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But who will monitor the monitor? Alchian and Demsetz (1972, p. 782)

1 Introduction

Ann owns a restaurant. She hires Bob to tally the till every night and report back

any mismatch between the till and that night’s bills. Ann can motivate Bob to exert

such effort and report truthfully any mismatch by sometimes secretly taking money

from the till herself and offering him the following incentive scheme: if Ann took

some money, she will pay Bob his wage only when he reports a mismatch; if Ann did

not take any money, she will pay Bob only when a mismatch is not reported.

Bob faces a secret contract: his report-contingent wage is unknown to him a priori

(it depends on whether or not Ann secretly took some money). If Bob fails to exert

effort, he won’t know what to report in order to secure his wage. However, if he does

his job he’ll discover whether or not there is a mismatch and deduce from this Ann’s

behavior. Only after tallying the till will Bob know what to report in order to receive

his wage, which turns out to be optimally truthful.

This paper studies contracts like Bob’s1 and how they might help organizations to

function productively. By allocating different information to team members, secret

contracts often provide better incentives to perform with an intuitive organizational

design. Thus, they give Bob incentives to acquire costly information and reveal it, and

provide Ann with enough a priori knowledge to distinguish working from shirking.

In general, they provide a way to “monitor the monitor” (Section 2.1), and can yield

approximately efficient partnerships by appointing a “secret principal” (Section 2.2).

Consider a hypothetical organization whose individuals are subject to moral hazard

but with rich communication protocols: access to (i) a disinterested mediator or ma-

chine that makes confidential, verifiable but non-binding recommendations to players,

and (ii) (linear) “money” transfers that may depend on the mediator’s recommenda-

tions and individual reports (such as Bob’s). A contract thus involves instructions

and payments:, i.e., a way of telling people what to do and a way of rewarding them.

When can this organization actually overcome moral hazard with secret contracts?

1These contracts are pervasive. For instance, TSA screeners are evaluated with “covert testing”
(TSA, 2004, p. 5); police use young ‘drinkers’ to ensure that bartenders check IDs (Cheslow, 2005).
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Below, we study incentives in such a team to answer this question in various contexts.

Formally, we consider contractual arrangements subject to incentive compatibility

as described by Myerson’s (1986) communication equilibrium. We obtain minimal

conditions on a team’s primitives—its “monitoring technology” (what Bob can see

when) and individual preferences (whether Bob prefers to work or shirk)—such that

incentive compatibility is not a binding constraint for the team.

Theorem 1 provides a necessary and sufficient condition on a monitoring technology—

called detecting unilateral disobedience (DUD)—for every team outcome (e.g., Bob

works) to be approximately enforceable, i.e., an incentive compatible outcome exists

arbitrarily close to it. DUD requires that every disobedient deviation by any indi-

vidual be statistically detectable with some reaction by others, although different

deviations may be detected with different reactions. This key property distinguishes

DUD substantively from the literature2 (Section 3.1 has a detailed literature review).

Therefore, DUD is a weak restriction. It is also generic (Theorem 2).

Secret contracts add value not by approximate enforcement (Corollaries 1 and 4),3

but by allowing “monitors” to follow “deviators” in a hypothetical game of hide and

seek, even though in fact they move simultaneously. To illustrate, suppose Bob shirks.

If he also reports no mismatch then Ann can hypothetically “react” by secretly taking

some money to prove him wrong, whereas if he reports a mismatch then Ann can

choose not to take any money. By Theorem 1, such disobedience (e.g., Bob shirking)

is detectable in this sense if and only if obedience is enforceable with secret contracts.

Restricting attention to budget-balanced transfers,4 Theorem 3 characterizes approx-

imate enforcement of any team outcome with a stronger condition, called identifying

obedient players (IOP). In addition to DUD, IOP requires that after any unilateral

disobedience, someone can be statistically identified as obedient. IOP is weak (this

is argued at the end of Section 3.2) and generic (Theorem 5), too. Intuitively, IOP

provides incentives with budget balance by rewarding the innocent while punishing

all others. Since IOP is necessary to deliver incentives, it exhausts the informational

economies from determining “who didn’t dunnit” rather than, say, “who dunnit.”5

2For instance, conditions like individual full rank of Fudenberg et al. (1994) require that every
deviation be detected by the same “reaction,” making it more difficult to detect deviations.

3Even though we sometimes rely on approximation to expand contractual possibilities, our key
insight is the use of mediated transfers—not approximating outcomes—to provide incentives.

4Budget balance means that the sum payments across individuals always equals zero.
5E.g., conditions based on pairwise full rank of Fudenberg et al. (1994) require that the deviator

be statistically identified after every unilateral deviation, which is clearly stricter than IOP.
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Theorems 6 and 8 (Section 4) extend these results in two important directions that

help to clarify the differences between exact and approximate enforcement.

Theorem 6 characterizes monitoring technologies that approximately enforce a fixed

outcome rather than every outcome simultaneously (Theorem 1), regardless of indi-

vidual preferences. Interestingly, Theorem 6 reconciles an infinite regress inherent

in monitoring. Suppose that providing incentives for a given outcome requires a

monitor to detect deviations. What about the monitor’s deviations? Theorem 6

answers this question by asserting that effectively the monitor’s deviations are ir-

relevant. Indeed, if they are detectable then they can be easily discouraged with

contingent payments. Otherwise, if the monitor’s deviations are undetectable then

the deviations themselves still detect others’ deviations from the given outcome, and

so they continue to fulfill the required monitoring role. Evidently, this argument also

applies to the monitor’s deviations from these deviations, and so forth. Theorem 6

reconciles this infinite regress by showing that under standard conditions (e.g., in a

finite game) not every behavior by the monitor can have a profitable, undetectable

deviation. Therefore, to approximately enforce an arbitrary outcome with infrequent

monitoring, every deviation from the outcome must in principle be detectable with

some monitoring behavior, but deviations away from the monitoring behavior itself

need not be detectable. Heuristically, nobody needs to monitor the monitor.

Theorem 8 extends Theorem 6 by fixing individual preferences and finding joint con-

ditions on preferences and the monitoring technology that characterize approximate

enforcement. Intuitively, profitable deviations must be discouraged “uniformly” and

“credibly.” Uniform detection allows for infinitesimal deviations to be discouraged

even if they are only infinitesimally detectable (Example 9). Credibility is necessary

when deviations are discouraged with the use of others’ actions rather than with

contingent payments, and this disciplining behavior must be incentive compatible.

The paper is organized as follows. Section 2 presents two motivating examples that

guide our main results. Section 3 develops the model. Section 3.1 defines DUD,

characterizes its incentive properties, finds conditions for its generic satisfaction, and

relates it to the literature. Section 3.2 repeats this exercise for IOP. Section 4 extends

the model by characterizing exact and approximate enforcement of fixed outcomes

with and without fixed preferences, and accommodates complications such as par-

ticipation constraints, limited liability, and even coalitional deviations. Section 5

concludes. Omitted proofs and ancillary results appear in Appendices A and B.
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2 Examples

We begin our analysis of secret contracts with two leading examples that attempt to

capture the intuition behind our main results, Theorems 1 and 3. The first example

considers an environment that typifies the strategic interaction between a principal,

a worker, and a monitor. The second example suggests an intuitive way of attaining

approximately efficient partnerships with budget balance.

2.1 Robinson and Friday

There are two agents: Robinson, who can either monitor or rest, and Friday, who can

either work or shirk. A mediating principal makes possibly secret recommendations to

the agents and enforces contingent contractual payments. Robinson (the row player)

and Friday (the column player) interact according to the left bi-matrix below.

work shirk work shirk

monitor 2,−1 −1, 0 monitor 1, 0 0, 1

rest 3,−1 0, 0 rest 1/2, 1/2 1/2, 1/2

Utility Payoffs Signal Probabilities

There are two signals, g and b, on which to condition linear transfers. Their condi-

tional probability is given in the right bi-matrix above. In words, if Robinson monitors

he observes Friday’s effort, whereas if he rests then the signal is uninformative.

Although clearly the efficient profile (rest,work) is unenforceable, we can get arbi-

trarily close even if only Robinson observes the signal and it is not verifiable.6 For

the principal to write signal-contingent contracts, he must first solicit the realizations

from Robinson, who may in principle misreport them.7 We approximate (rest,work)

by having Friday mix between working and shirking and Robinson’s report-contingent

payments depend on Friday’s recommendation, thereby “monitoring the monitor.”

Specifically, the following correlated strategy is incentive compatible given µ ∈ (0, 1):

6If signals are publicly verifiable, the correlated strategy σ[(monitor,work)]+(1−σ)[(rest,work)],
where [a] means Dirac measure for any action profile a, is enforced for all σ ∈ (0, 1] with Holmström’s
(1982) group penalties, e.g., by paying Robinson $2 and Friday $1/σ if g and both players $0 if b.

7Now group penalties break down, since then Robinson reports g and rests, hence Friday shirks.
Furthermore, if Robinson was paid independently of his report then although he would happily tell
the truth, he would find no reason to monitor.
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(i) Robinson is told to monitor with probability σ (and rest with probability 1− σ),

(ii) Friday is independently told to work with probability µ (to shirk with 1−µ), and

(iii) the principal enforces the following secret contract :

(monitor,work) (monitor,shirk) (rest,work) (rest,shirk)

g 1/µ, 1/σ 0, 0 0, 0 0, 0

b 0, 0 1/(1− µ), 0 0, 0 0, 0

The table reads as follows. The leftmost column says that Robinson is paid $1/µ if he

reports g and $0 if b when (monitor,work) was recommended, whereas Friday is paid

$1/σ if g is reported and $0 if b, etc. Honesty and obedience to the mediator is now

incentive compatible. Letting σ → 0 and µ→ 1, (rest,work) can now be approached.

Intuitively, Robinson is rewarded only when he reports g if Friday was asked to work

and b if Friday was asked to shirk. Robinson, like Bob, faces a “trick question.”

Secret contracts add value in this example because they allow different correlated

strategies to detect different deviation plans, unlike just signal-contingent contracts.

In other words, this is as if a correlated strategy is chosen after players choose de-

viation plans in order to detect them. To illustrate, suppose that Robinson is asked

to monitor but instead chooses to rest and report g. The mediator can “react” by

asking Friday to shirk, which would lead to b if Robinson monitored and reported

truthfully. Similarly, if Robinson plans to rest and report b then Friday can be asked

to work instead, and Robinson’s deviation is detected again.

The key idea behind Theorem 1 shows that, therefore, Robinson can be dissuaded

from resting. However, with only signal-contingent contracts (Corollary 1), detecting

Robinson’s deviations requires the principal to fix Friday’s behavior in advance. If

Friday works with fixed probability µ then Robinson can rest and report g with

probability µ. Now Robinson can deviate without being detected, and no contract

contingent only on signals can induce him to monitor.

2.2 Secret Principal

A team has n individuals. Each team member i can either work (ai = 1) or shirk

(ai = 0). Let c > 0 be each individual’s cost of effort. Effort is not observable.

Output is publicly verifiable and can be either good (g) or bad (b). The probability

of g equals P (
∑

i ai), where P is a strictly increasing function of the sum of efforts.
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Radner et al. (1986) showed that in this environment there do not exist budget-

balanced output-contingent linear transfers to induce everyone to work, not even

approximately. One arrangement that is not approximately efficient but nevertheless

induces most people to work is appointing Holmström’s principal. Call this player 1

and define transfers as follows. For i = 2, . . . , n, let ζi(g) = z and ζi(b) = 0 be player

i’s output-contingent linear transfer, for some z ≥ 0. Let player 1’s transfer equal

ζ1 = −
n∑
i=2

ζi.

By construction, the budget is balanced. It is easy to see that everyone but player 1

will work if z is sufficiently large. However, player 1 has the incentive to shirk.8

Allowing now for secret contracts, consider the following scheme. For any small ε > 0,

a mediator asks every individual to work (call this event 1) with probability 1 − ε.
With probability ε/n, he picks player i (everyone is picked with equal probability)

and secretly asks him to shirk, while asking all others to work (call this event 1−i).

For i = 1, . . . , n, let ζi(g|1) = ζi(b|1) = 0 be player i’s contingent transfer if the

mediator asked everyone to work. Otherwise, if player i was secretly told to shirk,

for j 6= i let ζj(g|1−i) = z and ζj(b|1−i) = 0 be player j’s transfer. For player i, let

ζi = −
∑
j 6=i

ζj.

Clearly, this contract is budget-balanced. It is also incentive compatible. Indeed, it

is clear from the contract that asking a player to shirk is always incentive compatible.

If player i is recommended to work, incentive compatibility requires that

ε
n
(n− 1)P (n− 1)z − c ≥ ε

n
(n− 1)P (n− 2)z,

which is satisfied if z is sufficiently large because P is strictly increasing. Under

this contract, everyone works with probability 1 − ε, for any ε > 0, by choosing z

appropriately, so everyone working is approximated with budget balanced transfers.

If a worker deviates (i.e., shirks), he lowers the probability of g. If a secret principal

deviates (i.e., works) he raises the probability g. Hence, a worker’s deviation changes

probabilities differently from a secret principal’s deviation, so after a deviation that

raises the frequency of g, innocence can be attributed to the secret principal. Secret

contracts add value by using different secret principals for different workers. This is

the insight exploited by IOP to establish Theorem 3 below.

8This contract follows Holmström’s suggestion to the letter: player 1 is a “fixed” principal who
absorbs the incentive payments to all others by “breaking” the budget constraint.
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3 Model

This section develops the main model of secret contracts, whose purpose is to charac-

terize a team’s enforceable outcomes. Firstly, basic notation is introduced, the timing

of interaction amongst team members is described explicitly, and several notions of

enforcement are formally defined that will be used extensively later.

Section 3.1 then extrapolates from the leading example in Section 2.1. A notion of

detection of deviation plans is introduced and the equivalence between detection and

enforcement is derived in terms of a hypothetical zero-sum game of hide and seek

where the hider (a deviator) moves first and the seeker (a monitor) moves second.

Allowing the seeker to move second is shown to characterize the value of secret con-

tracts. Formally, an outcome is shown to be enforceable if and only if the seeker wins

in this hypothetical hide-and-seek game. A notion of “almost perfect monitoring” is

also proposed, called detecting unilateral disobedience, and conditions are provided

for it to obtain generically. Section 3.1 ends with a literature review.

Section 3.2 extends the results of Section 3.1 to include budget-balanced contracts

in the spirit of the secret principal from Section 2.2. There, a similar hide-and-seek

intuition emerges, except that now enforcement with budget balance is equated to

attribution rather than just detection. Intuitively, attribution is taken to mean that

it is possible to identify an obedient player after a deviation is detected.

We begin by defining the basic strategic environment. Let I = {1, . . . , n} be a finite

set of players, Ai a finite set of actions available to any player i ∈ I, and A =
∏

iAi

the (nonempty) space of action profiles. Let vi(a) denote the utility to player i ∈ I
from action profile a ∈ A. A correlated strategy is a probability measure σ ∈ ∆(A).9

Let Si be a finite set of private signals observable only by individual member i ∈ I
and S0 a finite set of publicly verifiable signals. Let

S :=
n∏
j=0

Sj

be the (nonempty) product space of all observable signals. A monitoring technology

is a measure-valued map Pr : A → ∆(S), where Pr(s|a) stands for the conditional

probability that s = (s0, s1, . . . , sn) ∈ S was observed given that the team played

a = (a1, . . . , an) ∈ A.

9If X is a finite set, ∆(X) = {µ ∈ RX
+ :

∑
x µ(x) = 1} is the set of probability vectors on X.
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Assume that the team has access to linear transfers. An incentive scheme is any

map ζ : I × A × S → R that assigns monetary transfers contingent on individuals,

recommended actions, and reported signals. It is assumed that recommendations are

verifiable.10 Rather than focus on incentive schemes ζ, we will also study probability

weighted transfers, ξ : I×A×S → R. For any recommendation a ∈ A with σ(a) > 0,

one may think of ξ as solving ξi(a, s) = σ(a)ζi(a, s) for some ζ. For any a ∈ A with

σ(a) = 0 and ξ(a) 6= 0, one may think of ξ as either arising from unbounded incentive

schemes (i.e., ζi(a, s) = ±∞) or as the limit of a sequence {σmζm}. This change of

variables from ζ to ξ is explained further in Section 4.1.

The timing of team members’ interaction runs as follows. Firstly, players agree upon

some contract (σ, ζ) consisting of a correlated strategy σ and an incentive scheme ζ. A

profile of recommendations is drawn according to σ and made to players confidentially

and verifiably by some machine. Players then simultaneously take some action. Taken

actions are neither verifiable nor directly observable. Next, players observe their

unverifiable private signals and submit a verifiable report of their observations (given

by a signal) before observing the public signal (not essential, just simplifying). Finally,

recommendation- and report-contingent transfers are made according to ζ.

If every player obeys his recommendation and reports truthfully, the expected utility

to player i (before recommendations are actually made) from a contract (σ, ζ) is∑
a∈A

σ(a)vi(a)−
∑
(a,s)

σ(a)ζi(a, s) Pr(s|a).

Of course, Mr. i may disobey his recommendation ai to play some other action bi and

lie about his privately observed signal. A reporting strategy is a map ρi : Si → Si,

where ρi(si) is the reported signal when Mr. i privately observes si. Let Ri be the

set of all reporting strategies for player i. The truthful reporting strategy is the

identity map τi : Si → Si with τi(si) = si. Thus, both ζi(a, s−i, τi(si)) = ζi(a, s) and

ξi(a, s−i, τi(si)) = ξi(a, s).
11 The space of pure deviations for i is therefore Ai ×Ri.

For every player i and every deviation (bi, ρi), the conditional probability that signal

profile s will be reported when everyone else is honest and plays a−i ∈ A−i equals

Pr(s|a−i, bi, ρi) :=
∑

ti∈ρ−1
i (si)

Pr(s−i, ti|a−i, bi).

10If recommendations were not directly verifiable, then players could be asked to announce theirs
as verifiable messages. However, this would involve some loss of generality (Example 2).

11We will often use the notation s = (s−i, si) and a = (a−i, ai) for any i, where si ∈ Si and
s−i ∈ S−i =

∏
j 6=i Sj ; similarly for A−i.
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When all other players are honest and obedient, the utility to i from deviating to

(bi, ρi) conditional on being recommended to play ai under contract (σ, ζ) equals∑
a−i

σ(a)

σ(ai)
vi(a−i, bi)−

∑
(a−i,s)

σ(a)

σ(ai)
ζi(a, s) Pr(s|a−i, bi, ρi),

where σ(ai) =
∑

a−i
σ(a) > 0 is the probability that ai was recommended.

A team’s metering problem is to find a contract (σ, ζ) that makes incentive compatible

obeying recommended behavior as well as honest reporting of monitoring signals.

This is captured by the following family of inequalities.

∀i ∈ I, ai ∈ Ai, (bi, ρi) ∈ Ai ×Ri,∑
a−i

σ(a)(vi(a−i, bi)− vi(a)) ≤
∑

(a−i,s)

σ(a)ζi(a, s)(Pr(s|a−i, bi, ρi)− Pr(s|a)). (∗)

The left-hand side reflects the deviation gain in terms of utility12 for a player i from

playing bi when asked to play ai. The right-hand side reflects his contractual loss

from deviating to (bi, ρi) relative to honesty and obedience (i.e., playing ai after being

asked to do so and reporting according to τi). Such a loss originates from two sources.

On the one hand, playing bi instead of ai may change conditional probabilities over

signals. On the other, reporting according to ρi may affect conditional payments.

Definition 1. A correlated strategy σ is exactly enforceable (or simply enforceable)

if there exists an incentive scheme ζ : I×A×S → R to satisfy (∗) for all (i, ai, bi, ρi).

Call σ exactly enforceable with budget balance if it is exactly enforceable and

∀(a, s),
∑
i∈I

ζi(a, s) = 0.

A correlated strategy σ is approximately enforceable if a sequence {σm} of enforceable

correlated strategies exists with σm → σ. Call σ approximately enforceable with budget

balance if, in addition, every σm is enforceable with budget balance.

A correlated strategy is approximately enforceable if it is the limit of exactly enforce-

able ones. E.g., in Section 2.1 the correlated strategy [(rest,work)] is approximately

enforceable but not enforceable. Approximate enforcement with budget balance re-

quires that the budget be balanced along the way, not just asymptotically. E.g., in

Section 2.2, everybody working is approximately enforceable with budget balance, but

not exactly enforceable with budget balance, even though it is exactly enforceable.

12Specifically, in terms of probability weighted utility, weighted by σ(ai). If ai is never recom-
mended then σ(ai) = 0 and both sides of the inequality equal zero.
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3.1 Detection

We now provide a notion of detection that is shown to be equivalent to enforcement.

A deviation plan for any player i is a map αi : Ai → ∆(Ai × Ri), where αi(bi, ρi|ai)
stands for the probability that i deviates to (bi, ρi) when recommended to play ai.

Given σ ∈ ∆(A), let Pr(σ) ∈ RS be the vector defined by Pr(σ)(s) =
∑

a σ(a) Pr(s|a).

Intuitively, Pr(σ) is the vector of prior report probabilities if everyone is honest and

obediently playing according to σ. Let Pr(σ, αi) ∈ RS, defined pointwise by

Pr(σ, αi)(s) =
∑
a∈A

σ(a)
∑

(bi,ρi)

Pr(s|a−i, bi, ρi)αi(bi, ρi|ai),

be the vector of prior probabilities if player i deviates from σ according to αi.

A deviation plan αi is disobedient if αi(bi, ρi|ai) > 0 for some ai 6= bi, i.e., it disobeys

some recommendation ai with positive probability. A disobedient deviation plan may

be “honest,” i.e., ρi may equal τi with probability one after every recommendation.

A profile α = (α1, . . . , αn) of deviation plans is called disobedient if αi is disobedient

for some player i. Although dishonesty is arguably a form of disobedience, it will be

useful in the sequel to distinguish between them.

Definition 2 (Detection). A deviation plan αi for player i is called undetectable if

∀σ ∈ ∆(A), Pr(σ) = Pr(σ, αi).

Call αi detectable if it is not undetectable, i.e., Pr(σ) 6= Pr(σ, αi) for some σ ∈ ∆(A).

Intuitively, a deviation plan αi is undetectable if the probability of reported signals

induced by αi, Pr(σ, αi), coincides with that arising from honesty and obedience,

Pr(σ), regardless of the team’s correlated strategy, σ, assuming that others are honest

and obedient. Undetectability is arguably a strong restriction on a deviation plan,

making detectability a weak requirement.13 We now give our first main definition.

Definition 3 (DUD). A monitoring technology Pr detects unilateral disobedience

(DUD) if every disobedient deviation plan is detectable.

DUD is intuitively defined.14 Formally, note that different correlated strategies may

be used to decide whether or not different disobedient deviation plans are detectable.

13Undetectability may be defined equivalently by Pr(a) = Pr(a, αi) for all a ∈ A by linearity.
14For a slightly stronger but also mathematically more tractable version of DUD (without using

reporting strategies), see Lemma B.1.
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This is one important aspect that renders DUD substantially weaker than other

conditions in the literature, as will soon be seen. To illustrate, consider an example.

Example 1. There are two publicly verifiable signals, S = S0 = {x, y}, and two

players, I = {1, 2}. Player 1 has two actions, A1 = {U,D}, and player 2 has three

actions, A2 = {L,M,R}. The conditional probability system Pr is given below.

L M R

U 1, 0 0, 1 1/2, 1/2

D 1, 0 0, 1 1/3, 2/3

If player 1 plays U then there is a mixed deviation by player 2 (namely 1
2
[L] + 1

2
[M ],

where [·] stands for Dirac measure) such that the conditional probability over signals

equals what it would be if he played R. A similar phenomenon takes place when

player 1 plays D (this time with the deviation 2
3
[L] + 1

3
[M ]) or indeed regardless of

player 1’s mixed strategy. It is therefore impossible to even approximately enforce R

with transfers contingent only on signals if player 2 strictly prefers playing L and M ,

since there always exists a profitable deviation without any contractual losses.

However, Pr detects unilateral disobedience because for any deviation plan by player 2

there is a mixed strategy by player 1 that detects it. By correlating player 2’s payment

with player 1’s recommendation, secret contracts can keep player 2 from knowing the

proportion with which he ought to mix between L and M for his contractual payment

to equal what he would obtain by playing R. It will be seen that this renders R

enforceable. This suggests how secret contracts can extract more information from a

monitoring technology to provide incentives, even with publicly verifiable signals.

Next, we will show that DUD characterizes approximate enforcement.

Definition 4 (PSI). A monitoring technology Pr provides strict incentives (PSI) if

there exists a probability weighted incentive scheme ξ : I × A× S → R such that

∀(i, ai, bi, ρi), 0 ≤
∑

(a−i,s)

ξi(a, s)(Pr(s|a−i, bi, ρi)− Pr(s|a)),

with a strict inequality whenever ai 6= bi.
15

15Although no budget constraints are imposed, we could have added expected budget balance,∑
(i,a,s)

ξi(a, s) = 0,

but this constraint would not bind, since adding a constant to any ξ preserves its incentive properties.
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By scaling ξ as necessary, PSI implies that for every utility profile there is an incentive

scheme so that any deviator’s contractual loss outweighs his deviation gain. PSI may

appear to be a rather strong condition, in contrast with the argued weakness of DUD

(Example 1). As it turns out, PSI and DUD are equivalent, in fact mutually dual.

Lemma 1. A monitoring technology detects unilateral disobedience if and only if it

provides strict incentives.

Proof. By the Alternative Theorem (Rockafellar, 1970), PSI fails if and only if there

is a vector λ ≥ 0 such that λi(ai, bi, ρi) > 0 for some (i, ai, bi, ρi) with ai 6= bi and

∀(a, s),
∑

(bi,ρi)

λi(ai, bi, ρi)(Pr(s|a)− Pr(s|a−i, bi, ρi)) = 0.

Such a vector λ exists if and only if the deviation plan αi, defined pointwise by

αi(bi, ρi|ai) :=

{
λi(ai, bi, ρi)/

∑
(b′i,ρ

′
i)
λi(ai, b

′
i, ρ
′
i) if

∑
(b′i,ρ

′
i)
λi(ai, b

′
i, ρ
′
i) > 0, and

[(ai, τi)] (bi, ρi) otherwise (where [·] denotes Dirac measure),

is disobedient and undetectable: DUD fails. �

The simple proof of Lemma 1 above describes a duality between identifiability and

enforceability via secret contracts. A natural corollary follows that motivates DUD

from a “backward-engineering” exercise: what minimal requirement on a monitoring

technology suffices to contractually overcome incentive constraints? Given ξ and any

completely mixed correlated strategy σ ∈ ∆0(A) := {σ ∈ ∆(A) : ∀a ∈ A, σ(a) > 0},
there exists ζ with ξi(a, s) = σ(a)ζi(a, s) for all (i, a, s). Hence, PSI is equivalent to

every σ ∈ ∆0(A) being (exactly) enforceable, which proves the next result.

Theorem 1. A monitoring technology detects unilateral disobedience if and only if

any team with any profile of utility functions can approximately enforce any correlated

strategy with secret contracts.

As Example 1 shows, DUD is not enough to provide incentives with just signal-

contingent contracts, but the following strengthening is. Given a subset B ⊂ A and

a player i, let Bi := {bi ∈ Ai : ∃b−i ∈ A−i s.t. b ∈ B} be the projection of B on Ai.

Call a deviation plan αi B-disobedient if it is disobedient at some ai ∈ Bi. Given

σ ∈ ∆(A), say Pr detects unilateral disobedience at σ (DUD-σ) if Pr(σ) 6= Pr(σ, αi)

for every player i and supp σ-disobedient16 deviation plan αi. Intuitively, the same

σ detects every αi. The proof of Theorem 1 also implies the following corollary.

16By definition, supp σ = {a ∈ A : σ(a) > 0} is the support of σ.
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Corollary 1. Fix a correlated strategy σ. A monitoring technology detects unilateral

disobedience at σ if and only if any team with any profile of utility functions can

enforce σ with just “standard” signal-contingent contracts.

Corollary 1 captures the value-added of secret contracts. By the paragraph preceding

Theorem 1, DUD suffices to enforce any completely mixed σ with secret transfers by

effectively allowing the use of different σ’s to detect different α’s, unlike standard

contracts, for which the same σ must detect every α.17 On the other hand, to enforce

a pure-strategy profile a, DUD is generally not enough. Since players receive only

one recommendation under [a], there is no use for secret contracts, so by Corollary 1

DUD-[a] characterizes enforcement with secret as well as standard contracts.

The intermediate case where σ has arbitrary support is discussed in Section 4.1.

There, necessary and sufficient conditions are derived for exact as well as approximate

enforcement. Section 4.2 extends the results further by fixing utility functions.

Genericity of DUD is established next from the number of players’ action-signal pairs.

Intuitively, incentives may be provided to a given player in three ways: (a) using only

others’ signals to detect his deviations (e.g., Friday), (b) using only his own reports

and others’ recommendations (e.g., Robinson), and (c) using both his reports and

others’ signals in conjunction. Theorem 2 below identifies conditions such that for

every player, at least one such way of detecting deviations is generic.

Theorem 2. DUD is generic if for every player i,

(a) |Ai| − 1 ≤ |A−i| (|S−i| − 1) when |Si| = 1,

(b) |Ai| (|Si| − 1) ≤ |A−i| − 1 when |S−i| = 1, and

(c) |Ai| |Si| ≤ |A−i| |S−i| when both |Si| > 1 and |S−i| > 1.

If |S| = 1 then DUD is generic only if |A| = 1. More interestingly, DUD is generic

even if |S| = 2, as long as players have enough actions. Hence, a team may overcome

incentive constraints (i.e., DUD, therefore Theorem 1, holds) generically even if only

one individual can make substantive observations and these observations are just a

binary bit of information. If others’ action spaces are large enough and their actions

have generic effect on the bit’s probability, this uniquely informed individual may still

be controlled by testing him with unpredictable combinations of others’ actions.18

17Even for approximate enforcement with standard contracts the same σ must detect all α’s. E.g.,
in Example 1 there is no sequence {σm} with σm → [(U,R)] and Pr satisfying DUD-σm for all m.

18We thank an anonymous referee for urging us to emphasize this point.
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We conclude this subsection by relating DUD to the literature. Broadly, DUD is an

improvement in that different σ can be used to detect different αi.

In a restricted setting, Legros and Matsushima (1991) and Legros and Matthews

(1993) find conditions equivalent to DUD-[a] (but differently interpreted) to enforce a

profile a with signal-contingent contracts. In repeated games, Fudenberg et al. (1994)

introduced individual full rank (IFR). Formally, IFR (at some σ) means that for every

i, Pr(σ) /∈ span{Pr(σ, bi, ρi) : (bi, ρi) 6= (ai, τi)}, where “span” stands for linear span.

Arguably, the spirit of IFR is to detect deviations away from some prescribed σ, i.e.,

DUD-σ.19 IFR at σ implies DUD-σ but not conversely.20 DUD is also weaker than

local IFR (LIFR) of d’Aspremont and Gérard-Varet (1998), requiring IFR at possibly

different σ for different i.21 Indeed, clearly LIFR implies DUD, and LIFR fails but

DUD holds in Example 1. “Local” DUD-σ fails there, too.

DUD is also weaker than the generalization of IFR by Kandori (2003), where players

play mixed strategies and report on the realization of such mixtures. He considers

contracts contingent on those reports and signal realizations. The next example shows

that secret contracts perform strictly better in non-pathological environments.

Example 2. Two players, two actions for each player, and two signals that only

player 1 can observe, with the monitoring technology below.

L R

U 1, 0 0, 1

D 0, 1 1, 0

Clearly, DUD holds, so by Theorem 1 every correlated strategy is approximately

enforceable. However, this result fails with Kandori’s contracts. Indeed, suppose

that U dominates D for player 1 (the row player). Player 1’s transfers cannot depend

on his report of his own action, since otherwise he would misreport, so at most they

can depend on player 1’s report of the signal and player 2’s action report. But player 1

always knows what player 2 played regardless of whether he chose U or D. Therefore,

player 1 can guarantee himself the same monetary payment independently of his

actual behavior. Hence, player 1 will never play D when facing Kandori’s contracts.

19For instance, see Compte (1998) or Kandori and Matsushima (1998).
20If |S−i| < |Ai| for some i then this holds trivially, since IFR is impossible yet DUD-σ, which

requires only convex (rather than linear) independence, is possible (e.g., all the points on a circle
are convexly independent). This holds even with at least as many signals as actions (e.g., consider
the vectors ( 1

3 ,
1
3 , 0,

1
3 ), (0, 1

3 ,
1
3 ,

1
3 ), ( 1

6 , 0,
1
3 ,

1
2 ) and (1

3 , 0,
1
6 ,

1
2 )).

21For all i, LIFR uses the same correlated strategy σi to detect each deviation plan αi of player i.
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Tomala (2005) independently derives a condition comparable to DUD to prove a folk

theorem. He provides a condition defines detection with respect to a fixed correlated

strategy using unconditional probabilities over actions and signals. He focuses on

exact implementation, so for σ ∈ ∆0(A), his version of DUD agrees broadly with ours

(he proves a version of Corollary 5 below). However, he does not study approximate

enforcement in general (i.e., for σ /∈ ∆0(A)), and does not use different σ to detect

different αi. This issue is developed further in Theorems 6 and 8 (Section 4) below.

Finally, DUD is also generically weaker than the conditions cited above, i.e., it holds

generically in a lower-dimensional space (see also Theorem 5 below).

3.2 Attribution

Let us now extend this analysis to teams with transfers subject to budget balance.

Definition 5 (Attribution). A deviation plan αi for player i is unattributable if

there exists a profile α−i = (α1, . . . , αi−1, αi+1, . . . , αn) of deviation plans such that

∀σ ∈ ∆(A), Pr(σ, α1) = · · · = Pr(σ, αi) = · · · = Pr(σ, αn).

Call αi attributable if it is not unattributable, i.e., for every profile α−i of deviation

plans, there is a correlated strategy σ and a player j such that Pr(σ, αi) 6= Pr(σ, αj).

Intuitively, a deviation plan is unattributable if there exists a profile of opponents’

deviation plans such that every unilateral deviation would lead to the same expected

report probabilities. Heuristically, after an unattributable unilateral deviation, even

if the fact that someone deviated is detected, anyone could have been the culprit.

Definition 6 (IOP). A monitoring technology Pr identifies obedient players (IOP)

if every disobedient deviation plan is attributable.

IOP is a stronger requirement on a monitoring technology than DUD. Indeed, DUD

follows by replacing α−i above with honesty and obedience. IOP means that any

profile of disobedient deviation plans that affects the probability of reported signals

must do so in a way that differs across players. An immediate example of IOP is

a team with DUD and Holmström’s (1982) principal. With no actions to take or

signals to observe (both Ai and Si are singletons), the principal is automatically

obedient. Hence, any detectable deviation can be discouraged with budget balance

by rewarding him and punishing everyone else.
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IOP isolates this idea and finds when the principal’s role can be fulfilled internally.

Theorem 3 below shows that IOP characterizes approximate enforcement with budget

balance. To illustrate, recall the secret principal of Section 2.2, where if a worker

shirks then good news becomes less likely, whereas if the secret principal works then

good news becomes more likely. IOP holds by using different principals for different

workers. By Theorem 3, everything is approximately enforceable with budget balance.

Lemma 2. A monitoring technology identifies obedient players if and only if it pro-

vides strict incentives with budget balance, i.e., there exists a probability weighted

incentive scheme ξ : I × A× S → R such that
∑

i ξi(a, s) = 0 for every (a, s), and

∀(i, ai, bi, ρi), 0 ≤
∑

(a−i,s)

ξi(a, s)(Pr(s|a−i, bi, ρi)− Pr(s|a)),

with a strict inequality whenever ai 6= bi.

Proof. By the Alternative Theorem, PSI with budget balance fails if and only if λ ≥ 0

and η ∈ RA×S exist with λi(ai, bi, ρi) > 0 for some (i, ai, bi, ρi) with ai 6= bi and

∀(i, a, s),
∑

(bi,ρi)

λi(ai, bi, ρi)(Pr(s|a−i, bi, ρi)− Pr(s|a)) = η(a, s),

where η is independent of i. Let Λ = max(i,ai)

∑
(bi,ρi)

λi(ai, bi, ρi) > 0. Define

αi(bi, ρi|ai) :=

{
λi(ai, bi, ρi)/Λ if (bi, ρi) 6= (ai, τi), and

1−
∑

(bi,ρi) 6=(ai,τi)
λi(ai, bi, ρi)/Λ otherwise.

By construction, αi is disobedient and unattributable (using α−i): IOP fails. �

We now restrict Theorem 1 with budget balance. The proof is identical, so omitted.

Theorem 3. A monitoring technology identifies obedient players if and only if any

team with any profile of utility functions can approximately enforce any correlated

strategy with budget balanced secret contracts.

Enforcement with budget-balanced standard contracts is captured by strengthening

IOP as follows. Given σ ∈ ∆(A), say Pr identifies obedient players at σ (IOP-σ) if for

every supp σ-disobedient deviation plan αi there is a profile of deviation plans α−i

such that Pr(σ, αi) 6= Pr(σ, αj) for some player j. Intuitively, the same σ attributes

every αi. The next result follows easily from Theorem 3; its proof is omitted.
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Corollary 2. Fix a correlated strategy σ. A monitoring technology identifies obedient

players at σ if and only if any team with any profile of utility functions can enforce

σ with signal-contingent budget-balanced contracts.

Corollary 2 shows that secret contracts add value by allowing the use of different σ

to attribute different αi. The next example illustrates this point.

Example 3. Consider a variation on Robinson and Friday (Section 2.1) with publicly

verifiable signals (S = S0 = {g, b}) and slightly different signal probabilities:

work shirk work shirk

monitor 2,−1 −1, 0 monitor p, 1− p q, 1− q
rest 3,−1 0, 0 rest 1/2, 1/2 1/2, 1/2

Utility Payoffs Signal Probabilities

The profile (rest,work) is approximately enforceable with budget-balanced standard

contracts if and only if q 6= p = 1
2
.22 On the other hand, (rest,work) is approximately

enforceable with budget-balanced secret contracts if and only if both p 6= q and

(p− 1
2
)(q − 1

2
) ≥ 0,23 which is much weaker, and equivalent to IOP.24

22Without loss, players mix independently. Robinson must be indifferent between monitoring and
resting, so ( 1

2 −µp− (1−µ)q)∆ζ = 1, where µ is the probability that Friday works, ∆ζ = ζ(g)−ζ(b)
and ζ(ω) is Robinson’s payment to Friday if the signal is ω ∈ {g, b}. Friday will shirk unless
σ(p − q)∆ζ = 1 if 0 < µ < 1, where σ is the probability that Robinson monitors. (If µ = 1 then
either p = 1

2 and Robinson’s constraint fails, or p 6= 1
2 and ∆ζ = 1/( 1

2 − p), so σ(p − q)∆ζ → 0 as
σ → 0 and Friday’s constraint fails.) Therefore, p 6= q, and incentive compatibility holds as µ → 1
and σ → 0 only if µp+ (1− µ)q → 1

2 , i.e., p = 1
2 . The converse is easy.

23The contracts of Footnote 22 suffice if p = 1
2 . Otherwise (so standard contracts fail), write

∆ζ or ∆ζ ′ for the difference across signals in Robinson’s payments to Friday if (monitor,work) or
(monitor,shirk) was recommended, respectively. All other payments equal 0 (so rest is incentive
compatible). Let σ > 0 and µ > 0 mean the same as in Footnote 22. If q > p > 1

2 , set µ = 1.
Monitoring requires 1 ≤ ( 1

2 − p)∆ζ; working requires 1 ≤ σ(p − q)∆ζ. Both inequalities hold if
∆ζ ≤ 0 is large. If p > q ≥ 1

2 , let µ < 1. For Friday to obey we need 1 ≤ σ(p − q)∆ζ and
−1 ≤ σ(q−p)∆ζ ′, and for Robinson to monitor 1 ≤ µ( 1

2 −p)∆ζ+(1−µ)( 1
2 −q)∆ζ

′. All inequalities
hold for large ∆ζ ′ ≤ 0 ≤ ∆ζ. The case p, q ≤ 1

2 follows by symmetry; the converse is easy.
24Let α and β be the probability that Robinson monitors if asked to rest and vice versa; γ and δ

that with which Friday works if asked to shirk and vice versa, respectively. Restricting attention to
g only, players change probabilities as follows:

Robinson work shirk Friday work shirk
monitor α( 1

2 − p) α( 1
2 − q) monitor γ(q − p) δ(p− q)

rest β(p− 1
2 ) β(q − 1

2 ) rest 0 0
Clearly, LHS 6= RHS for all non-zero (α, β, γ, δ) ≥ 0 if and only if p 6= q and (p− 1

2 )(q − 1
2 ) ≥ 0.
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To better understand IOP, let us temporarily restrict attention to publicly verifiable

monitoring technologies, where IOP can be decomposed into DUD together with⋂
i∈I

Ci = {0},

where 0 stands for the origin of RA×S and for every i, Ci (called the cone of player i)

is the set of all vectors η ∈ RA×S such that for some deviation plan αi : Ai → ∆(Ai),

∀(a, s), η(a, s) =
∑
bi∈Ai

αi(bi|ai)(Pr(s|a−i, bi)− Pr(s|a)).

Call this condition on {Ci : i ∈ I} non-overlapping cones (NOC).25 NOC means that

every detectable deviation plan is attributable. Upon a detectable unilateral devia-

tion, it may be impossible to precisely identify deviator’s identity, but by NOC there

must be someone to who could not have generated the statistical change. Budget-

balanced incentives are provided by rewarding the obedient and punishing all others.

Decomposing IOP into DUD and NOC facilitates comparison with related literature.

Fudenberg et al. (1994) impose pairwise full rank (PFR), implying that for every pair

of players, their cones do not overlap. Therefore, upon any deviation it is possible to

exactly identify the deviator’s identity. On the other hand, NOC only requires that

all players’ cones fail to overlap simultaneously. Thus, it is possible that two players’

cones overlap, i.e., their intersection is larger than just the origin, and violate PFR but

still provide incentives with budget balance. In general, NOC does not even require

that there always be two players whose cones fail to overlap, in contrast with local

compatibility of d’Aspremont and Gérard-Varet (1998), as Figure 1 below illustrates.

Figure 1: A cross-section of three non-overlapping cones in R3 (pointed at the origin

behind the page) such that every pair of cones overlaps.

25To see that IOP is equivalent to DUD plus NOC, notice firstly that IOP clearly implies DUD.
By IOP, if a deviation plan αi is unattributable then it is obedient, hence undetectable, and NOC
follows. Conversely, NOC implies that every unattributable αi is undetectable. By DUD every
undetectable αi is obedient. Hence, every unattributable αi is obedient and IOP follows.
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NOC can be translated to an equivalent condition with dual economic interpretation

that provides useful insights into the contractual role played by NOC, as shown next.

Definition 7. A verifiable monitoring technology Pr clears every budget (CEB) if

given K : A× S → R there exists ξ : I × A× S → R such that

∀(a, s),
∑
i∈I

ξi(a, s) = K(a, s), and

∀(i, ai, bi), 0 ≤
∑

(a−i,s)

ξi(a, s)(Pr(s|bi, a−i)− Pr(s|a)).

The function K(a, s) may be regarded as a budgetary surplus or deficit for each

combination of recommended action and realized signal. Intuitively, CEB means

that any budget can be attained by some payment scheme that avoids disrupting any

incentive compatibility constraints. As it turns out, this is equivalent to NOC.

Corollary 3. A publicly verifiable monitoring technology has non-overlapping cones

if and only if it clears every budget.

This result helps clarify the role of DUD and NOC in Theorem 3. By Theorem 1,

DUD characterizes approximate enforcement of any correlated strategy σ. However,

the team’s budget may not be balanced ex post. NOC guarantees the existence of

a further contract to absorb any budgetary deficit or surplus of the original contract

without violating any incentive constraints. Therefore, the original contract plus this

further contract can now approximately enforce σ with ex post budget balance.26

Without verifiability, a decomposition of IOP into two separate parts does not emerge

naturally. Indeed, it is not difficult to see that NOC plus DUD is sufficient but not

necessary for IOP. Necessity fails in general because there may exist dishonest but

otherwise obedient deviations that do not directly affect anyone’s utility, and as such

IOP allows them to remain unattributable even if detectable. With verifiability, every

deviation may in principle affect players directly. To illustrate, consider an example.

Example 4. Take a team with three players such that Ai is a singleton for every

player i, so IOP is automatically satisfied. There are no public signals and each player

observes a binary private signal: Si = {0, 1} for all i. The monitoring technology is

Pr(s) :=


6
25

if
∑
si = 3

3
25

if
∑
si = 1 or 2

1
25

if
∑
si = 0

26A similar argument is provided by d’Aspremont et al. (2004) for Bayesian mechanisms.
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The following is a profile of (trivially obedient) unattributable deviation plans that

are also detectable, violating NOC. Suppose that player i deviates by lying with

probability 2/5 after observing si = 1 and lying with probability 3/5 after observing

si = 0. For every player i, the joint distribution of reported private signals becomes:

Pr(s) =


27
125

if
∑
si = 3

18
125

if
∑
si = 2

12
125

if
∑
si = 1

8
125

if
∑
si = 0

Genericity of IOP is discussed next. To motivate, consider the following example.

Example 5. Change Example 3 such that only Robinson observes the signal. Now

it is impossible to approximately enforce (rest,work) with budget balance.27

Hence, IOP fails. Unfortunately, it gets worse: the example is not pathological.

Theorem 4. Identifying obedient players is impossible with only two players and no

public information.

Proof. Fix an arbitrary action profile â ∈ A and consider the following disobedient

deviation plan αi for every player i: always play âi regardless of the mediator’s

recommendation ai and report si with probability Pr(si|ai, â−i) =
∑

s−i
Pr(s|ai, â−i)

independently of the actual signal realization. If any player i unilaterally deviates

according to αi, the probability of reported signals becomes

Pr(s|a, αi) =


Pr(s1|â) Pr(s2|â) if a1 = â1 and a2 = â2

Pr(s1|â) Pr(s2|â1, a2) if a1 = â1 and a2 6= â2

Pr(s1|a1, â2) Pr(s2|â) if a1 6= â1 and a2 = â2

Pr(s1|a1, â2) Pr(s2|â1, a2) if a1 6= â1 and a2 6= â2

These probabilities are the same regardless of who deviates, hence IOP fails. �

Theorem 4 simply says that with two players and no public signals it is always

possible to blame the other player for a deviation. Since it is impossible to identify

who deviated, by elimination it is also impossible to identify who did not deviate.

27Just as in Footnote 24, for Friday to work we require that 1 ≤ σ(p − q)∆ζ. For Robinson to
monitor, we require that Friday mixes between working and shirking, so 0 < µ < 1. Robinson’s
incentive constraints when asked to monitor so that he exerts the effort and reports truthfully are
1 ≤ µ(α− p)∆ζ + (1− µ)(α− q)∆ζ ′ for every α ∈ [0, 1]. Here α represents Robinson’s ability to lie
after resting. Choosing α = q yields 1 ≤ µ(q − p)∆ζ, but this is inconsistent with 1 ≤ σ(p− q)∆ζ.
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Fortunately, IOP is almost always satisfied beyond this restricted environment, as

the next result shows. Reorder the set I of players so that i < j if |Si| ≤ |Sj|. Let

K = {1, 2, . . . , k} be the subset of players with |Si| = 1, i.e., those who do not observe

a private signal. Finally, reorder K if necessary so that i < j if |Ai| ≤ |Aj|.

Theorem 5. IOP is generic if the conditions for Theorem 2 are satisfied and

n∑
i=1

(|Ai| |Si|)2− 1− χn(|An|2 |Sn| − 1) ≤ (n− 1) |A| |S| − (k− 1) |A|+ |Ak|
k−1∑
i=1

|Ai| ,

where χn = 1 if |S−n| = 1 and 0 otherwise, and players are ordered as above.

It is not difficult to see that if player 1 is a principal, i.e., |A1| |S1| = 1, then IOP is

generic if and only if DUD is generic. Intuitively, Theorem 5 holds when actions and

signals are allocated relatively evenly across players. This condition is weaker than

others in the literature. To help understand the result, consider some examples.

Example 6. If every player has the same number of actions, so |Ai| = m for all i,

and all available signals are publicly verifiable information, so |S| = |S0| = `, then

IOP is generic when nm2− 1 ≤ (n− 1)`mn− (n− 1)mn + (n− 1)m2, or equivalently,

m2 − 1 ≤ (n − 1)(` − 1)mn, which holds for all `, n > 1 and m ≥ 1. Hence, IOP is

generic even with just two players and two public signals. Now suppose instead that

|S| = |Sn| = ` > 1, so only player n observes the signals. By Theorem 2, DUD is

generic if m(`− 1) ≤ mn−1 − 1, which holds for all m > 1 if ` = 2 < n. The second

condition for IOP simplifies to m2`2 ≤ mn((` − 1)(n − 1) + 1), which also holds for

all m > 1 if ` = 2 < n. Therefore, IOP is generic even if only one player observes a

binary private signal as long as there are at least three players.

We end this section with a discussion of some literature related to IOP. Broadly, IOP

improves on previous results by (i) using different strategies to detect/attribute dif-

ferent deviations and (ii) not requiring a deviator’s identity. Specifically, the relevant

literature is divided into contract theory, mechanism design and repeated games.

In contract theory, Legros and Matsushima (1991) characterize exact enforcement

with budget-balanced standard contracts and verifiable signals, but their condition

is difficult to interpret, and one in terms of attribution is not suggested. Legros

and Matthews (1993) study approximate enforcement with standard budget-balanced

contracts and deterministic output, but fail to provide necessary conditions, and

again do not discuss attribution or rewarding the innocent. Finally, d’Aspremont
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and Gérard-Varet (1998) find stronger conditions (Figure 1) in a more restricted

setting, using linear methods. IOP subsumes these contributions in a more general

environment. IOP is also generic in a lower-dimensional space.

In mechanism design, d’Aspremont et al. (2004) provided necessary and sufficient con-

ditions for budget-balanced implementation. Some of the results here have a similar

flavor, such as Corollary 3. Independently from this paper, Kosenok and Severinov

(forthcoming) extend d’Aspremont et al. (2004) to include individual rationality, and

propose a condition they call weak identifiability (WI) in the context of mechanism

design. Intuitively, WI implies that no profile of unilateral deviations (from truthful

reporting strategies) can change the distribution of reports in the same way.

There are important differences between their work and ours, partly due to the differ-

ence between moral hazard and adverse selection. Firstly, we consider outcomes that

are not necessarily pure-strategy profiles. This permits the use of different outcomes

to attribute different deviations, unlike the mechanism design literature, which just

enforces honest reporting. For IOP to fail, there must be a disobedient deviation

that is unattributable across all recommended action profiles, so IOP can be satisfied

even if WI is violated at a given action profile. Secondly, this paper studies both

exact and approximate enforcement, whereas the mechanism design literature only

considers exact enforcement. Thirdly, WI requires attribution with respect to every

deviation, in contrast to IOP, which requires attribution only with respect to dis-

obedient ones. Therefore, since players’ signals are not necessarily verifiable in this

paper, IOP is not generally bound by the decomposition of Corollary 3, unlike the

mechanism design literature. Finally, the “types” in this paper are endogenous.

As for repeated games, IOP was compared to PFR just before Figure 1, so IOP

subsumes Fudenberg et al. (1994), Kandori and Matsushima (1998), Kandori (2003)

and Kandori and Obara (2006). Independently, Aoyagi (2005) and Tomala (2005)

use stronger conditions than IOP to prove a folk theorem for repeated games with

private monitoring and mediated communication. Aoyagi’s dynamic strategies rely

on “ε-perfect” monitoring, and fail if monitoring is costly, one-sided, or public, for

instance. Tomala considers a class of recursive equilibria that render his problem

similar to ours by interpreting patient players’ continuation payoffs as linear transfers.

His folk theorem requires budget balance for every weighted sum of transfers, which

makes his condition much stronger, comparable to PFR. In addition, he assumes that

every deviation is attributable, whereas IOP only attributes disobedient ones.

22



4 Discussion

This section makes four comments. Firstly, the previous section’s results are extended

to correlated strategies with restricted support. Secondly, these results are further

extended by restricting attention to a fixed profile of utility functions. Thirdly, we

comment on individual rationality and limited liability. Finally, we discuss collusion

and characterize contracts that dissuade multilateral deviations.

4.1 Exact versus Approximate Enforcement

Next, we characterize exact enforcement of a fixed correlated strategy for any utility

profile. Fix two sets of action profiles B,C ⊂ A. A deviation plan αi is C-detectable

if Pr(σ) 6= Pr(σ, αi) for some σ ∈ ∆(A) with supp σ ⊂ C. Say Pr C-detects unilateral

B-disobedience (DUDC
B) if every B-disobedient deviation plan is C-detectable. (We

will call A-detection simply detection, and write DUDA
B as DUDB.) For instance,

DUDA
A is just DUD, and DUD

{a}
{a} equals DUD-[a]. Consider another example.

Example 7. There are two players and two publicly verifiable signals, with the

monitoring technology below. (It is Example 1 with an added row.)

L M ′ R

U 1, 0 0, 1 2/3, 1/3

M 1, 0 0, 1 1/2, 1/2

D 1, 0 0, 1 1/3, 2/3

Let A = {U,M,D}×{L,M ′, R}, B = {U,M}×{L,M ′, R}, C = {U,D}×{L,M ′, R}.
Clearly, DUDA

A fails here, since 1
2
[U ] + 1

2
[D] is statistically indistinguishable from

M . Also, DUDA
B fails because a plan to play 1

2
[U ] + 1

2
[D] when asked to play M

is A-undetectable and B-disobedient. However, DUDC
C does hold, since there is no

undetectable deviation from D or U by the row player. (DUD-σ fails for every σ.)

Corollary 4. Fix any subset B ⊂ A. A monitoring technology B-detects unilateral

B-disobedience if and only if any team with any profile of utility functions can enforce

every (if and only if some) correlated strategy with support B using secret contracts.

Therefore, every correlated strategy with support equal to a subset of B is automat-

ically approximately enforceable, just as with Theorem 1. By Corollary 4, only the

support of a correlated strategy matters for its enforcement regardless of preferences.
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Having characterized exact enforcement, we proceed with approximate enforcement.

By Corollary 4, existence of some C ⊃ B such that DUDC
C holds clearly yields a

sufficient condition. However, this is unnecessary. To motivate, consider an example.

Example 8. Two players, two public signals, the following monitoring technology:

L M R

U 1, 0 1, 0 1, 0

D 1, 0 0, 1 0, 1

The action profile (U,L) is not enforceable for every utility profile, since DUD
{(U,L)}
{(U,L)}

clearly fails. Indeed, playing D when asked to play U is {(U,L)}-undetectable. It

is also easy to see that DUDC
C fails, too, for every C ⊃ {(U,L)}. However, (U,L) is

approximately enforceable for every utility profile, since either [(D,M)] or [(D,R)]

can be used to detect {(U,L)}-disobedient deviations. No contract can induce the row

player to choose M if R is strictly dominant, say, but this is unimportant as long as

the row player chooses either M or R when asked to do so. The key condition satisfied

here is that every {(U,L)}-disobedient deviation plan is detectable (DUD{(U,L)}).

In general, it should be clear that DUDB is necessary for approximate enforcement,

but perhaps it is not so clear that it is also sufficient, as the next result shows.

Theorem 6. Fix any subset B ⊂ A. A monitoring technology detects unilateral

B-disobedience if and only if any team with any profile of utility functions can ap-

proximately enforce every correlated strategy with support in B using secret contracts.

Clearly, Theorem 1 is a special case of Theorem 6 (as well as Corollary 4) when

B = A. Example 8 illustrates the insight behind Theorem 6 and gives intuition for

its proof. Suppose that, to detect deviations from ai ∈ Bi, some aj /∈ Bj is played

infrequently by j 6= i. What if aj itself has a profitable, undetectable deviation

αj(aj) ∈ ∆(Aj)? After all, DUDB says nothing about detection outside B. If such

αj(aj) exists, playing it instead of aj still detects deviations from ai by virtue of being

undetectable. Similarly, undetectable deviations from αj(aj) detect deviations from

ai, and so on. Proceeding iteratively, since the game is finite there must be detecting

behavior without a profitable, undetectable deviation.

We end this subsection by remarking that Corollary 4 and Theorem 6 generalize

easily with appropriate versions of IOP after detection is replaced with attribution.
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4.2 Fixed Utility Functions

Throughout this section, let us fix a profile v : I × A → R of utility functions. A

natural weakening of the previous results might be to allow for undetectable deviation

plans as long as they are unprofitable. Exact enforcement amounts to the following.

Corollary 5. A correlated strategy σ is enforceable with secret contracts if and only

if every supp σ-undetectable deviation plan αi of any player i is σ-unprofitable, i.e.,

∆vi(σ, αi) :=
∑

(a,bi,ρi)

σ(a)αi(bi, ρi|ai)(vi(a−i, bi)− vi(a)) ≤ 0.

The proof of this claim is comparable to previous ones, therefore omitted. Given an

enforceable correlated strategy σ, we now ask how large transfers must be to enforce

it. To this end, let us introduce some notation. Let Di = ∆(Ai ×Ri)
Ai be the space

of deviation plans αi for a player i and D =
∏

i Di be the set of profiles of deviation

plans α = (α1, . . . , αn). For any deviation plan αi ∈ Di and any σ ∈ ∆(A), write

‖∆ Pr(σ, αi)‖ :=
∑
s∈S

∣∣∣ ∑
(a,bi,ρi)

σ(a)(αi(bi, ρi|ai) Pr(s|a−i, bi, ρi)− Pr(s|a))
∣∣∣.

This norm summarizes the difference in signal probabilities between abiding by σ

and deviating to αi. A correlated strategy σ is called enforceable within some vector

z ∈ RI
+ if there exists a scheme ξ : I × A× S → R to satisfy (∗) and

∀(i, a, s), −σ(a)zi ≤ ξi(a, s) ≤ σ(a)zi.

Next, we provide a lower bound on z so that σ is enforceable within z.

Theorem 7. (i) A correlated strategy σ is enforceable within z ∈ RI
+ if and only if

Vσ(z) := max
α∈D

∑
i∈I

∆vi(σ, αi)−
∑
(i,a)

ziσ(a) ‖∆ Pr(a, αi)‖ = 0.

(ii) If σ is enforceable then Vσ(z) = 0 for some z ∈ RI
+. If not then supz Vσ(z) > 0.

(iii) A correlated strategy σ is enforceable if and only if zi < +∞ for every i, where

zi := sup
αi∈Fi

max{∆vi(σ, αi), 0}∑
a σ(a) ‖∆ Pr(a, αi)‖

if Fi := {αi :
∑

a σ(a) ‖∆ Pr(a, αi)‖ > 0} 6= ∅

and, whenever Fi = ∅, zi := +∞ exactly when maxαi ∆vi(σ, αi) > 0.28

(iv) If zi < +∞ for every i then Vσ(z) = 0 if and only if zi ≥ zi for all i.

28Intuitively, Fi is the set of all supp σ-detectable deviation plans available to player i.
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Theorem 7 quantifies the wedge that transfers require to enforce a given correlated

strategy with punishments and rewards. It implies that supp σ-detectability, hence

also enforceability by Corollary 5, is captured by
∑

a σ(a) ‖∆ Pr(a, αi)‖ > 0. By

Corollary 1, enforcement with signal-contingent transfers is captured by the stronger

detectability condition that 0 < ‖∆ Pr(σ, αi)‖ ≤
∑

a σ(a) ‖∆ Pr(a, αi)‖. Hence, a

version of Theorem 7 holds with signal-contingent transfers and ‖∆ Pr(σ, αi)‖ instead

of
∑

a σ(a) ‖∆ Pr(a, αi)‖. Finally, Theorem 7 (iii) clearly implies the following.

Corollary 6. Each supp σ-undetectable deviation plan is σ-unprofitable if and only

if there exists z ≥ 0 such that ∆vi(σ, αi) ≤ z
∑

a σ(a) ‖∆ Pr(a, αi)‖ for all i and αi,

that is, utility gains from any deviation are uniformly outweighed by monetary losses.

Next, we characterize approximate enforcement of a correlated strategy for a fixed

profile of utility functions. Corollary 5 might suggest that a correlated strategy σ

is enforceable if every σ-profitable deviation plan is detectable. However, the next

example shows that approximate enforcement imposes a stronger requirement.

Example 9. Consider a variation on Robinson and Friday (Section 2.1):

work shirk solitaire work shirk solitaire

monitor 0,−1 0, 0 0, 0 monitor 1, 0 0, 1 1, 0

rest 0,−1 0, 0 0,−1 rest 1/2, 1/2 1/2, 1/2 1/2, 1/2

Utility Payoffs Signal Probabilities

Assume for simplicity that the signal is publicly verifiable and Robinson’s utility

is constant. Clearly, the profile (rest,work) is not enforceable because a deviation

by Friday to shirk is [(rest,work)]-profitable and {(rest,work)}-undetectable. More-

over, (rest,work) is not approximately enforceable either. Indeed, for Friday to ever

work Robinson must monitor with positive probability. But then no contract can

discourage Friday from playing solitaire instead of working, since playing solitaire

when asked to work is undetectable and weakly dominant. On the other hand, every

[(rest,work)]-profitable deviation plan is detectable.

Removing solitaire from Example 9 restores approximate enforcement of (rest,work).

This occurs not because every (rest,work)-profitable deviation is detectable (it is true

with or without solitaire), but because it is uniformly detectable, i.e., the utility gains

from every (rest,work)-profitable deviation by Friday are uniformly outweighed by

monetary losses when Robinson monitors, in line with Corollary 6. The next result

characterizes approximate enforcement with “uniform, credible” detection.
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Theorem 8. A correlated strategy σ is approximately enforceable if and only if there

exists z ≥ 0 such that every σ-profitable deviation plan αi is detectable by some

correlated strategy µ for which both

(i) ∆vi(µ, αi) < z
∑

a µ(a) ‖∆ Pr(a, αi)‖ and

(ii) ∆vj(µ, αj) ≤ z
∑

a µ(a) ‖∆ Pr(a, αj)‖ for every other player j and deviation αj.

Intuitively, Theorem 8 says that to approximately enforce a correlated strategy, it

is necessary and sufficient that all its profitable deviations be discouraged both (i)

uniformly and (ii) credibly. As before, different behavior may be used to detect

different deviations by a player.29 Formally, uniform detection means that for the

same fixed z, every deviation plan αi must impact the magnitude of z-weighted

probabilistic changes enough to outweigh its deviation gains. Therefore, transfers

bounded within z can provide incentives against all σ-profitable deviations, perhaps

with different µ for different αi.

To explain the need for credibility, compare this result with Theorem 6, where “cred-

ible monitoring” is unnecessary. There, every disobedient deviation is potentially

profitable, so ought to be detectable. Here, with fixed utility functions, even if some

disobedient deviation plan αi is undetectable, it may nonetheless be discouraged with

behavior µ by others that makes the deviation unprofitable (as in a correlated equi-

librium without transfers). However, if this specific behavior is not credible then

there may exist a µ-profitable deviation plan αj by some other player such that αi

becomes profitable once again given µ and αj.

We end this subsection by noting without proof that all previous results hold also with

budget balance using the same arguments, replacing detection with attribution and∑
a σ(a) ‖∆ Pr(a, αi)‖ with minη

∑
(i,a) σ(a) ‖∆ Pr(a, αi)− η(a)‖, where η ∈ RA×S.

Now, instead of the change in transfers to a player after a deviation being bounded

by the magnitude of the change in the probability over signals, it is bounded by the

residuals of a least-absolute-deviations regression of the probability changes on A.

This amount is clearly smaller than the magnitude of the dependent variable, i.e.,

the probability change. Intuitively, budget balance implies that only the variation

across players of the deviations’ effect on signals can be used to provide incentives to

discourage them, rather than the deviations’ effects themselves.

29To see that credibility matters, simply add a row to the table in Example 8 above with utility
payoffs −1,−1 −1, 0 −1,−1 and signal probabilities 1, 0 0, 1 1, 0 . Now there is an
action for Robinson that is strictly dominated and indistinguishable from monitoring, yet uniformly
detects all of Friday’s (rest,work)-profitable deviations.
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4.3 Participation and Liability

Individual rationality is also amenable to our study of incentives, and captured by

the following family of linear inequalities:

∀i ∈ I,
∑
a∈A

σ(a)vi(a)−
∑
(a,s)

ξi(a, s) Pr(s|a) ≥ 0.

Without budget balance, since players can be paid lump sums to become indifferent

between belonging to the team and forsaking it, individual rationality constraints do

not bind. Hence, suppose the team’s budget must be balanced ex post.

Theorem 9. Consider a team subject to incentive compatibility and budget balance.

Participation is not a binding constraint if
∑

i vi(a) ≥ 0 for all a.

This theorem generalizes standard results (e.g., d’Aspremont and Gérard-Varet, 1998,

Lemma 1) to our setting. Next, we characterize enforcement subject to participation,

liability and budget constraints. The proof is similar to previous ones, hence omitted.

Theorem 10. The correlated strategy σ is enforceable with budget balance and indi-

vidual rationality within z if and only if for every α ∈ D , π ∈ Rn
+ and η ∈ RA×S,∑

i∈I

∆vi(σ, αi) ≤
∑
i∈I

πivi(σ) +
∑
(i,a)

ziσ(a) ‖∆ Pr(a, αi)− η(a)− πi Pr(a)‖ .

To interpret Theorem 10, consider a group of players within which deviations are

internally unattributable. This result says that the deviations gains for players in the

group must be compensated by the liability of players outside the group. Indeed, let

α ∈ D be such that ∆ Pr(a, αi) coincides for all a and i in some subset t ( I. Let

πi = π for i ∈ t and choose η so that ‖∆ Pr(a, αi)− η(a)− π Pr(a)‖ = 0 for all a and

i ∈ t. If zj = 0 for all j /∈ t then the above inequality fails if σ is not a correlated

equilibrium. Hence, zj must be positive for some j /∈ t, i.e., the deviation gains from

α are compensated by the liability of players outside t.

Next, we study one-sided limited liability given z ∈ RI
+, by considering constraints of

the form ξi(a, s) ≤ σ(a)zi. A team’s total liability is defined by ẑ =
∑

i zi. Without

participation constraints, Theorem 5 of Legros and Matsushima (1991) and Theorem

4 of Legros and Matthews (1993) easily generalize to this setting.

Theorem 11. In the absence of participation constraints, only total (one-sided) lia-

bility affects a team’s enforceable outcomes, not the distribution of liability.
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Including participation constraints leads to the following characterization.

Theorem 12. The correlated strategy σ is enforceable with budget balance, individual

rationality and one-sided liability limited by z if and only if∑
i∈I

∆vi(a, αi) ≤
∑
i∈I

πi(vi(σ)− zi) + η̂
∑
i∈I

zi

for every (α, π, η̂) such that α is a profile of deviation plans, π = (π1, . . . , πn) ≥ 0,

and η̂ :=
∑

s maxi{πi Pr(s|a)−∆ Pr(s|a, αi)}.

A similar intuition as in Theorem 10 regarding liability applies here, too. If a subset

t of individuals can deviate indistinguishably then others must accept liability for it.

Theorem 10 also generalizes Theorems 9 and 11, as the next result shows.

Corollary 7. Suppose that σ is enforceable with budget balance, individual rationality

and one-sided liability limited by z. (i) If vi(σ) ≥ zi then player i’s participation is not

a binding constraint. (ii) The distribution of liability does not matter within the subset

t of players whose participation constraint is not binding, i.e., σ is also enforceable

with budget balance, individual rationality and one-sided liability limited by any z′

with zj = z′j for j ∈ I \ t and
∑

i∈t zi =
∑

i∈t z
′
i.

4.4 Coalitional Deviations

A notable weakness of secret contracts is not being collusion-proof. To illustrate, in

our leading example (Section 2.1) Robinson and Friday could communicate “extra-

contractually” to break down the incentives that secrets tried to provide.30 On the

other hand, collusion is a problem for contracts in general. For instance, the scheme

proposed by Cremer and McLean (1988) is not collusion-proof for similar reasons.

To study collusion-proof contracts, assumptions must be made regarding coalitions’

contractual ability. We will assume that every coalition t maximizes some given

coalitional utility function vt : A→ R, quasilinear in monetary transfers.31

30The following incentive scheme deters such communication between Robinson and Friday (Friday
prefers misreporting his signal to Robinson) while approximately enforcing (rest,work).

(monitor,work) (monitor,shirk) (rest,work) (rest,shirk)
g 1/µ, 1/σ 0, 1/σ 1/2µ, 0 0, 1/2(1− σ)
b 0, 0 1/(1− µ), 0 0, 1/(1− σ) 1/2(1− µ), 1/2(1− σ)

31This assumption is standard. See for instance, Che and Kim (2006) and references therein. The
purpose of this section is not to derive a meaningful utility for coalitions, but to use one.

29



Definition 8. A correlated strategy σ is strongly enforceable if there is an incentive

scheme ζ : I × A× S → R such that

∀t ⊂ I, at ∈ At, (bt, ρt) ∈ At ×Rt,∑
a−t

σ(a)(vt(a−t, bt)− vt(a)) ≤
∑

(a−t,s)

σ(a)
∑
i∈t

ζi(a, s)(Pr(s|a−t, bt, ρt)− Pr(s|a)).

Strong enforcement requires that no subset of players can profitably deviate after

coordinating their information even if they can commit to sharing their information

non-strategically. This makes strong enforceability especially “strong.”

We now derive the detection requirement implied by strong enforceability. Given a

nonempty subset of players t ⊂ I, a multilateral deviation plan for t is any measure-

valued map αt : At → ∆(At × Rt), where At × Rt =
∏

i∈tAi × Ri. Intuitively, a

multilateral deviation plan αt has the players in t coordinate their deviations con-

tingent on all recommendations to members of t. A multilateral deviation plan αt is

called disobedient if αt(bt, ρt|at) > 0 for some (at, bt, ρt) such that at 6= bt. It is called

detectable if Pr(σ) 6= Pr(σ, αt) for some σ ∈ ∆(A).

A coalitional deviation plan by player i is a profile of multilateral deviation plans

αi = {αt : t 3 i}, one for each coalition to which i may belong. It is called disobedient

if αt is disobedient for some coalition t 3 i. It is called detectable if Pr(σ) 6= Pr(σ, αi)

for some σ ∈ ∆(A), where Pr(σ, αi) :=
∑

t3i
∑

(a,bt,ρt)
σ(a) Pr(a−t, bt, ρt)αt(bt, ρt|at).

Intuitively, a coalitional deviation plan for a player i is a profile of multilateral devi-

ation plans involving i. It is undetectable if regardless of the correlated strategy σ,

even if some multilateral deviation plan αt is detectable, there is another multilateral

deviation plan αt′ with i ∈ t ∩ t′ that “undoes” the change in probability from αt.

Therefore, even if every disobedient multilateral deviation plan is detectable, it is

possible that some disobedient coalitional deviation plan remains undetectable.

Definition 9 (DCD). A monitoring technology Pr detects coalitional disobedience

(DCD) if every disobedient coalitional deviation plan is detectable.

The next result characterizes strong enforcement as detection of coalitional deviations.

It is argued similarly to previous ones, so its proof is omitted.

Theorem 13. A monitoring technology detects coalitional disobedience if and only if

any team with any profile of coalitional utility functions can approximately strongly

enforce every correlated strategy with secret contracts.
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5 Conclusion

Secret contracts emphasize that—as part of a team’s economic organization—it may

be beneficial for private information to be allocated differently across individuals in

order for the right incentives to be provided. This remains true even if the team starts

without informational asymmetry. Secret contracts effectively subject contractual

deviations to “tailored monitoring,” making monitors de facto auditors. Heuristically,

secret contracts allow for monitoring to follow deviations.

We have provided above arguably weak notions of detection to characterize contrac-

tual enforcement. With budget-balanced contracts, we have shown that the appro-

priate notion of detection is attribution, which may be crudely interpreted as saying

that “guilty until proven innocent” is—at least informationally—less costly than “in-

nocent until proven guilty” as a principle for incentive provision.

A Proofs

Corollary 1. Fix any σ ∈ ∆(A). By the Alternative Theorem, a monitoring technology Pr
satisfies DUD-σ if and only if there is a signal-contingent scheme ζ : I × S → R such that

∀i ∈ I, ai ∈ Bi, (bi, ρi) ∈ Ai ×Ri, 0 ≤
∑

(a−i,s)

σ(a)ζi(s)(Pr(s|a−i, bi, ρi)− Pr(s|a)),

with a strict inequality if ai 6= bi, where Bi = {ai ∈ Ai : ∃a−i s.t. σ(a) > 0}. Call this dual
condition PSI-σ. By scaling ζ appropriately, PSI-σ clearly implies that any deviation gains
can be outweighed by contractual losses. Conversely, if DUD-σ fails then Pr(σ) = Pr(σ, αi)
for some deviation plan αi with αi(bi, ρi|ai) > 0 for some ai ∈ Bi, and bi 6= ai. For
all a−i, let 0 = vi(a) < vi(a−i, bi) = 1. Now σ cannot be enforced by any ζ : I × S → R,
since

∑
(bi,ρi)

αi(bi, ρi|ai)
∑

a−i
σ(a)(vi(a−i, bi)−vi(a)) >

∑
s ζi(s)(Pr(s|σ, αi)−Pr(s|σ)) = 0,

being a convex combination of incentive constraints, must violate at least one. �

Theorem 2. By Lemma B.1, DUD is implied by conic independence

∀(i, ai, si), Pr(ai, si) /∈ cone{Pr(bi, ti) : (bi, ti) 6= (ai, si)}.

This is in turn implied by linear independence, or full row rank, for all i, of the matrix with
|Ai| |Si| rows, |A−i| |S−i| columns and entries Pr(ai, si)(a−i, s−i) = Pr(s|a). Since the set of
full rank matrices is generic, this full row rank is generic if |Ai| |Si| ≤ |A−i| |S−i| if |Si| > 1
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and |S−i| > 1. If |Si| = 1, adding with respect to s−i for each a−i yields column vectors
equal to (1, . . . , 1) ∈ RAi . This leaves |A−i| − 1 linearly dependent columns. Eliminating
them, genericity requires that for every i,

|Ai| = |Ai| |Si| ≤ |A−i| |S−i| − (|A−i| − 1) = |A−i| × (|S−i| − 1) + 1.

Similarly, there are |Ai| − 1 redundant row vectors when |S−i| = 1. Since the intersection
of finitely many generic sets is generic, DUD is generic if all these conditions hold. �

Corollary 3. Consider the following primal problem: Find a feasible ξ to solve

∀(i, ai, bi), 0 ≤
∑

(a−i,s)

ξi(a, s)(Pr(s|a−i, bi)− Pr(s|a)), and ∀(a, s),
∑
i∈I

ξi(a, s) = K(a, s).

The dual of this problem is given by

inf
λ≥0,η

∑
(a,s)

η(a, s)K(a, s) s.t. ∀(i, a, s),
∑
bi∈Ai

λi(ai, bi)(Pr(s|a−i, bi)− Pr(s|a)) = η(a, s).

If CEB is satisfied, then the value of the primal equals 0 for any K : A × S → R. By the
Strong Duality Theorem, the value of the dual is also 0 for any K : A×S → R. Therefore,
any η satisfying the constraint for some λ must be 0 for all (a, s), so NOC is satisfied.

For necessity, if NOC is satisfied then the value of the dual is always 0 for any K : A×S → R.
By strong duality, the value of the primal is also 0 for any K. Therefore, given K, there is
a feasible primal solution ξi(a, s) that satisfies all primal constraints, and CEB holds. �

Theorem 5. Given the ordering of players in the main text, if k > 0 permute player k with
player 1 and consider the following block matrix (blank spaces denote blocks of zeros).

Q =


Q1 Q1 Q1 Q1 Q1

−Q2

−Q3

· · · −Qn−1

−Qn


where Qi is the matrix with (|Ai| |Si|)2 rows and |A| |S| columns defined pointwise by

Qi(ai, si, bi, ti)(â, ŝ) =

{
Pr(ŝ−i, ti|â−i, bi) if (ai, si) = (âi, ŝi)

0 otherwise.

By Lemma B.2, IOP is satisfied if

λQ = 0 and λ ≥ 0 ⇒ λi(ai, si, bi, ti) = 0 whenever ai 6= bi,
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which in turn is implied by Q having full row rank.

Note that one row of Q is redundant because for every player i > 1,

∀(â, ŝ),
∑

(a1,s1)

Q1(a1, s1, a1, s1)(â, ŝ) =
∑

(ai,si)

Qi(ai, si, ai, si)(â, ŝ).

There may also be redundant column vectors. If k > 1, fix any player i ≤ k with i > 1 and
any (a1, ai) ∈ A1 ×Ai. Then, for any â such that â1 = a1 and âi = ai,

∀(b1, bi),
∑

bs Q1(a1, b1)(â, ŝ) = 1 and
∑

bs Qi(ai, bi)(â, ŝ) = 1.

Therefore there are |A−1,i| − 1 redundant columns for each (a1, ai). If |S−n| = 1 a similar
argument shows that there are (|An| |Sn|)2 |An| − 1 additional redundant rows.

Therefore, Q is generically full row rank if (1) the conditions for Theorem 2 are satisfied so
that generically every Qi has full row rank and (2) the number of (non-redundant) rows is
less than the number of (non-redundant) columns, i.e.,

n∑
i=1

(|Ai| |Si|)2 − 1− χn(|An|2 |Sn| − 1) ≤ (n− 1) |A| |S| − |A1|
k−1∑
i=2

|Ai| (|A−1,i| − 1)

≤ (n− 1) |A| |S| − (k − 1) |A|+ |A1|
k−1∑
i=2

|Ai| ,

where χn = 1 if |S−n| = 1 and 0 otherwise. This inequality completes the proof. �

Corollary 4. By the Alternative Theorem, Pr satisfies DUDB
B if and only if it satisfies

PSIBB, i.e., there exists a scheme ξ : I ×A× S → R such that ξi(a, s) = 0 if a /∈ B and

∀i ∈ I, ai ∈ Bi, bi ∈ Ai, ρi ∈ Ri, 0 ≤
∑

(a−i,s)

ξi(a, s)(Pr(s|a−i, bi, ρi)− Pr(s|a)),

with a strict inequality whenever ai 6= bi. Replacing ξi(a, s) = σ(a)ζi(a, s) for some (or
equivalently any) correlated strategy σ with supp σ = B, this is equivalent to there being,
for every profile of utility functions, an appropriate rescaling of ζ that satisfies (∗). �

Theorem 6. For necessity, if DUDB fails then there is a B-disobedient, undetectable de-
viation plan αi. Therefore, αi(bi, ρi|ai) > 0 for some ai ∈ Bi, bi 6= ai and ρi ∈ Ri. Letting
vi(a−i, bi) < vi(a) for every a−i, clearly no correlated strategy with positive probability on
ai is approximately enforceable. Sufficiency follows by Lemmata B.3, B.4 and B.10. �
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Theorem 7. Consider the family of linear programs below indexed by z ∈ [0,∞)I .

max
ε≥0,ξ

−
∑
(i,ai)

εi(ai) s.t. ∀(i, a, s), −σ(a)zi ≤ ξi(a, s) ≤ σ(a)zi,

∀(i, ai, bi, ρi),
∑
a−i

σ(a)∆vi(a, bi)−
∑
a−i

ξi(a) ·∆ Pr(a, bi, ρi) ≤ εi(ai),

where ∆vi(a, bi) := vi(a−i, bi) − vi(a) and ∆ Pr(a, bi, ρi) := Pr(a−i, bi, ρi) − Pr(a). Given
z ≥ 0, the primal problem above looks for a scheme ξ adapted to σ (i.e., such that ξi(a, s) = 0
whenever σ(a) = 0) that minimizes the burden εi(ai) of relaxing incentive constraints. By
construction, σ is enforceable with transfers bounded by z if and only if there is a feasible
ξ with εi(ai) = 0 for all (i, ai), i.e., the value of the problem is zero. Since σ is assumed
enforceable, such z exists. The dual of this problem is:

min
α,β≥0

∑
(i,a)

σ(a)[zi
∑
s∈S

σ(a)(β+
i (a, s) + β−i (a, s))−∆vi(a, αi)] s.t.

∀(i, ai),
∑

(bi,ρi)

αi(bi, ρi|ai) ≤ 1,

∀i ∈ I, a ∈ supp σ, s ∈ S, ∆ Pr(s|a, αi) = β+
i (a, s)− β−i (a, s).

Since β±i (a, s) ≥ 0, it follows easily that β+
i (a, s) = max{∆ Pr(s|a, αi), 0} and β−i (a, s) =

min{∆ Pr(s|a, αi), 0}. Hence, β+
i (a, s) + β+

i (a, s) = |∆ Pr(s|a, αi)|. Since ‖∆ Pr(a, αi)‖ =∑
s |∆ Pr(s|a, αi)|, the dual is now equivalent to

Vσ(z) = max
α≥0

∑
(i,a)

σ(a)(∆vi(a, αi)− z ‖∆ Pr(a, αi)‖) s.t. ∀(i, ai),
∑

(bi,ρi)

αi(bi, ρi|ai) ≤ 1.

Adding mass to αi(ai, τi|ai) if necessary, without loss αi is a deviation plan, proving (i).

To prove (ii), the first sentence is obvious. The second follows by Corollary 5: if σ is not
enforceable then a σ-profitable, supp σ-undetectable plan αi exists, so Vσ(z) > 0 for all z.

For (iii), if σ is not enforceable then there is a σ-profitable, supp σ-undetectable deviation
plan α∗i . Approaching α∗i from Fi (e.g., with mixtures of α∗i and a fixed plan in Fi), the
denominator defining zi tends to zero whilst the numerator tends to a positive amount, so
zi is unbounded. Conversely, suppose σ is enforceable. If the sup defining zi is attained, we
are done. If not, it is approximated by a sequence of supp σ-detectable deviation plans that
converge to a supp σ-undetectable one. Since σ is enforceable, the limit is unprofitable. Let

F σi (δ) := min
λi≥0

∑
a∈A

σ(a) ‖∆ Pr(a, λi)‖ s.t. ∆vi(σ, λi) ≥ δ.

Since every σ-profitable deviation plan is detectable by Corollary 5, it follows that F σi (δ) > 0
for all δ > 0, and zi = (limδ↓0 F

σ
i (δ)/δ)−1. Hence, it suffices to show limδ↓0 F

σ
i (δ)/δ > 0.
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To this end, by adding variables like β above, the dual problem for F σi is equivalent to:

F σi (δ) = max
ε≥0,xi

εδ s.t. ∀(a, s), −1 ≤ xi(a, s) ≤ 1,

∀(ai, bi, ρi),
∑
a−i

σ(a)(ε∆vi(a, bi)− xi(a) ·∆ Pr(a, bi, ρi)) ≤ 0.

Since σ is enforceable, there is a feasible solution to this dual (ε, xi) with ε > 0. Hence,
F σi (δ) ≥ εδ for all δ > 0, therefore limδ↓0 F

σ
i (δ)/δ > 0, as claimed.

To prove (iv), suppose that zi < ∞ for all i. We claim Vσ(z) = 0. Indeed, given α∗i ∈ Fi

for all i, substituting the definition of zi into the objective of the minimization in (i),∑
i∈I

∆vi(σ, α∗i )−
∑
(i,a)

σ(a) sup
αi∈Fi

{ max{∆vi(σ, αi), 0}∑
a σ(a) ‖∆ Pr(a, αi)‖

} ‖∆ Pr(a, α∗i )‖ ≤ 0.

If α∗i /∈ Fi then, since σ is enforceable, every supp σ-undetectable deviation plan is unprof-
itable, so again the objective is non-positive, hence Vσ(z) = 0. Clearly, Vσ decreases with
z, so it remains to show that Vσ(z) > 0 if zi < zi for some i. But by definition of z, there
is a deviation plan α∗i with ∆vi(σ, α∗i )/

∑
a σ(a) ‖∆ Pr(a, α∗i )‖ > zi, so Vσ(z) > 0. �

Theorem 8. For sufficiency, suppose that σ is approximately enforceable, so there is a
sequence {σm} such that σm is enforceable for every m and σm → σ. Without loss, assume
that supp σm ⊃ supp σ for all m. If σm = σ for all large m then σ is enforceable and
the condition of Theorem 8 is fulfilled with µ = σ, so suppose not. If there exists m and
m′ such that σm = pσm

′
+ (1 − p)σ then incentive compatibility with respect to m yields

that
∑

a−i
σm(a)∆vi(a, αi) ≤

∑
a−i

σm(a)ζmi (a) · ∆ Pr(a, αi) ≤
∑

a−i
σm(a)z ‖∆ Pr(a, αi)‖

for every αi, where z = max(i,a,s) |ζmi (a, s)|. For large m′, σm
′

is sufficiently close to σ that
if αi is σ-profitable then

∑
a−i

σm
′
(a)∆vi(a, αi) > 0, so αi is detectable.

If there does not exist m and m1 such that σm = pσm1 +(1−p)σ then there exists σm2 such
that its distance from σ is less than the positive minimum distance between σ and the affine
hull of {σm, σm1}. Therefore, the lines generated by σm and σm1 and σm1 and σm2 are not
collinear. Proceeding inductively, pick C = {σm1 , . . . , σm|A|} such that its affine space is
full-dimensional in ∆(A). Since we are assuming that σ is not enforceable, it lies outside
conv C. Let σ̂ =

∑
k σ

mk/ |A| and Bε(σ̂) be the open ε-ball around σ̂ for some ε > 0. By
construction, Bε(σ̂) ⊂ conv C for ε > 0 sufficiently small, so there exists σ̂′ ∈ Bε(σ̂) such
that pσ̂ + (1 − p)σ = σ̂′ for some p such that 0 < p < 1. Now we can apply the argument
from the previous paragraph, so the condition of Theorem 8 holds.

For necessity, if σ is not approximately enforceable then 1 ≥ Vσ(z) ≥ C > 0 for every z,
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where Vσ is defined in Lemma B.3. Let (λz, µz) solve Vσ(z) for every z. Given µ ∈ ∆(A),

C ≤ Vσ(z) ≤ 1 +
∑
(i,a)

∆vi(µ, λzi )− z
∑
(i,a)

µ(a) ‖∆ Pr(a, λzi )‖ .

If the condition of Theorem 8 holds then
∑

(i,a) ∆vi(µ, λzi ) < z
∑

(i,a) µ(a) ‖∆ Pr(a, λzi )‖ and∑
(i,a) µ(a) ‖∆ Pr(a, λzi )‖ > 0, since there must exist i such that λσi is σ-profitable. Hence,

C ≤ 1 + (z − z)
∑

(i,a) µ(a) ‖∆ Pr(a, λzi )‖, i.e., z − z ≤ (1 − c)/
∑

(i,a) µ(a) ‖∆ Pr(a, λzi )‖.
This inequality must hold for every z, therefore

∑
(i,a) µ(a) ‖∆ Pr(a, λzi )‖ → 0 as z → ∞.

But this contradicts Lemma B.11, since
∑

i ∆vi(σ, λi) ≥ C, completing the proof. �

Theorem 9. Enforcing an arbitrary correlated strategy σ subject to budget balance and
participation reduces to finding transfers ζ to solve the following family of linear inequalities:

∀(i, ai, bi, ρi), ∆vi(σ, bi) ≤
∑
a−i

σ(a)ζi(a) ·∆ Pr(a, bi, ρi),

∀(a, s),
n∑
i=1

ζi(a, s) = 0,

∀i ∈ I,
∑
a∈A

σ(a)vi(a)−
∑
(a,s)

σ(a)ζi(a, s) Pr(s|a) ≥ 0.

The dual of this metering problem subject to participation is:

max
λ,π≥0,η

∑
i∈I

∆vi(σ, λi)− πivi(σ) s.t. ∀(i, a, s), σ(a)∆ Pr(s|a, λi) = η(a, s) + πiσPr(s|a)

where πi is a multiplier for player i’s participation constraint and vi(σ) =
∑

a σ(a)vi(a).
Adding the dual constraints with respect to s ∈ S, it follows that πi = π does not depend
on i. Redefining η(a, s) as η(a, s)+πPr(s|a), the set of feasible λ ≥ 0 is the same as without
participation constraints. Since

∑
i vi(a) ≥ 0 for all a, the dual is maximized by π = 0. �

Theorem 11. We just prove the result with budget balance (without budget balance it fol-
lows similarly). Let z = (z1, . . . , zn) be a vector of liability limits for each player. Enforcing
σ subject to budget balance and one-sided limited liability reduces to finding ζ such that

∀(i, ai, bi, ρi), ∆vi(σ, bi) ≤
∑
a−i

σ(a)ζi(a) ·∆ Pr(a, bi, ρi),

∀(a, s),
n∑
i=1

ζi(a, s) = 0,

∀(i, a, s), ζi(a, s) ≤ zi.

The dual of this metering problem subject to one-sided limited liability is given by:

max
λ,β≥0,η

∑
i∈I

∆vi(σ, λi)−
∑

(i,a,s)

βi(a, s)zi s.t. ∀(i, a, s), σ(a)∆ Pr(s|a, λi) = η(a, s) + βi(a, s),
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where βi(a, s) is a multiplier on the liability constraint for player i at (a, s). Adding the
dual equations with respect to s implies −

∑
s βi(a, s) =

∑
s η(a, s) for all (i, a). Therefore,

−
∑
(i,s)

βi(a, s)zi =
∑
(i,s)

η(a, s)zi = ẑ
∑
s∈S

η(a, s),

where ẑ =
∑

i zi, so we may eliminate βi(a, s) from the dual and get the equivalent problem:

max
λ≥0,η

∑
i∈I

∆vi(σ, λi) + ẑ
∑
(a,s)

η(a, s) s.t. ∀(i, a, s), σ(a)∆ Pr(s|a, λi) ≥ η(a, s).

Any two liability profiles z and z′ with ẑ = ẑ′ lead to this dual with the same value. �

Theorem 12. Enforcing a correlated strategy σ subject to budget balance, participation
and one-sided limited liability reduces to finding a solution ζ to the following linear system:

∀(i, ai, bi, ρi), ∆vi(σ, bi) ≤
∑
a−i

σ(a)ζi(a) ·∆ Pr(a, bi, ρi),

∀(a, s),
∑
i∈I

ζi(a, s) = 0,

∀i ∈ I,
∑
a∈A

σ(a)(vi(a)− ζi(a) · Pr(a)) ≥ 0,

∀(i, a, s), ζi(a, s) ≤ zi.

The first family of constraints imposes incentive compatibility, the second budget balance,
the third individual rationality, and the last corresponds to one-sided limited liability. The
dual of this metering problem is given by the following program, where λ, η, π and β

represent the respective multipliers on each of the primal constraints.

max
λ,π,β≥0,η

∑
i∈I

∆vi(σ, λi)−
∑
i∈I

πivi(σ)−
∑

(i,a,s)

βi(a, s)zi s.t.

∀(i, a, s), σ(a)∆ Pr(s|a, λi) = η(a, s) + πiσ(a) Pr(s|a) + βi(a, s).

Adding the dual constraints with respect to s ∈ S, it follows that

−
∑
(a,s)

βi(a, s) =
∑
(a,s)

η(a, s) + πi = η̂ + πi

where η̂ :=
∑

(a,s) η(a, s). After substituting and eliminating β, the dual is equivalent to

V := max
λ,π≥0,η

∑
i∈I

∆vi(σ, λi)−
∑
i∈I

πi(vi(σ)− zi) + η̂ẑ s.t.

∀(i, a, s), σ(a)∆ Pr(s|a, λi) ≥ η(a, s) + πiσ(a) Pr(s|a).
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It is clear that Theorems 9 and 11 follow almost immediately from this linear program.
Now, σ is enforceable if and only if V = 0, i.e., if and only if for any dual-feasible (λ, π, η)
such that

∑
i ∆vi(σ, λi) > 0, we have that∑

i∈I
∆vi(σ, λi) ≤

∑
i∈I

πi(vi(σ)− zi) + η̂ẑ.

Finally, since the dual objective is decreasing in η, an optimal solution for η must solve

η̂ = max
s∈S
{πi Pr(s|a)− Pr(s|a, bi, ρi)}.

This completes the proof. �

Corollary 7. Given the dual problem from the proof of Theorem 12, the first statement
follows because if vi(σ) ≥ zi then the objective function is decreasing in πi and reducing πi
relaxes the dual constraints. The second statement follows by rewriting the objective as∑

i∈I
∆vi(σ, λi)−

∑
i∈I\t

πi(vi(σ)− zi) + η̂
∑
i∈I

zi,

where t is the set of players whose participation constraint won’t bind (π∗i = 0 for i ∈ t). �

B Lemmata

Lemma B.1. A monitoring technology satisfies DUD if

∀(i, ai, si), Pr(ai, si) /∈ cone{Pr(bi, ti) : (bi, ti) 6= (ai, si)},

where cone stands for the set of positive linear combinations of {Pr(bi, ti) : (bi, ti) 6= (ai, si)}.

Proof. If DUD fails then there exists αi such that αi(bi, ρi|ai) > 0 for some ai 6= bi and

∀(a, s), Pr(s|a) =
∑

(bi,ρi)

∑
ti∈ρ−1

i (si)

αi(bi, ρi|ai) Pr(s−i, ti|a−i, bi)

=
∑

(bi,ti)

∑
{ρi:ρi(ti)=si}

αi(bi, ρi|ai) Pr(s−i, ti|a−i, bi).

Write λi(ai, si, bi, ti) :=
∑
{ρi:ρi(ti)=si} αi(bi, ρi|ai). By construction, λi(ai, si, bi, ti) ≥ 0 is

strictly positive for some ai 6= bi and satisfies

∀(i, a, s), Pr(s|a) =
∑

(bi,ti)

λi(ai, si, bi, ti) Pr(s−i, ti|a−i, bi).
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Without loss, λi(ai, si, ai, si) = 0 for some (ai, si). Indeed, if λi(ai, si, ai, si) = 1 for all
(ai, si), then the equation above is violated because αi is disobedient by hypothesis and
probabilities are non-negative. If λi(ai, si, ai, si) 6= 1 then subtract λi(ai, si, ai, si) Pr(s|a)
from both sides of the equation and divide by 1 − λi(ai, si, ai, si). Therefore, Pr(ai, si) ∈
cone{Pr(bi, ti) : (bi, ti) 6= (ai, si)} for some (ai, si). �

Lemma B.2. A monitoring technology satisfies IOP if

∀(i, j, a, s),
∑

(bi,ti)

λi(ai, si, bi, ti) Pr(s−i, ti|a−i, bi) =
∑

(bj ,tj)

λj(aj , sj , bj , tj) Pr(s−j , tj |a−j , bj)

and λ ≥ 0 implies that for every player i, λi(ai, si, bi, ti) = 0 whenever ai 6= bi.

Proof. If IOP fails then there exists λ ≥ 0 and η such that λi(ai, bi, ρi) > 0 for some
ai 6= bi, i and

∀(i, a, s),
∑

(bi,ρi)

λi(ai, bi, ρi)(Pr(s|a−i, bi, ρi)− Pr(s|a)) = η(a, s),

By adjusting λi(ai, ai, τi) if necessary, assume without loss that
∑

(bi,ρi)
λi(ai, bi, ρi) = Λ for

some constant Λ, for every i and ai. Therefore,

∀(i, a, s),
∑

(bi,ρi)

λi(ai, bi, ρi) Pr(s|a−i, bi, ρi) = Λ Pr(s|a)− η(a, s).

The result follows now by the same argument as for Lemma B.1 above. �

Lemma B.3. Consider the following linear program.

Vσ(z) := min
µ≥0,p,ξ

p s.t.
∑
a∈A

µ(a) = p,

∀(i, a, s), −(µ(a) + (1− p)σ(a))z ≤ ξi(a, s) ≤ (µ(a) + (1− p)σ(a))z,

∀(i, ai, bi, ρi),
∑
a−i

(µ(a) + (1− p)σ(a))∆vi(a, bi) ≤
∑
a−i

ξi(a) ·∆ Pr(a, bi, ρi).

The correlated strategy σ is approximately enforceable if and only if Vσ(z)→ 0 as z →∞.
The dual of the above linear program is given by the following problem:

Vσ(z) = max
λ≥0,κ

∑
i∈I

∆vi(σ, λi)− z
∑
(i,a)

σ(a) ‖∆ Pr(a, λi)‖ s.t.

∀a ∈ A, κ ≤
∑
i∈I

∆vi(a, λi)− z
∑
i∈I
‖∆ Pr(a, λi)‖ ,∑

i∈I
∆vi(σ, λi)− z

∑
(i,a)

σ(a) ‖∆ Pr(a, λi)‖ = 1 + κ.
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Proof. The first family of primal constraints require ξ to be adapted to µ+ (1− p)σ, so for
any z, (µ, p, ξ) solves the primal if and only if µ + (1 − p)σ is exactly enforceable with ξ.
(Since correlated equilibrium exists, the primal constraint set is clearly nonempty, and for
finite z it is also clearly bounded). The first statement now follows. The second statement
follows by a lengthy but standard manipulation of the primal to obtain the above dual. �

Lemma B.4. Consider the following family of linear programs indexed by ε > 0 and z ≥ 0.

F εσ(z) := max
λ≥0

min
µ∈∆(A)

∑
i∈I

∆vi(µ, λi)− z
∑
(i,a)

µ(a) ‖∆ Pr(a, λi)‖ s.t.

∑
i∈I

∆vi(σ, λi)− z
∑
(i,a)

σ(a) ‖∆ Pr(a, λi)‖ ≥ ε.

F εσ(z)→ −∞ as z →∞ for some ε > 0 if and only if σ is approximately enforceable.

Proof. The dual of the problem defining F εσ(z) is

F εσ(z) = min
δ,µ≥0,x

−δε s.t.
∑
a∈A

µ(a) = 1,

∀(i, a, s), −(µ(a) + δσ(a))z ≤ xi(a, s) ≤ (µ(a) + δσ(a))z,

∀(i, ai, bi, ρi),
∑
a−i

(µ(a) + δσ(a))∆vi(a, bi) ≤
∑
a−i

xi(a) ·∆ Pr(a, bi, ρi).

Since clearly ε > 0 does not affect the dual feasible set, if F εσ(z)→ −∞ for some ε > 0 then
there exists z ≥ 0 such that δ > 0 is feasible, and δ →∞ as z →∞. Therefore, F εσ(z)→ −∞
for every ε > 0. If Vσ(z) = 0 for some z we are done by monotonicity of Vσ. Otherwise,
suppose that Vσ(z) > 0 for all z > 0. Let (λ, κ) be an optimal dual solution for Vσ(z)
in Lemma B.3. By optimality, κ = minµ∈∆(A)

∑
i ∆vi(µ, λi) − z

∑
(i,a) µ(a) ‖∆ Pr(a, λi)‖.

Therefore, by the second dual constraint in Vσ(z) of Lemma B.3,

Vσ(z) = 1 + κ = 1 + F Vσ(z)
σ (z) = 1− δVσ(z),

where δ is an optimal solution to the dual with ε = Vσ(z). Rearranging, Vσ(z) = 1/(1 + δ).
Finally, F εσ(z)→ −∞ as z →∞ if and only if δ →∞, if and only if Vσ(z)→ 0. �

Lemma B.5. Fix any ε > 0. If Pr satisfies DUDB, where B = supp σ, then for every
C ≤ 0 there exists z ≥ 0 such that Gσ(z) ≤ C, where ∆vi(ai)∗ := max(a−i,bi){∆vi(a, bi)},

∆vi(ai, λi)∗ := ∆vi(ai)∗
∑

(ai,bi 6=ai,ρi)

λi(ai, bi, ρi), and

Gσ(z) := max
λ≥0

∑
(i,a)

‖∆vi(ai, λi)‖ − z
∑
(i,a)

‖∆ Pr(a, λi)‖ s.t.

∀i ∈ I, ai /∈ Bi, λi(ai) = 0, and
∑
i∈I

∆vi(σ, λi)− z
∑
(i,a)

σ(a) ‖∆ Pr(a, λi)‖ ≥ ε.
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Proof. The dual of this problem is given by

Gσ(z) = min
δ≥0,x

−δε s.t.

∀(i, a, s), −(1 + δσ(a))z ≤ xi(a, s) ≤ (1 + δσ(a))z,

∀(i, ai ∈ Bi, bi, ρi),
∑
a−i

δσ(a)∆vi(a, bi) + 1{ai 6=bi}∆vi(ai)
∗ ≤

∑
a−i

xi(a) ·∆ Pr(a, bi, ρi),

where 1{bi 6=ai} = 1 if bi 6= ai and 0 otherwise. This problem looks almost exactly like the
dual for F εσ(z) except that the incentive constraints are only indexed by ai ∈ Bi. Now,
DUDB is equivalent to PSIB, i.e., there is an incentive scheme x : I ×A×S → R such that

∀(i, ai, bi, ρi), 0 ≤
∑
a−i

xi(a) ·∆ Pr(a, bi, ρi)

with a strict inequality whenever ai ∈ Bi and ai 6= bi. Hence, by scaling x appropriately,
there is a feasible dual solution with δ > 0, so Gσ(z) < 0. Moreover, for any δ > 0, clearly
an x exists with

∑
a−i

δσ(a)∆vi(a, bi) +1{bi 6=ai}∆vi(ai)
∗ ≤

∑
a−i

xi(a) ·∆ Pr(a, bi, ρi) on all
(i, ai ∈ Bi, bi, ρi) by PSIB, so there exists z to make such δ feasible. In particular, δ ≥ C/ε
is feasible for some z, as required. �

Lemma B.6. If Pr satisfies DUDB, then there exists a finite z ≥ 0 such that

∀i ∈ I, ai ∈ Bi, λi ≥ 0,
∑
a−i

∆vi(ai, λi)∗ − z ‖∆ Pr(a, λi)‖ ≤ 0.

Proof. Given i, ai ∈ Bi, plug σ(a) = 1/ |A−i| for all a−i in the proof of Theorem 7 (iii). �

Call λ extremely detectable if λi(ai) cannot be written as a positive linear combination
involving undetectable deviations (possibly mixed) for every (i, ai). Let E denote the set
of all such extremely detectable λ.

Lemma B.7. The set De = {α ∈ E : ∀(i, ai),
∑

(bi,ρi)
αi(ai, bi, ρi) = 1} is compact.

Proof. De is clearly a bounded subset of Euclidean space, so it remains to show that it is
closed. Consider a sequence {αm} ⊂ De such that αm → α∗. For any α ∈ D , let

p∗(α) := max
0≤p≤1,αi∈D

{p : α0 is undetectable, pα0 + (1− p)α1 = α}.

This is a well-defined linear program with a compact constraint set and finite values, so p∗

is continuous in α. By assumption, p∗(αm) = 0 for all m, so p∗(α∗) = 0, hence α∗ ∈ De. �

Lemma B.8. Let De be the set of extremely detectable deviation plans.

γ := min
αe∈De

∑
(i,a)

‖∆ Pr(a, αei )‖ > 0.
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Proof. If De = ∅ then γ = +∞. If not, De is compact by Lemma B.7, so there is no
sequence {αe,mi } ⊂ De with ‖∆ Pr(a, αe,mi )‖ → 0 for all (i, a) as m→∞, hence γ > 0. �

Lemma B.9. Let De
i = projiDe. There exists a finite z ≥ 0 such that

∀i ∈ I, ai /∈ Bi, αei ∈ De
i ,

∑
a−i

∆vi(ai, αei )
∗ − z ‖∆ Pr(a, αei )‖ ≤ 0.

Proof. Let ‖∆v‖ = max(i,a,bi) |∆vi(a, bi)|. If z ≥ ‖∆v‖ /γ, with γ as in Lemma B.8, then

∀(i, ai),
∑
a−i

∆vi(ai, αei )
∗−z ‖∆ Pr(a, αei )‖ ≤ ‖∆v‖−z

∑
a−i

‖∆ Pr(a, αei )‖ ≤ ‖∆v‖−
‖∆v‖
γ

γ.

The right-hand side clearly equals zero, which establishes the claim. �

Lemma B.10. Fix any ε > 0. If Pr satisfies DUDB then for every C ≤ 0 there exists
z ≥ 0 such that for every λ ≥ 0 with∑

i∈I
∆vi(σ, λi)− z

∑
(i,a)

σ(a) ‖∆ Pr(a, λi)‖ ≥ ε,

there exists µ ∈ ∆(A) such that

W (µ, λ) :=
∑
i∈I

∆vi(µ, λi)− z
∑
(i,a)

µ(a) ‖∆ Pr(a, λi)‖ ≤ C.

Proof. Rewrite W (µ, λ) by splitting it into three parts, Wd(µ, λ), We(µ, λ) and Wu(µ, λ):

Wd(µ, λ) =
∑
i∈I

∑
ai∈Bi

∑
a−i

µ(a)(∆vi(a, λi)− z ‖∆ Pr(a, λi)‖)

We(µ, λ) =
∑
i∈I

∑
ai /∈Bi

∑
a−i

µ(a)(∆vi(a, λei )− z ‖∆ Pr(a, λei )‖),

Wu(µ, λ) =
∑
i∈I

∑
ai /∈Bi

∑
a−i

µ(a)(∆vi(a, λui )− z ‖∆ Pr(a, λui )‖),

and λ = λe + λu with λe extremely detectable, λu undetectable. Since λu is undetectable,

Wu(µ, λ) =
∑
i∈I

∑
ai /∈Bi

∑
a−i

µ(a)∆vi(a, λui )

Let µ0(a) = 1/ |A| for every a. By Lemma B.5, there exists z with Wd(µ0, λ) ≤ C for
every λ, and by Lemma B.9 there exists z with We(µ0, λ) ≤ 0 for every λ. Therefore, if
Wu(µ0, λ) ≤ 0 we are done. Otherwise, for every i and ai, bi ∈ Ai, let µ0

i (ai) = 1/ |Ai| and

µ1
i (bi) :=

∑
(ai,ρi)

λui (ai, bi, ρi)∑
(b′i,ρ

′
i)
λui (ai, b′i, ρ

′
i)
µ0
i (ai)
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Iterate this rule to obtain a sequence {µmi } with limit µ∞i ∈ ∆(Ai). By construction, µ∞i is
a λui -stationary distribution (Nau and McCardle, 1990; Myerson, 1997). Therefore, given
any a−i, the deviation gains for every player equal zero, i.e.,∑

(ai,bi,ρi)

µ∞i (ai)λui (ai, bi, ρi)(vi(a−i, bi)− vi(a)) = 0.

Let µm(a) :=
∏
i µ

m
i (ai) for all m. By construction, Wu(µ∞, λu) = 0. We will show that

Wd(µ∞, λ) ≤ C and We(µ∞, λ) ≤ 0. To see this, notice firstly that, since λui is undetectable,
for any other player j 6= i, any λj ≥ 0 and every action profile a ∈ A,

‖∆ Pr(a, λj)‖ = ‖∆ Pr(a, λui , λj)‖ ≤ ‖∆ Pr(a, λ̂ui , λj)‖,

where λ̂ui (ai, bi, τi) =
∑

ρi
λui (ai, bi, ρi) and λ̂ui (ai, bi, ρi) = 0 for all ρi 6= τi,

∆ Pr(a, λui , λj) =
∑

(bj ,ρj)

λj(aj , bj , ρj)
∑

(bi,ρi)

λui (ai, bi, ρi)(Pr(a, bi, ρi, bj , ρj)− Pr(a, bi, ρi)),

and Pr(s|a, bi, ρi, bj , ρj) =
∑

tj∈ρ−1
j (sj)

Pr(s−j , tj |a−j , bj , bi, ρi). Secondly, notice that

∀i ∈ I, ai ∈ Bi,
∑
a−i

µm(a)(∆vi(a, λi)− z ‖∆ Pr(a, λi)‖) ≤

µmi (ai)
∑
a−i

µm−i(a−i)(∆vi(ai, λi)
∗ − z ‖∆ Pr(a, λi)‖) ≤

µmi (ai)
∑
a−i

µ0
−i(a−i)(∆vi(ai, λi)

∗ − z ‖∆ Pr(a, λi)‖) ≤∑
a−i

µ0(a)(∆vi(ai, λi)∗ − z ‖∆ Pr(a, λi)‖).

Indeed, the first inequality is obvious. The second one follows by repeated application of
the previously derived inequality ‖∆ Pr(a, λi)‖ ≤ ‖∆ Pr(a, λ̂uj , λi)‖ for each player j 6= i

separately m times. The third inequality follows because (i) µmi (ai) ≥ µ0
i (ai) for all m and

ai ∈ Bi, since Bi is a λ̂ui -absorbing set, and (ii)
∑

a−i
∆vi(ai, λi)∗ − z ‖∆ Pr(a, λi)‖ ≤ 0 for

every (i, ai) by Lemma B.6. Therefore, Wd(µ∞, λ) ≤Wd(µm, λ) ≤Wd(µ0, λ) ≤ C. Thirdly,

∀i ∈ I, ai /∈ Bi,
∑
a−i

µm−i(a−i)(∆vi(a, λ
e
i )− z ‖∆ Pr(a, λei )‖) ≤∑

a−i

µm−i(a−i)(∆vi(ai, λ
e
i )
∗ − z ‖∆ Pr(a, λei )‖) ≤∑

a−i

µ0
−i(a−i)(∆vi(ai, λ

e
i )
∗ − z ‖∆ Pr(a, λei )‖) ≤ 0.

The first inequality is again obvious, the second inequality follows by repeated application
of ‖∆ Pr(a, λi)‖ ≤ ‖∆ Pr(a, λ̂uj , λi)‖, and the third one follows from Lemma B.9. Hence,
We(µm, λ) ≤ 0 for every m, therefore We(µ∞, λ) ≤ 0. This completes the proof. (This
proof extends Nau and McCardle (1990) and Myerson (1997) by including transfers.) �

43



Lemma B.11. The conditions of Theorem 8 imply that for every ε > 0 there exists δ > 0
such that

∑
i ∆vi(σ, λi) ≥ ε implies that

∑
(i,a) µ(a) ‖∆ Pr(a, λi)‖ ≥ δ for some µ ∈ ∆(A)

with
∑

i ∆vi(µ, λi) ≤ z
∑

(i,a) µ(a) ‖∆ Pr(a, λi)‖.

Proof. Otherwise, there exists ε > 0 such that for every δ > 0 some λδ exists with∑
i ∆vi(σ, λδi ) ≥ ε but

∑
(i,a) µ(a) ‖∆ Pr(a, λi)‖ < δ whenever µ ∈ ∆(A) satisfies the given

inequality
∑

i ∆vi(µ, λi) ≤ z
∑

(i,a) µ(a) ‖∆ Pr(a, λi)‖. If λδ is bounded for every δ then
{λδ} has a convergent subsequence with limit λ0. But this λ0 violates the conditions of
Theorem 8, so assume that {λδ} is unbounded. A deviation plan αri is called relatively
undetectable if

∑
(i,a) µ(a) ‖∆ Pr(a, λi)‖ = 0 whenever µ ∈ ∆(A) satisfies

∑
i ∆vi(µ, λi) ≤

z
∑

(i,a) µ(a) ‖∆ Pr(a, λi)‖. Call Dr
i the set of relatively undetectable plans. A deviation

plan αsi is called relatively detectable if

max
(p,αi,αri )

{p : pαri + (1− p)αi = αsi , αi ∈ Di, α
r
i ∈ Dr

i , p ∈ [0, 1]} = 0.

Let Ds
i be the set of relatively detectable plans. By the same argument as for Lemma B.7,

Ds
i is a compact set, therefore, by the same argument as for Lemma B.8,

γsi := min
αsi∈Ds

i

max
µ∈∆(A)

∑
(i,a)

µ(a) ‖∆ Pr(a, αsi )‖ :
∑
i∈I

∆vi(µ, λi) ≤ z
∑
(i,a)

µ(a) ‖∆ Pr(a, λi)‖

 > 0.

Without loss, λδi = λr,δi + λs,δi , where λr,δi is relatively undetectable and λs,δi is relatively
detectable. By assumption, λr,δi is σ-unprofitable, so

∑
(bi,ρi)

λs,δi (ai, bi, ρi) is bounded below
by β > 0, say. (Otherwise,

∑
i ∆vi(σ, λδi ) < ε for small δ > 0.) But this implies that

max
µ∈∆(A)

∑
(i,a)

µ(a)
∥∥∥∆ Pr(a, λδi )

∥∥∥ = max
µ∈∆(A)

∑
(i,a)

µ(a)
∥∥∥∆ Pr(a, λs,δi )

∥∥∥ ≥ βγsi > 0.

But this contradicts our initial assumption, which establishes the result. �
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