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Abstract

Savage (1954) introduced the sure-thing principle in terms of the de-
pendence of decisions on knowledge, but gave up on formalizing it in
epistemic terms for lack of a formal definition of knowledge. Using simple
models of knowledge, we examine the sure-thing principle, presenting two
ways to capture it. One is in terms of the union of future events, for
which we reserve the original name—the sure-thing principle; the other is
in terms of the intersection of kens—bodies of agents’ knowledge—which
we call independence of irrelevant knowledge. We show that the two prin-
ciples are equivalent and that the only property of knowledge required for
this equivalence is the axiom of truth—the requirement that whatever is
known is true. We present a symmetric version of the independence of
irrelevant knowledge which is equivalent to the impossibility of agreeing
to disagree on the decision made by agents, namely the impossibility of
agents making different decisions being common knowledge

1 Introduction

1.1 An example of the sure-thing principle

The sure-thing principle (STP) was introduced by Savage (1954) using the fol-
lowing story.

A businessman contemplates buying a certain piece of property. He
considers the outcome of the next presidential election relevant. So,
to clarify the matter to himself, he asks whether he would buy if he
knew that the Democratic candidate were going to win, and decides
that he would. Similarly, he considers whether he would buy if he
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1



knew that the Republican candidate were going to win, and again
finds that he would. Seeing that he would buy in either event, he
decides that he should buy, even though he does not know which
event obtains, or will obtain, as we would ordinarily say. It is all
too seldom that a decision can be arrived at on the basis of this
principle, but except possibly for the assumption of simple ordering,
I know of no other extralogical principle governing decisions that
finds such ready acceptance. (emphasis added)

Savage clearly considered STP as an epistemic principle describing certain rela-
tions between knowledge and decisions. He even stated the epistemic nature of
this principle explicitly in the following paragraph (emphasis added):

The sure-thing principle cannot appropriately be accepted as a pos-
tulate in the sense that P1 is, because it would introduce new un-
defined technical terms referring to knowledge and possibility that
would render it mathematically useless without still more postulates
governing these terms. It will be preferable to regard the principle as
a loose one that suggests certain formal postulates well articulated
with P1.

Thus, Savage did not consider his second postulate, P2, to be a formalization of
the STP. Such formalization requires, as he says, a specification of the postulates
governing the terms knowledge and possibility. Almost a decade after Savage’s
The foundations of statistics, Hintikka (1962) introduced formal modeling of
knowledge, syntactic and semantic, in his Knowledge and belief, while a semantic
multi-agent model of knowledge was introduced more than two decades later in
Aumann (1976).

Here we use a standard model of multi-agent knowledge for the formula-
tion of two versions of the sure-thing principle. We show that under minimal
assumptions about the nature of knowledge these two principles are equivalent.

1.2 A temporal model

The simplest way to read Savage’s story concerns an agent in two periods. In the
second, the agent will know whether the Democrat candidate won the election
(“D”) or the Republican (“R”). Since in either case he will buy the property he
should buy it in the first period at a time that he does not yet know who will
win. Thus, the following is a rough draft of the STP:

STP (long version): If an agent knows that tomorrow she will know
either E1 or E2 . . . and in either case her decision will be the same,
then this should be her decision today.1

1In Savage’s story the two cases “D” and “R” appear to be exhaustive, but this assumption
seems to be irrelevant. Suppose that there is a third candidate - a spoiler. As long as our
businessman knows that the spoiler will not win, the situation is similar to the one where
there are only two candidates.
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Indeed, a more succinct but no less compelling formulation leaves the possible
information implicitly assumed:

STP (short version): If an agent knows her decision of tomorrow,
then this should be her decision today.2

These versions formulate the STP in terms of the union, or disjunction, of
what will be known tomorrow. But the story can also be formulated in terms of
intersection. If tomorrow the Democrat wins then our agent will know “D”, and
a fortiori “D or R”. If tomorrow the Republican wins, the agent will know “R”,
and obviously “D or R”. However, today, she knows only the intersection of
of these two bodies of knowledge, namely, “D or R”. Now, the businessman in
Savage’s story “considers the outcome of the next presidential election relevant”
to his decision. But to be sure, neither “D” nor “R” is relevant to his decision.
Indeed, the very essence of the STP demonstrated in this story is that “R” and
“D” prove to be irrelevant to his decision to buy the property. What remains
relevant is just the knowledge common to both cases, namely “D or R”.

In order to suggest a draft of this formulation of the STP we use the term ken
to describe the body of knowledge of an agent. We further assume, along with
Savage’s assumption, that the decision of an agent depends on her knowledge,
and more precisely on her ken. We call this version of the STP the independence
of irrelevant knowledge (IIK).

IIK: If the agent’s decision is the same for all of her kens tomorrow,
then what is relevant for her decision is the intersection of all these
kens, namely her ken today, and therefore this should be her decision
today.3

1.3 A multi-agent model

In the temporal model the agent is split into several knowers, one for each period.
Certain implicit assumptions are naturally made in this set up concerning the
relation between the different knowers associated with the same agent. If we
examine closely the reasoning that led to the STP we see that we assume that
the agent is more knowledgeable in later periods, and, moreover, that the agent
knows that.4

2One should not confuse this principle with the good advice “never put off until tomorrow
what you can do today”. The STP does not assume any gains or losses from the timing of
the decision itself.

3IIK has features in common with various versions of the independence of irrelevant al-
ternatives. It also resembles an ancient legal syllogism from the mishna called “binyan av”
(prototype) or “hatsad hashaveh” (the common characteristic): If X and Y are two sets of
circumstances, and in each the ruling is R, then the circumstances relevant to this ruling are
those in X ∩ Y , and the ruling R also applies to any set of circumstances that includes this
intersection. (See an instance of this syllogism in the Babylonian Talmud, Tractate Sanhedrin
64b.) IIK is more restricted. It applies only to a ken which is the intersection of other kens,
and not to kens that contain this ken.

4When we say that the agent is more knowledgeable in later periods, we are a little bit
sloppy for the sake of brevity. We mean that in later periods he is at least as knowledgable.
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Instead of using a temporal model, we reformulate the STP and IIK in a
multi-agent atemporal model. One can always think of the different agents as
being the different knowers associated with a single agent at different times.
The multi-agent model forces us to spell out explicitly the relations implicitly
assumed between the different knowers of the same agent. The assumption
made before, concerning the agent in the temporal model, is translated in the
multi-agent model into the assumption that one agent is more knowledgeable
than the other, and that the less knowledgeable agent knows it.

We can now state the multi-agent version of the STP where this assumption
is made explicitly. One can think of Adam, in the following formulation, as
being the agent today and Eve as the same agent tomorrow, or, alternatively,
we can think of them as two different individuals who share the same interests.

IIK (multi-agent version): If Adam’s ken is the intersection of some
of Eve’s kens and Eve’s decision is the same for all these kens, then
what is relevant for her decision is the intersection of all these kens,
namely, Adam’s ken, and therefore this should also be Adam’s deci-
sion.

The STP in the multi-agent version is:

STP (multi-agent version): If Adam knows that Eve is more knowl-
edgeable, and he also knows Eve’s decision, then this must be his
decision too.

Our first result states:

For partition models of knowledge, IIK and the STP are equivalent.

The STP and IIK seem to convey somewhat different stories. The STP has
the air of proverbial advice: If Adam knows that Eve is wiser, that is, more
knowledgeable than him, and he also knows her decision, he should follow her.
IIK tells us an almost opposite story. The reason Adam’s decision should be the
same as Eve’s is because all her extra knowledge is irrelevant to the decision.
What is relevant is exactly what Adam knows. The “should” in this principle
is not good advice but a logical necessity: If the decision is based on knowledge
(and is independent of the knower) then the fact that Adam’s decision should be
the same as Eve’s is because this is the right decision given Adam’s knowledge.5

1.4 Symmetrization

Adam and Eve play asymmetric roles in IIK. While there is a single ken for
Adam, there is a family of Eve’s kens. But the same reasoning can be applied
to symmetric cases where each of them is endowed with a family of kens.

5The reasoning behind IIK seems more compelling. But in richer models, for example ones
that also have beliefs, it is hard to avoid the story told by the STP.
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Symmetric IIK: If within a family of kens of each agent the deci-
sion is the same for all kens, then what is relevant for making this
decision is the intersection of kens in the family. Therefore, if the
intersection of the kens in Adam’s family of kens is the same as the
intersection of kens in Eve’s family of kens, then Adam and Eve
make the same decision.

While symmetric IIK bears a strong resemblance to IIK, the STP does not
lend itself to straightforward symmetrization. The “right” formulation, the
one that is equivalent to symmetric IIK, requires the introduction of common
knowledge. The condition in this case is well known from the agreement theorem
and its generalziation to the non-probabilistic case (Aumann (1976), Samet
(2007)): the impossibility to agree to disagree (IAD).

IAD: If Adam’s and Eve’s decisions are common knowledge between
them, then these decisions are the same.

We show that

For partition models of knowledge, symmetric IIK is equivalent to
IAD.

We note that despite the similarity between symmetric IIK and IIK, there is
a crucial difference between them. The two agents in IIK can be viewed as the
same agent in different periods. The asymmetry of the IIK is essential for this
interpretation and reflects the asymmetry of time with respect to knowledge.
No such interpretation of the two agent is possible for the symmetric IIK.

1.5 Partition models and beyond

Partition models are the commonly used models of knowledge in economics
and game theory. More general models of knowledge are useful to explore the
implications of various properties of knowledge. Here, we study the equivalence
between the STP and IIK using such general models. The versions of the STP
and IIK presented so far are equivalent only in partition models. We show,
however, that slightly different versions are equivalent for any knowledge model
which satisfies the truth axiom, according to which whatever is known is true.

For this purpose we consider a weak version of IIK in which the family of
Eve’s kens is restricted to all those kens that are permitted by Adam’s ken,
that is, those of Eve’s kens that Adam’s knowledge about Eve’s knowledge does
not exclude. We also consider a strong version of STP in which the event that
Adam knows that Eve is more knowledgeable is more loosely defined.

With this formulation we state:

For all models of knowledge that satisfy the truth axiom, the weak
version of IIK is equivalent to the strong version of the STP.
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Thus, positive and negative reflection axioms are not required either for the
the formulation of the STP and the IIK or for the proof of their equivalence.
However, reflection across time in the single agent model, or across agents in
the multi-agent formulation plays a central role in these principles.

2 Models of knowledge and decisions

2.1 The epistemic model

A knowledge model (I,Ω, (πi)i∈I) consists of a set of agents I, a set of states Ω,
and for each agent i ∈ I, a possibility function πi: Ω → 2Ω.6 Subsets of Ω are
called events. The event πi(ω) is the set of states that are considered possible
for i at ω, while all other states are excluded by i at ω. We say that i knows
event E at ω if πi(ω) ⊆ E. The event that i knows E, denoted Ki(E) is the
set of all states in which i knows E. Thus, Ki(E) = {ω | πi(ω) ⊆ E}. The
function Ki : 2Ω → 2Ω, thus defined is called i’s knowledge operator.

In the sequel we use common knowledge for two agents i and j. Denote
for each E, Kij(E) = Ki(E) ∩Kj(E). The operator Cij defined by Cij(E) =
∩∞m=1K

m
ij (E) is the common knowledge (between i and j) operator.

Although we do not introduce the whole apparatus of epistemic logic here,
we note that knowledge models serve for interpretation of sentences in epistemic
language, where each sentence corresponds to an event, the propositional con-
nectors correspond to set theoretic operations, and the language operator “i
knows” corresponds to the operator Ki.7 Thus, the conjunction fg corresponds
to the intersection, F ∩G, of the events that correspond to the sentences f and
g. Similarly, the disjunction f ∨ g corresponds to the union F ∪ G, and the
negation ∼ f to the complement event ¬F . Inspired by the logical equivalence
between ¬f ∨ g and the implication f → g, we denote the event ¬F ∪ G by
F → G. Obviously, ω ∈ F → G iff the following holds: if ω ∈ F , then ω ∈ G.

2.2 Possibility functions

Properties of the possibility functions correspond to properties of knowledge.
The claims made in this subsection are well known in the literature of modal
and epistemic logic and therefore we omit the proofs (see, for example Aumann
(1999), Chellas (1980), Fagin et al. (1995)).

First, by virtue of being defined in terms of a possibility function, each
Ki distributes over intersection. That is, for each i, E and F , Ki(E ∩ F ) =

6In epistemic logic, and more generally in modal logic, models are equipped with binary
relations on Ω, called the accessibility relations, rather than possibility functions. The two
approaches are equivalent by the identification of the event assigned to a state by the possibility
function with the set of all states accessible from it.

7Our terminology here conforms with the usual use of “model of knowledge” in the social
sciences. In the terminology of modal logic, what we call here a model is called a frame. A
model in modal logic is a frame with the interpretation of atomic sentences.
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Ki(E) ∩Ki(F ).8 We call this condition the distribution axiom. It implies that
Ki is monotonic. That is, if E ⊆ F then Ki(E) ⊆ Ki(F ).

If for each E the event Ki(E) → E is the whole state space, or equivalently,
if Ki(E) ⊆ E, we say that Ki satisfies the truth axiom. We can rephrase it by
saying that whatever i knows is true. When this holds for each agent i we say
that the model satisfies the truth axiom. The operator Ki satisfies the truth
axiom iff for each ω, ω ∈ πi(ω).9

If for each E, ¬Ki(E) → Ki(¬Ki(E)) is the whole state space, or equiv-
alently, if ¬Ki(E) ⊆ Ki(¬Ki(E)), we say that Ki satisfies the negative intro-
spection axiom. When this holds for each i we say that the model satisfies this
axiom.10

A model of knowledge satisfies both the truth axiom and the negative in-
trospection axiom iff it is a partition model, that is, iff for each i there exists a
partition Πi of Ω, such that for each ω, πi(ω) is the element of Πi that contains
ω.

The positive introspection axiom holds for Ki if for each E, Ki(E) →
Ki(Ki(E)), or equivalently, if Ki(E) ⊆ Ki(Ki(E)).11 Note that in partition
models the positive introspection axiom holds for each Ki.

2.3 Kens

The set of all the events E that i knows at ω, that is, the set {E | ω ∈ Ki(E)},
is called i’s ken at ω and is denoted by keni(ω). Obviously, keni(ω) consists of
all the supersets of πi(ω). We denote by Keni the family of all of i’s kens, that
is, Keni = {keni(ω) | ω ∈ Ω}.

For a given ken of i, Ki, we now describe those kens of j, Kj , for which i’s
knowledge, in Ki, concerning j’s knowledge, is not contradicted by j’s knowledge
given by Kj . Formally, a ken Ki ∈ Keni permits a ken Kj ∈ Kenj if for each
E ∈ Kj , ¬Kj(E) /∈ Ki and for each E /∈ Kj , Kj(E) /∈ Ki. The set of all the
kens in Kenj that are permitted by Ki is denoted by Permitj(Ki).12

2.4 Decisions

Let D be a nonempty set of decisions. A decision function di for agent i
associates a decision with each of i’s kens. That is, di is a function di: Keni → D.
A vector of decision functions d = (di)i∈I is called a decision function profile.

8For finite state spaces, the opposite also holds. That is, if an operator Ki: 2
Ω → 2Ω

satisfies this equality, then it is defined by a possibility function.
9This property of πi corresponds to the reflexivity of the accessability relation associated

with πi.
10The negative introspection axiom holds for Ki iff for each ω and ω′, if πi(ω)∩ πi(ω

′) 6= ∅
then ω ∈ πi(ω

′). The accessibility relation associated with such πi is said to be Euclidian.
11The axiom of positive introspection holds for Ki iff for each ω and ω′ ∈ πi(ω),

πi(ω
′) ⊆ πi(ω). This property of πi corresponds to the transitivity of the accessability relation

associated with it.
12Kens were introduced in Samet (1990) for more abstract models of knowledge. Using

formal epistemic language, a ken can be defined as a maximal set of sentences, Φ, such that
the set of sentences {kif |f ∈ Φ} is consistent.
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With some abuse of notation we write di(ω) for di(keni(ω)). We denote by
[di = d] the event that i’s decision is d, namely [di = d] = {ω | di(ω) = d}.

3 The main equivalence

The independence of irrelevant knowledge below is a formal rendering of the
description given to it in subsection 1.3.

Independence of irrelevant knowledge (IIK):
The decision function profile d satisfies IIK when, for each pair of agents i, j,
a decision d, Ki ∈ Keni, and Kj ⊆ Kenj,

if

1. Ki = ∩Kj∈Kj
Kj, and

2. for each Kj ∈ Kj, dj(Kj) = d,

then di(Ki) = d.

The sure-thing principle, presented next, spells out in precise terms of models
of knowledge and decisions the verbal description of this principle as given in
subsection 1.3. We note that

⋂
E⊆Ω Ki

(
Ki(E) → Kj(E)

)
is the event that i

knows that j is at least as knowledgeable. More discussion of this event follows
in the next section.

The sure-thing principle (STP):
The decision function profile d satisfies the STP if for each pair of agents i, j,
and decision d,

⋂

E⊆Ω

Ki

(
Ki(E) → Kj(E)

) ∩Ki([dj = d]) ⊆ [di = d].

Theorem 1 For partition models of knowledge, a decision function profile satis-
fies independence of irrelevant knowledge if and only if it satisfies the sure-thing
principle.

4 Symmetrization

The following is an extension of IIK in which i and j play a symmetric role.
Both are endowed with a family of kens: Ki ⊆ Keni and Kj ⊆ Kenj . If in
each family the same decision is associated with each ken, then the relevant
knowledge for making this decision is the intersection of the kens in each family.
Thus, if the intersection of the kens in Ki coincides with the intersection of kens
in Kj the same decision should be made by the two agents.

Symmetric independence of irrelevant knowledge (SIIK):
The decision function profile d satisfies SIIK when, for each i, j, di, dj, Ki ⊆
Keni, and Kj ⊆ Kenj,
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if

1. ∩Ki∈KiKi = ∩Kj∈KjKj,
2. for each Ki ∈ Ki, di(Ki) = di and

for each Kj ∈ Kj, dj(Kj) = dj,

then, di = dj.

We next formulate the symmetric “union” version that is equivalent to the
symmetric “intersection” rule SIIK. For this we use common knowledge between
two agents.

Impossibility of agreeing to disagree (IAD):

The decision function profile d satisfies IAD if for each i, j, and di 6= dj,

Cij

(
[di = di] ∩ [dj = dj ]

)
= ∅.

Theorem 2 For partition models of knowledge, a decision function profile sat-
isfies symmetric independence of irrelevant knowledge if and only if it satisfies
the impossibility of agreeing to disagree.

5 Models that satisfy the truth axiom

In this section we show that the truth axiom is the only property of knowledge
required to establish the equivalence between the “union” and the “intersection”
aspects of the sure-thing principle. The two equivalence theorems of the previous
sections indeed hold only for partition models. However, we now formulate a
weak version of IIK and a strong version of the STP, which are equivalent for
any knowledge model that just satisfies the truth axiom. For partition models
the difference between the previous versions and the new ones is cosmetic. For
such models, weak IIK is equivalent to IIK and strong STP is equivalent to
STP.

In the weak version of IIK the set of kens Kj is restricted to be the set of j’s
kens that are permitted by Ki.

Weak independence of irrelevant knowledge:

The decision functions profile d satisfies weak IIK when, for each pair of agents
i, j, a decision d, Ki ∈ Keni, and Kj = Permitj(Ki),

if

1. Ki = ∩Kj∈KjKj ,

2. for each Kj ∈ Kj, dj(Kj) = d,

then di(Ki) = d.
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The strong version of the STP is obtained by replacing the event
⋂

E⊆Ω

Ki

(
Ki(E) → Kj(E)

)
(1)

by the event ⋂

E⊆Ω

Ki(E) → Ki

(
Kj(E)

)
(2)

Although (1) and (2) seem to say the same thing, namely that i knows that
j is at least as knowledgeable, there is a slight difference between them. In (1) it
is said explicitly. The event ∩E⊆ΩKi(E) → Kj(E) is the event that whatever i
knows j knows, that is, the event that j is at least as knowledgeable as i. Thus,
the event Ki

(∩E⊆Ω Ki(E) → Kj(E)
)

is the event that i knows that j is at least
as knowledgeable. But this last event is the event in (1).

In (2) the event that j is at least as knowledgeable as i, and i’s knowledge
of this are interwind. Indeed, for models that satisfy the truth axiom, (2)
implies that j is at least as knowledgeable as i, since Ki

(
Kj(E)

) ⊆ Kj(E), and
therefore, Ki(E) → Ki

(
Kj(E)

) ⊆ Ki(E) → Kj(E). But (2) does not imply
that i knows this event unless negative introspection is assumed.

We consider the next version of STP to be a strengthening of the STP
since, as we show in the proof of Proposition 2, for models that satisfy positive
introspection the event in (1) is a subset of the event in (2).

The strong sure-thing principle:

The decision function profile d satisfies the strong STP when, for each pair of
agents i, j, and decision d,

⋂

E⊆Ω

Ki(E) → Ki

(
Kj(E)

) ∩Ki([dj = d]) ⊆ [di = d].

The following two propositions examine the changes introduced in this sec-
tion to IIK and the STP from the perspective of partition models.

Proposition 1 In partition models of knowledge, if Ki = ∩Kj∈KjKj, for Ki ∈
Keni and Kj ⊆ Kenj, then Kj = Permitj(Ki).

Proposition 2 In partition models of knowledge,

Ki

(
Ki(E) → Kj(E)

)
= Ki(E) → Ki

(
Kj(E)

)
.

In light of these two propositions the difference between the two versions of IIK
and the STP are insignificant as far as partition models are concerned.

Corollary 1 For partition models of knowledge, a decision function profile sat-
isfies weak IIK if and only if it satisfies IIK, and it satisfies the strong STP if
and only if it satisfies STP.
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The reason for the formulation of weak IIK and the strong STP is the fol-
lowing theorem.

Theorem 3 For models of knowledge that satisfy the axiom of truth, a decision
function profile satisfies weak independence of irrelevant knowledge if and only
if it satisfies the strong sure-thing principle.

The symmetric IIK is also too strong for Theorem 2 to hold for non-partition
models. We weaken it by requiring that all the permitted kens of an agent’s ken
are found in the family of the other agent’s kens.

Weak symmetric independence of irrelevant knowledge:

The decision function profile d satisfies weak SIIK when, for all i, j, di, dj,
Ki ⊆ Keni, and Kj ⊆ Kenj,

if

1. for each Ki ∈ Ki, Permitj(Ki) ⊆ Kj and
for each Kj ∈ Kj, Permiti(Kj) ⊆ Ki,

2. for each Ki ∈ Ki, di(Ki) = di and
for each Kj ∈ Kj, dj(Kj) = dj,

then, di = dj.

Note, that the requirement that the two intersections of the players’ kens co-
incide, which is part of the definition of IIK, is not found here. The explanation
is in the next proposition.

Proposition 3 Let Ki ⊆ Keni and Kj ⊆ Kenj, and consider the following two
properties:

1. for each Ki ∈ Ki, Permitj(Ki) ⊆ Kj and for each Kj ∈ Kj, Permiti(Kj) ⊆
Ki,

2. ∩Ki∈KiKi = ∩Kj∈KjKj.

Then for models that satisfy the truth axiom, (1) implies (2). For partition
models, (1) and (2) are equivalent.

Corollary 2 For partition knowledge models, weak SIIK is equivalent to SIIK.

Theorem 4 For models that satisfy the truth axiom, a decision function profile
satisfies weak symmetric independence of irrelevant knowledge if and only if it
satisfies the impossibility of agreeing to disagree.
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6 Discussion

The first attempt to use the sure-thing principle in an epistemic setup was
made, independently, by Cave (1983) and Bacharach (1985), although it was
the latter who used the term STP in this context. Both papers proposed a
generalization of the probabilistic agreement theorem of Aumann (1976) to the
non-probabilistic cases, where at each state of the world a decision of each agent
is specified, rather than a posterior probability.

Both papers use a partition model with a virtual decision function δ from
which individual decisions are derived.13 Such a function assigns a decision to
each event. The interpretation is that the decision δ(E) associated with an
event E is the decision made when knowledge is given by E. This is very much
in the spirit of Savage’s example and the approach adopted here. The sure-
thing principle in this setup says that for two disjoint events E and F for which
δ(E) = δ(F ), it is the case that δ(E ∪ F ) = δ(E).

Virtual decision functions are hard to interpret properly. Considering events
which are not elements of the partition as describing knowledge is incongru-
ent with the knowledge structure given by the partition. Moreover, by its very
essence the STP cannot be applied to a single knower. The union E∪F purports
to represent a body of knowledge—a ken—which is the intersection of the kens
given by E and by F . But this idea is inconsistent with partition models: it is
impossible for an agent in a partition model to have kens with an intersection
that is also a ken of the same agent, except for the trivial case that the inter-
secting kens are identical. The only way to express the STP is through either
the knowledge of an agent in two periods, or alternatively, as is the case here,
the knowledge of different agents. Moses and Nachum (1990)were the first to
study conceptual difficulties regarding virtual decision functions.

The STP as presented here was suggested in Samet (2007) under the name
interpersonal sure-thing principle. Here, we retract the attribute interpersonal,
because there is simply no STP for one knower only. The STP is used in
Samet (2007) as a condition for an agreement theorem. We see here that the
impossibility of agreeing to disagree on decisions is equivalent to symmetric IIK.
The asymmetric version of IIK does not imply the IDA. This is why in Samet
(2007) it is required that the model satisfies not only STP (which is equivalent
to asymmetric IIK) but also STP-expandability. That is, we require that STP
also holds when another agent is added to the model. In view of our result,
adding an agent enables us to convert a symmetric situation as described in the
definition of SIIK, into an asymmetric one to which the STP can be applied.

7 Proofs

Lemma 1 In any model of knowledge, for each ω, ω′ ∈ πi(ω) and j, kenj(ω′) ∈
Permitj(keni(ω)).

13The term virtual decision function was suggested in Samet (2007).
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Proof: Suppose ω′ ∈ πi(ω) and let E ∈ kenj(ω′). Then ω′ ∈ Kj(E). If
¬Kj(E) ∈ keni(ω), then ω ∈ Ki(¬Kj(E)) and thus, ω′ ∈ πi(ω) ⊆ ¬Kj(E),
which is a contradiction. If E /∈ kenj(ω′) then ω′ /∈ Kj(E). If Kj(E) ∈ keni(ω),
then ω ∈ Ki(Kj(E)) and thus, ω′ ∈ πi(ω) ⊆ Kj(E), which is a contradiction.

Proof of Proposition 1: Suppose that Kj ⊆ Kenj , and Ki = ∩Kj∈KjKj ,
where Ki = keni(ω). For each kenj(ω′) ∈ Kj , keni(ω) ⊆ kenj(ω′), and hence,
πj(ω′) ⊆ πi(ω). Thus, by the truth axiom, ω′ ∈ πi(ω) and by Lemma 1,
kenj(ω′) ∈ Permitj(keni(ω)).

Conversely, let kenj(ω′) ∈ Permitj(keni(ω)), and suppose that for all kenj(ω′′) ∈
Kj , kenj(ω′) 6= kenj(ω′′). Then for each such ω′′, πj(ω′′) 6= πj(ω′), and as the
πj is derived from a partition, πj(ω′′)∩πj(ω′) = ∅. Hence, ¬πj(ω′) ∈ kenj(ω′′).
This implies that ¬πj(ω′) ∈ keni(ω). By the definition of knowledge and the
truth axiom, πj(ω′) = Kj(πj(ω′)). Substituting in the previous inclusion we
conclude that ¬Kj(πj(ω′)) ∈ keni(ω). But obviously, πj(ω′) ∈ kenj(ω′) which
contradicts our assumption that kenj(ω′) is permitted by keni(ω).

Proof of Proposition 2: By the distribution axiom and monotonicity, for any
E and F , Ki(E → F )∩Ki(E) = Ki((¬F ∪E)∩E) = Ki(E∩F ) ⊆ Ki(F ). Thus
Ki(E → F ) ⊆ ¬Ki(E)∪Ki(F ) = Ki(E) → Ki(F ). Using this inclusion and the
fact that positive introspection and the truth axiom imply Ki(Ki(E)) = Ki(E)
we conclude that Ki

(
Ki(E) → Kj(E)

) ⊆ Ki(E) → Ki

(
Kj(E)

)
.

For the opposite inclusion, it is enough to show that
(
Ki(E) → Ki

(
Kj(E)

))∩
Ki

(
Ki(E) → Kj(E)

)
= Ki(E) → Ki

(
Kj(E)

)
. By the truth axiom and neg-

ative introspection, Ki(¬Ki(E)) = ¬Ki(E) and thus the lefthand side of this
equation is

(
Ki(¬Ki(E)) ∪ Ki(Kj(E))

) ∩ (
Ki(¬Ki(E) ∪ Kj(E))

)
. By distri-

bution this set is Ki(¬Ki(E)) ∪Ki(Kj(E)) which is the righthand side of the
equation.

In view of Propositions 1 and 2, Theorem 1 follows from Theorem 3, which
we prove next.

Proof of Theorem 3: Suppose that the strong STP holds. Assume that
keni(ω) is the intersection of the kens in Permitj(keni(ω)) and for each Kj in
this set, dj(Kj) = d.

As keni(ω) is the intersection of all kens in Permitj(keni(ω)), it follows by
Lemma 1 that for each ω′ ∈ πi(ω), keni(ω) ⊆ kenj(ω′) and therefore πj(ω′) ⊆
πi(ω). We show that for each E, ω ∈ Ki(E) → Ki(Kj(E)). Indeed, if ω ∈
Ki(E), then πi(ω) ⊆ E. Thus, for each ω′ ∈ πi(ω), πj(ω′) ⊆ E, i.e., ω′ ∈ Kj(E).
Hence, πi(ω) ⊆ Kj(E), which means that ω ∈ Ki(Kj(E).

As dj(ω′) = dj(kenj(ω′)) = d for each ω′ ∈ πi(ω), it follows that πi(ω) ⊆
[dj = d]. Thus, ω ∈ Ki([dj = d]) and since we assumed that the STP holds,
di(ω) = d, i.e., di(keni(ω)) = d as required.

Suppose now that weak IIK holds and assume that for each E, ω ∈ (Ki(E) →
Ki(Kj(E))), and ω ∈ Ki([dj = d]). We claim that keni(ω) is the intersection
of the kens in Permitj(keni(ω)).

First we show that keni(ω) = ∩ω′∈keni(ω)kenj(ω′). Indeed, if E ∈ keni(ω)
then ω ∈ Ki(E). Therefore ω ∈ Ki(Kj(E)) and thus πi(ω) ⊆ Kj(E). Hence for
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each ω′ ∈ πi(ω), E ∈ kenj(ω′). Conversely, if E ∈ kenj(ω′) for each ω′ ∈ πi(ω),
then for each such ω′, ω′ ∈ Kj(E). Hence, πj(ω′) ⊆ E, and since by the truth
axiom ω′ ∈ πj(ω′), it follows that ω′ ∈ E. Therefore πi(ω) ⊆ E, and hence
E ∈ keni(ω).

To prove the claim it is enough to show that kenj(ω′) ∈ Permitj(keni(ω)) if
and only if ω′ ∈ πi(ω). By Lemma 1 it suffices to show that if ω′ /∈ πi(ω) then
kenj(ω′) /∈ Permitj(keni(ω)). Let E = πi(ω). By the truth axiom, Kj(E) ⊆ E,
and as ω′ /∈ E it follows that ω′ /∈ Kj(E), i.e., E /∈ kenj(ω′). But, obviously,
ω ∈ Ki(E) and therefore ω ∈ Ki(Kj(E)), per our assumption, which means
that Kj(E) ∈ keni(ω).

To complete the proof, we note that since ω ∈ Ki([dj = d]), πi(ω) ⊆ [dj =
d]. Thus, for each ω′ ∈ πi(ω), dj(ω′) = d, i.e., dj(kenj(ω′)) = d. By what we
have shown, this means that dj(K) = d for all kens in Permitj(keni(ω)). By
IIK this says that di(keni(ω)) = d.

Proof of Proposition 3: To prove the first part, assume that for each Ki ∈ Ki,
Permitj(Ki) ⊆ Kj and for each Kj ∈ Kj , Permiti(Kj) ⊆ Ki. We show that

{ω | keni(ω) ∈ Ki} = {ω | kenj(ω) ∈ Kj}(3)

Indeed, suppose that keni(ω) ∈ Ki. As ω ∈ πi(ω), it follows from Lemma 1 and
our assumption that kenj(ω) ∈ Permitj(keni(ω)) and hence that kenj(ω) ∈ Kj .
The inverse inclusion is similarly proved.

Denote the set in (3) by F . Again, by Lemma 1 and our assumption it
follows that for each ω ∈ F , πi(ω) ⊆ F and πj(ω) ⊆ F .

We now show that that E ∈ ∩Ki∈KiKi iff F ⊆ E. Since the same equivalence
holds for ∩Kj∈KjKi this proves the equality of these two intersections. To prove
this equivalence note that E ∈ ∩Ki∈KiKi iff for each ω ∈ F , E ∈ keni(ω) which
holds iff πi(ω) ⊆ E. Since we have shown that for each such ω, πi(ω) ⊆ F , and
ω ∈ πi(ω), the required equivalence follows.

To prove the second part of the propostion, suppose that ∩Ki∈KiKi =
∩Kj∈KjKj and let keni(ω) ∈ Ki. We first note that if πj(ω′) ∩ πi(ω) = ∅,
then πj(ω′) /∈ Permitj(Ki). Indeed, by the truth axiom, for each ω′′ ∈ πi(ω),
ω′′ ∈ πj(ω′′) ∩ πi(ω) and thus, πj(ω′′) 6= πj(ω′). As πj is derived from a
partition, πj(ω′′) ∩ πj(ω′) = ∅. Therefore, for E = ¬πj(ω′), ω′′ ∈ Kj(E).
Hence, πi(ω) ⊆ Kj(E), which means that Kj(E) ∈ keni(ω). But, obviously,
E /∈ kenj(ω′) which shows that kenj(ω′) /∈ Permitj(Ki).

We have shown now that all j’s kens that are permitted by keni(ω) must
intersect it. Thus, it is now enough to show that if πj(ω′)∩πi(ω) 6= ∅, kenj(ω′) ∈
Kj . Suppose kenj(ω′) /∈ Kj . Then, as we argued before, for E = ¬πj(ω′) and
for each kenj(ω′′) ∈ Kj , E ∈ kenj(ω′′). Thus, E ∈ ∩Ki∈KiKi, and in particular,
E ∈ keni(ω). But this is impossible, since πi(ω) 6⊆ E.

In view of Propositions 3, Theorem 2 follows from Theorem 4, which we
prove next. To do so we express the common knowledge operator Cij in terms
of the possibility functions πi and πj . Omitting henceforth the subscripts ij,
we define a function π: Ω → 2Ω by π(ω) = πi(ω) ∪ πj(ω). For an event F ,
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let π(F ) = ∪ω∈F π(ω). Note, that F ⊆ K(E) iff π(F ) ⊆ E. Finally, define
πc: Ω → 2Ω by πc(ω) = ∪m≥1π

m(ω), where πm are powers of π.

Proposition 4 The common knowledge operator C is derived from the possi-
bility function πc. That is, for each E, C(E) = {ω | πc(ω) ⊆ E}.14

Proof: It is enough to show that for each m ≥ 1, ω ∈ Km(E) iff πm
c (ω) ⊆ E,

which we prove by induction on m. For m = 1 this holds by the definition of
the knowledge operators Ki. Suppose we prove for m and assume that ω ∈
Km+1(E), i.e., ω ∈ Km(K(E)). By the induction hypothesis, this is equivalent
to πm

c (ω) ⊆ K(E), which in turn is equivalent to πc(πm
c (ω)) ⊆ E.

Proof of Theorem 4: Suppose that weak SIIK holds and assume that ω ∈
Cij([di = di]∩ [dj = dj ]). For m ∈ {i, j}, define Km = {kenm(ω′) | ω′ ∈ πc(ω)}.
We show that (1) and (2) in the definition of weak SIIK hold for Ki and Kj .

To prove (1) it is enough to show that for any ω′ ∈ πc(ω) and ω′′ /∈ πc(ω),
kenj(ω′′) /∈ Permitj(keni(ω′)). Indeed, let E = πc(ω). Then, since for each
ω̄ ∈ E, πj(ω̄) ⊆ E it follows that E ⊆ Kj(E). Since πi(ω′) ⊆ E it follows that
ω′ ∈ Ki(Kj(E)), i.e., Kj(E) ∈ keni(ω′). But obviously, E /∈ kenj(ω′′) because
πj(ω′′) 6⊆ F as ω′′ in πj(ω′′) but not in E.

To show (2), we note that by Proposition 4, πc(ω) ⊆ Cij([di = di] ∩ [dj =
dj ]), and by the truth axiom the latter event is a subset of [di = di]∩ [dj = dj ].
Thus for every ω′ ∈ πc(ω), di(ω′) = di and dj(ω′) = dj . Thus, for each
Ki ∈ Ki, di(Ki) = di and a similar equality holds for j. By weak SIIK it follow
that di = dj , as required.

Suppose that IAD holds and assume that (1), (2) in the definition of weak
SIIK hold. For keni(ω) ∈ Ki, we show that ω ∈ Cij([di = di] ∩ [dj = dj ]).
Consider the set F constructed in the proof of Proposition 3. By (2) it follows
that F ⊆ [di = di]∩ [dj = dj ]. We have shown that for each ω′ ∈ F , π(ω′) ⊆ F .
By the definition of F , ω ∈ F . It follows by induction that πc(ω) ⊆ F . By
Proposition 4 this shows that ω ∈ Cij([di = di]∩ [dj = dj ]). By IAD di = dj .
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