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Abstract

The OLG model of Allais and Samuelson retains the methodological as-
sumptions of agent optimization and market clearing from the Arrow-Debreu
model, yet its equilibrium set has different properties: Pareto inefficiency, inde-
terminacy, positive valuation of money, and a golden rule equilibrium in which
the rate of interest is equal to population growth (independent of impatience).
These properties are shown to derive not from market incompleteness, but
from lack of market clearing "at infinity;" they can be eliminated with land or
uniform impatience. The OLG model is used to analyze bubbles, social secu-
rity, demographic effects on stock returns, the foundations of monetary theory,
Keynesian vs. real business cycle macromodels, and classical vs. neoclassical
disputes.
Key words: demography, inefficiency, indeterminacy, money, bubbles, cy-

cles, rate of interest, impatience, land, infinity, expectations, social security,
golden rule.
JEL classification: D1, D3, D5, D6, D9, E11, E12, E13, E2, E3, E4, E6

The consumption loan model that Paul Samuelson introduced in 1958 to analyze
the rate of interest, with or without the social contrivance of money, has developed
into what is without doubt the most important and influential paradigm in neoclassi-
cal general equilibrium theory outside of the Arrow—Debreu economy. Earlier Maurice
Allais (1947) had presented similar ideas which unfortunately did not then receive
the attention they deserved. A vast literature in public finance and macroeconomics
is based on the model, including studies of the national debt, social security, the
incidence of taxation and bequests on the accumulation of capital, the Phillips curve,
the business cycle, and the foundations of monetary theory. In the following pages I
give a hint of these myriad applications only in so far as they illuminate the general
theory. My main concern is with the relationship between the Samuelson model and
the Arrow—Debreu model.
Allais’ and Samuelson’s innovation was in postulating a demographic structure

in which generations overlap, indefinitely into the future; up until then it had been
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customary to regard all agents as contemporaneous. In the simplest possible example,
in which each generation lives for two periods, endowed with a perishable commodity
when young and nothing when old, Samuelson noticed a great surprise. Although
each agent could be made better off if he gave half his youthful birthright to his
predecessor, receiving in turn half from his successor, in the marketplace there would
be no trade at all. A father can benefit from his son’s resources, but has nothing to
offer in return.
This failure of the market stirred a long and confused controversy. Samuelson

himself attributed the suboptimality to a lack of double coincidence of wants. He
suggested the social contrivance of money as a solution. Abba Lerner suggested
changing the definition of optimality. Others, following Samuelson’s hints about
the financial intermediation role of money, sought to explain the consumption loan
model by the incompleteness of markets. It has only gradually become clear that the
“Samuelson suboptimality paradox” has nothing to do with the absence of markets or
financial intermediation. Exactly the same equilibrium allocation would be reached
if all the agents, dead and unborn, met (in spirit) before the beginning of time and
traded all consumption goods, dated from all time periods, simultaneously under
the usual conditions of perfect intermediation. Indeed, almost 100 years ago Irving
Fisher implicitly argued that any sequential economy without uncertainty, but with
a functioning loan market, could be equivalently described as if all markets met once
with trade conducted at present value prices.
Over the years Samuelson’s consumption loan example, infused with Arrow—

Debreu methods, has been developed into a full blown general equilibrium model
with many agents, multiple kinds of commodities and production. It is equally faith-
ful to the neoclassical methodological assumptions of agent optimization, market
clearing, price taking, and rational expectations as the Arrow—Debreu model. This
more comprehensive version of Samuelson’s original idea is known as the overlapping
generations (OLG) model of general equilibrium.
Despite the methodological similarities between the OLG model and the Arrow—

Debreu model, there is a profound difference in their equilibria. The OLG equilibria
may be Pareto suboptimal. Money may have positive value. There are robust OLG
economies with a continuum of equilibria. Indeed, the more commodities per period,
the higher the dimension of multiplicity may be. Finally, the core of an OLG economy
may be empty. None of this could happen in any Arrow—Debreu economy.
The puzzle is why? One looks in vain for an externality, or one of the other

conventional pathologies of an Arrow—Debreu economy. It is evident that the simple
fact that generations overlap cannot be an explanation, since by judicious choice
of utility functions one can build that into the Arrow—Debreu model. It cannot be
simply that the time horizon is infinite, as we shall see, since there are classes of infinite
horizon economies whose equilibria behave very much like Arrow—Debreu equilibria.
It is the combination, that generations overlap indefinitely, which is somehow crucial.
In Section 4 I explain how.
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Note that in the Arrow—Debreu economy the number of commodities, and hence
of time periods, is finite. One is tempted to think that if the end of the world is put
far enough off into the future, it could hardly matter to behavior today. But recalling
the extreme rationality hypotheses of the Arrow—Debreu model, it should not be
surprising that such a cataclysmic event, no matter how long delayed, could exercise
a strong influence on behavior. Indeed the OLG model proves that it does. One can
think of other examples. Social security, based on the pay-as-you-go principle in the
United States in which the young make payments directly to the old, depends crucially
on people thinking that there might always be a future generation. Otherwise the
last generation of young will not contribute; foreseeing that, neither will the second
to last generation of young contribute, nor, working backward, will any generation
contribute. Another similar example comes from game theory, in which cooperation
depends on an infinite horizon. On the whole, it seems at least as realistic to suppose
that everyone believes the world is immortal as to suppose that everyone believes in
a definite date by which it will end. (In fact, it is enough that people believe, for
every T , that there is positive probability the world lasts past T .)
In Section 1, I analyze a simple one-commodity OLG model from the present

value general equilibrium perspective. This illustrates the paradoxical nature of OLG
equilibria in the most orthodox setting. These paradoxical properties can hold equally
for economies with many commodities, as pointed out in Section 4. Section 2 discusses
the possibility of equilibrium cycles in a one-commodity, stationary, OLG economy.
In Section 3, I describe OLG equilibria from a sequential markets point of view, and
show that money can have positive value.
In the simple OLG economy of Section 1 there are two steady state equilibria,

and a continuum of nonstationary equilibria. Out of all of these, only one is Pareto
efficient, and it has the property that the real rate of interest is always zero, just equal
to the rate of population growth, independent of the impatience of the consumers
or the distribution of endowments between youth and old age. This “golden rule”
equilibrium seems to violate Fisher’s impatience theory of interest.
In Section 5 I add land to the one-commodity model of Section 1. It turns out that

now there is a unique steady state equilibrium, that is Pareto efficient, and that has a
rate of interest greater than the population growth rate, that increases if consumers
become more impatient. Land restores Fisher’s view of interest. In this setting it is
also possible to analyze the effects of social security.
In Section 6 I briefly introduce variations in demography. It is well known that

birth rates in the United States have oscillated every twenty years over the last cen-
tury. Stock prices have curiously moved in parallel, rising rapidly from 1945—65,
falling from 65—85, and rising ever since. One might therefore expect stock prices
to fall as the current baby boom generation retires. But some authors have claimed
that the parallel trending of stock prices must be coincidental. Otherwise, since
demographic changes are known long in advance, rational investors would have an-
ticipated the stock trends and changed them. In Section 6 I allow the size of the
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generations to alternate and confirm that in OLG equilibrium, land prices rise and
fall with demography, even though the changes are perfectly anticipated.
In Section 7 I show that not just land, but also uniform impatience restores

the properties of infinite horizon economies to those found in finite Arrow Debreu
economies.
Section 8 takes up the question of comparative statics. If there is a multiplicity of

OLG equilibria, what sense can be made of comparative statics? Section 8 summarizes
the work showing that for perfectly anticipated changes, there is only one equilibrium
in the multiplicity that is “near” an original “regular” equilibrium. For unanticipated
changes, there may be a multidimensional multiplicity. But it is parameterizable.
Hence by always fixing the same variables, a unique prediction can be made for
changes in the equilibrium in response to perturbations. In Section 9 we see how this
could be used to understand some of the New Classical-Keynesian disputes about
macroeconomic policy. Different theories hold different variables fixed in making
predictions.
Section 10 considers a neoclassical—classical controversy. Recall the classical econo-

mists’ conception of the economic process as a never ending cycle of reproduction in
which the state of physical commodities is always renewed, and in which the rate
of interest is determined outside the system of supply and demand. Samuelson at-
tempted to give a completely neoclassical explanation of the rate of interest in just
such a setting. It now appears that the market forces of supply and demand are
not sufficient to determine the rate of interest in the standard OLG model. In other
infinite horizon models they do.
Section 11 summarizes some work on sunspots in the OLG model. Uncertainty in

dynamic models seems likely to be very important in the future.
An explanation of the puzzles of OLG equilibria without land is given in Sec-

tion 4: lack of market clearing “at infinity.” By appealing to nonstandard analysis,
the mathematics of infinite and infinitesimal numbers, it can be shown that there
is a “finite-like” Arrow—Debreu economy whose “classical equilibria,” those price se-
quences which need not clear the markets in the last period, are isomorphic to the
OLG equilibria. Lack of market clearing is also used to explain the suboptimality
and the positive valuation of money.

1 Indeterminacy and Suboptimality in
a Simple OLG Model

In this section we analyze the equilibrium set of a one-commodity per period, overlap-
ping generations (OLG) economy, assuming that all agents meet simultaneously in all
markets before time begins, just as in the Arrow-Debreu model. Prices are all quoted
in present value terms; that is, pt is the price an agent would pay when the markets
meet (at time −∞) in order to receive one unit of the good at time t. Although this
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definition of equilibrium is firmly in the Walrasian tradition of agent optimization
and market clearing, we discover three surprises. There are robust examples of OLG
economies that possess an uncountable multiplicity of equilibria, that are not in the
core, or even Pareto optimal. This lack of optimality (in a slightly different model, as
we shall see) was pointed out by Samuelson in his seminal (1958) paper. The indeter-
minacy of equilibrium in the one-commodity case is usually associated first with Gale
(1973). In later sections we shall show that these puzzles are robust to an extension
of the model to multiple commodities and agents per period, and to a nonstationary
environment. We shall add still another puzzle in Section 3, the positive valuation of
money, which is also due to Samuelson.
A large part of this section is devoted to developing the notation and price nor-

malization that we shall use throughout. In anyWalrasian model the problem of price
normalization (the “numeraire problem”) arises. Here the most convenient solution
in the long run is not at first glance the most transparent.
Consider an overlapping generation (OLG) economy E = E−∞,∞ in which dis-

crete time periods t extend indefinitely into the past and into the future, t ∈ Z.
Corresponding to each time period there is a single, perishable consumption good xt.
Suppose furthermore that at each date t one agent is “born’ and lives for two periods,
with utility

ut(..., xt, xt+1, ...) = at log xt + (1− at) log xt+1

defined over all vectors

x = (..., x−1, x0, x1, ...) ∈ L = RZ+.

Thus we identify the set of agents A with the time periods Z. Let each agent t ∈ A
have endowment

et = (..., ett, e
t
t+1, ...) ∈ L

which is positive only during the two periods of his life. Note thatX
t∈A

ets = es−1s + ess for all s ∈ Z.

An equilibrium is defined as a (present value) price vector

p = (..., p−1, p0, p1, ...) ∈ L

and allocation
x̄ = [xt = (..., xtt, x

t
t+1, ...); t ∈ A]

satisfying x̄ is feasible, i.e., X
t∈A

xts =
X
t∈A

ets, for all s ∈ Z (1)
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and X
s∈Z

pse
t
s <∞ for all t ∈ A (2)

and

xt ∈ argmax
x∈L

(
ut(x)

¯̄̄̄
¯X
s∈Z

psxs ≤
X
s∈Z

pse
t
s

)
. (3)

The above definition of equilibrium is precisely in the Walrasian tradition, except
that it allows for both an infinite number of traders and commodities. All prices are
finite, and consumers treat them as parametric in calculating their budgets. The fact
that the definition leads to robust examples with a continuum of Pareto-suboptimal
equilibria calls for an explanation. We shall give two of them, one at the end of this
section, and one in Section 4. Note that condition (2) becomes necessary only when
we consider models in which agents have positive endowments in an infinite number
of time periods.
As usual, the set of (present value) equilibrium price sequences displays a trivial

dimension of multiplicity (indeterminacy), since if p is an equilibrium, so is kp for
all scalars k > 0. We can remove this ambiguity by choosing a price normalization
qt = pt+1/pt, for all t ∈ Z. The sequence q = (..., q−1, q0, ...) and allocations (xt; t ∈ A)
form an equilibrium if (1) above holds together with

xt ∈ argmax
x∈L

{ut(x)|xt + qtxt+1 ≤ ett + qte
t
t+1}. (4)

Notice that we have taken advantage of the finite lifetimes of the agents to combine
(2) and (3) into a single condition (4). We could have normalized prices by choosing a
numeraire commodity, and setting its price equal to one, say p0 = 1. The normaliza-
tion we have chosen instead has three advantages as compared with this more obvious
system. First, the q system is time invariant. It does not single out a special period
in which a price must be 1; if we relabelled calendar time, then the corresponding
relabelling of the qt would preserve the equilibrium. In the numeraire normalization,
after the calendar shift, prices would have to be renormalized to maintain p0 = 1.
Second, on account of the monotonicity of preferences, we know that if the preferences
and endowments are uniformly bounded

0 < a ≤ at ≤ ā < 1, 0 < e ≤ ett, e
t
t+1 ≤ ē ≤ 1 for all t ∈ A,

then we can specify uniform a priori bounds k and k̄ such that any equilibrium price
vector q must satisfy k ≤ qt ≤ k̄ for all t ∈ Z. Thirdly, it is sometimes convenient to
note that each generation’s excess demand depends on its own price. We define

[Zt
t(qt), Z

t
t+1(qt)] = (x

t
t − ett, x

t
t+1 − ett+1)

for xt satisfying (4), as the excess demand of generation t, when young and when old.
We can accordingly rewrite equilibrium condition (1) as

Zt−1
t (qt−1) + Zt

t(qt) = 0 for all t ∈ Z. (5)
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Let us now investigate the equilibria of the above economy when preferences and
endowments are perfectly stationary. To be concrete, let

at = a for all t ∈ A,

and let
ett = e, and ett+1 = 1− e, for all t ∈ A,

where e > a ≥ 1/2. Agents are born with a larger endowment when young than
when old, but the aggregate endowment of the economy is constant at 1 in every
time period. Furthermore, each agent regards consumption when young as at least
as important as consumption when old (a ≥ 1/2), but on account of the skewed
endowment, the marginal utility of consumption at the endowment allocation when
young is lower than when old:

a

e
<
1− a

1− e
.

If we choose

qt = q̄ =
(1− a)e

(1− e)a
> 1

for all t ∈ Z, then we see clearly that at these prices each agent will just consume his
endowment; q = (..., q̄, q̄, ...) is an equilibrium price vector, with xt = et for all t ∈ A.
Note that if we had used the price normalization p0 = 1, the equilibrium prices would
be described by

(..., p0, p1, p2, ...) = (..., 1, q̄, q̄
2, ...)

where pt →∞ as t→∞. With a = 1/2 and e = 3/4, we get q̄ = 3 and pt = 3
t.

But there are other equilibria as well. Take q = (..., 1, 1, 1, ...), and

(xtt, x
t
t+1) = (a, 1− a) for all t ∈ A.

This “golden rule” Pareto equilibrium dominates the autarkic equilibrium previously
calculated. With a = 1/2 and e = 3/4, we see that (1/2, 1/2) is much better for
everyone than (3/4, 1/4). This raises the most important puzzle of overlapping gen-
erations economies: why is it that equilibria can fail to be Pareto optimal? We shall
discuss this question at length in Section 4.
For now, let us observe one more curious fact. We can define the core of our

economy in a manner exactly analogous to the finite commodity and consumer case.
We say that a feasible allocation x = (xt; t ∈ A) is in the core of the economy E if
there is no subset of traders A0 ⊂ A, and an allocation y = (yt; t ∈ A0) for A0 such
that X

t∈A0
yt =

X
t∈A0

et,

and
ut(yt) > ut(xt) for all t ∈ A0.
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A simple argument can be given to show that the core of this economy is empty. For
example, the golden rule equilibrium allocation is Pareto optimal, but not in the core.
Since a < e, every agent is consuming less when young than his initial endowment.
Thus for any t0 ∈ A, the coalition A0 = {t ∈ A|t ≥ t0} consisting of all agents born
at time t0 or later can block the golden rule allocation.
Let us continue to investigate the set of equilibria of our simple, stationary econ-

omy. Gale (1973) showed that for any q̄0, with 1 < q̄0 < q̄, there is an equilibrium
price sequence

q = (..., q−1, q0, q1, ...)

with q0 = q̄0. In other words, there is a whole continuum of equilibria, containing
a nontrivial interval of values. Incidentally, it can also be shown that for all such
equilibria q, qt → q̄ as t → ∞, and qt → 1 as t → −∞. Moreover, these equilibria,
together with the two steady state equilibria, constitute the entire equilibrium set.
This raises the second great puzzle of overlapping generations economies. There

can be a nondegenerate continuum of equilibria, while in finite commodity and finite
agent economies there is typically only a finite number. Thus if we considered the
finite truncated economy E−T,T consisting of those agents born between −T and T ,
and no others, then it can easily be seen that there is only a unique equilibrium
(q−T , ..., qT ) = (q̄, ..., q̄), no matter how large T is taken. On the other hand, in
the overlapping generations economy, there is a continuum of equilibria. Moreover,
the differences in these equilibria are not to be seen only at the tails. In the OLG
economy, as q̄0 varies from 1 to q̄, the consumption of the young agent at time zero
varies from a to e, and his utility from a log e+ (1− a) log(1− e) (which for e near 1
is close to −∞), all the way to a log a + (1 − a) log(1 − a). By pushing the “end of
the world” further into the future, one does not approximate the world which does
not end. We shall take up this theme again in Section 4.
It is very important to understand that the multiplicity of equilibria is not due to

the stationarity of the economy. If we imagined a nonstationary economy with each
at near a and each (ett, e

t
t+1) near (e, 1− e), we would find the same multiplicity. One

might hold the opinion that in a steady state economy, one should only pay attention
to steady state equilibria, i.e., only to the autarkic and golden rule equilibria. In
nonsteady state economies, there is no steady state equilibrium to stand out among
the continuum. One must face up to the multiplicity.
Let us reconsider how one might demonstrate the multiplicity of equilibria, even

in a nonstationary economy. This will lead to a first economic explanation of in-
determinacy similar to the one originally proposed by Gale. Suppose that in our
nonstationary example we find one equilibrium q̂ = (..., q̂−1, q̂0, q̂1, ...) satisfying:

Zt−1
t (q̂t−1) + Zt

t(q̂t) = 0 for all t ∈ Z. (6)

Let us look for “nearby” equilibria.
We shall say that generation t is expectations sensitive at q̂t if both [∂Zt

t(q̂t)/∂qt] 6=
0 and [∂Zt

t+1(q̂t)/∂qt] 6= 0. If the first inequality holds, then the young’s behavior at
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time t can be influenced by what they expect to happen at time t+1. Similarly, if the
second inequality holds, then the behavior of the old agent at time t+ 1 depends on
the price he faced when he was young, at time t. Recalling the logarithmic preferences
of our example, it is easy to calculate that the derivatives of excess demands, for any
qt > 0, satisfy

∂Zt
t(qt)

∂qt
= atett+1 6= 0

and
∂Zt

t+1(qt)

∂qt
=
−(1− at)ett

q2t
6= 0.

Hence by applying the implicit function theorem to (1) we know that there is a
nontrivial interval IFt−1 containing q̂t−1 and a function Ft with domain IFt−1 such that
Ft(q̂t−1) = q̂t, and more generally,

Zt−1
t (qt−1) + Zt

t [Ft(qt−1)] = 0 for all qt−1 ∈ IFt−1.

Similarly there is a nontrivial interval IBt containing q̂t, and a functionBt with domain
IBt such that Bt(q̂t) = q̂t−1, and more generally, Zt−1

t [Bt(qt)] + Zt
t(qt) = 0, for all

qt ∈ IBt . Of course, if Ft(qt−1) = qt ∈ IBt , then Bt(qt) = qt−1.
These forward and backward functions Ft and Bt, respectively, hold the key to

one understanding of indeterminacy. Choose any relative price q0 ∈ IF0 ∩ IB0 between
periods 0 and 1. The behavior of the generation born at 0 is determined, including
its behavior when old at period 1. If q0 6= q̂0, and generation 1 continues to expect
relative prices q̂1 between 1 and 2, then the period 1 market will not clear. However, it
will clear if relative prices q1 adjust so that q1 = F1(q0). Of course, changing relative
prices between period 1 and 2 from q̂1 to q1 will upset market clearing at time 2, if
generation 2 continues to expect q̂2. But if expectations change to q2 = F2(q1), then
again the market at time 2 will clear. In general, once we have chosen qt ∈ IFt , we can
take qt+1 = Ft+1(qt) to clear the (t + 1) market. Similarly, we can work backwards.
The change in q0 will cause the period 0 market not to clear, unless the previous
relative prices between period −1 and 0 were changed from q̂−1 to q−1 = B0(q0).
More generally, if we have already chosen qt ∈ IBt , we can set qt−1 = Bt(qt) and still
clear the period t market.
Thus we see that it is possible that an arbitrary choice of q0 ∈ IF0 ∩ IB0 could lead

to an equilibrium price sequence q. What happens at time 0 is undetermined because
it depends on expectations concerning period 1, and also the past. But what can
rationally be expected to happen at time 1 depends on what in turn is expected to
happen at time 2, etc.
There is one essential element missing in the above story. Even if qt ∈ IFt , there

is no guarantee that qt+1 = Ft+1(qt) is an element of IFt+1. Similarly, qt ∈ IBt does not
necessarily imply that qt−1 = Bt(qt) ∈ IBt−1. In our steady state example, this can
easily be remedied. Since all generations are alike,

Ft = F1, Bt = B0, I
F
t = IF0 and IBt = IB0 for all t ∈ Z.
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One can show that the interval (1, q̄) ⊂ IF0 ∩ IB0 , and that if q0 ∈ (1, q̄), then F1(q0) ∈
(1, q̄), and B0(q0) ∈ (1, q̄). This establishes the indeterminacy we claimed.
In the general case, when there are several commodities and agents per period, and

when the economy is nonstationary, a more elaborate argument is needed. Indeed,
one wonders, given one equilibrium q̂ for such an economy, whether after a small
perturbation to the agents there is any equilibrium at all of the perturbed economy
near q̂. We shall take this up in Section 8.
It is worth noting that we can define two more complete markets OLG economies

with present value prices. In the economy E0,∞ only agents born at time t ≥ 1
participate. The definition of OLG equilibrium is the same as before, except that
now the set of agents is restricted to the participants, and market clearing is only
required for t ≥ 1. In the q-normalized form, equilibrium is defined by q = (q1, q2, ...)
such that

Z11(q1) = 0

Zt−1
t (qt−1) + Zt

t(qt) = 0 ∀t ≥ 2

It is immediately apparent (with one agent born per period and one good) that E0,∞
has a unique equilibrium, at which no agent trades and which is Pareto inefficient.
We could also define an economy EM

0,∞ in which only agents t ≥ 1 participate, but
where we require (in the normalized price version) that

Z11(q1) = −M
Zt−1
t (qt−1) + Zt

t(qt) = 0 ∀t ≥ 2

Equilibrium in EM
0,∞ is as if we gave an outside agent who had no endowment the

purchasing power of M at time 1, and still managed to clear all markets t ≥ 1. As
long as 0 ≤ M ≤ Z01(q̄), E

M
0,∞ has an equilibrium. Take q0 solving M = Z01(q0), and

q1 = F1(q0) and qt = Ft(qt−1) for t ≥ 2. We examine these two models more closely
in Section 3.

2 Endogenous Cycles

Let us consider another remarkable and suggestive property that one-commodity, sta-
tionary OLG economies can exhibit. We shall call the equilibrium q = (..., q−1, q0, q1, ...)
periodic of period n if q0, q1, ..., qn−1 are all distinct, and if for all integers i and j,
qi = qi+jn. The possibility that a perfectly stationary economy can exhibit cyclical
ups and downs, even without any exogenous shocks or uncertainty, is reminiscent
of 1930s—1950s business cycle theories. In fact, it is possible to construct a robust
one-commodity per period economy which has equilibrium cycles of every order n.
Let us see how.
As before, let each generation t consist of one agent, with endowment et =

(..., 0, e, 1− e, 0, ...) positive only in period t and t + 1, and utility ut(x) = u1(xt) +
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u2(xt+1). Again, suppose that q̄ = u02(1 − e)/u01(e) > 1. It is an immediate conse-
quence of the separability of ut, that for qt ≤ q̄,

Zt
t(qt) ≤ 0, Zt

t+1(qt) ≥ 0,
∂Zt

t+1(qt)

∂qt
< 0.

>From monotonicity, we know that Zt
t+1(qt) → ∞ as qt → 0. Hence it follows that

for any 0 < q0 < q̄, there is a unique q−1 = B0(q0) with

Z−10 [B0(q0)] + Z00(q0) = 0.

>From the fact that Z00(q0) ≥ −e for all q0, it also follows that there is some q ≤ 1
such that if q0 ∈ [q, q̄], then B0(q0) ∈ [q, q̄].
Now consider the following theorem due to the Russian mathematician Sarkovsky,

and to the mathematicians Li and Yorke (1975).

Sarkovsky-Li-Yorke Theorem Let B : [q, q̄] → [q, q̄] be a continuous function
from a nontrivial closed interval into itself. Suppose that there exists a 3-cycle for
B, i.e., distinct points q0, q1, q2, in [q, q̄] with q1 = B(q0), q2 = B(q1), q0 = B(q2).
Then there are cycles for B of every order n.

Grandmont (1985), following related work of Benhabib—Day (1982) and Benhabib—
Nishimura (1985), gave a robust example of a one-commodity, stationary economy
(u1, u2, e) giving rise to a 3-cycle for the function B0. Of course a cycle for B0 is also
a cyclical equilibrium for the economy, hence there are robust examples of economies
with cycles of all orders.

Theorem (Benhabib, Day, Nishimura, Grandmont) There exist robust examples of
stationary, one-commodity OLG economies with cyclical equilibria of every order n.

This result is extremely suggestive of macroeconomic fluctuations arising for en-
dogenous reasons, even in the absence of any fundamental fluctuations. Note, how-
ever, that all of the cyclical equilibria, except for the autarkic one-cycle (..., q̄, q̄, q̄, ...)
can be shown to be Pareto optimal (see Section 4), while the theory of macroeconomic
business cycles is concerned with the welfare losses from cyclical fluctuations. On the
other hand, the fact that cyclical behavior is not incompatible with optimality is per-
haps an important observation for macroeconomics. More significantly, it must also
be noted that Sarkovsky’s theorem is a bit of a mathematical curiosity, depending
crucially on one dimension. And it must also be noted that nonstationary economies,
even with one commodity, will typically not have any periodic cycles. By contrast,
the multiplicity and suboptimality of nonperiodic equilibria that we saw in Section
1 are robust properties that are maintained in OLG economies with multiple com-
modities and heterogeneity across time. The main contribution of the endogenous
business cycle literature is that it establishes the extremely important, suggestive
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principle, that very simple dynamic models can have very complicated (“chaotic”)
dynamic equilibrium behavior.
In the next section we turn to another phenomenon that can generally occur in

overlapping generations economies, but never in finite horizon models.

3 Money and the Sequential Economy

Money very often has value in an overlapping generations model, but it never does
in a finite horizon Arrow—Debreu model. The reason for its absence in the latter
model is familiar: money would enable some agents to spend more on goods than
they received from sales of their goods. But that would mean in the aggregate that
spending on goods would exceed revenue from the sale of goods, contradicting market
clearing in goods.
This argument can be given another form. Without uncertainty, Arrow—Debreu

equilibrium can be reinterpreted as a sequential equilibrium with contemporaneous
prices. But if the number of periods is finite, then in the last period the marginal
utility of money to every consumer is zero, hence so is its price. In the second to last
period nobody will pay to end up holding any money, because in the last period it
will be worthless. By induction it will have no value even in the first period.
Evidently both these arguments fail in an infinite horizon setting. There is no

last period, so the backward induction argument has no place to begin. And with an
infinite number of consumers, aggregate spending and revenue might both be infinite,
preventing us from comparing their sizes. On the other hand, there are infinite horizon
models where money cannot have value. The difference between the OLG model and
these other infinite horizon models will be discussed in Section 7.
Strictly speaking, the overlapping generations model we have discussed so far has

been modelled along the lines of Arrow—Debreu: each agent faced only one budget
constraint and equilibrium was defined as if all markets met simultaneously at the
beginning of time (−∞). In such a model money has no function. However, we can
define another model, similar to the first considered by Samuelson, in which agents
face a sequence of budget constraints and markets meet sequentially, where money
does have a store of value role. Surprisingly, this model turns out to have formally
the same properties as the OLG model we have so far considered. To distinguish the
two models we shall refer to this latter monetary model as the Samuelson model.
Suppose that we imagine a one-good per period economy in which the markets

meet sequentially, according to their dates, and not simultaneously at the beginning
of time. Suppose also that there are no assets or promises to trade. In such a setting
it is easy to see that there could be no trade at all, since, as Samuelson put it, there
is no double coincidence of wants. The old and the young at any date t both have the
same kind of commodity, so they have no mutually advantageous deal to strike. But
as Samuelson pointed out, introducing a durable good called money, which affects
no agent’s utility, might allow for much beneficial trade. The old at date t could
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sell their money to the young for commodities, who in turn could sell their money
when old to the next period’s young. In this manner new and more efficient equilibria
might be created. The “social contrivance of money” is thus connected to both the
indeterminacy of equilibrium and the Pareto suboptimality of equilibrium, at least
near autarkic equilibria. The puzzle, we have said, is how to explain the positive
price of money when it has no marginal utility.
A closer examination of the equilibrium conditions of Samuelson’s sequential mon-

etary equilibrium reveals that although it appears much more complicated, it reduces
to the timeless OLG model we have defined above, but with one difference, that the
budget constraint of the generation endowed with money is increased by the value
of money. The introduction of the asset money thus “completes the markets,” in
the sense of Arrow (1953), by which we mean that the equilibrium of the sequential
economy can be understood as if it were an economy in which money did not appear
and all the markets cleared at the beginning of time (except, as we said, that the
incomes of several agents are increased beyond the value of their endowments). The
puzzle of how money can have positive value in the Samuelson model can thus be
reinterpreted in the OLG model as follows. How is it possible that we can increase
the purchasing power of one agent beyond the value of his endowment, without de-
creasing the purchasing power of any other agent below his, and yet continue to clear
all the markets? Before giving a more formal treatment of the foregoing, let me re-
emphasize an important point. It has often been said that the paradoxical properties
of equilibrium in the sequential Samuelson consumption loan model can be explained
on the basis of incomplete markets. Adding money to the model, however, completes
the markets, in the precise sense of Arrow—Debreu, but the result is the OLG model
in which the puzzles remain.
Let us now formally define the sequential one-commodity Samuelson model with

money, EM,S
0,∞ . Consider a truncated economy in which there is a new agent “born”

at each date t ≥ 0, whose utility depends only on the two goods dated during his
lifetime, and whose endowment is positive only in those same commodities. At each
date t ≥ 1 there will be two agents alive, a young one and an old one. Let us suppose
that trade does not begin until period 1, so that the date 0 generation must consume
its endowment when it is young. To this truncation of our earlier model we now add
one extra commodity, which we call money. Money is a perfectly durable commodity
that affects no agent’s utility. Agents are endowed with money (M t

t ,M
t
t+1), in addition

to their commodity endowments.
A (contemporaneous) price system is defined as a sequence

(π; p) = (π1, π2, ...; p1, p2, ...)

of contemporaneous money prices πt and contemporaneous commodity prices pt for
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each t ≥ 1. The budget set for any agent t ≥ 1 is defined by©
(mt,mt+1, xt, xt+1) ≥ 0|πtmt + ptxt ≤ πtM

t
t + pte

t
t and

πt+1mt+1 + pt+1xt+1 ≤ πt+1M
t
t+1 + pt+1e

t
t+1 + πt+1mt

ª
.

For agent 0 the budget constraint is©
(m0,m1, x0, x1) ≥ 0|m0 =M0

0 , x0 = e00, and

π1m1 + p1x1 ≤ π1M
0
1 + p1e

0
1 + π1m0

ª
.

The budget constraints express the principle that in the Samuelson model agents
cannot borrow at all, and cannot save, i.e., purchase more when old than the value of
their old endowment, except by holding over money mt from when they were young.
Let mt

t(π, p) and mt
t+1(π, p) be the utility maximizing choices of money holdings by

generation t when young and when old. As before, the excess commodity demand is
defined by Zt

t(π, p) and Zt
t+1(π, p).

To keep things simple, we suppose that agent 0 is endowed with M0
1 = M units

of money when he is old, but all other endowments M t
s are zero. Since money is

perfectly durable, total money supply in every period is equal to M . Equilibrium is
defined by a price sequence (π, p) such that for all t ≥ 1,

mt−1
t (π, p) +mt

t(π, p) =M and Zt−1
t (π, p) + Zt

t(π, p) = 0.

At first glance this seems a much more complicated system than before.
But elementary arguments show that in equilibrium either πt = 0 for all t, and

there is no intergenerational trade of commodities, or πt > 0 for all t, or πt < 0 for
all t. In the case where πt > 0, no generation will choose to be left with unspent cash
when it dies, hence mt

t+1(π, p) = 0 for all t, hence money market clearing is reduced
to

mt
t(π, p) =M for all t ≥ 1.

By homogeneity of the budget sets, if πt > 0, we might as well assume πt = 1 for all
t. But then the prices pt become the same as the present value prices from Section
1. From period by period Walras Law, we deduce that if the goods market clears
at date t, so must the money market. So we never have to mention money market
clearing or prices.
Moreover, by taking qt = (πtpt+1)/(πt+1pt) we can write the commodity excess

demands for agent t ≥ 1 just as in Section 1, by

[Zt
t(qt), Z

t
t+1(qt)]

and they are the same as
[Zt

t(π, p), Z
t
t+1(π, p)].
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The only agent who behaves differently is agent 0, whose budget set must now be
written

B0(μ,M) = {(x0, x1)|x0 = e00, x1 ≤ e01 + μM},
where

μ =
π1
p1
.

We can then write agent 0’s excess demand for goods at time 1 as

Z01(μ, q,M) = Z01(μM) = μM

Thus any sequential Samuelson monetary equilibrium can be described by (μ, q),
μ ≥ 0, satisfying

Z01(μM) + Z11(q1) = 0,

and
Zt−1
t (qt−1) + Zt

t(qt) = 0 for all t ≥ 2.
But of course that is precisely the same as the definition of an OLG equilibrium

for EμM
0,∞ given in Section 1.

4 Understanding OLG Economies as Lack of
Market Clearing at Infinity

In this section we point out that the suboptimality of competitive equilibria, the
indeterminacy of nonstationary equilibria, the non-existence of the core, and the
positive valuation of money can all occur robustly in possibly nonstationary OLG
economies with multiple consumers and L > 1 commodities per period. We also note
the important principle that the potential dimension of indeterminacy is related to
L. In the two-way infinity model, it is 2L− 1. In the one-way infinite model without
money it is L− 1; in the one-way infinity model with money the potential dimension
of indeterminacy is L.
None of these properties can occur (robustly) in a finite consumer, finite horizon,

Arrow—Debreu model. In what follows we shall suggest that a proper understanding
of these phenomena lies in the fact that the OLG model is isomorphic, in a precise
sense, to a “∗-finite” model in which not all the markets are required to clear.
One of the first explanations offered to account for the differences between the

Arrow—Debreu model and the sequential Samuelson model with money centered on
the finite lifetimes of the agents and the multiple budget constraints each faced. These
impediments to intergenerational trade (e.g., the fact that an agent who is “old” at
time t logically cannot trade with an agent who will not be “born” until time t+ s)
were held responsible. But as we saw in the last section, without uncertainty, the
presence of a single asset like money is enough to connect all the markets. Formally,
as we saw, the model is identical to what we called the OLG model in which we could
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imagine all trade taking place simultaneously at the beginning of time, with each
agent facing a single budget constraint involving all the commodities. What prevents
trade between the old and the unborn is not any defect in the market, but a lack of
compatible desires and resources.
Another common explanation for the surprising properties of the OLG model

centers on the “paradoxes” of infinity, as suggested by Shell (1971). In finite models,
one proves the generic local uniqueness of equilibrium by counting the number of
unknown prices, less 1 for homogeneity, and the number of market clearing conditions,
less 1 for Walras’ Law, and notes that they are equal. In the OLG model there is
an infinity of prices and markets, and who is to say that one infinity is greater than
another? We already saw that the backward induction argument against money fails
in an infinite horizon setting, where there is no last period. Surely it is right that
infinity is at the heart of the problem. But this explanation does not go far enough. In
the model considered by Bewley (1972) there is also an infinite number of time periods
(but a finite number of consumers). In that model all equilibria are Pareto optimal,
and money never has value, even though there is no last time period. The problem of
infinity shows that there may be a difference between the Arrow—Debreu model and
the OLG model. In itself, however, it does not predict the qualitative features (like
the potential dimension of indeterminacy) that characterize OLG equilibria.
Consider now a general OLG model with many consumers and commodities per

period. We index utilities ut,h by the time of birth t, and the household h ∈ H, a
finite set. Household (t, h) owns initial resources et,ht when young, an L-dimensional
vector, and resources et,ht+1 when old, also an L-dimensional vector, and nothing else.
As before utility ut,h depends only on commodities dated either at time t or t + 1.
Given prices

qt = (qta, qtb) ∈ ∆2L−1
++ =

(
q ∈ R2L++

¯̄̄̄
¯

LX
c=1

(qc + qL+c) = 2

)
consisting of all the 2L prices at date t and t+ 1, each household in generation t has
enough information to calculate the relevant part of its budget set

Bt,h(qt) = {(xt, xt+1) ∈ R2L+ |qta · xt + qtb · xt+1 ≤ qta · et,ht + qtb · et,ht+1}

Hence we can write household excess demand [Zt,h
t (qt), Z

t,h
t+1(qt)] and the aggregate

excess demand of generation t as [Zt
t(qt), Z

t
t+1(qt)], where

Zt
t+s(qt) =

X
h∈H

Zt,h
t+s(qt), s = 0, 1.

Of course we need to put restrictions on the qt to ensure their compatibility, since
qtb and qt+1,a refer to the same period t+1 prices. But this is easily done by supposing
that

qtb = λtqt+1a for some λt > 0,∀t ∈ Z
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Present value OLG prices p can always be recovered from the normalized prices q
via the recursion

p1 = q1a

pt = qta(λ1λ2...λt−1) for t ≥ 2
pt = qta(λ

−1
0 λ−1−1...λ

−1
t ) for t ≤ 0

We shall now define three variations of the OLGmodel and equilibrium, depending
on when time starts, and whether or not there is money.
Suppose first that time goes from −∞ to ∞. We can write the market clearing

condition for equilibrium exactly as we did in the one-commodity, one-consumer case,
as

Zt−1
t (qt−1) + Zt

t(qt) = 0, t ∈ Z. (A)

Similarly we can define the one-way infinity economy E0,∞, in which time begins
in period 0, but trade begins in time 1. We simply retain the same market clearing
conditions for t ≥ 2,

Zt−1
t (qt−1) + Zt

t(qt) = 0, t ≥ 2 (A+)X
h∈H

Z̃0,h1 (q1a) + Z11(q1) = 0 (7)

it being understood that Z0,h1 has been modified to Z̃0,h1 (q1a) because every agent
(0, h) is forced to consume his own endowment at time 0, so that he maximizes over
his budget set

B0,h(q1a) = {(x0, x1) ∈ R2L+ |x0 = e0,h0 , q1a · x1 ≤ q1a · e0,h1 }

Finally, let us define equilibrium in a one-way infinity model with money, EM
0,∞,

when agents (0, h) are endowed with money Mh, in addition to their commodities,
by (μ, q), μ ≥ 0, satisfyingX

h∈H
Z̃0,h1 (q1a, μM

h) + Z11(q1) = 0, (AM+ )

and
Zt−1
t (qt−1) + Zt

t(qt) = 0, for t ≥ 2.
Again it is understood that the agents (0, h) born in time 0 cannot trade in time 0,
and they maximize over the budget set

B0,h(q1a, μM
h) = {(x0, x1) ∈ R2L+ |x0 = e0,h0 , q1a · x1 ≤ q1a · e0,h1 + μMh}
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These are the natural generalizations of the one-good economies defined in Section
1.1 We must now try to understand very generally why there may be many dimensions
of OLG equilibria, why they might not be Pareto efficient, and how it is possible that
some agents can spend beyond their budgets without upsetting market clearing.
Our explanation amounts to "lack of market clearing at infinitey". We illustrate

this for the case E0,∞.
Consider the truncated economy E0,T consisting of all the agents born between

periods 0 and T . Market clearing in E0,T is defined to be identical to that in E0,∞
for t = 1 to t = T . But at t = T + 1, we require ZT

T+1(qt) = 0 in E0,T . This is a
perfectly conventional Arrow-Debreu economy, and so necessarily has some compet-
itive equilibria, all of which are Pareto efficient; generically its equilibrium set is a
0-dimensional manifold.
We have already seen in Section 1 what a great deal of difference there is between

the economies E0,T (no matter how large T is) and E0,∞. The interesting point is
that by appealing to nonstandard analysis, which makes rigorous the mathematics
of infinite and infinitesimal numbers, one can easily show that the economy E0,T , for
T an infinite number, inherits any property that holds for all finite E0,T . Thus the
paradoxical properties of the economy E0,∞ do not stem from infinity alone, since the
infinite economy E0,T does not have them. We shall need to modify E0,T before it
corresponds to E0,∞. Nevertheless, the economies E0,T do provide some information
about E0,∞.

Theorem (Balasko—Cass—Shell and Wilson) Under mild conditions, at least one
equilibrium for E0,∞ always exists.

To see why this is so, note that E0,T is well-defined for any finite T . >From non-
standard analysis we know that the sequence E0,T for T ∈ N has a unique extension
to the infinite integers. Now fix T at an infinite integer. We know that E0,T has at
least one equilibrium, since E0,s does for all finite s. But if T is infinite, E0,T includes
all the finite markets t = 1, 2, ..., so all those must clear at an equilibrium q∗ of E0,T .
Taking the standard parts of the prices q∗t for the finite t (and ignoring the infinite t)
gives an equilibrium q for E0,∞.
To properly appreciate the force of this proof, we shall consider it again, when it

might fail, in Section 7, where we deal with infinite lived consumers.
In terms of the existence of equilibrium, E0,∞ (and similarly EM

0,∞ and E−∞,∞)
behaves no differently from an Arrow—Debreu economy. But the indeterminacy is a
different story.

Definition A classical equilibrium for the economy E0,T is a price sequence q∗ =

1There is one small difference. With many agents born per period we can no longer conclude
that if one agent hodls a positive amount of money when young, then so must every other agent (no
matter when he is born). We shall ignore this complication and allow some agents to hold negative
money.
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(q1, ..., qT ) that clears the markets for 1 ≤ t ≤ T , but at t = T + 1, market clearing
ZT
T+1(qT ) = 0 is replaced by

ZT
T+1(qT ) ≤

X
h∈H

eT+1,hT+1 .

Thus in a classical equilibrium there is lack of market clearing at the last period.
The aggregate excess demand in that period, however, must be less than the endow-
ment the young of period T + 1 would have had, were they part of the economy.
Economies in which market clearing is not required in every market are well under-
stood in economic theory. Note that in a classical equilibrium the agents born at time
T are not rationed at T + 1; their full Walrasian (notional) demands are met, out of
the dispossessed endowment of the young. But we do not worry about how this gift
from the T +1 young is obtained. The significance of our classical equilibrium for the
OLG models can be summarized in the following theorem from Geanakoplos-Brown
(1982):

Theorem (Geanakoplos—Brown) Fix T at an infinite integer. The equilibria q for
E0,∞ correspond exactly to the standard parts of classical equilibria q∗ of E0,T .

The Walrasian equilibria of the economy E0,∞, which apparently is built on the
usual foundations of agent optimization and market clearing, correspond to the “clas-
sical equilibria” of another finite-like economy E0,T in which the markets at T + 1
(“at infinity”) need not clear. The existence of a classical equilibrium in E0,T , and
thus an equilibrium in E0,∞, is not a problem, because market clearing is a special
case of possible non-market clearing, and E0,T , being finite-like, always has market
clearing equilibria.
Thus even though the number of prices and the number of markets in E0,∞ are

both infinite, by looking at E0,T it is possible to say which is bigger, and by how much.
There are exactly L more prices than there are markets to clear. From Walras’ Law
we know that if all the markets but one clear, that must clear as well. Hence having L
markets that need not clear provides for L−1 potential dimensions of indeterminacy.

Corollary (Geanakoplos—Brown) For a generic economy E0,∞, there are at most
L− 1 dimensions of indeterminacy in the equilibrium set.

Though the classical equilibria of E0,T generically have L-1 dimensions of inde-
terminacy, it is by no means true that there must be L − 1 dimensions of visible
indeterminacy. If we consider any classical equilibrium q∗ for a generic economy E0,T ,
then we will be able to arbitrarily perturb some set of L−1 prices near their q∗ values,
and then choose the rest of the prices to clear all the markets up through time T . But
which L− 1 prices these are depends on which square submatrix N (of derivatives of
excess demands with respect to prices) is invertible. For example, call the economy
E0,∞ intertemporally separable if each generation t consists of a single agent whose
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utility for consumption at date t is separable from his utility for consumption at date
t + 1. Then the L − 1 free parameters must all be chosen at date T + 1 (as part of
qT,b), i.e., way off at infinity.

Corollary (Geanakoplos—Polemarchakis 1984) Intertemporally separable economies
E0,∞ generically have locally unique equilibria (in the product topology).

For example, a natural generalization of the example in Section 1 would be to
generations consisting of a single Cobb-Douglas consumer of L > 1 goods when
young and when old. The corollary shows that this economy has no indeterminacy
of equilibrium. Since Cobb-Douglas economies seem so central, one might guess
that multi-good OLG economies E0,∞ do not generate indeterminacy. But that is
incorrect. Separability with one agent drastically reduces the effect expectations
about future prices can have on the present, because changes in future consumption
do not change marginal utilities today. In the separable case changing all L prices
tomorrow only affects today through the one dimension of income.
Even when the L− 1 degrees of freedom may be chosen at time t = 1, there still

may be no visible indeterminacy, if the matrix N has an inverse (in the nonstandard
sense) with infinite norm. But when the free L−1 parameters may be chosen at t = 1
and also the matrix N has an inverse with finite norm, then all nearby economies
must also display L− 1 dimensions of indeterminacy.

Theorem (Kehoe—Levine and Geanakoplos—Brown) In the E0,∞ OLG model there
are robust examples of economies with L − 1 dimensions of indeterminacy. In the
monetary economy, EM

0,∞, there are robust examples of economies with L dimensions
of indeterminacy.

Let us now turn our attention to the question of Pareto optimality.

Definition An allocation x̄ = (xt,h; 0 ≤ t ≤ T ) is classically feasible for the
economy E0,T if

P
(t,h)∈A x

t,h
s ≤

P
(t,h)∈A e

t,h
s , for 0 ≤ s ≤ T + 1. The classically

feasible allocation x̄ for E0,T is a classic Pareto optimum if there is no other classically
feasible allocation ȳ for E0,T with ut(yt,h) > ut(xt,h) for all (t, h) ∈ A with 0 ≤ t ≤ T ,
with at least one inequality (0, h) representing a noninfinitesimal difference.

Theorem (Geanakoplos—Brown) The Pareto-optimal allocations x̄ for the OLG
economy E0,∞ are precisely the standard parts of classical Pareto-optimal allocations
x̄∗ for E0,T , if T is fixed at an infinite integer.

The upshot of this theorem is that the effective social endowment includes the
commodities eT+1T+1 of the generation born at time s = T +1, even though they are not
part of the economy E0,T . Since the socially available resources exceed the aggregate
of private endowments, it is no longer a surprise that a Walrasian equilibrium, in
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which the value of aggregate spending every period must equal the value of aggregate
private endowments, is not Pareto optimal.
On the other hand, this does not mean that all equilibria are Pareto suboptimal.

If the (present value) equilibrium prices pt → 0, as t → ∞ (or more generally if
pT+1 is infinitesimal) then the value of the extra social endowment is infinitesimal,
and there are no possible noninfinitesimal improvements. To see this, let (p, x̄) be an
equilibrium in present value prices for the OLG economy E0,∞. Consider the concave—
convex programming problem of maximizing the utility of agent (0, h̄), holding all
other utilities of agents (t, h) with 0 ≤ t ≤ T at the levels ut,h(xt) they get with
x̄, over all possible allocations in E0,T that do not use more resources, even at time
T + 1, than x̄. Clearly x̄ itself is a solution to this problem. But now let us imagine
raising the constraints at time T + 1 fromX

h∈H
xT,hT+1 to

X
h∈H

(eT,hT+1 + eT+1,hT+1 ).

What is the rate of change of the utility u0,h̄? From standard concave programming
theorems, for the first infinitesimal additions to period T + 1 resources, the rate
of change of u0,h̄ is on the order of pT+1, assuming p1 is normalized to equal the
marginal utility of consumption for agent 0, h̄ at date 1. Additional resources bring
decreasing benefits. This shows that if pT+1 is infinitesimal, then there are no possible
noninfinitesimal improvements with a finite amount of extra resources.
An important example of pt → 0 occurs when the prices are summable, as they

are when they decline geometrically to zero. Thus in a stationary equilibrium with
a positive real interest rate, equilibrium must be Pareto efficient. Another proof of
efficiency in the case of geometric present value prices is to observe that then the
present value of the aggregate endowment must be finite, so the standard proof of
Pareto efficiency in a finite horizon model goes through.
If pt increases geometrically to infinity, then it is evident that equilibrium cannot

be Pareto efficient. Thus in a stationary equilibrium with a negative real interest
rate, equilibrium must be Pareto inefficient.
When pt 9 0 but also does not increase exponentially to infinity, the calculation

becomes much more delicate. An infinitesimal increase ε in resources at time T+1 can
be used to increase utility of (0, h̄) on the order of pT+1ε, which is still infinitesimal if
pT+1 is noninfinitesimal but finite. As the increases ε get larger, this rate of change
could drop quickly, as higher derivatives come into play (assuming that agents have
strictly concave utilities), leaving infinitesimal (and thus invisible) increases in utility
even with a finite increase in resources. Second derivatives, and their uniformity come
into play. But this subtle case has been brilliantly dealt with:

Theorem (Cass, 1972; Benveniste—Gale, 1975; Balasko—Shell, 1980; Okuno—Zilcha,
1981) If agents have uniformly strictly concave utilities, and if the aggregate en-
dowment is uniformly bounded away from 0 and ∞, then the equilibrium (p, x̄) with
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present value prices p for an OLG economy E0,∞ is Pareto optimal if and only ifP∞
t=0 1/||pt|| =∞.

Note that in this theorem it is the present value prices that play the crucial
role. It follows immediately from this theorem that the golden rule equilibrium q =
(..., 1, 1, 1, ...) for the simple one good, stationary economy of Section 1 is Pareto
optimal, since the corresponding present value price sequence is also (..., 1, 1, 1, ...).
In fact, a moment’s reflection shows that any periodic, nonautarkic equilibrium must
also be periodic in the present value prices p. Hence, as we have said before, but
without a proof, the cyclical equilibria of Section 2 are all Pareto optimal.
Having explained the indeterminacy and Pareto suboptimality of equilibria for

E0,∞ in terms of lack of market clearing at infinity, let us reexamine the monetary
equilibria of OLG economies EM

0,∞, where M = (Mh; h ∈ H) is the stock of money
holdings by the agents (0, h) at time 0.
The next theorem shows that any monetary equilibrium allocation of EM

0,∞ corre-
sponds to the standard part of a non-monetary economy E0,T (z) obtained from E0,T
by augmenting the endowments of the first generation (0, h)h∈H by a vector of goods
z at time T + 1.

Definition Let z ∈ RL be a vector of commodities for time T + 1. Suppose that
−
P

h∈H eT,hT+1 ≤
P

h∈H Mhz ≤
P

h∈H eT+1,hT+1 . Let the augmented non-monetary econ-
omy E0,T (z,M) be identical to the non-monetary economy E0,T , except that the
endowment of each agent (0, h) is augmented by Mh · z units of commodities at time
T + 1.

Theorem (Geanakoplos—Brown) Fix an infinite integer T. The equilibria q of the
monetary economy EM

0,∞ are precisely obtained by taking standard parts of full market
clearing equilibria q∗ of all the augmented non-monetary economies E0,T (z,M).

The above theorem explains how it is possible to give agents (0, h) extra purchasing
power without disturbing market clearing in the economy EM

0,∞. The answer is that
the purchasing power comes from owning extra commodities at date T + 1, and
equilibrium in EM

0,∞ does not require market clearing in date T + 1 commodities.
The above theorem gives another view of why there are potentially L dimensions

of monetary equilibria: the augmenting endowment vector z can be chosen from a set
of dimension L. It also explains how money can have positive value: it corresponds
to the holding of extra physical commodities. The theorem also explains how the
“social contrivance of money” can lead to Pareto-improving equilibria, even in OLG
economies where there is already perfect financial intermediation. The holding of
money can effectively bring more commodities into the aggregate private endowment.
The manifestation of the “real money balances” is the physical commodity bundle z
at date T + 1. Money plays more than just an intermediation role.
Before concluding this section let us consider a simple generalization. Suppose

that agents live for three periods. What plays the analogous role to E0,T? The
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answer is that prices need to be specified through time T + 2, but markets are only
required to clear through time T . There are therefore 2L − 1 potential dimensions
of indeterminacy, even in the one-sided economy. In general, we must specify the
price vector up until some time s, and then require market clearing only in those
commodities whose excess demands are fully determined by those prices.
This reasoning has an important generalization to production. Suppose that cap-

ital invested at time t can combine with labor at time t+1 to produce output at time
t + 1, and suppose that all agents live two periods. Is there any difference between
the case where labor is inelastically supplied, and the case where leisure enters the
utility? In both cases the number of commodities is the same, but in the latter case
the potential dimension of indeterminacy is one higher, since the supply of labor at
any time might depend on further prices.

5 Land, the Real Rate of Interest, and Pareto Ef-
ficiency

Allais and Samuelson argued that the infinity of both time periods and agents radi-
cally changed the nature of equilibrium. Samuelson suggested that equilibrium might
not be Pareto efficient, and that the real rate of interest might be negative, even if
the economy did not shrink over time. In our one-good example from Section 1, the
autarkic equilibrium has a negative real interest rate since each qt < 1, and the real
interest rate is 1/qt − 1.
They also thought that a second, new kind of equilibrium would emerge in which

the real rate of interest is divorced from any of the considerations like impatience that
Irving Fisher had stressed. They thought that in this new kind of equilibrium the real
rate of interest woud turn out to be equal to the rate of population growth, irrespective
of the impatience of the consumers or the distribution of their endowments. Indeed,
in the example from Section 1, the "golden rule" equilibrium had real interest rate
1/qt−1 = 0 in every period, irrespective of the utilities or the endowments, but equal
to the population growth rate.
Furthermore, as we saw in Section 3, Samuelson argued that it might not be

necessary for an asset to be valued according to the present value of its dividends,
contradicting yet another one of Fisher’s central concepts. Samuelson suggested that
a piece of green paper might be worth a lot, even though it pays no dividends, because
the holder might think he could sell it to somebody later, who would buy it on the
expectation that he could sell it to somebody else later, ad infinitum. Later authors
called this a rational bubble.
It turns out that these views are incorrect if one includes in the model infinitely

lived assets like land, that do pay dividends in every period.
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Imagine an OLG economy as before with

ut(xt, xt+1) =
1

2
log xt +

1

2
log xt+1

(ett, e
t
t+1) = (3, 1)

But let us also suppose there is one acre of land in the economy that produces a
dividend Dt = 1 apple every period forever. Suppose the economy begins in period 1,
with an old agent who owns the land and has an endowment of one apple, and a newly
born agent as above. We suppose that buying the land at time t gives ownership of
all dividends from time t+1 up to and including the dividends in the period in which
the asset is sold. The apple dividend from the land at time 1 is owned by the old
agent at time 1 (who presumably acquired the land at time 0 and hence has the claim
on the apple).
At every period t we need to find the contemporaneous price qt of the commodity

and the price Πt of the land.
Every agent in the economy must decide how much to consume when young, and

what assets to hold when young, and how much to consume when old. The decision
in old age is trivial, since the agent cannot do better than selling every asset he has
and using the proceeds to buy consumption goods.
Thus for every t ≥ 1 we can describe the decision problem of generation t by

max
y,z,θ

ut(y, z) =
1

2
log y +

1

2
log z

such that

qty +Πtθ = qte
t
t = qt3

qt+1z = qt+1e
t
t+1 + θDt+1 +Πt+1θ = qt+11 + θ1 +Πt+1θ

For the original old generation, he optimizes simply by setting

x01 = e01 +D1 +Π1 = 1 + 1 = 2 +Π1

Denote the optimal choice of agents t ≥ 1 by (xtt, xtt+1, θt). Market clearing requires
for each t ≥ 2 that consumption of the old plus consumption of the young is equal to
total output of goods, and also that demand equals the supply of land

xt−1t + xtt = et−1t + ett +Dt = 1 + 3 + 1 = 5

θt = 1

In period t = 1 we must have

x01 + x11 = e01 + e11 +D1 = 1 + 3 + 1 = 5, θ1 = 1

Sequential equilibrium is thus a vector (x01, (qt,Πt, (x
t
t, x

t
t+1, θ

t))∞t=1) satisfying the
above conditions on agent maximization and market clearing.
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Fisher’s recipe for computing equilibrium with assets is to put the asset dividends
into the endowments of their owners, and then find the usual general equilibrium
with present value prices ignoring the assets. In this example that means giving
agent 0 an endowment e0 = (2, 1, ...) of two apples in period 1 and one apple every
period thereafter, and ignoring the land. Equilibrium with present value prices is
then described exactly as in Section 1.
To solve for the present value prices (p1, p2, ...) we can guess that since the economy

is stationary, there will be stationary equilibrium (p1, p2, ...) = (1, p, p
2, ...). For each

t ≥ 2, we must solve
1

2

[3 + p1]

p
+
1

2
[3 + p1] = 1 + 3 + 1

which gives a quadratic equation

p2 − 6p+ 3 = 0

which is solved by

p =
6± (36− 12).5

2
= .55, r = 1/p− 1 = 81.7%

The other root is greater than one, and could not be right, because it would give a
real interest rate less than zero, which would make the present value of land infinite.
Hence consumption when young and old is

(y, z) = (1.775, 3.225)

Clearly these values clear the consumption market for all t ≥ 2. We know by Walras
Law that if all markets but one clears, then the last will as well, so we don’t really
have to check the period 1 market. But we will check it anyway. The present value
of agent 00s endowment is

2 + p1 + p21 + ... = 2 + p/(1− p) = 3.225

and so indeed the period t = 1 market clears.
We can now translate this general equilibrium back into a sequential equilibrium.

Taking qt = 1 for every period and the real interest rate solving p = 1/(1 + r), the
present value of land is

PV Land = p1 + p21 + ... = p/(1− p) =
1

1 + r
1 +

1

(1 + r)2
1 + ... = 1.225.

In every period the old will consume their endowment of 1 plus the dividend of 1
plus the value of the land they will sell, which gives exactly 3.225. The sequential
equilibrium is (x01, (qt,Πt, (x

t
t, x

t
t+1, θ

t))∞t=1) = (3.225, (1, 1.225, (1.775, 3.225, 1))
∞
t=1).
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Despite what Allais and Samuelson said, the rate of interest at the unique steady
state is positive, higher than the growth rate of population. Moreover, as noted in
Geanakoplos (2005), the real interest rate does respond to shocks in exactly the way
Fisher argued. Consider the same model as before, but make all the consumers more
impatient

U(y, z) =
2

3
log y +

1

3
log z

Then our master equation would become

1

3

[3 + p1]

p
+
2

3
[3 + p1] = 1 + 3 + 1

giving
p = .419, r = 139%, PV Land = .721

As Fisher would have predicted, the real rate of interest does indeed increase, and
the price of land decreases.

5.1 Pareto efficiency and bubbles

Observe that in our example the dividends of land represent 20% of all endowements
every period. Since the price of land must be finite, that means in any equilibrium
the present value of all endowments must finite. We know that implies equilibrium
must be Pareto efficient.
Furthermore, if the value of aggregate endowments is finite, then money cannot

have value and there can be no bubbles, because the old argument is correct that
markets cannot clear if some agents are spending more than the value of their com-
modity endowments and nobody is spending less. Land makes the OLG economy
look much more like an Arrow-Debreu economy.

5.2 Social Security

The overlapping generations model is the workhorse model for examining social se-
curity. There is not space here to describe these studies. Observe simply that a
pay-as-you-go system amounts to a simple transfer of endowments from each young
person to each old person. We can immediately calculate the effects of such a transfer
on our steady state interest rate and land value by recomputing the equilibrium for
the OLG economy in which endowments are adjusted to (2, 2) for every generation
t ≥ 1, and assuming the old generation 0 has an endowment of 2 apples at time 1
plus the land, which pays 1 apple every period. We get

p = .38, r = 161%, PV Land = .62

This also confirms Fisher’s contention that decreasing early endowments and increas-
ing later endowments should raise the rate of interest and lower land values.
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Notice that the pay-go system gives each agent the same number of apples when
he is old that he gave up when he is young, which is a below market return on his
original contribution. Social security lowers the utility of every agent except the first
generation. Samuelson had argued that social security could make every agent better
off. But his conclusion is false in the model with land.
It is often said that if only every generation had more children, social security

would give better returns, since the young would be able to share the burden of
helping the old. The trouble with that reasoning is that it ignores the fact that
higher population and output growth would mean higher real interest rates, which
tend to make the social security rate of return as bad as before relative to market
interest rates. There is no space to discuss this here.

6 Demography in OLG

In America over the last 100 years, the generations have alternated in size between
big and small. Everybody knows about the baby boom and echo baby boom, but
the same pattern happened before. Recently many authors have suggested that the
retiring of the baby boom generation will force stock prices to fall. This has been
criticized on the grounds that demography is easy to predict. If agents knew that
stock prices would fall when the baby boomers retired, they would fall now. These
two opposing views can be analyzed in the OLG model by allowing generation sizes
to fluctuate.
Suppose the small generation is exactly as before, but now we alternate that small

generation with a large generation that is identical in every respect, except that it is
twice as big

ub(y, z) =
1

2
log y +

1

2
log z

(eby, e
b
z) = (6, 2)

As before suppose that land produces 1 unit of output each period. Begin at time 1
with a small generation of young, and suppose the old owns the land.
We investigate whether the price of land and the real interest rate alternate be-

tween periods.
Let rb be the interest rate that prevails when the big generation b is young, and

ra prevail when the small generation a is young. Equilibrium can be reduced to two
equations. The first describes market clearing for goods in odd periods when the
small generation is young and the big generation is old, and the second equation
describes market clearing in even periods, when the big generation is young and the

27



small generation is old. As before, we let pa = 1/(1 + ra) and pb = 1/(1 + rb). Then

1

2

[6 + pb2]

pb
+
1

2
[3 + pa1] = 2 + 3 + 1

1

2

[3 + pa1]

pa
+
1

2
[6 + pb2] = 1 + 6 + 1

These can be simultaneously solved to get

pa = .418, ra = 139%, PVLanda = 1.29

pb = .912, rb = 9.6%, PVLandb = 2.09

It is evident that the price of land is higher in the periods when b is young because
the interest rate is lower. Even though it is perfectly anticipated that when the big
generation gets old, the price of land will fall, the price does not fall earlier because
the interest rate is so low and the land pays dividends.2

7 Impatience and Uniform Impatience

We have already suggested that it is useful in understanding the OLG model to
consider variations, for example in which consumers live forever. By doing so we
shall also gain an important perspective on what view of consumers is needed to
restore the usual properties of neoclassical equilibrium to an infinite horizon setting,
a subject to which we return in Section 8.
Let us now allow for consumers t ∈ A who have endowments et that may be

positive in all time periods, and also for arbitrary utilities ut defined on uniformly
bounded vectors x ∈ L = RN+. For ease of notation we assume one good per period.
A minimal assumption we need about utilities ut is continuity on finite segments,
i.e., fixing xs for all s > n, ut(x) should be continuous in (x1, ..., xn). We also need
continuity on L, in some topology, but we will not go into these details. We also
assume

P
t∈A e

t is uniformly bounded. In short, we suppose consumers may live
forever.
We shall find that in order to have Walrasian equilibria, the consumers must be

impatient. Suppose we try to form the truncated economy E0,T as before, say for
T finite. Since utility potentially depends on every commodity, we could not define
excess demands inE0,T unless we knew all the prices. To make it into a finite economy,
let us call E0

0,T the version of E0,T in which every agent is obliged to consume his
initial endowment during periods t ≤ 0 and t > T . Clearly E0

0,T has an equilibrium.
For this to give information about the original economy E0,∞, we need that consumers
do not care very much about what happens to them after T , as T gets very far away.
This requires a notion of impatience.

2This point has been made by Geanakoplos, Magill, Quinzii (2004).
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For any vector x, let nx̂ be the vector which is zero for t > n, and equal to
x up until n. Thus nx̂ is the initial n-segment of x. To say that agent t ∈ A is
impatient means that for any two uniformly bounded consumption streams x and y,
if ut(x) > ut(y), then for all big enough n, ut(nx̂) > ut(y). Let us suppose that all
consumers are impatient. If these segments can be taken uniformly across agents,
then we say the economy is uniformly impatient. Any finite economy with impatient
consumers is uniformly impatient.
Note that the OLG agents are all impatient, since none of them cares about

consumption after he dies, but the economy is not uniformly impatient.
Even with an economy consisting of all impatient consumers, the truncation argu-

ment, applied at an infinite E0
0,T , does not guarantee the existence of an equilibrium.

For once we take standard parts, ignoring the infinitely dated commodities, it may
turn out that the income from the sale of an agent’s endowed commodities at infinite
t, which he used to finance his purchase of commodities at finite t, is lost to the agent.
It must also be guaranteed that the equilibria of E0

0,T give infinitesimal total value to
the infinitely dated commodities. Wilson (1981) has given an example of an economy,
composed entirely of impatient agents, that does not have an equilibrium precisely
for this reason.
On the other hand, if there are only finitely many agents, even if they are infinitely-

lived, then we have:

Theorem (Bewley, 1972) Let the economy E be composed of finitely many, impatient
consumers. Then there exists an equilibrium, and all equilibria are Pareto optimal.

The Pareto efficiency of equilibria in these Bewley economies can be derived from
the standard proof of efficiency: since there is a finite number of agents, the value of
the aggregate endowments is a finite sum of finite numbers, and therefore finite itself.
In the special case with separable, commonly discounted utilities of the form

uh(x) =
P∞

t=0 δ
tvh(xt), with δ < 1, we have:

Theorem (Kehoe—Levine, 1985) In finite agent, separable commonly discounted util-
ity economies, there is generically a finite number of equilibria.

This theorem has been extended by Shannon (1999) and Shannon and Zame
(2002).
Returning to the case of an infinite number of consumers, Pareto efficiency of

equilibria, if they exist, can be guaranteed as long as a finite number of the agents
collectively hold a non-negligible fraction of total endowment. But that also would
guarantee the existence of equilibrium, since in the economy E0

0,T we would then get
the summability of the prices, meaning the endowments at infinity would have zero
value, as Wilson (1981) pointed out.
It is extremely interesting to investigate the change in behavior of an economy that

evolves from individually impatient to uniformly impatient. Wilson (1981) considered
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an example with one infinitely-lived agent, and infinitely many, overlapping, finite-
lived agents, and showed that equilibria must exist, and all must be Pareto efficient.
By the foregoing remarkes, no matter what the proportion of sizes of the two kinds of
consumers, equilibria must exist and be Pareto efficient. Muller and Woodford (1988)
showed in a particular case that when the single agent’s proportion of the aggregate
endowment is low enough, there is a continuum of equilibria, but if it is high enough,
there is no local indeterminacy.

8 Comparative Statics for OLG Economies

A celebrated theorem of Debreu assets that almost any Arrow—Debreu economy is
regular, in the sense that it has a finite number of equilibria, each of which is locally
unique. Small changes to the underlying structure of the economy (tastes, endow-
ments, etc.) produce small, unique changes in each of the equilibria.
We have already seen that there are robust OLG economies with a continuum of

equilibria. If attention is focused on one of them, how can one predict to which of
the continuum of new equilibria the economy will move if there is a small change in
the underlying structure of the economy, perhaps caused by deliberate government
intervention? In what sense is any one of the new equilibria near the original one?
In short, is comparative statics possible?
It is helpful at this point to recall that the OLG model is, in spirit, meant to

represent a dynamic economy. Trade may occur as if all the markets cleared simul-
taneously at the beginning of time, but the economy is equally well described as if
trade took place sequentially, under perfect foresight or rational expectations. Indeed
this is surely what Samuelson envisaged when he introduced money as an asset into
his model. Accordingly, when a change occurs in the underlying structure of the
economy, we can interpret it as if it came announced at the beginning of time, or as
if it appeared at the date on which it actually affects the economy.
We distinguish two kinds of changes to the underlying structure of an economy

Ē−∞,∞ starting from an equilibrium q̄. Perfectly anticipated changes, after which we
would look for a new equilibrium that cleared all the markets from the beginning of
time, represent one polar case, directly analogous to the comparative statics exper-
iments of the Arrow—Debreu economy. At the other extreme we consider perfectly
unanticipated changes, say at date t = 1. Beginning at the original economy and
equilibrium q̄ = (..., q̄−1, q̄0, q̄1, ...), we would look, after the change from Ē−∞,∞ to
E−∞,∞, at time t = 1 (say to the endowment or preferences of the generation born
at time 1), for a price sequence q = (..., q−1, q0, q1, ...) in which qt = q̄t for t ≤ 0, and
Zt−1
t (qt−1) + Zt

t(qt) = 0 for t ≥ 2. But at date t = 1 we would require q1 to satisfy
Z01(q1a|q̄0) + Z11(q1) = 0, where Z

0
1(q1a|q̄0) represents the excess demand of the old at

time 1, given that when they were young they purchased commodities on the strength
of the conviction that they could surely anticipate prices q̄0b when they got old, only
to discover prices q1a instead.
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To study these two kinds of comparative statics, we must describe what we mean
by saying that two price sequences are nearby. Our definition is based on the view that
a change at time t = 1 ought to have a progressively smaller impact the further away
in time from t = 1 we move. We say that q is near q̄ if the difference |qt− q̄t| declines
geometrically to zero, both as t → ∞ and as t → −∞. For perfectly anticipated
changes, we require that the new equilibrium prices converge geometrically back to
the old prices both as t→∞ and as t→ −∞. For perfectly unanticipated changes,
we require that the new equilibrium prices converge geometrically back to the old
prices as t→∞.
We have already noted in Section 1 that the multiplicity of OLG equilibria is

due to the fact that at any time t the aggregate behavior of the young generation
is influenced by their expectations of future prices, which (under the rational expec-
tations hypothesis) depend on the next generation’s expectations, etc. Accordingly
we restrict our attention to generations whose aggregate behavior Zt satisfies the
expectations sensitivity hypothesis:

rank
∂Zt

t(pt, pt+1)

∂pt+1
= rank

∂Zt
t+1(pt, pt+1)

∂pt
= L.

For economies composed of such generations we can apply the implicit function the-
orem, exactly as in Section 1, around any equilibrium q to deduce the existence of
the forward and backward functions Ft and Bt. We write their derivatives at q̄ as Dt

and D−1
t , respectively.

For finite Arrow—Debreu economies, Debreu gave a definition of regular equilib-
rium based on the derivative of excess demand at the equilibrium. He showed that
comparative statics is sensible at a regular equilibrium, and then he showed that a
“generic” economy has regular equilibria. We follow the same program.
We say that the equilibrium q̄ for the expectations sensitive OLG economy Ē is

Lyapunov regular if the long-run geometric mean of the products D∗
tDtD

∗
t−1Dt−1 · · ·

D∗
1D1 and D−1∗

−t D−1
−t · · · D−1∗

−1 D
−1
−1 converge and if to these products we can associate

2L−1 eigenvalues, called Lyapunov exponents. The equilibrium is also nondegenerate
if in addition none of these Lyapunov exponents is equal to 1.

Theorem (Geanakoplos—Brown 1985) Let Ē = Ē−∞,∞ be an expectations-sensitive
economy with a regular nondegenerate equilibrium q̄. Then for all sufficiently small
perfectly anticipated perturbations E of Ē (including Ē itself) E has a unique equi-
librium q near q̄.

Thus the comparative statics of perfectly anticipated changes in the structure of
Ē, around a regular, nondegenerate equilibrium, is directly analogous to the Arrow-
Debreu model. The explanation for the theorem is that a perfectly anticipated change
at time 0 gives rise to price changes that have a forward stable manifold (on which
prices converge exponentially back to where they started) and a backward stable
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manifold, and that there is only one price at time 0 that is on both the forward and
the backward stable manifolds. Note incidentally that one implication of the above
theorem is that neutral policy changes, like jawboning or changing animal spirits, i.e.
those for which q̄ itself remains an equilibrium, cannot have any effect if they are
perfectly anticipated and move the economy to nearby equilibria.

Theorem (Geanakoplos—Brown, 1985) Let Ē be an expectations-sensitive economy
with a regular equilibrium q̄. Then for all sufficiently small perfectly unanticipated
perturbations E of Ē (including Ē itself), the set of unanticipated equilibria q of E
near q̄ is either empty, or a manifold of dimension r, 0 ≤ r ≤ L (L − 1 if there is
no money in the economy), where r is independent of the perturbation.

The above theorem allows for the possibility that an unanticipated change may
force the economy onto a path that diverges from the original equilibrium; the dis-
turbance could be propagated and magnified through time. And if there are nearby
equilibria, then there may be many of them. (Indeed that is basically what was shown
in Section 4.) In particular, an unanticipated neutral policy change could be com-
patible with a continuum of different equilibrium continuations. The content of the
theorem is that if there is a multiplicity of equilibrium continuations, it is parameter-
izable. In other words, the same r variables can be held fixed, and for any sufficiently
small perturbation, there is exactly one nearby equilibrium which also leaves these r
variables fixed. We shall discuss the significance of this in the next section.
This last theorem was proved first, in the special case of steady-state economies,

by Kehoe—Levine, in the same excellent paper to which we have referred already
several times. The theorem quoted here, together with the previous theorem on the
comparative statics of perfectly anticipated policy changes, refers to economies in
which the generations may be heterogeneous across time.
Let us suppose that A is a compact collection of generational characteristics,

all of which obey the expectations-sensitive hypothesis. Let us suppose that each
generation’s characteristics are drawn at random from A, according to some Borel
probability measure. If the choices are made independently across time, then the
product measure describes the selection of economies. Almost any such collection
will have a complex demographic structure, changing over time. The equilibrium set
is then endogenously determined, and will be correspondingly complicated. It can be
shown, however that

Theorem (Geanakoplos—Brown, 1985) If the economy E is randomly selected, as
described above, then with probability 1, E has at least one Lyapunov regular equilib-
rium.

Note that the regularity theory for infinite economies stops short of Arrow—Debreu
regularity. In the finite economies, with probability one all the equilibria are regular.
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9 Keynesian Macroeconomics

Keynesian macroeconomics is based in part on the fundamental idea that changes
in expectations, or animal spirits, can affect equilibrium economic activity, including
the level of output and employment. It asserts, moreover, that publicly announced
government policy also has predictable and significant consequences for economic ac-
tivity, and that therefore the government should intervene actively in the marketplace
if investor optimism is not sufficient to maintain full employment.
The Keynesian view of the indeterminacy of equilibrium and the efficacy of public

policy has met a long and steady resistance, culminating in the sharpest attack of all,
from the so-called new classicals, who have argued that the time-honored microeco-
nomic methodological premises of agent optimization and market clearing, considered
together with rational expectations, are logically inconsistent with animal spirits and
the non-neutrality of public monetary and bond financed fiscal policy.
The foundation of the new classical paradigm is the Walrasian equilibrium model

of Arrow—Debreu, in which it is typically possible to prove that all equilibria are
Pareto optimal and that the equilibrium set is finite; at least locally, the hypothesis of
market clearing fixes the expectations of rational investors. In that model, however,
economic activity has a definite beginning and end. Our point of view is that for
some purposes economic activity is better described as a process without end. In
a world without a definite end, there is the possibility that what happens today is
underdetermined, because it depends on what people expect to happen tomorrow,
which in turn depends on what people tomorrow expect to happen the day after
tomorrow, etc.
Consider the simple one-good per period overlapping generations economy with

money EM,S
0 , which we discussed in Section 3. Generation 0 is endowed with money

when young, and equilibrium can be described with the contemporaneous commodity
prices p̄ = (p̄1, p̄2, ...) where we take the price of money to be fixed at 1.3 It is helpful to
reinterpret the model as a simple production economy. Imagine that the endowment
ett in the first period of life is actually labor, which can be transformed into output, yt,
according to the production function, yt = f(ct) = ct. We would then interpret any
sale of goods by the young generation as real output produced by their labor. The
young now derive utility from leisure ett − ct in their youth and consumption in their
old age. Equilibrium in which consumption of the old is higher can be interpreted as
an equilibrium with less leisure and higher output.
The indeterminacy of rational expectations equilibrium thus has the direct inter-

pretation that optimistic expectations by themselves can cause the economy’s output
to expand or contract. In short the economy has an inherent volatility. The Keyne-
sian story of animal spirits causing economic growth or decline can be told without
invoking irrationality or non-market clearing.

3With the price of money fixed at 1, the contemporaneous prices will be the same as present
value prices.
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In fact, the indeterminacy of equilibrium expectations is especially striking when
seen as a response to public (but unanticipated) policy changes. Suppose the economy
is in a long-term rational expectations equilibrium p̄, when at time 1 the government
undertakes some expenditures, financed say by printing money. How should rational
agents respond? The environment has been changed, and there is no reason for
them to anticipate that (p̄2, p̄3, ...) will still occur in the future. Indeed, in models
with more than one commodity (such as we will shortly consider) there may be no
equilibrium (p1, p2, p3, ...) in the new environment with p2 = p̄2, p3 = p̄3, etc. There
is an ambiguity in what can be rationally anticipated.
We argue that it is possible to explain the differences between Keynesian and

monetarist policy predictions by the assumptions each makes about expectational
responses to policy, and not by the one’s supposed adherence to optimization, market
clearing, and rational expectations, and the other’s supposed denial of all three.
Consider now the government policy of printing a small amount of money, ∆M ,

to be spent on its own consumption of real output – or equivalently to be given
to generation t = 0 (when old) to spend on its consumption. Imagine first that
agents are convinced that this policy is not inflationary, i.e., that p̄1 will remain the
equilibrium price level during the initial period of the new equilibrium. This will give
generation t = 0 plus the government consumption level (M +∆M)/p̄1. As long as
∆M is sufficiently small and the initial equilibrium was one of the Pareto-suboptimal
equilibria described in Section 1, there is indeed a new equilibrium price path p
beginning with p1 = p̄1. Output at time 1 rises by ∆M/p̄1, and in fact this policy is
Pareto improving. On the other hand, imagine instead that agents are convinced that
the path of real interest rates pt/pt+1 − 1 will remain unchanged. In this economy,
price expectations are a function of p1. Recalling the initial period market-clearing
equation, it is clear that now p1 and all future prices rise proportionally to the growth
∆M/M in the money stock. The result is output is unchanged and the old at t = 1
must pay for the government’s consumption. If the government’s consumption gives
no agent utility, the policy is Pareto worsening.
This model is only a crude approximation of the differences between Keynesian

and monetarist assumptions about expectations and policy. It is quite possible to
argue, for example, that holding p2/p1 = p̄2/p̄1 (the future inflation rate) fixed is the
natural Keynesian assumption to make. This ambiguity is unavoidable when there is
only one asset into which the young can place their savings. We are thereby prevented
from distinguishing between the inflation rate and the interest rate. Our model must
be enriched before we can perform satisfactory policy analysis. Nevertheless, the
model conveys the general principle that expected price paths are not locally unique.
There is consequently no natural assumption to make about how expectations are
affected by policy. A sensible analysis is therefore impossible without externally given
hypotheses about expectations. These can be Keynesian, monetarist, or perhaps some
combination of the two.
Geanakoplos—Polemarchakis (1985) builds just such a richer model of macroeco-

34



nomic equilibrium by adding commodities, including a capital good, and a neoclassical
production function. With elastically supplied labor, there are two dimensions of in-
determinacy. It is therefore possible to fix both the nominal wage, and the firm’s
expectations (“animal spirits”), and still solve for equilibrium as a function of policy
perturbations to the economy. These institutional rigidities are more convincingly
Keynesian, and they lead to Keynesian policy predictions. Moreover, taking advan-
tage of the simplicity of the two-period lived agents, the analysis can be conducted
entirely through the standard Keynesian (Hicksian) IS—LM diagram.
Keynesians themselves often postulate that the labor market does not clear. For

Keynesians lack of labor market clearing has at least a threefold significance, which it
is perhaps important to sort out. First, since labor is usually taken to be inelastically
supplied, it makes it possible to conceive of (Keynesian) equilibria with different
levels of output and employment. Second, it makes the system of demand and supply
underdetermined, so that endogenous variables like animal spirits (i.e., expectations)
which are normally fixed by the equilibrium conditions can be volatile. Third, it
creates unemployment that is involuntary. By replacing lack of labor market clearing
at time 1 with elastic labor supply and lack of market clearing “at infinity” one
can drop what seems to many an ad hoc postulate yet retain at least the first two
desiderata of Keynesian analysis.

10 Neoclassical Equilibrium vs. Classical Equilib-
rium

The Arrow—Debreu model of general equilibrium, based on agent optimization, ratio-
nal expectations, and market clearing, is universally regarded as the central paradigm
of the neoclassical approach to economic theory. In the Arrow—Debreu model, con-
sumers and producers, acting on the basis of individual self-interest, combine, through
the aggregate market forces of demand and supply, to determine (at least locally) the
equilibrium distribution of income, relative prices, and the rate of growth of capital
stocks (when there are durable goods). The resulting allocations are always Pareto
optimal.
Classical economists at one time or another have rejected all of the methodolog-

ical principles of the Arrow—Debreu model. They replace individual interest with
class interest, ignore (marginal) utility, especially for waiting, doubt the existence of
marginal product, and question whether the labor market clears. But by far the most
important difference between the two schools of thought is the classical emphasis on
the long-run reproduction of the means of production, in a never-ending cycle.
Thus the celebrated classical economist Sraffa writes in Appendix D to his book:

It is of course in Quesnay’s Tableau Economique that is found the orig-
inal picture of the system of production and consumption as a circular
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process, and it stands in striking contrast to the view presented by mod-
ern theory, of a one-way avenue that leads from “Factors of Production”
to “Consumption Goods.”

The title of his book, Production of Commodities by Means of Commodities, itself
suggests a world that has no definite beginning, and what is circular can have no end.
In the Arrow—Debreu model time has a definite end. As we have seen, that has

strong implications. With universal agreement about when the world will end, there
can be no reproduction of the capital stock. In equilibrium it will be run down to
zero. Money, for example, can never have positive value. Rational expectations will
fix, at each moment, and for each kind of investment, the expected rate of profit.
In the classical system, by contrast, the market does not determine the distribution

of income. Sraffa (1960, p. 33) writes

The rate of profits, as a ratio, has a significance which is independent
of any prices, and can well be “given” before the prices are fixed. It is
accordingly susceptible of being determined from outside the system of
production, in particular by the money rates of interest. In the following
sections the rate of profits will therefore be treated as the independent
variable.

Other classical writers concentrate instead on the real wage as determined outside
the market forces of supply and demand, for example, by the level of subsistence or
the struggle between capital and labor. Indeterminacy of equilibrium seems at least
as central to classical economists as it is to Keynesians.
Like Keynesians, classicals often achieve indeterminacy in their formal models by

allowing certain markets not to clear in the Walrasian sense. (Again like Keynesians,
the labor market is usually among them.) Thus we have called the equilibrium in
Section 4 in which some of the markets were allowed not to clear a “classical equilib-
rium.”
What the OLG model shows is that by incorporating the classical view of the

world without definite beginning or end, it is possible to maintain all the neoclassi-
cal methodological premises and yet still leave room for the indeterminacy which is
the hallmark of both classical and Keynesian economics. In particular this can be
achieved while maintaining labor market clearing. The explanation for this surpris-
ing conclusion is that the OLG model is isomorphic to a finite-like model in which
indeed not all the markets need to clear. But far from being the labor markets, under
pressure to move toward equilibrium from the unemployed clamoring for jobs, these
markets are off “at infinity,” under no pressure toward equilibrating.
We have speculated that once one has agreed to the postulate that the resources of

the economy are potentially as great at any future date as they are today, then uniform
impatience of consumers is the decisive factor, according to Walrasian principles,
which may influence whether the market forces of supply and demand determine a
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locally unique, Pareto-optimal equilibrium, or leave room for extra-market forces to
choose among the continuum of inefficient equilibria. In these terms, the Arrow—
Debreu model supposes a short-run impatient economy, and OLG a long-run patient
economy.

11 Sunspots

So far we have not allowed uncertainty into the OLG model. As a result we found
no difference in interpreting trade sequentially, with each agent facing two budget
constraints, or “as if” the markets all cleared simultaneously at the beginning of time,
with each agent facing one budget constraint. Once uncertainty is introduced these
interpretations become radically different. In either case, however, there is a vast
increase in the number of commodities, and hence in the potential for indeterminacy.
If we do not permit agents to make trades conditional on moves of nature that

occur before they are born, then agents will have different access to asset markets.
Even in finite horizon economies, differing access to asset markets has been shown by
Cass and Shell (1983) to lead to “sunspot effects.”
A “sunspot” is a visible move of nature which has no real effect on consumers,

either on account of preferences, or endowments, or through production. In the
Arrow—Debreu model it also could have no effect on equilibrium trade; this is no
longer true when access to asset markets differs.
The sunspot effect is intensified when combined with the indeterminacy that can

already arise in an OLG economy. Consider the simple one good, steady state OLG
economy of Section 2. Suppose that there is an equilibrium two cycle in present
value prices p = (..., p−1, p0, p1, ...) with p2t = pS and p2t+1 = pR, for all t ∈ T . Now
suppose that the sun is known to shine on even periods, and hide behind rain on odd
periods. The above equilibrium is perfectly correlated with the sun, even though no
agent’s preferences or endowments are. As usual, the same prices for t ≥ 0 support
an equilibrium, given the right amount of money, in EM,S

0,∞ .
More generally, suppose that the probability of rain or shine, given the previous

period’s weather, is given by the Markov matrix π = (πSS, πSR, πRS, πRR). A steady
state equilibrium for EM,S

0,∞ , given π, is an assignment of a money price for the com-
modity, depending only on that period’s weather, such that if all agents maximize
their expected utility with respect to π, then in each period the commodity market
and money market clears. Azariadis (1981) essentially showed that if there is a two-
cycle of the certainty economy, then there is a continuum of steady state sunspot
equilibria.
The sunspot equilibria, unlike the cyclical equilibria of Section 2, are Pareto sub-

optimal whenever the matrix π is nondegenerate.
The combination of the dynamic effects of the infinite horizon OLG model with

the burgeoning theory of incomplete markets under real uncertainty, is already on
the agenda for next generation’s research.
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