but perhaps by simply making it an option available to players.

2. Consider variations of the PC procedure:
a. A threat xk ∈ �(Ak) is not realized immediately after a rejected proposer

k becomes inactive, but rather at the end of the procedure. Thus a state
consists of the set of active players S together with the fixed mixed
actions of the inactive players (xi)i∈N\S ∈ ∏

i∈N\S �(Ai).
b. Dispense with the threats altogether and make the inactive players lose

their power to choose their actions; thus a proposal is now a zN ∈ �(AN),
but only the active players are asked to accept it.

3. Propose and study bargaining procedures that correspond to the Harsanyi
(1959, 1963) N -person generalization of the two-person variable-threat game
of Nash (1953).

4. Propose and study bargaining procedures, for instance in the spirit of Perry
and Reny (1994), that lead to core-like solutions rather than value-like solu-
tions (as ours do). Moreover, try to identify general classes of procedures
that include these as special cases, and understand what drives the different
results.

5. Characterize situations where damaging actions and fixed threats obtain. This
may be interesting, in particular, in the context of the exchange economies
of Section 7: under which conditions (beyond being TU) will the damaging
actions (i.e., retaining the endowments) emerge as fixed threats at an SP
equilibrium?

6. In terms of cooperative game theory, the SP equilibria of the PC procedure
define a solution concept on the class of strategic games. It is natural to
look for axiomatic characterizations of this solution (see Hart (2005) for an
axiomatization of the NTU-value obtained from the Hart and Mas-Colell
(1996a) procedure).

7. When combined with known results—in particular, the equivalence theo-
rems for the Shapley value (see Hart (2002) for a survey)—the conclusions
of Sections 5 and 6 for TU exchange economies have some striking
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consequences. If, in a precise but not particularly restrictive sense, the num-
ber of players N is large, then the SP equilibria of the PC procedure (for the
natural strategic form considered in Section 7) will be nearly Walrasian; that
is to say, it is as if the proposer were to set up a price system at which all
the traders would trade. This raises the following question: What can one say
when N is large in the general NTU case? In particular, would the conver-
gence to Walrasian equilibria still obtain in the subclass of economies where
the SP equilibrium has the fixed-threat property (of course, the fixed threat
will then be the damaging action of retaining the endowments)?

8. Computational matters are relevant and may be well worth studying. There is
a sense in which the computation of an SP equilibrium of the PC procedure
should be easier in the TU case. To take the simplest case consider ρ =
0, which eliminates the need to compute fixed points. In the TU case, the
determination of the optimal threat of a player i at the starting state (N, ·)
depends only on the aggregate utilities that can be obtained by the coalitions
N and N\{i}, and one does not need to know the equilibrium payoffs and the
optimal threats for N\{i}, nor for any smaller subcoalitions. Consequently,
the number of optimal threats that need to be considered in the computation
of an SP equilibrium depends only on the cardinality of N and not on that
of the action sets. In the general NTU case, however, in order to determine
the optimal threat of i in the starting state (N, ·) one needs to have already
solved the optimal threats’ problems for all subsequent states, which is done
starting with singleton coalitions and going up in size. The number of such
problems is given by the number of states, and thus depends not only on the
cardinality of N , but also on the cardinality of the action sets.

9. In general, there may be multiple SP equilibria; this multiplicity is due, first,
to the fixed-point conditions (4), and second, to the fact that the computation
starts from singleton coalitions and moves up, and thus each time that there
is more than one optimal threat one gets different “branches” of equilibria.
It would be interesting to find out relevant classes of games where the SP
equilibria, or the SP equilibrium payoffs, are unique (cf. Proposition 5 in the
TU case).

10. In the example of Section 7, identify the class of bargaining proce-
dures for which the damaging threat is not always optimal (we suspect
that this phenomenon is quite robust, and not limited to the specific PC
procedure).
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