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1. Introduction 
 Many applications of game theory involve settings where players have had 
enough experience with analogous games to make equilibrium a reasonable 
assumption. If only long-run outcomes matter and convergence and equilibrium 
selection do not depend on the details of learning, such applications can rely 
entirely on equilibrium. Because the cognitive requirements for learning to 
converge to equilibrium in a stationary setting are mild—even reinforcement 
learning, in which players need not even know they are playing a game, usually 
suffices—there is then no need for a deeper understanding of strategic thinking. 
 Many other applications involve games played without clear precedents in 
which initial outcomes matter. Such applications, which include most questions 
involving comparative statics or mechanism design, depend on predicting initial 
responses to games even if eventual convergence to equilibrium is assured. In 
other applications, convergence to equilibrium is assured and only long-run 
outcomes matter, but the equilibrium is selected from multiple equilibria via 
history-dependent learning dynamics (Van Huyck et al. 1990, 1991 (“VHBB”), 
Crawford 1995). Such applications also depend on predicting initial responses, 
and may depend on the structure of players’ learning rules as well. 
 The cognitive requirements for initial responses to be in equilibrium are far 
more stringent than the requirements for learning to converge to equilibrium: 
Players must have perfectly coordinated beliefs, which without precedents on 
which to base them requires players to have accurate models of each other’s 
decisions (or at least their probability distributions). It is easy to imagine 
strategic thinking being this accurate in simple games such as those that are 
dominance-solvable in a very small number of rounds. But the thinking 
required for equilibrium initial responses in more complex games is often 
behaviorally far-fetched: Even players who are capable of such thinking may 
doubt that others are capable of it, or doubt that others believe others are 
capable of it. Moreover, there is a growing body of laboratory evidence that 
initial responses often deviate systematically from equilibrium, especially when 
it requires thinking that is not straightforward. 
 As Costa-Gomes and Crawford (2006; henceforth “CGC”) note, modeling 
initial responses more accurately promises several benefits. It can establish the 
robustness of the conclusions of equilibrium analyses in games where 
boundedly rational rules mimic equilibrium, and challenge the conclusions of 
applications to games where equilibrium is implausible without learning. It can 
resolve empirical puzzles by explaining the systematic deviations from 
equilibrium some games evoke. More generally, it can yield insights into 
cognition that elucidate other aspects of strategic behavior, including the 
structure of learning rules, where assumptions about cognition determine which 
analogies between current and previous games players recognize and sharply 
distinguish reinforcement from beliefs-based and more sophisticated rules. 



 3 

 A variety of models have been proposed to describe experimental subjects’ 
initial responses to games. These models normally allow players’ responses to 
be in equilibrium, but do not assume it. They include simply adding noise to 
equilibrium predictions (“equilibrium plus noise”); McKelvey and Palfrey’s 
(1995) notion of quantal response equilibrium (“QRE”) and its leading special 
case, logit QRE (“LQRE”); the level-k models of Nagel (1995), Stahl and 
Wilson (1995), Ho et al. (1998), Costa-Gomes et al. (2001), and CGC; Camerer 
et al.’s (2004; “CHC”) closely related cognitive hierarchy (“CH”) model; and 
Goeree and Holt’s (2004; “GH”) model of noisy introspection (“NI”). 
 Level-k/CH models have now been compared with LQRE in several 
experimental datasets (Chong et al. 2005, Crawford and Iriberri 2007ab, 
Camerer et al. 2007) and at least one field setting (Östling et al. 2008). In most 
cases level-k/CH models have better fits, but the results have been suggestive 
rather than conclusive. To our knowledge NI models have only been compared 
with other models in 2×2 or 3×3 games, and only with equilibrium, LQRE, and 
a single-type level-k model (GH, Costa-Gomes and Weizsäcker, 2008), or a 
non-logit strengthening of QRE called regular QRE (Goeree et al. 2005). 
 This paper brings additional evidence to bear on the comparison of 
equilibrium plus noise, LQRE, level-k/CH, and NI models, analyzing subjects’ 
initial responses to the several different games in VHBB’s (1990, 1991) famous 
coordination experiments. The variety and structural simplicity of VHBB’s 
games and their larger strategy spaces (seven decisions rather than the usual 
two or three) allow more informative tests. VHBB’s data also shed light on the 
important but seldom studied issue (but see Ho et al. 1998) of whether people 
playing n–person games take the independence of others’ responses into 
account. Finally, they allow us to consider how the leading models of initial 
responses address the issue of equilibrium selection, and how they fare in 
comparison to coordination refinements such as risk- or payoff-dominance.  
 The rest of the paper is organized as follows. Section 2 reviews the leading 
models of strategic thinking and discusses their strengths and weaknesses. 
Section 3 introduces VHBB’s games and uses their data to compare the models. 
2. Alternative Models of Initial Responses to Games  
 Until recently, the choices for modeling non-equilibrium initial responses 
to games were limited. Any notion that is to be taken to data must allow for 
errors in some way. The most obvious choice, adding mean-zero noise with a 
specified distribution and an estimated precision parameter to equilibrium 
predictions (“equilibrium plus noise”), sometimes does well. However, even in 
games with unique equilibria, equilibrium plus noise often misses systematic 
patterns in subjects’ deviations from equilibrium, which tend to be sensitive to 
out-of-equilibrium payoffs in patterns that it cannot account for. And in games 
with multiple equilibria, particularly VHBB’s where every feasible decision is 
part of some symmetric pure-strategy equilibrium, equilibrium plus noise is 
incomplete in that it does not specify a unique (even though probabilistic) 
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prediction conditional on the value of its behavioral parameters (in this case, 
the precision). Such multiplicity has previously been dealt with by estimating 
an unrestricted probability distribution over the equilibria (Bresnahan and Reiss 
1991), but such a model very badly overfits VHBB’s data. To put equilibrium 
plus noise on a more equal footing with the other models considered here, 
which are complete in the above sense, we consider two natural variants, risk-
dominant equilibrium (“RDE”) and payoff-dominant equilibrium (“PDE”) plus 
noise, based on Harsanyi and Selten’s (1988) refinements.2 We also consider 
maximin (VHBB’s “secure”) decisions, which VHBB gave a prominent role, 
and which functions like an equilibrium refinement in these symmetric games. 
 To capture the payoff-sensitivity of deviations from equilibrium, McKelvey 
and Palfrey (1995) proposed the notion of QRE, in which players’ decisions are 
noisy, with the probability density of each decision increasing in its expected 
payoff, evaluated taking the noisiness of others’ decisions into account. A QRE 
is then a fixed point in the space of decision probability distributions, with each 
player’s distribution a noisy best response to the others’. As the distributions’ 
precision increases, QRE approaches equilibrium; and as it approaches zero, 
QRE approaches uniform randomization over players’ feasible decisions. A 
QRE model is closed by specifying a response distribution, which is logit in 
almost all applications. The resulting logit QRE (“LQRE”) implies error 
distributions that respond to out-of-equilibrium payoffs, often in plausible 
ways.3 In applications LQRE’s precision is estimated econometrically or 
calibrated from previous analyses. With estimated precision, LQRE often fits 
subjects’ initial responses better than an equilibrium model (McKelvey and 
Palfrey 1995, Goeree et al. 2002, Weizsäcker 2003). 
 From the point of view of describing strategic thinking, LQRE’s fit comes 
at a cost: Players must not only respond to a nondegenerate probability 
distribution of other players’ responses but also find a generalized equilibrium 
that is a fixed point in a large space of response distributions. If equilibrium 
reasoning is cognitively taxing, LQRE reasoning is doubly taxing. Further, the 
mathematical complexity of LQRE means that it must almost always be solved 
for computationally and is not easily adapted to analysis. Finally, in some 
settings LQRE fits worse than equilibrium (Camerer et al. 2007, Chong et al. 
2005, Crawford and Iriberri 2007a), sometimes even making systematic 
qualitative errors (Crawford and Iriberri 2007b, Östling et al. 2008).  
 Motivated by these considerations and experimental evidence, a different 
vein of work on strategic thinking considers models that treat deviations from 
equilibrium as an integral part of the structure rather than as errors or responses 

                                                 
2 Haruvy and Stahl (2007) take an approach that is similar in spirit to 3×3 normal-form games. 
3 Haile et al. (2008) have shown that the distributional assumptions are crucial, in that with an 
unrestricted distribution QRE can “explain” any given dataset. The use of the logit distribution 
has been guided more by fit, custom, and choice axioms than independent evidence.  
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to errors. Although the number of possible non-equilibrium structures seems 
daunting, much of the experimental evidence supports a particular class of 
models called level-k or cognitive hierarchy (“CH”) models, which alleviate the 
cognitive and computational complexity concerns mentioned above.  
 The flavor of this evidence is illustrated by Nagel’s (1995) results for n-
person guessing games. Her games are dominance-solvable in infinite numbers 
of rounds, so that equilibrium requires “only” iterated knowledge of rationality, 
with no further restrictions on beliefs. But her subjects never played their 
equilibrium strategies initially, and their response distributions resembled 
neither equilibrium plus noise nor LQRE. Instead there were spikes that suggest 
a discrete, heterogeneous distribution of strategic thinking “types.” 
 The spikes’ locations and how they vary across treatments are consistent 
with two plausible interpretations. In one, subjects follow finitely iterated 
dominance rules in which each does k-1 rounds of iterated dominance for some 
small number, k = 1, 2, or 3, and then best responds to a uniform prior over his 
partner’s remaining strategies. In another, subjects follow “level-k” rules in 
which each starts with a uniform prior over others’ possible guesses and then 
iterates the best response mapping k times, again with k = 1, 2, or 3. In Nagel’s 
games these rules yield identical guesses, and theorists often interpret her 
results as evidence that her subjects performed iterated dominance. In some 
more recent experiments (Stahl and Wilson 1995, Ho et al. 1998) the rules are 
weakly separated, and in others they are separated mostly by information search 
implications (Costa-Gomes et al. 2001) or elicited beliefs (Costa-Gomes and 
Weizsäcker 2008) rather than by their implications for decisions. In CGC’s 
experiments, however, the rules are strongly separated by decisions (as well as 
search), and the results clearly favor level-k over iterated dominance rules. 
 In a level-k model, as suggested by these results, players’ types are allowed 
to be heterogeneous, but each player’s type is drawn from a common 
distribution. Type Lk anchors its beliefs in a nonstrategic L0 type, which 
represents players’ models of others’ instinctive reactions to the game and is 
usually taken as uniformly random over the feasible strategies, and adjusts them 
via thought-experiments with iterated best responses: L1 best responds to L0, 
L2 to L1, and so on. Like equilibrium players, L1 and higher types are rational, 
with perfect models of the game. Their only departure from equilibrium is 
replacing its perfect model of others with a simplified model of others. L1 and 
higher types make undominated decisions, and in many games Lk complies 
with k rounds of iterated dominance, so its decisions are k–rationalizable. 
 In applications the population type frequencies are inferred from data-
fitting exercises or calibrated from previous analyses. The estimated frequency 
of L0 is normally zero or small; and the type distribution is fairly stable across 
games, with most weight on L1 and L2 (see fn. 11). Unlike LQRE, a level-k 
model’s point predictions do not depend on estimated precisions, only on the 
estimated type frequencies. In applications it is usually assumed that L1 and 



 6 

higher types make errors, which are often taken to be logit as in LQRE. 
However, despite the noisiness of types’ decisions, a level-k model requires 
neither that players respond to nondegenerate distributions of others’ responses 
(except L1’s response to L0, whose uniform randomness is simple to respond 
to) nor that they find fixed points. This simple recursive structure avoids the 
common criticism of LQRE that finding a fixed point in the space of 
distributions is too taxing for a realistic model of strategic thinking.  
 In CHC’s closely related CH model, type Lk best responds not to Lk-1 
alone but to a mixture of lower-level types, and the type frequencies are treated 
as a parameterized Poisson distribution. Unlike in a level-k model, L1 and 
higher types are usually assumed not to make errors; instead the uniformly 
random L0, which has positive frequency in the Poisson distribution, doubles as 
an error structure for the higher types. As in a level-k model, players need not 
respond to the noisiness of others’ decisions (except L0’s) or find fixed points, 
but they do need to respond to a nondegenerate distribution of lower types’ 
responses, in proportions determined by an estimated Poisson parameter. Like a 
level-k model, a CH model makes point predictions that do not depend on 
estimated precisions, only on the Poisson parameter. It also has a recursive 
structure, albeit somewhat more complex one than a level-k model’s structure. 
 Like RDE, PDE, maximin, and LQRE, level-k and CH models are 
applicable to “any” game and have small numbers of behavioral parameters. 
Because in many games Lk complies with k rounds of iterated dominance, a 
distribution of level-k types that is realistically concentrated on low levels of k 
mimics equilibrium in games that are dominance-solvable in a few rounds, but 
deviates systematically in some more complex games, in predictable ways.4 
This allows level-k and CH models, like LQRE, to capture the sensitivity of 
deviations from equilibrium to out-of-equilibrium payoffs; and they often fit 
subjects’ initial responses better than PDE or RDE. In some applications the 
Poisson constraint is not very restrictive (Chong et al. 2005), and the CH model 
fits as well as or better than a level-k model; but in others (CGC, Crawford and 
Iriberri 2007ab) that constraint is strongly binding. 
 Although LQRE has been the most popular model of initial responses, not 
all researchers consider it suitable for that purpose.5 GH suggest using LQRE 
for limiting outcomes, instead proposing an NI model to describe initial 
responses. Their NI model relaxes LQRE’s equilibrium assumption while 
maintaining its assumption that players respond to a nondegenerate probability 

                                                 
4 Level-k and CH models thus provide a concrete, evidence-based way to think about the 
robustness of mechanisms. Because L1 and all higher types respect simple dominance, 
mechanisms that implement desired outcomes in dominant strategies may have an advantage 
over more complex mechanisms that implement superior outcomes, but only in equilibrium. 
5 McKelvey and Palfrey (1995) suggest using LQRE for both initial responses and limiting 
outcomes, with increasing precision as a reduced-form model of learning. An appendix at 
http://dss.ucsd.edu/~vcrawfor/#VHBB discusses LQRE as a model of limiting outcomes. 



 7 

distribution of other players’ responses. Instead players form beliefs by 
iterating best responses as in a level-k model, but their higher-order beliefs 
reflect increasing amounts of noise, converging to uniform randomness. For a 
given noise distribution, the NI model makes probabilistic predictions that 
depend on how fast the noise grows. In the extreme case in which the noise 
does not grow with the number of iterations, NI mimics LQRE. Other extremes 
mimic level-k types: If the noise jumps immediately to ∞, NI beliefs are L0; if it 
is zero for one iteration and then jumps to ∞, NI beliefs are L1, and so on.6 
 In applications GH assume that the noisiness of higher-order beliefs grows 
geometrically with iterations, which yields beliefs similar but not identical to 
Lk’s, with slower noise growth like a higher k. The resulting NI model is more 
flexible than LQRE, and cognitively less taxing because it does not require 
fixed-point reasoning; but such an NI model is more taxing than a level-k or CH 
model because players’ choices are indefinitely iterated best responses to noisy 
higher-order beliefs (although for computational purposes in applications GH 
truncate the iteration to ten rounds). NI’s structure, like LQRE’s, is not directly 
grounded in evidence; in fact the evidence from Nagel’s (1995) and subsequent 
experiments suggests that the indefinite iteration of best responses and the 
assumed homogeneity of strategic thinking are not very realistic. 
2. Van Huyck, Battalio, and Beil’s (1990, 1991) coordination games 
 This section compares RDE and PDE, maximin, level-k, CH, LQRE, and 
NI models in VHBB’s (1990, 1991) coordination games.7 VHBB’s subjects 
played symmetric coordination games in which they chose among seven effort 
levels, with payoffs determined by their own efforts and an order statistic, the 
minimum or median, of their own and others’ efforts. We consider five of their 
treatments, in all of which subjects chose among efforts {1, …,7}: their 1990 
“minimum” treatment A, in which groups of 14-16 subjects played games in 
which, denoting subject i’s effort xi and the group minimum N, subject i’s 
payoff in (1987) dollars was 0.2N – 0.1xi + 0.6; their 1990 minimum treatment 
B, in which the same groups played the same games but with the cost of effort 
lowered to 0, making effort 7 a weakly dominant strategy; their 1990 minimum 
treatment Cd, in which subjects subsequently played a two-person game with 
the same payoff function as in treatment A, with a new, randomly selected 
partner each period; their 1991 “median” treatment Γ, in which groups of 9 
subjects played games in which, denoting the group median M, subject i’s 
payoff was 0.1M – 0.05(M – xi)

2 + 0.6; and their 1991 median treatment Ω, in 
which subject i’s payoff was 0.1M + 0.6 when xi  = M but was 0 when  xi ≠ M.8 

                                                 
6 Compare Camerer et al. (2007), who also nest generalized variants of LQRE and CH models. 
7Anderson et al. analyze limiting LQRE (as precision approaches infinity) in VHBB’s (1990) 
minimum games, and Yi (2003) analyses limiting LQRE in VHBB’s (1991) median games.  
8 Treatment Cd is best thought of as a game played by all 14-16 players in the group, evaluating 
 expected payoffs before the uncertainty of pairing is resolved. Crawford (1995, fn. 10, p. 110) 
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 In each case a subject’s payoff was highest, other things equal, when his 
effort equaled the relevant order statistic, the group minimum in treatment A or 
B, the pair minimum in treatment Cd, or the median in treatment Γ or Ω. Any 
combination in which all players choose the same effort is an equilibrium; in 
these equilibria players’ payoffs are higher, the higher the effort; and these 
Pareto-ranked equilibria are the only pure-strategy equilibria. Thus, all-7 is the 
payoff-dominant equilibrium in all the games we consider. The games are 
nonetheless non-trivial because there is a tension between the higher payoff of 
the all-7 equilibrium and its fragility, which is more extreme for minimum than 
median games; and for minimum games, the more players there are. As a result, 
the risk-dominant equilibrium is all-7 in treatments Γ, Ω, and B; all-4 in 
treatment Cd; and all-1 in treatment A (using Harsanyi and Selten’s 1988 
definition; see Crawford 1991, p. 56, fn. 27). The maximin decisions (and 
equilibria) are all-1 in treatments A and Cd, all-3 in Γ, and anything in B and Ω.  
 We focus on subjects’ initial responses to each of the games they played 
(VHBB 1990, Tables 2 and 5; VHBB 1991, Table II; or see Crawford 1991, 
Table I).9 We define Maximin, RDE and PDE plus noise, LQRE, level-k types, 
and NI with logit errors, each with estimated precision.10  
 In specifying the models for these n-person games, one important issue is 
whether players take the independence of others’ efforts into account in 
forecasting the group minimum or median. Although independence is standard 
in game theory, and is normally built into all of the models compared here; 
there is experimental evidence that people often adopt a single model of others’ 
choices, implicitly assuming that they are perfectly correlated (for example, Ho 
et al. 1998). This effectively reduces the game to a two-person game, and 
reduces the cognitive load. Because of the nonlinearity of the payoff functions, 
and the variation between two- and n-person versions of the “same” game, 
VHBB’s games are ideally suited to testing for such mental simplifications. 
Accordingly, we consider two alternative versions of LQRE, level-k, NI, and 
CH, one in which a player views others’ choices as independent, and one in 
which he views them as perfectly correlated. For the level-k and CH models, 
however, we take this to refer to L0, which is the channel by which the 
                                                                                                                       
shows that players’ best responses are then given by an order statistic of the population effort 
distribution, which happens to be the group median for VHBB’s payoffs. We omit median 
treatment Φ because it seemed to evoke framing effects, which none of the models considered 
here take adequately into account (but see Crawford and Iriberri (2007b). We omit the fixed- 
pairing minimum treatment Cf  because it clearly elicited repeated-game effects. 
9 Although each subject played a series of different games in fixed groups, the groups were large 
enough for subjects to treat their own influences on future choices as negligible, so that to a first 
approximation, their initial responses to each game can be viewed as responses to the game 
played in isolation. There was some evidence of order effects in later treatments, particularly in 
Cd, which was run last in a sequence; but these are beyond the scope of this paper’s analysis. 
10 Because Maximin does not (and cannot) have rational beliefs, we evaluate its expected 
deviation costs using the beliefs of the associated equilibrium. 
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correlation influences players’ choices, through the higher-level types, in these 
models. Correlated Maximin and PDE are the same as the independent ones. 
Correlated RDE remains all-7 in treatments Γ, Ω, and B and all-4 in treatment 
Cd; and becomes all-4 in treatment A (because it makes A equivalent to Cd). 
 Table 1 summarizes the results of the comparisons. The left-most columns 
give the likelihoods of the empirical frequencies and of random frequencies, 
which provide upper and lower bounds on the attainable likelihoods for any 
model. (The upper bound is not 0, as it usually is for a perfect fit, because the 
estimated models all predict nondegenerate random distributions of outcomes.) 
In VHBB’s symmetric games, for both the level-k and CH models, L2 and 
higher types coincide with L1, so these models share the homogeneity of PDE, 
RDE, LQRE, and NI. We therefore simplify by giving only the modal actions 
implied by each model in each treatment, and comparing fits by likelihoods 
without reporting type frequencies or other parameter estimates.11   
 The results in Table 1 suggest several conclusions. First, the correlated 
versions of the models almost always do as well or better than their 
independent counterparts (the exceptions are level-k in treatment B and level-k, 
LQRE, and NI in Γ). In these games few subjects’ thinking reflects the 
independence of their partners’ decisions, despite its importance in treatment A. 
 Second, among the equilibrium selection criteria Maximin, PDE, and RDE, 
PDE always fits at least as well as the others, and often better. Third, among the 
individualistic models LQRE, level-k, CH, and NI, level-k and CH perform 
comparably well: each wins 4 pairwise comparisons, ties 2, and loses 4. Level-k 
versus either NI or LQRE wins in 4 comparisons, ties in 5, and loses in 1. CH 
versus either NI or LQRE wins in 5 comparisons, ties in 2, and loses in 3. NI 
versus LQRE wins in 2 comparisons, one slightly, and ties in 8. Comparing 
PDE, the best of the selection criteria, against level-k and CH, the best of the 
individualistic models, PDE wins in 7 comparisons and loses in 3. 

                                                 
11 For level-k we allow only types L1 and L2; in VHBB’s games, higher types would not be 
distinguished from L2. For CH we allow all types. For NI we truncate iterations at 10, as GH do. 
And we approximate LQRE by setting NI’s telescoping parameter equal to one. Plainly these 
games are not well suited to identifying type distributions. It does not follow that the types are 
never identified. In the level-k model, because L1 and L2 have different beliefs their deviation 
costs are different, so their frequencies are usually identified via the logit error structure, but in 
our experience such identification is weak. In the CH model, because L1 and higher types make 
identical predictions in VHBB’s games, their frequencies are identified only by the estimated 
frequency of L0 and the assumed Poisson type distribution, in which there is little independent 
reason for confidence. The Maximin, PDE, RDE, and LQRE models each have one estimated 
parameter, their precisions. The level-k model has two parameters, the population frequency of 
L1 (versus L2) and the types’ common precision. However, due to the low or nonexistent 
separation between L1 and L2 in VHBB’s games, the level-k model has effectively one 
parameter. Given its use of L0 to explain all errors, the CH model has one parameter, for its 
Poisson type distribution; and the NI model has two, its initial precision and a “telescoping” 
parameter measuring the rate at which precision declines with iterations.      
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 Thus, both the structural non-equilibrium models considered here, level-k 
and CH, remain plausible alternatives to LQRE and NI; but the choice among 
models of strategic thinking must be guided by more than VHBB’s data. It is 
noteworthy that level-k and CH models adopt a very different view of 
coordination than PDE or RDE: Players do not first identify the set of equilibria 
and then refine it. Instead they respond to coordination games using the same 
decision rules they use to respond to other games; and both equilibrium and 
equilibrium selection are by-products of how those rules interact with the game. 
These models completely change our view of coordination, bringing it closer to 
our view of decisions in other games and decision problems.     
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Table 1:  Log-Likelihood Comparisons for Alternative Models 

Model 
Treatment 

Empirical 
Frequencies 

(Modal effort*) 

Random 
Frequencies 

(Modal effort) 

Maximin 
(Modal 
effort) 

PDE 
(Modal 
effort) 

Independent RDE  
(Modal effort) 

Correlated RDE  
(Modal effort) 

Independent LQRE 
(Modal effort) 

Correlated LQRE 
(Modal effort) 

Independent Level-k 
(Modal effort) 

Correlated Level-k 
(Modal effort) 

Independent CH 
(Modal effort) 
Correlated CH 
(Modal effort) 

Independent NI 
(Modal effort) 
Correlated NI 
(Modal effort) 

A 
-172.1785 

(5) 
-208.2124 

(1-7) 

-
208.2124 

 (1) 

-186.9741 
(7) 

-208.2124   
(1) 

-207.8228   
(4) 

-208.2124 
(1-7) 

-208.1302 
(4) 

-208.2124 
(1-7) 

-207.8228 
(4) 

-208.2124 
(1-7) 

-207.9439 
(4) 

-208.2124 
(1-7) 

-208.1302 
(4) 

B 
-63.8718 

(7) 
-177.0778 

(1-7) 

-
177.0778 

(1-7) 

-100.3950 
(7) 

-100.3950 
 (7) 

-100.3950 
 (7) 

-172.0179 
(4,5-7) 

-111.8437 
(7) 

-69.7289 
(7) 

-98.0386 
(7) 

-67.6081 
(7) 

-67.6081 
(7) 

-172.0179 
(4,5-7) 

-111.8437 
(7) 

Cd 
-49.3084 

(7) 
-58.3773 

(1-7) 
-58.3773 

 (1) 
-57.8714 

(7) 

-58.3773    
(4) 

-58.3773    
(4) 

-58.3773 
(1-7) 

-58.3773 
(1-7) 

-58.3773 
(1-7) 

-58.3773 
(1-7) 

-58.3108 
(4) 

-58.3108 
(4) 

-58.3773 
(1-7) 

-58.3773 
(1-7) 

Γ 
-41.0777 

(5) 
-52.5396 

(1-7) 
-52.5396 

 (3) 
-46.8985 

(7) 

-46.8985 
 (7) 

-46.8985 
 (7) 

-44.1974 
(5) 

-49.8153   
(4) 

-48.3459 
(4) 

-49.8153 
(4) 

-50.4512 
(4) 

-50.4512 
(4) 

-44.1808  
(5) 

-49.8153   
(4) 

Ω 
-28.9699 

(7) 
-52.5396 

(1-7) 
-52.5396 

 (1-7) 
-41.9893 

(7) 

-41.9893 
(7) 

-41.9893 
 (7) 

-52.5396 
(1-7) 

-41.0017 
(7) 

-52.5396 
(1-7) 

-37.6399 
(7) 

-52.5396 
(1-7) 

-41.9894 
(7) 

-52.5396 
(1-7) 

-37.8427   
(7) 

*The modal and median efforts are the same in all treatments, except Cd where the median is 4 and Γ where the median is 4 or 5. 

 


