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Preface

The problem to be considered here is the one faced by bargainers who must
reach a consensus--i.e., a unanimous decision. Specifically, we will be consid-
ering n-person games in which there is a set of feasible alternatives, any one of
which can be the outcome of bargaining if it is agreed to by all the bargainers.
In the event that no unanimous agreement is reached, some pre-specified disagree-
ment outcome will be the result. Thus, in games ofthis type, each player has a
veto over any alternative other than the disagreement outcome.

There are several reasons for studying games of this type. First, many
negotiating situations, particularly those involving only two bargainers (i.e.,
when n = 2), are conducted under essentially these rules. Also, bargaining
games of this type often occur as components of more complex processes. In addi-
tion, the simplicity of bargaining games makes- them an excellent vehicle for
studying the effect of any assumptions which are made in-their analysis. The _
effect of manjr of the assumptions which are made in the analysis of more complex
cooperative games can more easily be discerned in studying :b‘arga:hﬂ.ng games.

The various models of bargaining considered here will be studied axiomati-
cally. That is, each model will be studied by specifying a-set of properties which
servé to char#cterize it uniquely. | '

Only conventional mathematical notation will be used .t:-h:r:oughout. Thus R® will
denote n-dimensional Euclidean sp;ce, $-= {x|B} will mean that S is the set of
elements x such that condition Bholds, and a,b ¢ S will denote that a and b are

elements of S. For n—-tuples x,y € Rn. X > y means thgt xi'g_.yi for each 1 = i, seey

n n
n; I ox; denotes the sum x; + X, + «o0 + X, and I (xi - yi) denotes
i=]1 : i=1

the product (xl - yl)%(xz - 72) coe (xn - yn).

A preliminary version of this material was assembled in the Spring of 1978,
when I delivered a series of lectures on thistopic at Stanford University. At that
time I was a guest of the Institute for MMc-kal Studies in.the Social Sciences
and the Gradual;e_ School of Business at Stanford, and it is a pleasure to acknowl~

edge the support which I received from them, 'as-well as the encouragement which I
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received from my colleagues at Stanford, particularly Mordecai Kurz and Robert
Wilson. I also benefitted from many discussions with those who attended these
lectures, and particularly with J. Cave, H. Imai, P. Milgrom and M. Osborne.

My subsequent work on this material has been supportéd by a grant from the
National Science Foundation to the Univers:l.t:y ‘0of I1linois. I alsc owe a consid-
erable debt to my co-workers in this field, particularly John Harsanyi, Fhud
Kalai, and Roger Myerson, who have helped me to better understand both their work
and my own.

My greatest debt, in this endeavor as in others, is to my wife Emilie, to
whom this book is dedicated.

Alvin E. Roth

Professor

Department of Business Administration
and Department of Economics

University of Illinois
Urbana, Illinois 61801
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AXTOMATIC MODELS OF BARGAINING

by
Alvin E. Roth

Part I: Nash's Model of Bargaining

A. Introduction
One of the simplest yet most ::fru-:l.t_ful 'panltdigms. in cooperative game theory
.48 the pure bargaiming problem, in which a group of two or more participants is
faced with a set of feasible outcomes,. any one of which will. be the rfesult if
it is specified by the unanimous agreement of all the.participants. .In the event
that no unanimous agreement.is :reached, a. given disagreement: outcome is the re-
sult, If there are feasibl-e:aptcms .which'all.-tﬁe- participants p:éfer to the
disagreement. outcome, then there.is an incentive to reach an agreement; howevér.
so long as. at l'aa'st; ‘two of the participants differ over whkich:outcome is most
preferable, there:is a need. for bargaining and negotiﬁtio.n;.om M outcome
should bé-agraed..upon. " :Each participant has the ability. to veto any ocutcome
different than .-.the'.-disagre'eﬁant. outcome,. since unanimity is required for any
other result.
- The approach .to the. problem which we- sha.lil. consider.here was first tak.en in
: 1950 by John Mash, who c'enc.ent:atedq oii the two-person: bargaining problem. He
presented ‘a .framework. whicﬁ‘. permitted a unique. feasibie-. outcome to-be selectéd .
as the ‘I.'solution" .of & given bargaining problem.. .This was’ in contrast to ml:ler
-approaches within: t_ﬁe‘:gaue-ntheoretlic‘ tradition: . .the wvon Neumann=Morgenstern.
[1944} solution to the bargaining problem coincides with Edgeworth's [1881] |
ﬁccﬁtract curve', :and 1is. .Qqug;..;m ‘the entire set of .individually ::a.t:ional,-
‘Pareto b'p't::hna.ll outcomes. |
Nash's model 'off--bargﬁining.'dr.aws heavily on ‘the theory of rational indi\fidual
choice. behavior: as :l:;uciated by von Neumann.and Morgemstern. _For.situations in
which a single 1ndivﬁu1 must:. choose from a set of feasible alternatives, von

rnese ‘terms will be defined shortly.
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Neumann and Morgenstern defined rational behavior as behavior which can be modelled
by assuming that the individual has a consistent.preference relation over alterna-
tives, and always chooses the most preferred:feasible alternative.. They consid-
ered situations in which the feasible:alternatives might involve chance events,

and showed that:a simple set of consistency conditions on. the preferences makes

the process of rational choice equivalent to picking.the alternative which maxi-
mizes the expected value of some real-valued. "utility function." .The theory of
such utility functions.has generated a large literature of its.own;.we give here

a brief summary of the theory as presented by Herstein. and Milnor [1953].

.Expected Utility Theory

A Bet M.is.a mixture set if for.any elements &, b € M, and for any number
p € [0,1], we can associate .another element of M denoted.by.[pa; .(1.~ p)b] called a
lottéz_:x".hetweén" a and b. . (This lottery:.can be interpreted .as the event which
results in alternative.a with probability p,. and which with probability (1 - p)
- results.in alternative b.). We.assume that lotteries have.the following properties
for all a, b £ M:
[1a;.0b] = a, [pa; (1L - p)b] = [(1-- p)b; pal, and
{qlpa; (L - p)bl; (1 - @)b] = [pqa; (1 - pg)b].
The first line is self~explanatory, while the second. line states.that a compound
lottery, whose. alternatives may.themselves be.lotteries,.is. equivalent to a simple
“lottery. which.results:in ';eaeh: alternative with.the appropriate probabilities.
A preference on M is:.defined ‘to'be.a binary. relation R.such: ﬂmt for any
'3, b € M either.aRb.or bRa must hold, and .if:.anh.. and.bRc thenanc. We write
4Pb: 1f ‘aRb but not bRa, &nd aIb. if akb and bRa.. .(The relation R"is to be inter-
preted-as:representing.the preferences:of.an. individual; so.»}'x:hat._..aRS means he
likes.a .at least as well as b, '.azﬁ;mmb.,he..(strietly)'.:p:e.ﬁeu. a.to b, and alb
means he is indifferent hstWeen,a.,.anarh..:)-‘- See: Richter: [1966] for a discussion
of. what ‘kind .of ‘choice behavior. implies:the.existence .of .such.a preference rela-

-tion. A real valued function:.u defined .on.a. mixture set M.is a utility function
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for the preference R if it is order preserving (i.e., if for all a, b ¢ M,
u(a) > u(b) if and only if aPb), and if
u([pa; (L = p)bl).- = pu(a) + (1 - plu(b).
That is, the utility of a is higher than the utility of b if and only if a is
preferred to b; and the uti‘.litjt of a lottéry is equal to its:ezpected utility,
-If R is a preference.ordering on a mixture set M,.then the following condi-
tions insure that a:utility. function exists:
For .any a, b, c.e M, the sets {p|[pa; (1 - p)b]Re}
-and {p|cR[pa; (1.~ p)b]} are closed.
If a, a' € M and ala' then for any b € M,
I% a3 %‘"b] I -I% a'; -Ji-b].
The -first condition states.that the preference relation is continuous as a
- function of. probability,.so: that if, for instance, a:given alternative ¢ is pre-
ferred.to some lottery, then.the preference will .not be reversed if an arbitrarily
- -small:change .is made in. the: probabilities which.define the.lottery.. 'l'hé second
condition says. that if:an individual is indifferent between .two;alternatives a and
"a'y ‘then'he. is also indifferent between .two lotteries whose ;on];(...diife.rehce' is that
.alternative.a' in on;e ‘lottery is substituted. for alternative.a:in the other.
The utility. function. is unique .up.to an. order-preserving linear .transformation,
.or .J:tn'tha..lanMe of ‘meagurement theory, it is uniquely defimed.up .te an interval
scale (cf. Krantz, Luce, Suppes,.and Tversky [1974]). That is, if u.is ; a utility
function for a .given preference.relation, then.v.is a utility function reflecting
the. same preference.relation.if and . oaly if there exist real numbers.c and d with
¢ > 0 such that v = .cu.-.-l-:.d.l.:Thatl 48, the origin .(zero _pq.int)_#hd:,scalé (unit)
chogen. for. a T1:;;[;1.11‘:3&...;Euna!.::lw.'m. are. arbitzéxy,-. and.if:v.=.cu+ d then fhe utility
function'v. aud‘,;z m«ey ‘the same information about an '-.indiﬂdual"..s-,,preferences._
‘Just: as .Ifam-anlhei;t;,and'. Celeius .teﬁpmtu:e\ scales:.convey. the game 'L_ihfomtion

about temperature.
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B. The Formal Model and Axiomatic Derivation
Because the rules of the bargaining problem permit. the final outcome to be
determined only by the coalition of all the participants acting together, or by
the individual participants acting alone, the.special case.of bargaining among two
‘participants shares many of.the properties.of the general.case of bm;gé,ining among
n participants, for m > 2, That is, even when n is greater than two, so that
intermediate coalitions exist which. contain more.than ene.participant but fewer
than n, these coalitions cannot.by themselves secure any: outcome:but the disagree-
ment outcomej i.e., .they cannct.secure:any outcome which.is not avaﬂsbie to their
members:a.eting._indivimuy.. So .the effect of intermediate coalitions.on the bar-
gaining process is-of generally minor :lmportance.l
Partly for this reason, most.of the literature.on.the bargaining problem has
‘ concentrated on the special .case.when n = 2. This reduces complicated notation
. to -a minimum, and for many questions no new techniques.would.be.ﬁeeded, or new
phenomena observed, .in the. general .case.  However. there are some differences be-
- tween ‘the ‘special case.n. = 2 and the case of.more than:twe bargainers. For this
reason, ‘we shall begin the formaldevelopment for.the.general case of n bargainers.
"Follbwing..nash;.we-aasme:..that‘ each player-z has. preferences. over the feas-
ible.outcomes. which. are represented by a.von Neumann-Morgemstern utility functionm.
. (Such:a -rapfesantal:ion'ha;s,:.of. course, .an arbitrary origin.and scale.-)' . A parti-
. cular.outcome. can then he.rep::_esén.ted...as an n-tuple.of. .ml:_'-m-s, where the
‘1~th. component is the nt:l.‘li.ty'. of. #hyer i for. the ontcoﬁe. in ,questio;d. The set
of all t-feawﬁsle;.nutcomes.;cm:.tﬁen.be. represented as:a. subset §:.of " (n dimen~
. sional Euclidean: apace}. . If we: assume that the. 'plz,yazs .may. :agree; to randomize
between.outcomes. if. they so. nhoose, then the set S will be. convex. aince von

: Nemm—mtgenstern.:ntﬂity_.£unet.iens...eva1mﬁe .‘l.otte.r-.:l-.es -at,tb.eiz. expected utility.

1This 48 .not to. say .that,. in formulating -a.particular bargaining problem, there
may not-be.difficulties. concerning the a gggegat:l.on of .individuals, For instance,

. dn various contexts it might be appropriate.to consider t.he parl::l.c.:l,pants in the
‘bargaining: process.to be households, firms,. unions, or political parties, rather
:than: the individuals who make up.these various organizations.

2Wé use.the terms "player',. "participant", and "bargainer" iaterchangeably.
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So ‘a bargaining game is described by a set N = {1, ..., n} of players and
a pair (S,d) where S is a'compacta'.convex ‘subset of'..Rn'.repr.asenting the feasible
utility payoffs" to the players, and.d .is an element .of S.corresponding to the
disagreement outcome. - For simplicity, we will further assume .that there igs at
least one point s in'S such that:d < s (i.e., di <8 for 1 =1, veep, n). This
confines our :attentiaﬁ. to’ those bargaining problems which offer each player some
potential reward for reaching an agreement. .Demote by B the set.of all such bar-
.gainins'\gms.:.’ -Unless.otherwise stated, we will henceforth assume that the _
-players know all the details of the.game, imcluding the preferences. of the other
players. .\ '

Nash: defined a solu'tién_ to the bargaining problem to be.a function f: B + R
such that £(S,d) 'is an element .of § for any (S,d).in B. That is; a solution 1§ a
rule which assigns to 'each bargaining game a feasible.utility.payoff. of the game.
-Thus a..sclution can.be interpreted.as.a:model.of the .bgrgaming,p;pness.ﬁ When
- no"confusion.will result, .the. outcome f(s,ﬂ).';.wﬂl.'sometime&.bg.ref.ez_';r:ed to as the
solution .of the game (S,d), even -though, -strictly speaking, theterm 'solution’
refers.to .the function f defined .over all games, rather than:to: the butcome which
it selects.in.a .particular game. .

. .Nash. proposed that a-;soiui::l.on.:.'ahould possess.the: following. four properties.

34 sets is compact.in. R™ 1if and enly 4f.1t.4s closed .and bounded.. For instance,. -

4f S.is.generated. by:allowing randomization of.a finite :set.of altematives, then
it 1is compact. '

Aue will refer interchangeably.to “outcomes",."payoff vectors”, and simply
Ypoints" in.S. 3

.sﬂencefnztmm-.hugzinhg;m,-wi;ll_._..bg. assumed._to_be_in.the.class B, unless
otherwise noted, o
Gﬂ'temt.:l.velg,‘ ‘a-:solution. can:.be. interpreted as an.arbitration procedure; i.e.,
a rule:which tells.an arbitrator.what cutcome to select. So.longas: the arbitra-
tien procedure is-intended ‘to reflect: the relative advantages which the game gives -
'to .the.players,-this interpretation need not:.be.at.odds:with the interpretation..
-of .aisolution. as: a.model of the bargaining process.. But,.of course, a (descrip-
tive) -hansaﬁning“i._mdel. can: be.tested empirically, . while. a. (prescriptive) arbitra-
tion: procedure cannot. o



Roth, Alvin E. Axiomatic Models of Bargaining, , Springer-Verlag, 1979.
http://kuznets.fas.harvard.edu/~aroth/Axiomatic_Models_of_Bargaining.pdf

Property 1. Independence of Equivalent Utility Representatioms: For any
bargaining game (S,d) and real numbers-ai and bi..for i=1, ..., n such that each

a, > 0, let the bargaining game (S8', d') be defined by §' = {y ¢ Rn-.l there exists
. L
an x in S such that ¥y = oax, + b:l. for i=1, ..., n} and di = aidi + hi for

i= 1’ seey Do Then fi(s" d') = aifi(s’d) + hi for 1 = 1' seey Lo

This property reflects the amount of information contained. in a.von Neumann—
Morgenstern utility.function. If a.given player's preferences .over. the possible

outcomes are represented. by.a utility function u,, then they.are also represented

1‘!
by any utility function vyo=au, + bi’ ‘where ai'.and bi,a:e; treal numbers, and a

is positive. The rationale for requiring property.l.is. that,. since u { and v

i

i
summarize the .same.information, the solution. f.should yield the.same underlying
outcome "if some.player's utility:function is changed from u ;- to-v;. Of course
the utility. payoff which.the model assigns.to. the player in question.at any given
underlying cutcome-q.changes from: q-i.(q). to ai“'i"(q)_+ b.i.;-('_.-l.ust as.changing from
Celsius to Farenheit temperature .changes.the temperature .of boiling water from 100

to 212).

- - Property 2. Symmetry:. ':Suppose that.(S,d) is a symmetric.bargaining game—
i.e.; suppose :_tha:"d-l = d'z- B e & :'dﬁ.' and that.if x 1s contained in S, then so
is every:permutation.of x. Then

fl(s,d) - fz(_S‘,d) T sse = fn(S.d)-

Like the .previous.property, .this.one .requires: that. the solution depend only
on information:contained.in the model... In particular,.if:(S,d).is.a symmetric
‘bargaining. game, then.it.gives. no \.imforﬁatian._.which;diatingqmn- one. player from
another.:. The ;property ‘of .symmetry requires that:the solution should not distin-
- guish. between.the.players .if . the.model does not, |

_lj_lr_a_p_e__j_:_lgz._;_.'i_,“ ..Independence of-Irrelevant Alternsatives: . Suppose.that (S,d). and
~(I,d) .are bargaining games: such.that T contains S, and £(T;d) .is an _element of
‘8. . Then:£(8,d) * £(T,d).

10
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This property says that the outcome of bargaining, as identified by the
solution. £, depends only .on the relationship.of the outcome .to .the disagreement
point, and does not depend on other alternatives in: the feasible.set. This prop-
erty imposes a very different sort of .requirement. than do Properties 1 and 2, and
it can be interpreted as expressing the kind of bargaining which Nash's solution
is intended to model. In particular, Property 3 models a bargaining process which
can proceed by first narrowing down the original set T of: feas:thle.altefnatives to
some smaller. set S, without changing the outcome.

Nash [1950] motivates this property of a.solution by saying:. "If two rational
individuals would .agree that £(T,d) .would.be.a fair bargain if.T were the set of
possible bargains,.then they. should be willing.._to.:make.an.-agrment, of lesser
restrictiveness, not. ﬁo':a.ttempt to arrive. at any bargains. represented by points
outside of the.set .S.if:§ .qonta'ined £(T,d). .If S were.contained in.T, this would
‘reduce their situation to one.with S as their set of possibilities. .Hence £(S,d)
should equal £(T,d)." Another way to.state the same.relationship is to say that,

.if a set S of outcomes is. enlarged to.the set T, then either £(T,d) = £(S,d) or
£(T,d) # S.. That is, either the solution selects.one of.the new: alt.émt:ives s OF

‘else it selects.the same. alternative as when S was the feasible set:."?r

--Property 4. ‘Pareto Optimality: For any bargaining game (S,d), if x and y

are elements of S such th#t y.> x, then £(S5,d) ¥ x.

This.property.can be thought of as requiring. that.the players collectively
should.behave in a .rational way,. since it specifies.that the.solution.will select
an outcome such .that .no:other feasible outcome.is preferred. by all.of the players.
The outcome must.be. a.maximal element:.of the "social preference” defined by the

-interseection of all. the.individual preferences.

7&:1 alumtiva interpretation.of the.property. is that it.models a bargaining

process in which. only certain kinds of arguments are adnissable;, or effective.
. .In particular, suppose: that, givea a fixed. disagreement eutcome;.only binary
‘comparisons. between.alternate outcomes.are. permitted, the ebject.being to select.
. .the feasible .outcome which is.in some sense.the "best". . Then the “best" outcome:
‘in:a set . (l.e,, the winner of all the pairwise compa:isans) would also be the
"best" on any .subset of: wh:l.eh 4t was.a member, as required 'by.property 3.

11
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The subset of these 'collectively rational' outcomes contained in a given
set S is called the Pareto ont:lmls_ subset, P(S) = {x ¢.5| there exists no y in §
for which y > x}. The property of Pareto optimality requires that, for any
bargaining game.(S,d), the solution.f should.always select an outceme contained
in P(S).

Nash [1950] showed that the four.properties. stated.above.define a unique
solution to the bargaining problem. .In particular, he. proved. the following re-

markable theorem.

Theorem .1 (Nash's .theorem): .There:is:a .unique solution possessing Properties
1-4, It is.the function f = F defined by F(S,d) = x such that x > d and

n n
I (xi-- d:l.) > I (yi - di) for all y in S such that y. > d and y # x.
i=1 i=1

Thus the Nash.solution is a.funetion which selects the unique.outcome which

9

maximizes the geométric.average -of the gains which:the.players realize by

reaching an.agreement.instead of settling for the. disagreement outcome.

. Summary.of. .tzl_ie_ proof: . Before presenting the:.proof: in:detail, we can summarize

‘the 'm..ain;idea's as follows. It.is easily shown.that:the solution.F.described in
the theorem:is well-defined .and possesses-,:the...f.o.ui:_. required properties., It is
- then necessary to.show.that any solution f which possesses.these: four properties
must:be identical to F. ..
... -For.any .symmetric bargaining.game, f.and.F .must.coincide,:since there is a
- unique Pareto-optimal outcome.all.of. whose components. are aqu_al,..'anﬁ Properties

: 2 and 4 :require a-solution to.pick.this outceme, « To:verdify that.f and F coincide

_ sut:er the Italian ecomomist V. Pareto.

: n
.as-w_ictly'speakjngp.&he geometric average is I (xi:_-:__ai_)?f __n, so that we
: o i=1
are actually: conpsidering the n=th power of the geometric average..:But the dif- -
ference is.of no. consequence, since the geometric.average aad its n-th power are
maximized by: the.same point. .

12
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on arbitrary bargaining games, Property 1 implies that it is sufficient to consider
games (S',d') normalized:so that F(S', d') = (1, .sey 1) and d' = (0y seey 0).
But the outcome (1, +eey 1) .:I.é Pareto optimal in a.symmetric set A which contains
§'. Consequently f(A,d') = (1, ..., 1) = £(8',d"), where the.last equality follows
from Property 3. . |

So the mechanism of t;hecproéﬂ is that Properties.2.and 4 determine the out-
come chosen by a solution.in symmetric games, and Properties.l and 3 .pem:l.t every

game to be treated as a symmetric game,

Proof: The solution described.in. the theorem is.in fact well-defined. That
is, there actually is an.cutcome x in S which maximizes. the.geometric average of
the gains, since the geometric.average is a.continous function, and thus it
acfn:l.eves its maximum on.the set.$, sineeI‘S :I.is.a‘compactx set,  Furthermore, this
maximum is achieved at a:unique point in.S.. This is because.if two different
points x and x" in S such that:x, x' >.d yield the same geometric average, tﬁen
their mean (which is also contained in S, since S.is:convex) yields a strictly
“higher geometric. average, go that the maximum is not achieved at- eﬁ:he: x or x'.
So the Nash.sclution.is: wt_all-'adef:l.ued; -we now. must show .that. it possesses the prop-
-erties required-by the theorem.

- To. see. that: F.is .independent.ef .the particular origin.and.scale chosen teo

- represent each player's utility.function, let (S',d!) be 'a.bargaining game derived
from .an arbitrary bargaining game (S,d) by.a.change of .utility representations, as
-in the statement of Property l.. Then:a point. y.in the:set.S$' has coordinates

i1
lI(jr:t - d:l.) = Il(arixi + b:I.' - a:l.di - bi) -IlaiIl(xi . di)' That is, the relevant

Yy = ax +'bi, .-whete-.x.-:(xl,' - xn) is the corresponding. point in the set S. So

geometric average evaluated at.an outcome:y in'.the game :(S'yd') 1is simply a posi~
tive: constant (c ﬂ--.nai.). times the geometric average. of.the.corresponding point in
(S,d). . This constant doesn't affect where.the geometric. average achieves its maxi-
UM, . 80 Fi(\s'-,d-".) = a.iri(-s.d)::-h bi"' aa required.

To:see that-F.posseeses Property 2, let.(S,d). be. a. symmetric bargaining game

$ .
- with x. = F(S,d). Let y be -any: permutation of x; (e.g., let: vy = xj ~and' 73 =-x, for

13
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some components i and j). Then y is an element of S at which the average gains
are equal to those at x. But, as noted previously, the maximum average is achieved
at a unique point in S, so y = x. Since y was ‘an arbitrary permutation, it follows
that x, = xj for all 1, j, as required.

The functien F clearly obeys Property 3, since the maximum which a function
achieves on a set is always at:least as large as the maximum which it achieves
on any subset. Equally.clearly, F possesses Property 4,.since if a-feasible pay-
off vector is not Pareto optimal, then it is majorized by.another: feasible payoff
vector, which ylelds a higher average gain. Thus the Nash:solution possesses each
of the four properties. It remains to be shown that .any solution f which possesses
these four properties must be identical to F.

To ‘see this, we first observe that if f is symmetric and.Pareto optimal ({.e.,
if it possesses Properties.2 and &) then it coincides with.F for any symmetric
bargaining game. (S,d) and is.equal to:the unique Pareto optimal peint x such that
X} =Xy = cee =X (By the definition of Pareto -optmality,_...no.barg;ming game
can contain.more .than one such. point, and such a point is contained :Lnl S since §
is symmetric,. convex,.and compact.) It will.be convenient to note that, if (A,d)
‘48 a symmetric: b‘argainink., game whose Pareto .optimal set is:contained:in the hyper-
plane {x|Zx, = n} them.£(A,d) = F(A,d) = (1, ..., D). |

‘Let-f be: a.solution which possesses.Properties . .l-4, and let .($,d) be an arbi-
trary bargaining game with z =:F(S,d); then we need :to.show that. £ (S.,dj = z, Let
(8',d") be derived from (S,d) by changing the.utility representations. so that d is
transformed.into.d' = (0, «.., 0), and z.is transformed.into z* =: (1, ..., 1).10
By Property:1, £(S,d) will be equal to:z if and.only if £(S',d'). = z'. Now,
F(s',d') = 2%.= (1, ..., 1) since F .is independent of equivalent.utility repre-

. ‘sentations. .So z'. is the unique point in the intersection:of the sets S and H,
where H: is the set H =.{x|lx, > 1}.. The hyperplane T = {xlmi =.n} 1is the unique
t.angent:: to H through: the point z' ,11-and .since ‘both H and S' are coﬁu sets,

_.m'l'hat is, each x in S is transformed :Lnto x' such that x' = a_x

,+b,1 for 1 =1,
.-ao"njm‘a .1!(8"'d)andb i,(z "'di). ’

11

1 1'.l'he tangent is. unique, since. the surface JI(x - d i) = k. 1is differentiable,

14
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Figure 1

The case n = 2
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the separating .hyperplane.theoreml.z" implies that S' is a subset of {x|Ix 4 < n}.

(See Figure 1, p. 11).

Since S' 1s a compact set, it 1is contained in'a.(sufficiently large) symmetric
set A, such that P(A) is a subset of the hyperplane T (see Figure 1). As previousl)
observed, £(A,d) = z' since f possesses Properties 2 and 4.. .Thus Property 3 impliei
that £(8',d') = z', which completes the proof. |

To emphasize the.distinct roles.which were played by.the.different conditions,

we state.the foliou:l.ng-..com;lary.'of the proof,

.Corollary 1,1: Suppose.that for. any symmetric bargaining game (A,d) such that
d= (0, eevp 0) and P(A) is a subset-of .the hyperplane T = [;]'in.'- n}, that f is
a solution.such that £(A,d) = (1, ...,-1).. Then.if f possesses Properties 1 and

3, £ is identical:to the Nash solution F.

“.Individual.Rat ionalit
| In order.to.model a bargaining. problem by the bargaining game (S,d), we have
ﬁ.ssmed that each .of the players is.a.rational indiv:l.dna-l.:,.ln.:..ﬁart;tnular, we have
assunéd.r-that each.player:makes choices. (i.e., exhibits.preferences) which afe
sufficiently well behaved:so that. they. can be represented.by a:utility function,
and that this utility funetion completely summarizes the players' choice behavior

- over-the set of outcomes. .To say that .an individual's choice:behavior is summar-

~ized by a utility.function.is to.say.that, when he 1is faced with.a' choice between
two alternatives which have different utilities, he chooses the.one with the
higher utility.

:0f course,. in a bargaining gsme, an individual player . .isn't. free to simply

: chea;saf any: outcome,: and..the problem.of. b#r.ga.ining,.:aven .'._outcms:.amﬁg-'. players with

- different -preferences. is quite.different from a problem.of: individual choice. But
‘the rules of the bargaining. gsme .are sueh.that any individual can’ alwayé choose

+the disagreement outcome.and .insure that it will be:the outcome.of the game,

_ e separating hyperplane theorem states that two' compact convex sets which
" .intersect .at a.unique point have a.common. tangent. through that point.
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Consequently, any individual will choose the.disagreement outcome .instead of agree-
ing to any outcome which gives him a lower utility. That is, no payoff vector x
will be agreed tc unanimously if there is even.one player.i.such that x, < di'
‘Thus if the game is played by rational .players, the only payoff vectors which can
possibly arise are those vectors x sueh that x > d.

That is, in order .to.be consistent with the model, im which payoffs in the
game are defined in terms.of.each individual's utility function, any solution

must possess the following property.

Property 5. Individual Rationality: For.every bargaining. game (S,d),
£(5,d) > d.

This property is implicit;:in Nash's original treatment of 'the bargaining prob-
lem, and.of .course Nash's solution.is individually rational.. Many modern treat-
‘ments. of .the subject .explicitly include Property .5, along with the other four
properties. (cf. Owen [1968], p. 141; Harsanyi [1977], p. 196).

However in Nash's formal: development of the model, the. omly reflection of
the individual rationality..of the players as captured.in their utility functions
is .in.Property 1. .This property has nothing to do, of course, with the individual
choice behavier implied by a utility function; it merely requires that the solution
be.independent of equivalent utility representations. The requirement of Pareto
optimality,.on the other:hand, is a requirement conceraning collective.rather than
individual.choice.. In some:sense Pareto. optimality is the.strongest-of the four

..properties, since it requires.that the solution select.a." " outcome in every
bargaining game.. This is a particularly unsatisfying assumption to. have to make
in constructing.a model.of the bargaining process,.since it eliminates a priori
‘most of the potentidl om:cmes.u_including. the poasiﬁéllity.thatqa:diugrmnt will

occur,

. rge - .
B!hat:.:ls,. the assumption of Pareto optimality removes from consideration all of

- the. feasible cutcomes. except for.a .set of measure rero. .Even:if:we consider bar-

- gaining.over.a finite (rather than.a.convex) feasible.set, it .can be shown that ..
-the: assumption of Pareto eptimality. generally.removes most: of. the.feasible out-
cones . from. eonsideration. (cf. 0'Neill [1978]).
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Surprisingly, however, the implications of individual rationality are suffi-
ciently far-reaching that it is essentially unnecessary to impose the requirement
of Pareto optimality in order. to:derive Nash's solution.. .The following theorem

makes this precise. 14

Theorem 2: There are precisely two solutions f possessing Properties 1, 2,
3, and 5. One is Nash's solution, f = F, and the other. isthe disagréement

solution f =D defined by D(S,d) = d for. all bargaining games (S,d).

-Proof: Both F .and D possess Properties 1, 2, 3, and 5; we need to show that .
‘they are the only functions which do so. Suppose, therefore, that f is a solution
which possesses these properties.

. Consider. the symmetric bargaining game (A,0), where A={xeR"x >0, Ix, <n},

i-
and the disagreement point is .the origin (i.e.;. 0= @, +sey 0). The proof will
proceed by establishing the following statements.

1) 1 £&,3) = (0, +u., 0), then £(S,d) = D(S,d) = d for every (5,d) in B.

11)  if £(A,0) # (0, ..., 0), then £(A,0) = F(Z,0) = (1, +o., 1)
111) if £(A,0) = F(A,0), then £(S,d) = F(S,d) for every (S,d) in B.

To establish statement (1), consider an arbitrary bargaining game: (Ssd). Sup-
pose £(A,0) = (0, ..., 0), and let A' be the set A' = {kx + d|x € A}, where k is a
pc;s:ltive' number.. Then, since § is compact, we can find k. sufficiently large so
that A' contains the set ST defined by st = (x¢ Slx > d}_. Now P.roﬁerty 1 implies
£(A',d) = kf(A,0) + d.= d, and Property 3:implies f(S':",d) = f£(A',d), siﬁce des'.
But Properties 3 and 5 together.imply £(s,d) = £(S,d), so. £($,d) = D(S,d) = d.

To establish statement .(ii), suppose that £(4,0) = x # (0, .2es 0). Since
(A,0) is a symmetric bargaining game, Property 2 implies that x, = x, = ... = x =k
Property 5 and the.fact that x # (0, ..., 0) imply that k > 0, and since the defin~'
ition of a solution .requires.that x € A, we know that k <.1. : Consider the set

A' = kA, and observe ‘that x 18 an element of A', which is a subset of A, Property

14“[15 result f:l.rst appeared.in Roth. {1977a1. The presentation here follows the
discussion. in:Roth [1979b].
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3 therefore implies that £(A',0) = x, while Property l requires that £(A',0) = kx.
Consequently k. - i, and £(A,0) = (1, ..y 1) = F(A,0). Statement (iii) follows
from Corollary 1.1 of Theorem 1,.since Properties 2,.3, and 5 imply that, 1if £(a,0)
= (1, eeep 1), then £(A,0) = (1, ..., 1) for.any symmetric game (A,0) whose Pareto
.optimal subset P(A) is contained in. the hyperplane.T, ::,Sbecif:l.cally.....if A is con~
tained in A, then Property. 3 implies £(A,0) = £(A,0). 'If A is contained in A,
then Properties 2 and 5 imply that £(A,0). is.an element of A, and so Property 3
implies £(A,0) = £(A,0).  Thus if £(A,0) = F(A,0), the assumptions. of Corollary
1.1 are met, "and so:. statement (1ii) follows.: This completes the proof of the

theoremls

Thus Nash's first three properties admit.only. two modes of bargaining behavior
consistent with individual rationality: .ome. s the behavior. which.yields Nash's

solution, the other is the. behavier which yilelds disagreement .in .every game.

: Symmetry. and Asymmetry

In the proof of Nash's theorem we: saw that .the properties. of. Pareto optimality
and symmetry serve simply.to.determine. the solution.on.the.class:of .symmetric games
(i.e., seE Corollaty_;-l.-i)..-. ~In. the presence of individual:rationality, it becomés
.unnecessary.to require:Pareto -optimality, and the.symmetry property s only used
to determine. the .solution.f.on the.particular .game.(._A',-E)z. (L.e.,. Bee statements
(1):and (ii) in the.proof of. Tﬁearem 2). The .two independence :properties are then

- sufficient: to .determine the solution for: arbitrary games.

"It . is: easily verified from the.proof:of part (ii) of Theorem 2 d:h_’at, if £ is
ragolution. different than:the disagreement solution: D and possessing Properties
1,.3, an:d 5, then .f..(x,a);-.nuat,.b'e .Pa:retd optimal.in A, We might: therefore conjec—~
‘ture. tha't.-.suchl.‘&- solution £ can:be .nniquely.h.det:ernineé.by-‘spééiiying .f(I,E) to be -
an arbitrary. Pareto:optimal point p in A.  Then, 1f £(A;0) = p = (1, cees 1), £
would be .the.(symmetric) Nash solution,.and. for-p. $#:(1, ««ss 1), .we would hope to

find f restrieted: to.a unique non-symmetric: Nash solution.

Lirhe game. (A,0) used in the proof will come up again and.again in our study .
of the bargaining problem, .and.we.will sometimes refer:to it.as. the "canonical"
bargaining game.
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This conjecture is almost correct, 'but not quite.. To. see how it fails, observe
that there are several solutions.f obeying Properties 1, 3, and 5:such that £(&,0)
= (n, 0, .24y 0), for instance. One such solution is £(S,d) = x such that x =
(xl. dz, cess dn)’ with x) ‘maximal; another such. solution is £(S,d) = x such that x
is lexicographically maximal in S+. where .S+.- {x € S|x > d}. The second of these
solutions is Pareto optimal for all games while the first.is not; but it is easily
verified that both solutions. exhibit Properties 1, 3, and. 5. For both of these
solutions, £ ('K.E)' has some non-positive components, and this, it. tui:ns out, is
what causes the difficulty.

In particular, for each strictly. positive vector p.e¢ Pa)s'-tihete. is a unique
solution f with Properties 1, .3, and 5 such that £ (I,E)-— p.  The function £
picks the. individually.rational.point £(S,d) = x which: maximizes .the. weighted geo-
me‘tric-.aversge!j‘of-..the: gains, using the components.of p.as.weights. That is, we
have: the following theorem. (For related results,.see Harsanyi and Selten [1972],

p. 101; Kalai [1977a]).

Theorem 3: .For..each strictly.positive .vector p with Ip 4 =D there is a
unique.solution f possessing Properties.l, 3, .and 5, such that £ (4,0) = p. For
. - P
any bargaining game (S,d), £(S,d) = x,.such that x > d and lI(:l:i - di) i

P
> I[(yi -,di) 1 for 2all y in S such that y > d and y # x.

It 'is easily verified that £ exhibits Properties 1,.3, and. 53 and the follow—

ing lemma shows..that the description.of £ given.in. the theorem:is.consistent.

Py

Lemma 3.1: - The product..-nxi is ma:?:l.mized'.on A when x = Pe

. : P _ . .
- Proof: The.problem of maximizing I[x-ii.-.on A dis equivalent. to maximizing

J‘.(pi In x ) subject.to the constraint J:::i = n. . The corresponding Lagrangian

1)
is L(x,A) = Ip, 1n-xi - 1(1:::1 - n), and ‘the first order conditions.are aLjaxi =
(py/x)) = A= 0, so x, = pi/l for all { = 1, eees n, - Since Ix,. = Ip; = n, it
follows that x = p.. .(Since .the geometric average is concave,. the first order

conditions are sufficient 'to.identify a maximum,)

mmm,'m-.w-$;e the n~th power.of the.weighted.geometric average.for notational
convenience. . (See Footnote 9.)
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The proof of the theorem requires only a slight modification of the proof
of Theorem 1. For an srbitrary bargaining. game (S,d), let z be the point which
maximizes ll(x -d ) over all x in S+. Let (S',d') be.the game derived from
(S,d) by transforming z into z' = p, and d into d' = O.. :Then, as in the proofs
of Theorems 1 and 2, Properties 1.and 3 establish £(S',d') =.z' = p, so £(S,d) = z,
as required.

Nash [1950] originally interpreted the symmetry property.as expressing "equal
bargaining ability," although he subsequently (Nash.[1953]) .adopted the view that
the property simply describes.the information. content of. the model,.as we discussed
earlier. These two. interp_zetatioua. are not inconsistent,.and.in fact the property
of symmetry in Theorems 1'and:2 serves precisely the same function;that the :Lnfor-.
mation. £(A,0) = p = (1; «.., 1) serves in Theorem 3. If p # (1, syes 1), then
we have. some information that :the bargaining abilities .of the pla:nis:fsl7 (or some
other factors "outside" the model) .are not. all equal, .and. this information is suf-
ficient to uniquely determine the solution.

"We saw.that, .to.obtain uniqueness, it was necessary:to.require.that p > 0,
and the resulting non-symmetric Nash solutions have .the property that £(S,d) > d.
‘This is a property.that is.often called ‘strong.individual. rationality, and is

sometimes:required as a.property in treatments: of .the :Nash solution.

. Prope rty 6. Strong.individual ratiomality: For every bargaining game (S,d),
£(s,d) » d.

- A'better name.for the above property might be 'weak:collective rationality,"
. since- it actually. requires .a solution to.give each player strietly more than he
can :obtain on his own. ..But the name strong individual rationality is often used
4n the literature,.and.conveys.the similarity.in form between:this property and

- Property 5, so.we will use it here.. : Keep in mind, however, that.unlike Property

1750 f&r as.I. lmim the earliest explicit mention . in.the:rliterature of the idea -
that.different bargaining.abilities might. be. medelled by:.non-gymmetric Nash solu-~ .

.-tions. of .this.sort occurs. in a remark.by Shubik [1959] (p. 350),. who attributes
the idea to.Max Weodbury.

21



Roth, Alvin E. Axiomatic Models of Bargaining, , Springer-Verlag, 1979.
http://kuznets.fas.harvard.edu/~aroth/Axiomatic_Models_of_Bargaining.pdf

5, this property is not implied by the assumption that the payoffs are given in
terms of each individual's utility function.

We have seen by example that ordinary.individual rationality '(Property 5),
together with Properties 1.and:.3, is.not sufficient to.imply Pareto optimality. A
consequence of Theorem 3, heowever, is that.strong individual ratiomality, together
with these other two properties,. implies the. strong:form. of Pareto optiﬁality
stated below. (The proof of the preceding ststement.réquires: an argument precisely

like that..of part (ii1) of. the.proof of Theoren. 2, .'t'oge:hér with Theorem 3.)

Property 7.  Strong Pareto Optimality: For any bargaining game (S,d), if x

and y are distinct.elements .of.S .such that ¥:>.X, then.£(S,d) # x.

That.is, .a payoff.vector x is strongly Pareto optimal in a set: S if no player
can .obtain a higher .payoff than.,ﬁe-,. gets at'x unless.some:other player receives a
lower payoff than.he géts at x.: .A payoff vector is:(weakly). Pareto optimal, on
the other hand, "if .it.is not possible. to.simultaneously:increase. -the payoff to
every player.. Any .strongly Pareto optimal.outeome is of'..course:;aléa'weakly Pareto
optimal,. - It is .easy.to. see that the .('symetr'ic or ‘non-symmetric): nash.aolutious
are in:fact:all strongly Pareto optimal.

Kalai.[1977a] has. pointed.out.that the aggregation of players with identical
‘utility. functions: leads to.-non-symmetric solutions.in otherwise .s;umatfic situa~-
tions. . For instance, consider.an n~person bargaining game in which .the players
can be-partitioned.into. two:.groups,.having. p.and.q mmbers,;,..mpmiﬁely, such
that within each group the players.have identical utility: functions.. That is, at

. each.outcome .x in §, X)Xy meee =Xy and x

P"‘l"' xp+2 Rl
1, «ss, p are in one group and.players p+l, ..., n.are in the other. Then the

=X “where players

symmetric Nash solution.of.the: n<player bargaining.game yields .the same outcomes
:as. the mon—-symmetric solution, with.weights.p.and:.q, of the. two-—player game ob-
t:aingd by modelling each.greup: as a.single player.
. Note:-that :the ';nmetzic::-Nash..splation;..applﬁ;ed,_ to the.two«player problem in
whiech each: group 1s.represented as a.single player-yields different outcomes, in
' 'general,.than the: symmetric:solution.of. the n-player problem. :The question of how
. to appropriately;model.a .given bargaining.problem. (e.g., mx;a-.-iadus.t;mwi&e labor-
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management dispute involving several unions and firms) is therefore a substantitve
one, (cf. Footmote 1, p. 4).

When there.are more than. twe bargainers,.we.can observe. some effects of
asymmetry which do not ioccur in' the special case n = 2, . In. particular, if f is
a solution possessing Properties.l,.3, and 5, .then the vector p. ='f-().-.5) conveys
some information about the bugaininé success of the players, relative to ome
another, in the game (A,0). The success of .a given player i in other bargaining
ga}!es depends not only-:-on;p.i,.but on the.other .components of p a.srwre.'li.l.:"8 (In

the case n = 2, p, - determines pP.)

An Example

“To. see. this, consider. the-,.three—phyér game (S,0), where. S:is the convex hull
of the poimnts (1,1,0), (0,0,1):and. (0,0,0). Then.the.set .of Pareto:optimal out-
comes in .S is the set {(p,p, 1-..-'..p)|0 <p <1}. Let £ and.g be non-symmetric Nash
solutions such that £(X,0) = (1, 3/2,1/2) and g(&,0) = (1,1/2,3/2).

Then £(S5,0) 1s the peint x in §'which maximizes the quantity: XX 2123%!2.
p)lfz

‘On the set S this is the point whick maximizes p>/2(1 - ,.and it is readily

verified that this is.the point £(S,0) = (5/6,5/6,1/6).. Similarly, g chooses the
‘outcome x maximizing X)X i’lz 3-,,2, which is the point .(8,0) -'5(1}'32,1/2..1/2). The
(symmetric). Nash:solution ¥.yields. the butcoma..l?(s,"ﬁ-) = (2/3,2/3,1/3).

. S0 although.the.three:solutions f,.g, and F.all give playe.::lthasame reward
:ln the game (A,0), they each:give him a different reward in:the game. (3,3). The
difference . is due:te the relative:bargaining success of.players,2.and.3.in the game
-(A;0),and the way this:relative. success is generalized.by:eclutions, which possess
Properties 1, 3, and 5. -

‘In particular, players 1. .and:..zu.tmva,.idax_atiul:.-:tnt.mstarinal:ﬁe.‘gm (5,3'),
.and:so .it is reasonable .that .xp:lay_.a:-: :1. should .benefit when player.2 is an effective
bargainer,. and suffer .when he is not,: .In this sexample,: each: of .the solutions con-
.sidered determines.the (common):zeward.to.players.l and 2 .by.averaging. their "bar-

gaining ability,* as measured: in the .outcome.of: the game (_A',E);

18y imhzded an. :mcm:uct Asse:t:ion on.this.point .in Roth. [1978], .and corrected
it in a subsequent errata.
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C. Probabilistic Models

In the previous section we derived Nash's selution to the bargaining problem
axiomatically, by specifying some of its properties. ..In this section, we consider
some models which yield Nash's solution from other considerations.

What the models in this section have in common with one .another is that they
all describe some situation in which the bargainers are faced with'a .choice undér
(probabilistic) uncertainty. The Nash solution is then derived as resulting from
the maximization of expected utility by each of the bargainers.. Each of these
models also describes a specific set of rules by which agreements may be reached,
unlike the general model of bargaining with which.we have been working, which
describes only the set of possible agreements.

Only the last of the three models presented in:this section has had a sig~
‘nificant impact on the development of the theory of bargaining, but each of the
three illuminates some aspect of .the Nash soclution. One.of:the reasons we in~
clude them at-this point.is. to.illustrate that,.in the theory of bargaining as
in other: areas .of. game theory, a.variety of approaches .can be used. to derive a
given solution concept.

‘The models. in.this section 'were all originally formulated for the special

case of two-person bargaining games, and that is how they will:be presented here.

In his 1953.'paper, Nash presented a model .of .bargaining.as. a non~cooperative

game, permitting'a. derivation of .the Nash solution which.he regarded as comple~

1 non~cooperative game in strategic form-consists of a set of players _
N={1,...,n}, a collection of: gtrategy sets, .21,....}_:&, .and . a: payoff function

Gt xl X se0 %X I:n + R®, The interpretation is that each player chooses an element

of his own strategy.set, and the resulting n-tuple of strategy:choices determines
the outcome.of the game. At 'the time that Nash wrote, such a game was called non~
cooperative if the players had. to make.their strategy choices:without being able
to: communicate:with one another...In the current litersture, a game is considered
‘to ‘be .non-cooperative if the rules are such that the players must make their
strategy. choices: independently, :without being.able to' conclude: a-prior binding
agreement, while a game 1is: cooperative if the players can conclude a binding
‘agreement as.to what.outcome should be.chosen... (Consequently. cooperative games
such as the.bargaining:game. are.usually.not described. in:strategic .form, which
emphasizes the individual choices.of. the players, but are instead described by
the ‘set: of outcomes which each coalition of .players may potentially agree on.)
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mentary to his earlier axiomatic derivation.. .In this model, a two-person game
(8,d) 1is played by having each.player i simultaneously announce .a. "demand" X
1f the demand vector x = (xl.,xz) is compatible (in a way which.we will describe)
with the set of feasible outcomes, then.each player gets.the payoff he demanded.
If not, then each player gets his disagreement payoff, di‘
Specifically, the demand veetor x is defined to be.compatible with the set of
feasible payoffs if there.is seme feasible.outcome s in S.such that s > x, Es-
sentially the model assumes ithat utility.is:.disposable, and enlarges the set of
outcomes from the set S to the set S = {x|x < s for some s in S}, ‘Nash justi- -
fied this manner of determining .the payoff. of .the.non-cooperative.game by saying
"It camt.be:.accnse:d,of. contributing: a . bias to.the: final: solution,.and it gives
the phyers-..a':strong...ingentme- to .increase their :demdx_.aas.much'.hs..;po.ss:l.ble with-
out losing compatibility." This ':enlargementu of the feasible.set has: thé effect of
insuring. each:player. that he will not: suffer i{f the. other player makes "too low"
a demand (see, e.g.,.Figure 2b, p.-2-2)..2 Note that the set. 8yy» as. we have defined it
here, is not coﬁpact.. - However. the individually rational subset S:;- = {x ¢ SDlx > d}
is compact.3

For 'simplicity, we will require each player i to choose a.demand x  which is

i
individually rational.and at least. potentially.feasible: 1i,e., xii X, < max, X
xeS
Formally, player i's. strategy space is the .compact interval. By = [di, max xi],
xes

and for a:strategy pair (zl,xz) -the ‘payoff- funct_:ion Gi(xl’-xif)' =X (xl,xz) +
di(l' - .x(xl,xz)), where x is the indicator.function defined by

.Z:I:hat is, a pair.of demands:x.= (x,,x,):1s compatible if neithen player would have

to lower his demand in oxder to. achieve .an.outcome.in S, . 1.e.,  1if. there is some
y € S with y > x.

3As long:as we are concerned with:solutions:which possess. Properties 3 and 5, S

is the only set.¥hich concerns us.. In:any event, the sets.S and. 8y share the same

strong Pareto.optimal.sets, 'so any.strongly:Pareto: ‘optimal.: solnt::lon 1s unaffected
by the .transition from S to SD.
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(a) (b)

X is an equilibrium x is not an equilibrium
(the shaded area is contained in §

but not in S) D

Figure 2~
7
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x.-(xl,xz) =1 if (xl,xz) € SD,'and x(xi,xz).- 0 otherwise. An eguil:l.br_:iml* pair
of strategies is a pailr (xl,xz) such that x, is the best. response which player 1
could make to x;, and x, is the best response which player Z could make to xy.
That is (xl,xz) are an equilibrium if Gl(xl,xz) > Gl(yl,xz) fo:; :;-.].L.y1 € 21, and
Gz(xl,xz) gcz(xl,yz) for all ¥y € Z,.

Then an equilibrium demand vector is any pair x-.- (xl.xi) which gives neither

player an incentive to raise or lower his demand, given the (fixed) demand of the
| other player. It is not too difficult to show ﬁhat, since the demands of each \

player are restricted to be potent::ially feasible, any equilibriim demand vector

x (with one possible exception) must be.contained in::SD; and since .the game (S,d)

is :ion—d-egenerate (i.e., since S contains points which are: strictly greater than

d), x must be distinct from the disagreement outcome d,

- Starting with the exception, .consider the "maximal demand point" X = Griz)
such that ;;1 = :::S:+ X, | Let (§1,'§2) and ‘(§1,§2)_.be the. strongly. Pa,ret:_o optimal
-points in S+' which achieve the maxima ;:1 and 52, respectively. i'hen,' if S+ is a
set such that Gl';Z) = (d,,d,), the maximal demand fmc.-tor' (il,iz') :is an equil-
ibrium. This is because G(:‘:l,iz) = (d;,d,), while clcyi,iz). < §1_for all y; € I,
and G,(X,,7,) <7, for all y, & I,. Of course, if (3.,7,) # (4;,d,), then '
at least one of the players has the incentive .to lower his: demand, and secure a
strictly larger payoff. (See Figures 2a, b, p. 22).

In a similar way, we see that if x is.distinct from X, then.x cannot be an
equilibrium unless X € SD‘ But for any demand vector x-..w.(;:i-,-xz')-. eo:_:tainad in SD’
the payoff to the players is equal to their demands,:so each player:has an incen-
tive to make his demand as high as possible, consistent :.-w:l.-l:h:.keeping'i .feasible.
For x in Sy to be an equilibrium, it must be: .strongly Pareto optimal; and every

strongly Pareto optimal outcome is an equilibrium demand vector. :So the set of

“rhe notion.of ‘equilibrium for non-cooperative .games was introduced by Nash [1951],

and ‘is sometimes referred to as "Nash-equilibrium." . We:shall avoid:this designa- .
tion, so as not .to invite confusion with the.Nash.solution.which is.our main. sub-
ject. This equilibrium concept remains to this day: the principal. tool used im .
the analysis of non-cooperative games, although. the question of ‘how:to interpret
the set of equilibria in a game still.presents unresolved difficulties.
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equilibria is equal to the set of strongly Pareto optimal- demand-vectors, plus
possibly the additional point X.

In order.to select.a. single equilibrium. from :this infinite set,5 Nash pro-
posed to "smooth" the payoff function.G, by replacivng.the-‘,.discoutina;ous indicator
function x with a continuous approximation. h; such.that h: equals x on SD’ but
then drops off to.zero.in. a.continuous way. Nash proposed that the function h be
interpreted:as the probsbility that a given.pair of demands would be in SD, 80
that it can be. thought of as introducing some uncertainty into the structure of
the game. The .smoothed 'payoff function. is the expected value,. G:'L(xl,xz) =
xih(xl,'xz) +d 1(1 - h(xl,xz)).. For simplicity, we will normalize the disagreement
payoff: to.d, = 0, so that G;_(,-x]'_.,xz) = xih(xi,x-z)".for i=1,2,

* Thus in the .smoothed: game,. a: pair of .d-mnds..(xl,xz)..-are; in.equilibrium if
and only if Xy naximizes xlh(xl,xz) for fixed xz,' and.xz maximizes xzh(xl,xz)
for fixed X5, A given function h may yield more than:one.equilibrdium, but Nash
observed that there is:a.unique point in.S which .can be obtained:as .an”equilibrium
in the limit, as h.approaches ), regardless of the form: of 'h..f . (Note that the
maximal demand vector X need.not ‘be ‘an:equilibrium in the smoothed game, unless
it is feasible.) |

In particular, let x = (xI,xz) ‘be a demand.pair:. which maximizes the product
xixzh'(xl.x.z) .over -all demand: pairs. .Them x is &n..eqnfi-libfiug_a._' since xlh(xl,xz)
and xzh(xl,xz) ‘are maximal for fixed..xz ~and: Xy xespectivelys. Let:z ﬁe the point
vhich maximizes 2,2, on the set Spi ieesy z.= 'E(SD,E) .= F(S,0). . Then. XXy > 212,
since .h(xl,xz) < h(zl.zz) =1, But z is the only\point.emﬁ ‘toboth the set Sp
and the set H = {x|xlxz > zlzz}, so as h approaches X, z is the limit point of any

equilibrium x of the kind described here.

S1f the point'X is feasible, then it 'is the unique equilibrium. .. Otherwise, the
set of Pareto optimal outcomes is an infinite set. .

s'ﬁut is, ‘depending on the nature of the limiting process;-.a.given smoothing func-

tion h could yield more than one:point.in S as the.limit: of: equilibria. But there
is a unique point. in S which is always obtained .as.such a limit.
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The chief criticism of this argument (cf. Luce and Raiffa [1957], pp. 141-2)
is that, although it identifies the Nash solution as .an equilibrium with char-
acteristics which uniquely distinguish it from other equilibria, 4t is not clear

why these distinguishing characteristics should be relevant to the bargainers.

Now we will consider a simple model of. the; two-player bargaining problem in
which the Nash .solution results. .if eaéh‘player maximizes his:expected utility
under the assumption. f.hat t.-he'.o\l:hé:_:_ player's.behavior can be.deseribed by a prob-

1ability.distribution. The first.part of the model as we present it here was pro-
posed. independently by Anbar and Kalai [1978],.by. Butterworth [1977], and briefly
by Stone.[1958]; our.style of exposition follows that of Anbar and Kalai.
... .The rules .of this.model are the same as those in the last—-a game (S,d) is.

played by: having each player i = 1,2 submit a demand x, such that d, <x <X

i i

where x, = J;::+ X, a8 before.. If the demand vector x = Cxi.,xz_) is contained in

the set SD" then each. player receives his demand x 10 .otherwise the outcome is
d= (d,d,).

‘Before proceeding. further, it will 'be convenient to note that, in a two-
p]l_gy.er,.-'game.sﬁ..-wir.-h"disposable:.,utili.ty-, ‘the set of .individually rational and
‘(strengly) .Pareto optimal points.can be described.as a function.of one player's’

“utility: e.g., let $(x)) = max x, for any x; in the iuuzval.[dl,%]. Then
Geyexpdesy
all. peints 'of-_'t-.the‘ form (J:I,¢.(xl).) are Pareto optM"in-.S;, and -all of the strongly
- Pareto optimal .points are.of this form. (Note that it makes.essentially no differ-
ence which player's utility is taken to.be the independent variable: . the Pareto
- optimal set: could also.be defined as the aset of po&uta.‘(ﬁ(xz) ,xz).\,.. ‘where ¢ is
.~de£$hed'¢nﬂogaus-1y,fef- x, € {dz,:'izl.) :The outcome of.the game selected by the
. Nash. s‘oiution can. now.be described as:the point in 8% which maximizes the pro&uct
(;x-l - dl'):(¢ (xl) - dz) s or equivalently,: as the peint which maximizes -
W) =) x, - 4.
. ‘Suppose now.that player 1, say, believes that.player 2 will make a random
dmd,_,.choaen_fmx.a\..uuiﬁom‘éistr:tb_ut_ion '-'on--[,dz,i"z].'..' Then player .1, w_ho. is by
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assumption a rational player (i.e., one who makes choices.so .as to maximize his
expected utility) is faced with the problem:of .choosing his own demand.

For any demand Xy his .expected reward. is X times the.probability that
(xl.xz) is in SD' plus di ‘times .the probability that.it isn't: we'll denote this
by x; Pr {(x;,x,) € §)} +d; Pr {(x,,%,) £ Sy}, Since s, is a set with disposable
utility,.the expected reward is x, Pr {xz < ¢(x1)} + dl Pr {xz_ > ¢(xl)}, and since
x, is uniformly distributed on [.dz,:':z]., this equals x [(4(x,) - dz)/(:_:z - d,)]

C+4,@ - [@(x)) - d))/(xX, - d;)]). So player 1 wants to choose his demand x, 8o
as to maximize his expected reward, which we can rewrite as
[x; - 4,1[#Gx) = 4,0/, - 4,)] + ;.

. Since ('x':Z - d2) is a positive constant, player l.maximizes his reward by
choosing x; to maximize (:z::L - dl) [¢(x1) - d2].. That isto. say, he .mimizes his
expected utility by demanding his ahare‘ofi the. outcome picked by: the ‘Nash solution.
If player :2 follows the same line of ‘reasoning,. then the demand wvector is equal to
the ‘(feasible) . point z = F(S,d), which thus becomes :the. final autcnme;'t:;f the game.

As presented so far, 'this model is not in:the game=theoretic tradition, since
each player is assumed to ‘behave as.if the other were:a. random process.rather than
a.utility-maximizer. . That-is,.the Nash.solution 'is the.result only when each
player makes -an.incorrect.assumption.about the.behavior.of the otheri The model
ca.n-,:.hweve:,"be.-res\pa;te&?-:i-n.a:way- which daes not:require each .pla.ye:r.; to act as
if he were in possession of _analytical abilities .oﬁ..;m.‘aort-:-unaﬂ.ilablé to the

. other player.
. Consider the.problem faced:by «phyét.,la-t-inéthe .game.(S;d),-under: the assump-
tion that he knows.player .2's preferences.. Suppose.that.player.2.has the same
“sort.of: information about. player.l,.and. that each:player:is aware.of all the in-
- formation in. the possession.of the other.
.. Unless. he possesses.a. "theory" :about.ratienal behavior.in game.gituations,
- it: is still.not clear that.all of this information-helps player-lito:decide what

7‘Ihis restatement is: - intended: merely to.. be. sussga;we ;and .should not be viewed as
an attempt.to. place this model:en.a rigorous.game theomm foundation.  Some of
the difficulties to be expected in.this latter task. will be discussed.
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to demand. Since he wants his demand to be.compatible with player 2*s demand, he
needs to have some idea.of how.player. 2 will behave.. But.player.2's behavior de-
pends on how he thinks player 1 .will behave, and so.the circle.is complete.

‘We may suppose then,.that being. able to.reach no. conclusion about player 2's
behavior,'ﬁlayar_ 1 .decides .(by .the "principle. of-.imfficien&.-reaaon")s to make
his own .decision as if.player: 2 chose his demand from a uniform. distribution on
[dz,;.z}-. We have already seen that.player 1l's optimal demand under .this assump-
tion. is to demand.his share.of the outcome (zl,zz) = F(S8,d), and:we .can now carry
this analysis a step. further. Player 1. knows that player 2.is ratfonal, and can
also carry out this line of reasoning.. Consequently, he.can now consider a "second
approximation". of player:2's behavior, based.on.the conclusion which he expects
player. 2 .to. reach. .This .second .approximation is.that.player 2 will demand Zge

Based on this second.approximation, z. is still .the:optimal demand for player 1,

1
. and so z, will still.be optimal. for player 2, and so.player 1's "third approxima-
. tion". of .player 2's behavior .will -be.the: same .as.the :second.. .That.is, we have

described a process by.which .player.l,.starting from a model.of player 2's be-
- havior, revises this model by attributing to.player.2.the. same. line.of reasoning -

- which he. (player .l) has.pursued at:.each stage. We saw that the initisl expecta-
. tion:of a:uniform distribution on: :he_ .1p;erval. [di"'iiJ ~leads- to convergence in
" ‘three iteratiomns.

- The'eritical part of any :such.theory of "convergent: expectations" is ob-
viously. the. initial. expectations.of one.player.about.the:behavior of the other.
‘Not.only.do some. initial expectations fail to.lead te .convergence:at all, but,

. more.critically for the construction.of.a satisfactory theary, different initial

expectations.which .do-lead to. convergence.generally converge:to different final

%008@13’?’5‘_&‘?1’.&&% -the:principle of ‘insufficient reason:states.that, when no.in-.
-formation: is.available about a.set.of possibilities,.each.possibility should be
considered equally likely (there. being "insufficient reason" to distinguish one.
* from the other).. Of: course, any. conclusions:reached .in this way depend in a
- critical way on.-how the set of possibilities is.specified (cf. Footnote 9.
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expecta.ti.c:»ma.9 Since the process of convergence is thought of as going on inde-
pendently in the minds of each of the players, different initial expectations
would lead to incompatible actions. So .any full-fledged theory of games based
on this idea of. convergent expectations must.begin with. an unambiguous specifica-

tion of how initial expectations are to be arrived nt.m

A . Model of Négotj.at:l.on' .
Undoubtedly the most famous. of the models in. this section is.the negotiation

model originally proposed by Zeuthen [1930] and -subsequently extended and gen-
eralized by Harsanyi [1956], who.was the. first to appreciate ‘the relationship be-
tween Nash's work and Zeuthen's. . The key. respect in.which the rules of this
model differ from .those .of .the. previous :two, '1s.that, instead of making just one
demand, .players can adjust their demands over a: nunber of periods, by making con-
- cessions when .their demands. are incompatible.. Specifically, :the rules by which
- the game (S,d) is to.be played.are as follows.. At each period, player 1 names an
outcome x = (xl,xz) in.S, and player 2 names an nuf._cons.y = (yl,yz). For sim-
plicity, we will assume that beth x and y are individually. rational and Pareto
optimal, If each.player's demand can be met, i.e. if. (xl,.yz) € S, then the gaie
ends, with each player receiving his.demand; i.e. the. final payoff is (xl,yz).
Since both x and y are Pareto optimal, this occurs only when x; <y, and Yy %3
i.e. vhen each player .is offered at.least as.much as he demands.. Otherwise, the
game.continues for at least.one more period, and.each player. has -an.opportunity
‘to-propose a new outcome, by.reducing his own: demand, .and increasing the payoff

which he. offers to:the .other player. The game .ends with agreement.at any period

por instance, “instead of assuming a uniform.distribution on {d.i.,ii], we could
have :anorporated_-hg.ete..o.p-tim}i:y' into our. argument and argued. for a uniform
distribution on -[yi.xil, where y is defined as in.the discussion. of the previous

model.. It is -eagy .to verify.that this leads to. convergeat.final expectations
. different in general from the Nash solution. .
1.°-A ‘general theory. of games. based on.the idea.of convergent '.'.cxpnctat:l.ons- has
- been :proposed .by-John Harsanyi and Reinhard Selten, /It is-reported .in Harsanyi
[1975], [1978].
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in which the demands of the two players are compatible,. in'which.case they each
receive their final demands; or else the.game.ends with disagreement at any
period in which (prior to reaching .agreement) neither player makes.a concession
from his previous demand, and.in.this.case the.players each.receive their dis-
agreement payoffs (dl’dz)' (In order to insure that.the game does end in finitely
many periods, we will require that if a player deoes wish.to: reduce his demand, he
 must reduce it by at least .some (fixed) minimum amount.)
The.principle object of Zeuthen's analysis is to.determine, at any given
period in: which.agreement. has not yet been.reached,. which player should make the
- mext concession.. .He argues .that, at any such.period, the player. less willing to
face the risk of conflict will.be forced. to.concede.: In particular, his analysis
proceeds. as follows.

. Let.x = (xl:,.xz) and y = (yl,yz'). be the (incompatible) .proposals of players 1
-and. 2 respectively. Suppose.that.player.l, say, considers:only, two alternatives:
‘either he should capitulate completely, . and accept the '.amoun:-.'yl..=which player 2
has offered him, or.-_else-he\should:-ﬁréfuse to .make any concession, and not lower .
hi's._demand x, ‘at any subsequent peried.. If he chooses the first alternative, then
thegame ‘ends  for.certain-at the next ‘period; and his.fimal payoff is Yq- 1If

* player:1l chooses: the second:alternative, then the final outcome of. the game de—:

: pends .on. whether.or not .player 2 ultimately.aceepts the, offer X, or not. If
player 2. accepts Xy - then player:1's utility will he';xl,. otherwise it.will be dl’

-1£: Py 1is player l's subjective probability.that. player -27will.net-.accept the '

--of'fex\,'x'z.. ‘then his.expected utility for choosing his. .second:altgrnative is

'pl 1 + (1= 1:51)11(1 Thus player 1.gets.a higher .expected utility from holding |

- firm than from capitulating if and only if. pld1 +. (1 - pl)xl > ¥y OF equivalently,

-if and only 1if p; < (x; - y;)/(x; - 4,).

.Define the .quantity (xl - yl)/(xl 1) = r -to be.player.l's risk 1:Lm1t:.11

Only if player 1l.believes the probability of.a conflict (i.e.,.the probability Py

1]".I'.n order to aw:l.d cumhersome notat:l.on,. we .have suppressed the dependence of

the fisk limit. r:l ‘on the.current. offers.x and y under consideration, but this
dependence .should. not.-be overleoked, as it.is critical :to:the suh#'éqnent argument.
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that player.2 will refuse to capitulate) is less than ;1, does he prefer to hold
firm to his. dmnd-.xl-rathet than.capitulate and -accept.y;.. In precisely the game
way, we define player .2's. risk limit (with respect .to the outcomes x and y) to be
the quantity 52.- (y, = x,)/(y, = d,). Thus the risk limit Ei represents the high-
est subjective probability of a conflict that player i would be willing to face
and still insist on.obtaining his own terms, rather than accept the terms offered
to him by the other player.

The .central assumption of the model is that.player i.will make: scme co:_lceésion
‘at_the next period if at;ld only if -.Ei.--‘_ ;j" Intuitively, think of the p_la.ye:.s
sitting around the bargaining table after having made their most.recent (incom-
-patible) proposals. As time passes, the atmosphere grows more temse, and the
probability of conflict rises, until .one of the players.(whose.risk limit has
been reached) breaks the deadlock by making a new.proposal,.with:a more modest
demand.

. 'To: see the implications.of this assumption.as it relates.to.the Nash solu-
tion, consider the case in which. player 1's most recent :proposal is x = (xl,xz),
and player 2's most recent .proposal is y = .(yl,yz). with Xy > ¥q and Yo > X,.

Then Zeuthen's.assumption is that.player 1 will make a .concession:at the next
period.if .apd only 1if T 1§2. i.e. if ‘and.only if (x; -.y;)/(x; - d;) <

1
(yz - xz)f (yz - dz). But this inequality.is equivalent to.the inequality

— — = —— C —— —

x -4 = Y- 4

»

which is equivalent to

Eliminating common terms and multiplying both sides:by -1, we.coenclude that

T, <7, if and only if (y; - d,)(y, - d,) 2 (x; = d;)(x,.~ d,). . Thus according
to Zeuthen's assumption, player 1 will not make a coneession .at .the next period
if and only if his most recent: proposal.yilelds.a higher: (geometric). average gain
to the players than does player .2's most recent. propesal, . (In particular, a

player who has proposed the outcome picked by the Nash solution.will never make

a concession.)
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The second critical assumption of the model is that, when a player does de-
cide to' make a concession, he will make the smallest. possible concession such
that, in the following period, the other player will.have to respond by also
‘making a concession. Thus, if .player.l, say, decides to make a concession from
his last proposal x, he does not necessarily accept his opponent's last proposal
¥, but instead Proposes an outcome z between x and y such that |
(z, - yl)f(zl -dy) >y, - 22)/(y2 - d,). As we have seen, this is equivalent
to the inequality (zl - 1) (z -d)) > (y, - dl) (v, = dy).

Thus Zeuthen's analysislz

leads to the.conclusion. that negotiations will
result in a sequence of proposals, each yielding higher (geometric) .average gains,
and terminating in agreement only when no feasible. proposal yields still higher
average gains. The final agreement can be made to .approximate.Nash's solution

ag closely as desired, by making the size of the minimal.acceptable concession
suffictently small.l>

-A number of criticisms have been made :0f this line:of ana-]ey-s—:l.s.m One of

the more frequently heard :of these is :that the players are assumed:to make their
:decisions: by evaluating.only. the two alternatives involving total.capitulation by
onerof .the players: to.the demands. of the'other .(e.g., see the:.d:l;scu-saién leading
“tothe definition of the:risk limits ;1 and ';2)" - But. when: the time comes to act,
the model.predicts.that in fact. one of the ;players. will make some .intermediate
concession,: short .of .capitulation. Especially.since we are asked. to .contemplate
a. sequence.of such small concessions,.it ie difficult .to .argue that rational

g piayers..ahonld persist.in reaching: their decisions:based on criteria concerned

‘exelusively. with:large hypothetical .concessions.

12, interpreted by Harsanyi [1956].

uHar’sany:l ([1977], p. 152)-assumes.that.no player will ever make a concession.
which overshoots the Nash seolution, and.that the minimal acceptable concession ..
only applies when:the demands are sufficiently:far.from:the Nash solution, 80

"..that. the outcomé of this negotiation process is. always. :l.dentieal to the Nash
‘solution in his treatment,

14see: e.g., Bishop [1963], [1964]; Pen [1952], [1959]; Saraydar. [1965]. [1971a],
[1971b]); Wagner .[1957], [1958], and Wagner [1979].
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Harsanyl [1977] proposes a simple modification of the model which avoids
this particular:criticism, and which consequently casts the. essential assumptions
of the model in clearer terms. He defines the "compressed.Zeuthen model" of bar-
-gaining to be a game similar to the one just.described, but.which.ends after at
most. two periods.. In ‘the first period, each. player simultaneously proposes an
outcome in-§,.as in Zeuthen's model,. If player 1's proposal x and player 2's
proposal y are.compatible (i.e., if x5y and.yz.j_ xz)., -then the game ends with
-the utility payoff (xl,.yz). Otherwise, the game.continues into the second (and
last) -period, in which each.player's only option is to either repeat his own pro-
.posal, or.accept the .pmpos#]. -of ‘the other player..  That, is,in.the.second period,
player 1 must make a proposal x' equal either to.x or to.y, and player 2 must
likewise make a proposal y' equal to x .or to y. If the:proposals x* and y' are
compatible (i.e., 1f at: least one of the players capitulates to. the other's pro-
posal), then the game ends with the uﬁility payoff (x]‘_,yi). . Otherwise the game
ends with the':'d'i's;greemem: payoff .'(dl,dz‘).. ~In this.game, unlike the previous
game, nointermediata.concessidgs are allowed. Therefore,.in this.game, the risk

1
second period,

limits T, and ?2. are derived from the. actual .choice facing:each player in the

-Suppose we again.make '.r.he. -assumption.that . a.player i will.make a concession
“in:the second..period if and _-aniy if. r i = x j': Given thia assumption, the payoff to
each player.is determined by the proposals made.in.the first period. We can con~
sider then, the one-period "constrained.bargaining game," in which the players
ate: constrained to.act in accordance with:this -assumption.:.-In:the constrained
gaume, .players .1 and '2..s:§1ect- proposals .x and.y, and player l1's payoff is x) if
51 > i':'z, and y, - otherwise;:while.player 2's. payoff is ¥, if 'r'z > ;1"':" and x, other-
.wise. Each player's strategy set 1-3. .equal to :the set.of individually rational and
. Pareto optimal outcomes in S, and. it is not.difficult to see that:the Nash solu-

- léiow is the unique equilibrium proposal. That is, we.can.state the following

result.
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Proposition: In the constrained bargaining game (S,d), the unique equili-

brium.pair of proposals (x,y) is the pair such that x = y = F(S,d).

Proof: Letting z = F(S,d) we observe that if.either player i proposes the
outcome z, then his payoff in the constrained game will be.z 4 .regardless of the
proposal: of the.other player.. This is beecause, if the initial proposals of the
two players. are:compatible, .then each.player receives his: demand- (so player i

- receives z i)' and 1if the initial proposals are 1ncompat.;!.b1e,.,t.h_e.otheg--,.plgyer will
‘have to capitulate (since z maximizes:the product .(zl._«-_- dl) (zz. - dz) on S).
Furthermore, .if player 1 proposes z, then player j.¢annot.receive.a higher bayoff
‘than z j,..for-. the same. reason.. .Thus the .proposals x =:y.= z are. in equilibrium.
(In fact, z: is:a maximin proposal for either player.) .

To: see. that.no other.pair of.proposals.is. in.equilibrium, .observe that if
.player 1, .say, prqposed. a Pareto.optimal outcome x.with xX) <2y then player 2's
best response would.be to.also propose the outcohe.x...But.this pair of proposals
. 1s not in equilibrium, since we have-already seen. that player. l: can:;-'aséufe himself
'of-.zp regardless of .player 2's proposal.. Similarly, if player 1.proposes x with
X) > 2 ‘then any. counterproposal y.on. the open.set. on which..(yl - dl) (y2 - dz) >
(xl - d'l) (x2 - dz) will yield player 2 a payoff greater ‘than Xy.. Since this set
.is open,  there is no equilibrium of the.form (x,y), since:player.2 has no best
response to:x.. In.any event, player 2 has a choice of .responses to such a pro-
poaﬂ.x which.leave player l.worse off than if he had proposed z.

‘Thus .the ‘compressed. Zeuthen.model. leads.to .the ofitcome. z. = F(S,d) as the
unique aqu_ilihrium.outme. if we asccept Zeuthen's assumption: that.a player will
make a concession: in the second period if and anly_..ifx:‘hia: risk limit is not
higher than.the other player's...But the assumpticn:that. the players are expected
utility maximizers.implies. that.a.player will make a -concession: wheneﬁer his sub-

Jective.probability of a.conflict .is higher than his risk.limit.. ‘So Zeuthen's
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assumption is really an assumption about the subjective probabilities which the
players aasign--t.o'a'conflict.ls |
For our purposes,.the most interesting feature.about this model is that it
- leads to the Nash solution without explicit mention.of either Properties 1 or 33
i.e., without specifically requiring. independence of .equivalent utility represen-
tations or independence of irrelevant alternatives.  Since.these are both proper—
ties of the solution, they must have been implicitly introduced into the model
in some form.
Independence of .equivalent utility representations results from the fact
. that. the model .only makes use of expected utility ccalculations, which are invar- .
iant under equivalent utility representations.. "In .particular,. the risk limit
of each player is defined to be the ratio ..of'.two.utii-:l.t:y differeqces-—the ratio
- of the loss from making .a.concession to the loss from-ending in. disagreement.
These ratios are. preserved.under.positive linear trand‘fo‘mal:_ions.lﬁ S:(m:l.larly,
independence from irrelevant alternatives .arises because, given the fixed dis-

-agreement. outconme, the'model only considers binary. comparisons between alternative

. proposals. x;and.y.. .(C£. Footnote 7 on page 7.)

lslhrsuy:l.- [1977] argues that.this assumption can.be justified.through some
- additional axionis. '
1§Sealea.'-of: nmeasurement which are unique up. to.positive linear transformations
~‘are.called:interval scales because such transformations:.preserve the ratios of

intervals.
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D. Risk Posture
So far we have described bargaining.problems.in. terms of the.set of feasible

utility payoffs available to the players, without.talking .about thu.particular bar-
gains which might yield those utilities.. This permitted us to. summarize in a con=-
cise way each player's preferences over .all possible.bargains,. including those which
might involve chance events.(i.e., 'iotteri;es),, without explicitly.considering those
lotteries.

In order to.consider ‘an individual's attitude towards. risk,’ it will be neces-
sary to explicitly.consider the.underlying alternatives. over.which the bargaining is
conducted, in.order.to.be able. tp-':compare -hige attitudes. towards. risky alternatives
(i.e., lotteries) and.towards alternatives which are free of risk. :For instance,

-suppose that. .the bargaining 1is.to.determine. the .distribution.of a certain sum of
money,-and. consider the expected.utility function u, expressing individual i's
preferences for momey. .We will assume that an.individual's .utility. function for
money-is increasing (i.e., more money is preferred to less), and.that.it has both
first and. amoﬁd‘~d.erivatives.. An.individual. i is said to.be risk averse if he ﬁre-
fers to retain his current wealth w.for __éerl;ain' rather than.te. participate in a
-fair. gamble-in which he would.either win.or: lose an amount c.. That:is, he prefers
the (riskless) alternative which gives him wealth.w for certain.to the (risky)
lottery [1/2(w + ¢); 1/2(w ~ ¢)]. Since these two ‘alternatives have tﬁe same ex-—
Pected monetary value, the individual's preference.reflects. his_ aversion to the

» risk.involved in the: second alternative. |

In. terms of ind:bﬁ.dual 1's expected-utility, this preference can be written
ui(w) > IIZui(w +e) .+ '1f2ui(w - ¢). This is equivalent to ui(w) - ui(war -c) >
u 1(w.--l- e) - u, (w), 8o -that, for a risk averse individual, the. utility increments
corresponding. to .equal increments of wealth.are decreasing.as the wealth 1ncfeases.

-Dividing ‘both :sides of.the above inequality by .c,. and taking.the iimit as c goes

- to-zero, we conclude .that: if.u { is-a risk averse utility function then its first

.11:he notion of risk posture ‘considered .in this section is motivated differently .
. than the. risk:1linit considered.in.the. Harsanyi-Zeuthen: .negotiation model, but they
are not. entirely.unrelated (cf. Proposition 5.1, pP. 46).
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darivetiveui is .a strictly.decreasing function of wealth, or equivalently that

its second derivative u; 4s negative. Formally, a utility function is strictly

risk. averse if it is strictly concave, il.e., if .u';(w). < 0 for all w.z It is

(weakly) risk averse if u' (w) <.0 for all w, Thus an individual who is averse

to fair gambles regardless of his.current wealth w.is.also. an individual who would

prefer to. have the expected walue of any lottery.for certain, rather than to partici-
.pate in:the lottery. That. :l:s,j._.a risk averse utility function 'is concave, so

u(pa +. (1~p)b). 2. pu(a) + (1-p)u(b) = u([pa;(1-p)b]) for any prizes a and b and
. pro_hab:l.lity Pe

Henceforth, -unless.otherwise indicated, .we will assume that aay.utility func~-
tion for money i1s.not only increasing, but:.alsc at least :weakly risk averse. So a
-utility. function. for money uy will have ﬁ;-(w) > 0.-.and-.u‘£(w) < 0 for all w (see
- Figure 3, p. 37).
. We can then: consider.the bargaining game which. results when.two individuals,

whose wealth is vy
money.. The rules of the game are.that they may.split the money -in: any: way they like

and. Wy ‘bargain over how.to .divide a positive quantity Q of
if they both'agree, -but .that. neither player will.get any.money if they don't reach

' -an agreement. . The resulting bargaining.game is defined.in.terms. of-the utility pay-
‘offs (rather:than.the money:payoffs) available.to. .the.players:. .it is the game
(S%,d*) defined by

d* - (ul( ) : ] 2(“2) ) and

: -S* -.{-(,xl,xz):]xi. - .ui-(:wi. + ci) for some ¢ == (cl,.cz) such that

§1+c25_Qand-cilofor1-1.2}.

' The pair .(S%,d*) is'a bargaining game of the kind we have been:considering, since

insures..the comvexity:.of the set S,

.. the concavity.ef.the utility.functions. u 4

Z’L'hat 1s,.we reserve the term.'risk averse" for an dn&:l.vidul who. is averse to

-fair gambles: regardless of his current wealth.

2 3‘1'11:[& follows: from-the:fact.that, 'if u.is a concave.function, then

~ulpe + (1 -.p)e') > pule) + (1 ~;p)u(c') for.all p € [0,1]. . (This is often taken
to be the. definition of concavity.)
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while the monotonicity of the ui.insurea. that there is.a point x in ‘S* such that

x > d*,

Comparative Risk Aversion
_ We would like to have some way of comparing the risk aversion expressed by dif-
ferent utility functions. As.we have seen, the risk aversion of -a utility function
for.money is related.to its concavity, .and. so we might hope, .for. instance, t&t the
second derivative at.a given wealth w might serve as a measure of the risk aversion
at.that wealth. quever,: if v, = au, for some positive constant a # 1, then \A
and u 4 are equivalent utility functiomns, but u-; ¢ v;. ‘So the second derivative
is an inappropriate measure.of individual .1's risk aversion, since it isn't constant
.for equivalent.utility representations.. We need.a way to- compare .the risk aversion
of two.utility functions in'a manner.which is independent of the arbitrary features
of those functions. .The following definition, which depends cnly.on..tﬁe preferences
which. the utility functions represent, is.due.to: Yaari.i:[1§69].,.who."genersl:lzed some
-of: the pioneering wm;k_:ofrArrqw' [1965], [1971] and: Pratt [1964].in this area.
.Let . C:be.a.convex 'a’ubsef. of R® representing .a .set.of riskless outcomes
‘(i.e., outcomes. which do.not. involve lotteries); and let u .and v be risk averse
(i.e., concave). von Neumann-Morgemstern utility functions defined on.C and on the
mixture 'set M.of =lotteriés_generated4 by C. Note that.C is.a.subset of M, since
. the lottery-[lc;0b] 1s equal to.c and is an element.of M. . For any outcome ¢ in C,
.the scceptance set of .an individual with utility function u® is defined to be the

set
' -Lﬁ(c) = {m e Mlu(@) > u(c)} .

Thus A (c) 1is. the set of all lotteries which individual u would -accept: as alterna-

tives. to cj i.e., the set.of all alternatives which he. likes at least as well as c.

I'Tha mixture aet generated by C is.the smallest. mi::ture get whieh contains C. It
-can-be: thought of as the set of_lotteries.whose outcomes. are.all in.C, (For the
definition.of .a'mixture set, see p. 2). :

an. 1ndiv:l.dua1.r-w:l.th..utﬂ:tty,:function'.u will sometimes be.referred. to simply as
"individual u."
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A utility function v is defined to be (weakly) more. risk averse than u if, for
every outcome c in C, Au(c) contains Av(-c). That is, v.is more risk averse than u
if every lottery which would be accepted by individual u :l.:_;-.,p]_.scé of. the riskless
outcome ¢ would also be accepted by individual v. If:Au(c)_ .strictly contains
Av(c) for all ¢ in C, then v is strictly more risk averse than u. Thus a strictly
more risk a.ver.ae individual would decline.to accept.scme lotteries which a less
risk averse individual would accept in: place of .any riskless outcome c.

If v is more risk averse than u, it follows that .u and v must order the (risk-
less) elements of C in almost the same way: i.e., for all.elements. b and ¢ of c,
v(b) > v(c) implies u(b) > u(c), and u(b) > u(c) implies v(b) > v(e). This is
because 1f v(b) > v(c), then b is an element of A ¢ (c) and. consequently it is also
an element.of .Aﬁ-('c')., which is to say u(b) >:ufe). If u(b). > u(e),.then c is not
an element of the acceptance set Au(b), and.consequently it is not an element of
A v(b) either, which is to.say v(b) > v(c)..6 -Any twa utility :'functions.which
coincide on the set of riskless outcomes, and whose.risk .ﬁvgrsion can be compared
in this way, differ only on ‘the set of risky outcomess .So.the. difference between
two such functions lies enmtirely.in .the‘attitude.which they express towards risk.

-Having thus' characterized the relative risk aversion of utility: functions in
- terms. of their acceptance sets,.we.can. prove.the following -theorem which permits
the same relationship. to be expressed directly. in:terms:.of the:utility functions
(Kihlstrom .and Mirman [1974]}, Proposition .6_)....:.We. will henceforth:assume that v

‘and. u. induce.the. same .ordering:.on C-'whenever v: is more risk.averse than u.

Theorem.4:. A utility function v.is more risk averse than u:1f.and only if,
.+ for all riskless outcomes.c in C,.v(c) =: k(u(e)), where k is.an increasing concave

function.

Furthermore, v.is strictly more risk averse than u if and. only if. the function k is

strictly concave.

. 6Not_e that' u and v .need not.order:the elements:of C:imn precisely:the same way, - .
" since.we have:.not.ruled out.the. possibility that -there.exist elements:b and ¢ such
that . u(b) .= u(c) but.v(c) > wv(b). Indeed, let.u(c) = k for alli¢c.in.C, i.e., let .
u be constant.on C. Then: any (non-constant).utility fuaction ¥ :1is.more risk averse ..
than u,. but u.and v do.not induce ‘the .same ordering on C.. (See Roth [1979e]).
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Proof: 'First suppose that v is more risk averse than u.. Since v and u induce
the same ordering on.C,. it follews that for all ¢.in €, v(c) = k(u(c)) where k is
an increasing function (i.e., k(x) > k(y) if and.only if x > y). We need to show
that k is concave.

: Snppése that k 1s not.concave over the range of values taken by.u on the set
- G.. Then there exist outcomes.b and c.in C. and.some real. number .q in. the interval
- [0,1].such that gk(u(b)). +-(1~q)k(u(e)) > k(qu(b) + (1-q)u(c)). Let & in C be a
riskless outcome such. that v(8) .= v([gbj(1=q)c]) = qv(b) + (1-q)v(c). That is, &
is a riskless.outcome which is equivalent to the.lottery.[qb;(l-q)ec] as evaluated by
‘Ve. ' (Such an outcome 8, which is.sometimes.called the certain equivalent of the
“lottery, exists because v is concave on .C, which 1s.a 'convex set). .Then the lottery
{qbs(1~q)e]) . 1s: contained. inthe acceptance set A‘-r(a).
. However. k(u(8)) = v(8) = qv(b) + (1-q)v(c)
= qk(u(b)) + (1-q)k(u(c))
> k(qu(b): + (1~q)ule)).
Since k is an. increasing function,.this. implies that u(8) > qu(b) + (l-q)u(e) =
u(lqb; (1-q)c]). Thus.the. lottery [gb;(l-~q)c] is not contained. in the acceptance
set :Au(&)., ‘which.contradicts the .assumption that v .is more.risk averse than u.
:I;hus,. if v is more risk averse. than.u, k must be concave.
- - -'To.prove the theorem.in the;other direction, suppose that for :all outcomes c
in.C,. v(e) = k(u(ec)), where k is:an increasing concave fumction.. :For outcomes
a,b,c in C, let m = [.qa;_l(l-'sq)h] be 'a.lottery ‘eout'ainef.'.m:-vthe mept:ange set Av(c)_..

Then k(qu(a) + (1=q)u(b)) > qk(u(a)) + (I=-q)k(u(b)) by the conecavity of k, and
qk(u(a)) el-..(l.—q)k(u'(b))' = qv(a) + (1=qQ)v(b) = v(m) > v(c) = k(u(c))

sincem is .in .the acceptance set.Af(c),..- Iherefore,_k(qﬂ(i-l. + (1~q)u(d)) > k(u(c)).
Since k:is an increasing function, .it .follows. that u(m) =.qu(a) + (1~q)u(b) 2> u(c),
an&q.so-.mdg..zalse,..conta:l.ned..in‘the acceptance: set. Aﬁ(c).-.. 'Ihu'a. %_Cc) is-a subset of

-Au(c.) s and 80.v.1is. more.risk averse than u.
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In what: follows, we will .consider two-player bargaining games (S,d) as arising
from bargaining over a.set of riskless -alternatives. C, by players with utility
functions uy and. u,. ~That is, the feasible set of utility.payoffs can be repre-
sented: as .the . set § = {(xl.xz) lxl = ul(c) and x, = uz(c). for some c in C} and the
disagreement point d can be represented. as the point d= (ul(ﬂ) ,uz(ﬁ)) where & is
the disagreement.outcome., Every game. (S,d) in the class B can be represented in

this way.7

As in Section C, the Pareto optimal subset of S, P(S), can be repre=-
sented as the set of points of the form (x1,¢(xl)), where x, = ul(c) and
Q(xl-) - uz(c):for-some- Pareto optimal outcome ¢ in C, where ¢ is a monotone decreas-
ing concave -f.unct:ion. defined on an 4nterval [3:_1,;1]. |
-To.see how risk aversion enters into Nash's model of the bargaining problem,
let w be the utility function of player.2. in the game. (S,d) -Just considered; i.e.,
let.uz. = w.. Now. consider another game (.g,;l)., derived from l:he first game by re-
placing player 2: ;rith“a.more. rigk averse player, whose utility function is §. Then
for all c € G, @(c) = k(w(c)), where k is an increasing concave function. So the
new disagreement point d is given by d = (u,(€),8(8)) = (d,,k(4,)), while the new
feasible set S 1s given by '
S = -{-(yl.yz)lyl = ul(c), ¥, = ®(c) for some c ¢ C}
.- {-(yl.yz)]yl = Xy, ¥ = k(x,) for some (x1,%,) € s}.
The set of Pareto optimal points. in ; is the set P(g) = )
{cxl..k(¢.cx1)-))|(x1.¢(x1)) € P(S)}, since both P(E) and P(S) are.determ:lned by the
-same underlying outcomes ¢ in 0.8 )
For example, consider the game. (S*,d*), defined earlier, which. z:esﬁ.‘l_._t_s from
bargaining over the division of Q dollars, between .players with utility functions

Uy and Uy, and initial wealth vy and Wy« The Pareto optimal set of §* is the set

P(S*) = {(xl,xz) ]xl = ul(w1+c1). x2 = uz(wz-l-Q—cl)f for 0 < ¢y .<.Q}. . The set P(S%*)

70f course hlar'ga'inihg"gmé in the class B can arise in other ways as well, e.g.,
from bargaining over risky as well as riskless alternatives.. . -8eey .for instance, .
Kihlstrom and Roth [1979] for a discussion.of bargaining. over .insurance contracts.

8nis vould not necessarily be the case if the ‘bargaining were over lotteries in-

stead of riskless outcomes, since a given.lottery might be Pareto-optimal for one
rair of players; but no longer be Pareto optimal for more 'risk averse players..
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can be described as. the.set of.points (xl,e(xl)), where ¢ is a monotone de~

creasing, concave function defined on .the :interval ulcwl).- -di 2x < uy (wl + Q).
Let vy be another utility function, such that vy 1s more risk averse than Uy

and let (T‘,d#)' be the game which results when u, is replaced by ¥, in the game

(S*,d*). That is,

'l:‘I - {(yi,yz)lyl - ul(wl + cl), Y, = vz-.(wz + °2) for some Cys S5 2 0
such that ¢, + ¢, < Q}
- {(yl'yz)lyl =Xy and Y, = k(xz) for some (xl,xz) e S*}

where k is an increasing, concave function.

So the Pareto optimal set of outcomes in ‘I.‘# is

P(T#)-- {(yl.yz)ly1-=-u1(wl+c1). Yo = k(uy(wytQ=c;)) for 02 ¢c; <Q} ,

80 P(T#) is the set of points of the form (xl,k(qn(xi)')). (See Figure 4, p. 43).
Making player 2 more risk averse has the: effect:of making the: Parete optimal set of
utility payoffs more concave as a function of player 1%s utility.

-Note.that we have drawn Figure 4 so that..d* = d#;. a.nd‘-k(@(xl.)) = t(xl) for some
point xl'- ul(wl-l-cl). This simply amounts to.choosing a normalization of v, such
that v, (W,) = uy(w)), and vy, + Q - ¢;) = u,(w, + Q - ¢;). '

To see how the risk avers:loﬁ of the players affects.the Nash solution, consider
a bargaining game (S,d) whose Pareto set..is'-:.the..set'.ﬁf-_-pn‘ints.'.of ‘the form (xl,o}_(xl)),
and let z = F(S,d). Then zy maximizes the geometric average A(xl) =
(¢ (xl) - dz) (xl - 1) on s__.- and go we. have the :Edllowing-. lemma.. (For.simplicity, we

state the lemma for the case that ¢ is differentiable.)

Lemma 5.1:  (¢(z;) - d,)/(z; - 1) = —¢'(z).

Proof: Since A(zl) is maximal, we know t:hat:A‘:(z_l)_ = ¢"(zl) (zl - dl)

+ ¢(z1) - dz = 0. The lemma follows immediately.

The lemma seys that the: slope of the line joining.the.disagreement.point to the
po:lit z = F(S,d) is the negative.of.the slope.of.the.line tangent: to:S.at z. That

is, in Figure 5 (p. 43), the angles o and B are equal,
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If ¢ is not differentiable, then: several tangents to.S may. exist at any point
(z1,¢(z1)'), .but Nash's solution .can still be characterized .a= the. solution which
selects the unique point z such.that the line joining:d to-z has the negative slope
of some tangent to S at z.

So we .cansee from the dotted line in:Figure 5 that as player 2, say, be-
comes more risk averse,.the Pareto .optimal set of payoffs.in S becomes.more concave
and "flatter" as a fuaction of player 1's utility, so that '.the tangent at 2’ to

, the new. set ‘of .feasible utility payoffs will make a more acute.angle § than pre-
viously. .Consequently, in the new game the Nash solution will .oceur at a point
which makes the.angle o more acute as well, which is to.say player 1's utility
will be greater than -zl-at the Nash solution.to the.new.game. . More formally, we
can state the following result for two-player hbargaining games, (Our presentation

follows that of Kihlstrom, Roth, and Schmeidler [1979].)

Theorem.5:. . The utility which Nash's solution assigns to a.player in a two=
person game) increases as his opponent becomes more risk.averse.. That is, F i (g,d)
>.F i(S','d): where (S,d) is obtained from (S,d) by teplacing player §,(j#i), with a

more risk averse player.

-a-more risk averse. player, so.the Pareto -o'pt:lml points in S are of the form
(xi'.ﬂxl)') 3-while the Pareto optimal points in § are.of the form (xl,-;ixi)), where
; = k(¢), and "k is increasing and .concave. "It will.be sufficient:for the proof of

- the theorem to.consider. only games.(S,d) and (-E.,E).. such that .¢..and: ;.ara' differenti-
able. "This is:because Nash's solution F is continuous (in.the.Hausdorf topology) on
the.class B of.bargaining games. ..Th‘u"s,...for..:instance,:;.:tﬁt,(ﬁ,d) :is a-game in B who:.ua
Pareto set is ‘not.differentiable,. there.exists a .sequence of . games (s“,d) in B

" which converges to.(§,d), and whose.Pareto:sets are.differentiables :The continuity
: of ‘'F. insures. that.'-l?(s?,d).- converges to F(S,d), andaud.f the theorem is true for

-differentiable. games then it is true.for all games.

'gwg can nlwn};i_;léhoua'eipla'ye:; 2's: t:.f:!.l::bty.funetion&.so':uhat:--thefcumes ¢(x1) and
1:@'-(3:]:-).)' which define .the Pareto. surface intersect.at z.. (See the comments on
Fism.4 on pe "12). :
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Since the solution F is independent of equivalent utility representations, it
will also be sufficient to prove the theorem for games normalized 'so that d and &
are equal to. the origin.: .So- let (S,0) and (5.3) be bargaining games which differ
only in the risk aversion of, say, player 2. Then the Pareto optimal points of S
are the points (xl,Q(xl-)) for 0 < x5 2 X,, and the Pareto optimal points of § are
the points (xl.k(é(xl))) defined on the same interval, where k is an increasing, con-
¢ # > z¥, It is

1 1
sufficient to show that the geometric average A(xl) = k(¢ (xl) )xl'haa a. positive first

— ~ —
cave function. ' Let z* = F(S,0) and z° = F(S,0); we want to show that z

derivative at z{.

But
A'(z8) = k'($(z§))¢" (D)2 + k(4(zD)) .

By Lemma 5.1, ¢* (zi)zi = -¢'(zi), 80

A'(z§) 2 k' (0 ()6 (2f) + K($ ()

k! (25) zE + k(zﬁ)

k(zﬁ)
z§[-k* (2%) + = 1 .

The concavity of the function k implies that k(zﬁ)«‘zi > k' (zg); (see Figure 6, p. 43),
while the individual rationality of the Nash. solution .implies g§ > 0, so0.A' (zi) >0,
as required. (In particular, if player 2 is strictly more risk averse in (5,'5) than
in (S,0), then k is strictly concave and A' (z§) > 0.) This completes the proof.
(Note that although we proved the theorem in t.em.-of~the.ef-f"ect:.nn,.play_er 1's payoff
when player 2 is replaced by a more risk averse player, .the.symmetry of the Nash

-solution:insures that the same conclusion holds for player 2.)

-~ This theorem:can be used: to determine the relative memetary.payoffs predicted
-by the Nash solution in’'games of the form (S*,d*), .in which players with utility
functions \ul.and “2.' and. :I.u:l.ti_.al wealths Wy and Wy bargain over: the division of Q
-dollars... Let a_ri(c). = u, (v, .+.¢) and ’vz'-(c) = u,(w, +.c)_for all values of c between
0 and Q. Then v.i(c) -is player i's utility when he receives c dollars, and the game

(S*,d*) .caq'.be-represmtgd by d% = .-.(irl (0) .-vz(O)), and
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Sk = {'(xl_,xz) le = v,(c,) and x, = v, (c,) for ¢y+e, < Q, and

cysc, 2 0} .

Let z* = F(S*,d%), and let c'i and ea be the monetary payoffs which yield the
utilities zy and z,y (1.e., z, = ui(wiﬂi) = vi(ci)).. Then we can state the follow=~

ing corollary of Theorem 5.

- Corollary 5.1: If vi':l.ar- strictly more risk averse than -.vj on: the interval

0 <c <Q, then c* < c¥%,

i 73

That is, the Nash solution predicts that .the.player who is more risk.averse on the
range of feasible monetary. payoffs will receive the.smaller payoff.

Proof:. Suppose vi(c) = k(\rj (c)) for 0 <.c < Q, where k is an increasing con-
i...and vj .
tions, and. the: symmetry of Nash's solution would. imply .cf u..ci-:.-; ‘Q/2. .However k is

cave function. If k were linear,: then.v .wounld.be.equivalent utility func-

strictly concave, so v f is:strictly more risk averse ‘than.y 1

‘now follows immediately from Theorem 5.

:and.the corollary

.- The Harsanyi-Zeuthen medel of negotiation considered.in the previous section
can be.used. to. provide an alternative, indirect praof of Theorem 5, by means of

the . following.observation.

.I?rogo_s.ii::toﬁ' .5-.'-1=_ 1f. v § and- u, are two.utility functions such:that v " is more

'risk averse than'u £ then. the risk ‘;l.:l:_n:l.t.'i?i'.'rfor' any.pair of proposals:is lower under

vy than under u. -
+Proof: 'Consider an individual whose utility function ie qi,;:-evalu'at:ing his

tisk.limit for proposals .which give him.a utility -‘of.yi'.::lf ‘his demand is met, x {

if he concedes to_ his, appenant!a;-dmd, cand.d i'-:l.f._couﬂ.ict; results, with

¥y >.;1 :-.di.... .His risk limit ri

;‘:I. - (Yi' - x)/(y, = d,). Now v, = k(u,) where k. is a concave function, and ve

a8 defined by Harsanyi and.Zeuthen is then

want to.show thaét..-l:he:..tuk..limih evaluaiedi:'liyi..the.;ut:ﬂity;tunction vy is always

less tha.nii, :1.e., We want to.show that (-k(yi) - k(xi)-);.'__(k.(yi)l'-..k(di).) <r But

i.
observe that x, = ad, + (1 = a)y, where a = ?1, and
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k(xi) = k(o'.di + (1 - u)yi) Z_uk(di)'d- 1 --o:)k(yi), since k is concave. Conse~
quently

k() - k(x) k(@) - @k@) + (4 - k(y))
kG - K@) =7 E(yp - k@) o eeE

i »
vhich completes the proof .of the ‘proposition..

Together with the results.of.the Harsanyi-Zeuthen negotiation.model, this
proposition provides an alternate proof of Theorem 5, since the: lower an indi-
vidual'’s risk limit, the more he ‘must .concede .to his .opponeﬁl:;at any stage of the
negotiations.

So the Nash slolul:.:l.on F is sensitive to risk aversion in any two-person bar-
gaining game, which we can formalize as a prébarty which-:ma might find desirable
in any solution f. In particular, let (5',d') be a two-person.bargaining game de-
rived from (S,d): by replacing one. of the .players, say player i, with a more risk
averse.player.. That is,. (S',d"):is the..gm'.in...which d;_- dei)..,. cl;' = dj' .and
§' = {.(yi,-yz)lyi-ﬂ._k(xi) and.'yj - x for some (xl,xz). -4n S}, where k is an increas-
ing conc;ave function. (So H"@(xj)-describts player i's Pareto ~optimal utility pay-
offs in S as . a function of p‘lay-e.r._' j's utility, then in S'.these: payoffs are des-

cribed by k(¢ (xj)) +) Then the Nash solution possesses.the following property.

"Property 8::: Risk sensitivity: .if a. two-person bargaining game (S,d) is
transformed.into a: game .(8',d'). by replacing .player.:i with a more. risk averse

Note: that Property 8 makes a meanin,gfﬂ comparison, .because player j's utility
function is. unchanged.in going from the game (S,d) -to (S',d').
 Somewhat: surprisingly, -a solution which is-both risk.sensftive and Pareto op-
timal must alsc be: independent:.of equivalent.utility representationss q;l'hal: is, we
. have :the following result, -

Theorem 6: If f is a'solution for. two-player games. which: possesses Proper-

ties 4 and 8, then:it also possesses ‘Property 1.
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Proof: The proof is simple, and consists of essentially two observations,
The first is that. the game (S,d) is derived from. (s',d') by subjecting player i's
utility function in the latter .game to a convex transformation, k_l. So convex

transfomtionslo

of i'g utility lower f 1 ‘Just as concave . transformations raise
it, and so linear transformations of one player's utility leave the other player's
payoff unchanged. (sime‘a-'lm: transformation is both.concave and convex). This,
of course, is hlalf of Property 1: the other half is that a linear transformation
of a player's utility function should change his own payoff by.the same linear

- transformation. But this follows from the. Pareto optimality of.f, which permits

us to compute f jas @ function of f j: -since £ 3 is unchanged by a linear transfor-
mation of player i's utility, the solution f picks_: the transformed. point, as re-~
quired. N

An immediate corollary of Theorem 6.is, of course, that Property 8 can be used

to characterize .Kg,sh's.‘solutio'n, as follows,

« -Gorollary 6,1: The Nash solution.is.the ~unique sola_ﬁion. for two-player games

" which possesses Properties. 2, 3, 4, and 8.

- Theorem .6 .is. somewhat.counterintuitive, since: it deduces linearity (Property
1) .in part.from the.risk sensitivity property, .which- is specifically concerned
with the non-linearity of risk averse utility functioms.: I think: the best explan~
ation is,..p-robably that the intuitive plausibility.of the.risk. sensitivity property
.derives in part from.the feeling. that the outcome.of bargaining may: turn out not
-to.be:Pareto optimal.. In particular, a disagreement may occur, .and the fear of
‘this eventuality may cause a highly. r:l.#k-.-uverse. player: to .settle. for an unfavorable
agreement,. . Note that for games with more than two.players it is not true in gen-
.eral that, as.one nlayer_._"_s.,.utu—:l-.ty funetion: becomes. more. concave, . the. other players
all.receive.a:higher payoff under the Nash. solutsi-.oﬁ'..(e..g.. .consider the ga#e des-
eribed on p. 19). '

L09¢ course not .every: convex.transformation will leave the feasible set convex,.

1.e., not.every convex transformation of a.player's utility transforms a bargain-
‘ing. game dnto.another bargaining game..
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Boldness and Fear of Ruin

In considering the risk semsitivity of the Nash solution, we have so far been
concerned only with fairly coarse comparisons of.risk aversion. In the statement
of Property 8, the game (8',d') is derived from the game (S,d) through a transfor-
mation of player i's utility which affects. every point in the set S. Since the
Nash solution is independent of irrelevant.alternatives, it should be clear that it
-will also. be sensitive to more localized changes. in player i's utility function,
affecting only the region.:near.the.psyoff z, = Fi(s,d)... Lemma 5.1 meakes it par-
ticularly clear that. the Nash solution is determined by the utility funct_ions of
the players only in the neighborhood of the outcome:z,. and:the disagreement point d.

A notion of risk aversion:which captures the essential information needed to
determine the.Nash solution:is the concept. of "boldness" (or its inverse "fear of
ruin®). introduced by:Aumann. and Kurz.[1977a], [1977b]. . Consider.the game (S*,d)

. .4n which two:-play.;rs: with initial wealth w.

1
lars. ‘A feasible proposal is a'.pmpoéed.split (cl,cz)., such that ¢y + ¢, < Q and

and W, bargain over how to split Q dol-

¢;» €, > 0, which leaves each player i with total wealth w; +.c,. Player i's bold~

i
ness: with respect to the proposal .(cl-._cz) is defined. to:be the quantity b i(wi. c :l.) =

' . _ - ' . .
ui(wi + t::'.),((u:'.(wi.ir:L + ci? ui(wi)), and the inverse of this quantity-is cglled his
fear of '::1.111'1.:ll
" To see why.this is a reasonable definition, suppose that. player.i has been of=-

fered the ‘amount.c,, ‘80 that,:1f he accepts, -his total ‘wealth.will b«a:wi +c 4+ Sup-

j:ose ‘that he now.considers a gamble which.risks his- e:_zt:ire ‘gain. ey against the
possibility.of a . small additional gain'h. If h.is very.small in cemparison with
-€4s¢ then the-probability-q. that he will be “ruined" and.lose the: entire amount c 1
would:have. to:be quite small .;1n\ord§r ‘for him to.prefer .to.accept the.gamble, rather
.than to -take: ¢y -.'fon certain.. .The maximum probability . of.ruin.q.for.which player i
is.willing to .accept the gamble.can be considered a.measure .of his boldness (or

an inverse .measure. of ‘his . fear.of. ruin).. . That.is,  the bolder.a player is (i.e., the

Mpunann end Kurz.[1977a], [1977b]. phrase their discusston primarily in terms of the
fear of ‘ruin, -but. in the present:context we will find.it:more convenient to concen-
trate. on boldness...In any event,.our discussion.closely. follows Aumann and Kurz
[1977a]. '
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less fearful of ruin), the higher the probability of ruin must be to dissuade him
from risking c, for a emall additional gain h. Of course, q tends to 0 as the
additional gains h.get smaller. It.turms out.that the boldmess 'hi.(wi’c’i) is
equal to the maximum probability of ruin per.dollar.of additional gains which
player 1 is prepared ‘to tolerate, for: very small.potential gains. That is,
b, (W se,) = 1im q/h.
iviery 10

To see this, observe tha.-t.-ﬁ is the probability such that “1(wi + ci) =
qui(wi) + (1.. - q)ui(wi + ey 4+ h). Consequently

(w,(w, + ¢, +h) ~u, (v, + 0;_3)“1
u (w, +c, +h) -u (W) ’

Fo
h -

and so

™ |
nifwi + ci) _
ui(wi + °1) - ui(wi)

lim 1= b, (w,,c } -
b0 h ivi i.

The Nash solution can now be characterized as_selecting the point z* in S
at which the players are equally bold (or equally fearful of ruin). That is, we

have the following result.

Theorem 7: F(S*,d*) = z* = (ui.(wl + -.ci"),'uz(wz +_.c§).) such_that cz + ci = Q

snd bl(ylt C?-):'.- bz(wzicﬁ) .

Proof: The Nash solution.picks the point whichrmaximizes the product
A(cl) - [ul(wl + cl) - ul(wl)][u_z(_wz + Q- .°1)' —-uz(wz).]. Sett.ing:.dAjdcl equal
to zero.yields —ui(wz +Q=- ci) [ul(wl + c{) ‘- ul(wl)] +
ui(wl + c{) [uz(mr2 +Q - ci) - uz(wz)] = (0, which.gives us the re~

quired result,

Note that the assumption that-utility functions for .money.are increasing
and concave implies that a player's boldness-is.a .decreasing.function of his

gains. That is

" - 2
by (y,cy) . [y Gy +.¢y) ‘_'.‘.’1(‘."1)3"’1_.(‘.1'1"'3'.91.)--' <. (:;i(wé-”-l- ‘ii}l <o,
3¢y u Gy +ep) - utj_(\w)]2

since the der._toin:l.nétor is always positive, and the numerator is: always negative.
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Consequently if, say, player 2's boldness were to decrease with respect to the
gains cg, then player 1's gains at the Nash solution of the resulting bargaining
game would be greater than ct.. Another way of stating the relationship between

boldness and the Nash solutien in the game. (S*,d*) is. as follows.
Y - Q Q.
-.Corollary 7.13 c} > c¥ if and only if bl(w ,2) 2 bz(wz.z).

That is, the player who is bolder with respect to an equal division: of the available
money obtains the larger share according to the Nash solution. -The proof is imme-
diate from Theorem.7.and the fact that bi(wi’ci) is a decreasing function of Cye

Note that Corollary 7.1 presents a more sensitive result than Corollary 5.1.

. An example: Consider a game (S%,d*) in which two players bargain to divide Q
dollars, and suppose that the utility functions .of the two . players for money a.ré
ul(c) = ¢ and uz(c) = Yc. If the initial wealth qf.each.player is 0, then
d* = (0,0), and S* = {(:l;]_,zzz_)lx1 =Cys Xy = fc_z', 'wﬁére e, +e, 2Q ¢y 0 2 0}.

Let ci and cg be the monetary payoffs which correspond to.Nash's. solution. Note
that player 2 is strictly more risk averse than player 1, since u, is a concave
function of. Uy and so.Corollary 5.1 (p. 46) implies that cﬁ.d =c’i.. Furthermore, the-
boldness of the two -‘players with:respect: to any payoffs ey and cy :I.-s'hl(O ,cl) = i—l
and b (O,cz) = 1/2¢.,. So the boldness of the two players with respect to an equal
division of the money is b (0,%) = — - and bz(O.g‘) = -5..' So.player 1 is bolder with
respect to ‘an equal division, and so Corollary 7.1 also :dmplies '.'t.hat-..o,g < ci. Set; '

ting bl(O,cl) = b2(0,32) we find that in fact cI <Q ‘and cﬁ

'Naturally, Theorem 7 is equivalent to Lemma 5.1 for games of. the form (S*,d*),
since they beth characterize the Nash solution.om these games. . In.fact, the two
results describe essentially.the:same phenomenoni .. To see this, let -

F(S*, dk) = gk = (ultwl + ci). 2(vnr +. ca)). and let. the Pareto.surface.of S* be
the get:of points (xl,¢(x1)) where xl ul(w + cl) for 0 < € = .Qy,-and: ¢ 1is def:l.ned
by ""2("2 + cz) = ¢(u1(w1 +Q - 2)),. .Then-uz(wz + cz) =
—tb'(ul(wl +Q -3 cz))u{(wl + Q- °2)" ‘For simplicity, we.can. consider the

utility functions to be normalized so that d* = (ulcwl),uz(wz)) = (0,0).
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Then Theorem 7 "asserts that
Uy tep  uilwy +of) ___-dz'.ﬁ.(;_i_;i(_{f_l_..f!l- euilvy +Q - cf)

zi } zﬁ 25

but Q - cf = 'c.i, so this is equivalent to zi/z:’l‘; _-.-¢'(z‘i).-.which is precisely

Lemma 5.1.

Strategic Risk Posture and the Utility of Bargaining
So far our study of bargainiﬁg_ has been.divided conceptually into: two distinct
parts. First, the preferences of the players over a set of underlying alternatives ‘
(“prizes")lz are codified in terms of expected utility functions: This then leads
to the formal description of the bargaining game in terms .of. .the available utility
payoffs, which we have studied axiomatically by specifying the.properties of a solu-
tion. Thus.all of the information. about.a player's attitude ‘towards .risk is con~-
tained in his utility function: (for the .underlying prizes),.while all: tﬁe informa-
tion about. the.bargaining process is contained-in the solution.
This. division is in some respects.an artificial one, .If a.’.player;bélieves that
a given solution is an‘accurate model:of the bargaining process,. then 'when he con-
. siders: two different.bargaining. situations, he prefers the one .in which the solution
predicts he will get.a higher.utility payoff. That is, a given. solution induces a
preference.relation.over:bargaining .situations. - On.the 'otl_ler- hand; .1if an individual
. has: sufficiently well behaved.preferences .over. bargaining situations: (cf. Section A)
 then his.preferences can.be modelled .as a-utility function .for bargaining. This is
- the:approach which we will now proceed :-:.:o:..'ihvest:l.gate:m
- In particular, we will investigate what kind of: preferences over bargaining
situations lead: to: utildity. fmtion@-.corresponding_.m".nhé .symmetric and non-
- symmetric:Nash solutions. Just.as formulating an individual's.utility function
for money.forces us te .ex;;licit:'ky take.into _aeaount-. his. &ttimdae...fwards the

(probabilistic). risk associated with.lotteries, we will find that, in order to

1254 nce we will be speaking here.about alternative bargaining situstions, we will

designate the alternative bargains available in.a given game as prizes.

13011: discussion closely follows that:of Roth [1978].
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formulate his. utility function.for bargaining games we must explicitly take into
account his attitude towards the strategic risk associated with bargaining.

For simplicity, we will confime our attention to bargaining games with a com-
mon disagreemeuc: point d = 0, and denote a bargaining game. (S,0) by its set of out~-
.comes. S. .Let B' be the set of all such.(non~degenerate). bargaining. games, together
with the degenerate.game Ay = {0}, in which the disagreement point is the oaly
‘feasible outcome. .For any pesitive veétor x .1n:Rq, -it will also be convenient to
denote by A 'the game A_ = {ax|0 < a < 1}. That is, A_ is the game whose outcome
set s the line.segment joining the disagreement. point 0 with the point x.

We will be .interested in an individual's preference relation R.over the (small-
est) mixture set M' which contains N x B' (cf. p.. 2). That is, we are interested
in an individual's preferences.over alternatives of the form (i,S), where
1€ N={l,...,n} and S € B', as well as over all lotteries which can be generated
from.alte'mtives‘of this form. .For instance the statement (1,8)P(j,T) means "it
is preferable -to play position i in the game S than to.play positiom. j.in the game
T." (The strict preference .rélation P, and indifference relation.I are defined as
in Section A.)

We:call the.set N = {1,...,n} the set of Bosit'ioﬁs (rather than the set of
.players). to emphasize that.we a.r.e .now considering the preferences of a single indi-
vidual ‘over alternative bargaining situations. If, for instance,.this individual
.chooses. the alternative (1,S) it means that he:will: participate in: the bargaining
.game -8 in position.i, while the:other.positions will be filled by.n - 1 other
-players .(who we will regard as being drawn at.random from.some fixed set of poten-
tial players).

.- - Of course the set of outcomes.S in:a bargaining game is: defimed-in terms of
“the:utility funetions of .each of the.players for the underlying prizes (e.g., their
utility. functions. for money). .Thus if x is an .outcome in.the.set S, :then the al-
-ternative. (1,S).represents:a bargaining situat:l.on;in .which:the.prize corresponding
‘to the payoff.vector x gives the: individual whose preferences. we are:studying the

~utdlity .payoff % 1 (in terms of his own utility function over:prizes) while
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giving the players in other positions j the utility x

5 .(in terms of their own

“utility functions) .14
We will assume that the preference relation R.obeys.the necessary conditions
of substitutability and continuity (as on.p..3) to insure.that an expected utility
function @ on M' exists.. That is, ® is a real-valued function on M' such that
6(1,8) > 6(j,T) if and only if (1,S8)P(j,T), and 6[p(i,8); (1 - p)(j,T)] =
p6(1,8) + (1 - p)6(j,T). We will sometimes write 01(8) = §(1,5), and 0(8) =
(91(5)....,8n(8)). That 1s, 6(S) is a vector whose i-th component is the utility
of playing position i in game. S. To insure that the names .of .the.positions have no
influence .on the desirability of a particular position in a.game, .we require that

the preference relation.obey the following conditions.

Cm'.k.’::l.-l:_it:in-3.:.1:.s For all i € N, § € B' and every permutation 7 of N,

(1,A)I(wi,mA).

Since we are considering preferences over bargaining situations, which are
'themselve_s. defined in terms of the utility of pr:[ze.s,,.we will also require that
the preferences over bargaining games be consistent with the preferences for prizes
which. the utility payoffs of a given bargaining game convey, The following con-
ditien.insur:e;s that the.preferences .over.the. "sure-thing". games A, which involve
no. conflict among .the jplayers, are compatible with.the. interpretation of x as a

‘utility vector.

-Condition 23 _(:L.A.x)x.(i,Ay) .1f and only if x, 2 Yye

'141?01: instance, for the sake of .concreteness we might . imagine that before a game .
is played, each player's utility function for prizes (with:an arbitrary origin and
scale) is calibrated in.terms of "play money". . The.set of outcomes S in a bargain-
"ing. game then corresponds to a set of payoff vectors in.play money. After the bar-
‘gaining is concluded, each player exchanges his play money for prizes at the ex-
change. rate. established.for .his own utility function.

lsThis is essentially a symmetry condition, but we shall see that it plays a some~-
-what different role than the.symmetry property of the Nash solutiom.
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So (1,Ax)P(1.Ay) if and only if X, > Y5 i.e., it is preferable to play posi~-
tion i in the game.Ax than in Ayv if and only if the resulting. utility payoff is
higher.16

An immediate consequence of Conditions 1.and 2 in terms of the utility func-

tion 6 is
Lemma 8.1: 91“‘;) 3_-ej (Ay) iff x, 3yj.

In particular if x, u-yj > 0 then Gi(Az) - Gj(Ay). > ei(aa), 80 . we can choose
the natural normalization for the utility function 6, :and set B(i.,ké-) = 0, and
0(1,AD) = 1 where T = (1,...,1).%7

The.conditions which insure that the utility function 6 will share the Nash

solution's two independence properties (Properties 1 and 3). are. the following:

.Condition 3; If S' = {(alxl..... )lx € S} for aj >0y J =1,eeeyn, and if

a; > 1, then (1,5)I[(1/a))(i,8"); (1-1/a RACH. ) N

Condition 4: If A'x is a subset of S, and S is a .subset.of T, where x is

Pareto optimal in T, and if '(i,Ax.)I(i.T), then (1,4 )I(4,5).

Condition 4 might be called 'indifference to irrelevant -alternatives" while
Condition 3 essentially imposes the requirement that 6.be independent of scale

changes. In particular, we have the follow_ing.conseqmce. of Condition 3.

Lemma 8,2:. If S' = {(8;X;,e0vs8 % )Ix € S} where. ay > 0 for.j = lyeeesn then

i(s )=a 484(8) for all 1 e N.
Proof: If a, >'1, then Condition 3 implies that

B (S) = 0[——{1 28"); (1. """“)(i ‘ﬁ)] = (S') »
i

16The motivation for. ‘this: condition is. that, since all the.players in the game A
agree-that:x is the best feasible:outeome, there. should .be.no dd.fﬂcult.y in reach-
ing an agreement: that x will be. the. final outcome of the game.

nl'or'an'y. real number.: ¢, we denote the.vector'(c,...,c) by c.
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while 1if 0 < a, < 1 then S = {(blxl.,...,bnxn).lx € S'} where emr:h.bj = lfaj, so

bi > 1 and the first part of the proof applies.

Lemmas 8.1 and 8.2 together with the. normalization. 6(i '.akiv) = 1 imply that

ei(Ax) =X for any game Ak,- and any 1 € N.

Thus the conditions imposed so far essentially embed the utdility function for
prizes into the utility function for games, but this is not yet sufficient to
uniquely determine the preference relation R over the mixture set M*. To do this,
it is necessary to specify the individual's.attitude towards. the.canonical game
A={x lal'zxi < n}. We will assume that .(i,AE)!t(i.K);R(i,Aa), and: let ¢ be the

number. between:0 and n such that
Condition 53 (1.1'):(1.5;).

' Then c:is the individual's:certdin equivalent for bargaining.in the symmetric
game A; that is, he is indifferent between bargaining in the game A or receiving
the utility c for certain (in the game.AE). .Of course it follows immediately that
8(i,A) = c, and we will say that the quantity ¢ represents.the individual's strate- |
gic risk goatufe;ls i.e., it reflects his attitude towards: the risk involved in
bargaining. If c. = l.then he is neutral:to strategic risk (since 1in the game A, 1
is the: (arithmetic) average award which the. players receiv.e._ if a:Pareto optimal
agreement-is reached).. If ¢ < 1 then the individual is strategic risk averse, and
if ¢ > 1 then he is strategic.risk preferring. o
- . For instance, an individual might be neutral to.strategic.risk if he felt that
he was an average bargainer, and.that.a Pareto .optimal .-ggmmnt'was sure to be
reached in the game A, .On.the other. hand, an mdivﬁm_..whm;m:;_ that there was
some_chance. that bargaining .iﬁz.-the-.r:gm.;x'.-.hight result in a 'noae-ramt;:...optiml out-
come (e.g.,. Who felt:there was some chance that .the.disagreement outcome would re-—
‘sult) might. therefore be -averse:to ‘'strategic risk. . That is, he would .strictly prefe
. to get. a“-utﬂibg.pay_of,t of 1 for:certain, rather: than.to have to:take his chances

in the game A,

18rve notion of strategic risk posture was introduced in.Roth.[1977b], [1977c].
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The strategic risk posture, as captured by the. certain equivalent c, completely
determines the utility function 6. That is, for a preference -'relation'oheying
Conditions 1 through 5, the (normalized) utility fumction 0 is uniquely determined,

as follows.

Theorem 8: For any S ¢ B', k ¢ N,.ok(s) =X where.x is the unique element of

q
s* such that lIxii

the vector such that 9 = ¢ Iq, =mn, and 9y = 4y for i, j ¥ k.

q
> I[y:li for all y ¢ 3+ such that y ¥ x, where g = (ql,...,qn) is

That is, for each k ¢ N, Gk(s) is equal to the k-th component.of the non-

symmetric Nash solution £ such: that: f(x,ﬁ) = q.19

Proof: What we already know about.the non-symmetric Nash solutions tells us
that the function 8, defined in the theorem does behave in accordance with Conditions
2 throﬁgh 5, as does the k«th component of -any non~symmetric Nash solution g such
that g (A,0) = q = c. However only if g, (A,0) = 8, (&,0) for 1, 3¢ k will the
function 8y obey Condition 1.  (To see this, consider the .sef.'s' ~equal to the con- .I
vex hull of the poimts (1,0,1), (0,1,0) and (0,0,0). Then Condition 1 :requires that
el(s') = 61(3), where S is the game described at the end-of sectiom. B.) The proof
that ek must in f_act be equal to the k=th component:of the non-symmetric Nash solu-

tion so described proceeds, with the help of Condition 4, precisely as. in Theorem 3.

Note that (unless ¢ = 1, in which case the vector q.described in the theorem _ |
is the vector 1) .each.éomponent of 6(S) is equal to the corresponding .component of
.# different non-symmetric Nash solution. The veétor 8.(S). is not.itself a Nash solu-
t:l.on.zo' Note also that if § is a.symmetric game, then el(S} T T en(S), re-
gardless of the risk posture which. it expresses. .. (For instance if.c = 3/4, then

0(A) = (3/byeeey3lb).)

19rhe condition g, = q, for 1, § # k was incorrectly omitted in Roth [1978], and I
‘corrected it in'a"subsiquent erratum, .

2°In.genera1, the vector 9(S) .need .not.be a solution at all (i+e.s it need not be.

an element of $). _ For instance a.risk preferring individual with c = 3/2 has the
utility vector 0(A) = (3/2,...,3/2), which.is not an element of A.
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When ¢ = 1, however, the vector 6(S) is equal to the Nash solution. Thus

Theorem 8 provides the following .characterization of the Nash solutiomn.

Corollary 8.,1: The Nash solution is equal to the utility vector 6 -raflecting

strategic risk neutrality.

Since the Nash solution .can be thought of as .a.utility. function which is neutral
to strategic risk, it is interesting to .investigate its. behavior with respect to
ordinary risk--i.e., .to lotteries between . games. Of course, the function 6 we have
been studying i1s an expected utility function, so that the utility of a lottery be-
tween any games S and S' is its expected utility; e.g., 6[1/2(i,8); 1/2(i,8")] =
1/20 1(3) +1/20 j'(S'). To see what kind of attitude towards risk this involves, we
want to compare the utility of the lottery with the utility. @ i(‘I) of the "expected
game" T = (1/2)S + (1/2)8' = {y|y = (1/2)x + (1/2)x" for some x .in §, x' in §'}.

(If S and §' are games of the form A_and A_,, then 6 would be linear: i.e.,
@/2)8CK) + (1/2)8(A,) = B(A) where y = (1/2)x + (1/2)%' (d.e., A= 1/28 +1/24,).
For arbitrary sets S and S', however, the utility is not in general linear.

For example, in the. case n .= 2,.let 8 be.risk neutral, so that it equals the
Nash. solution;. let.S be the convex hull.ef:(2,0), (0,1) and. (0,0); and let S' be
.the convex hull of.(1,0),(0,2) and (0,0).

Then the.set T.=(1/2)S.+ (1/2)S' is equal. to the convex hull .ocf the points
(13,0, (0,15, (1,1), (0,0). However 1/26(5) + 1/20(S') = (3/4,3/4) < 6(T) = (1,1).
(See Figure 7, p. 59).

The subadditivity exhibited. imthia..mmplez:l.has a simple. and .intuitive ex-~
-planation in terms of the underlying bargaining process.. The lottery
[1/2(1,8); 1/2(1,8"')] .can.be .choughﬁ of .as one in which .a.coin.is tossed to decide
“which of the two-player games, S or S', should be played. After:the coin is tossed,
_the individual whose preferences:we are.studying will play position i (1 = 1 or 2)
in--the.--sM"seleeted.-.-against...soﬁ&.opponeut... Since ¥(§,0) = (1,1/2) and F(S8',0) =

(1/2,1), this lettery yields an expected utility of 3/4.

2leg Hansany:l. [1968].
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The game T = {(1/2)x + (1/2)x"|x € S, x' € S'}, on the other hand, can be in-
terpreted as the game in which the players:reach an agreement before the coin is
tossed. Specifically, every utility vector y in T 18 of the form y = (1/2)x + (1/2)x'
where x and x' are utility vectors in S and S'. Since x and x' are expected utility
vectors, y can be interpreted as the expected utility resulting from the contingent
agreement. of the form. "choose x if the game 'S is selected, and choose x' 1if the
game S' 1s selected." .The.set T of feasible utility payoffs is symmetric, and the

.payoff F(T,0) = (1,1) results from the contingent agreement that either the point
x = (2,0) or.x' = (0,2) will be.chosen. Thus in this example, .the risk neutral
utility function equal to the Nash solution reflects a preference for bargaining
before .the coin is tossed rather than after.

‘The.intuitive explanation is that, before.the.coin. is tossed,. the players can
agree to choose one of the (extreme) payoffs x = (2,0) and x* = (0,2) since both
players have an equal chance of receiving the higher payoff. . If. bargaining takes
-place after the coin toss, this form.of compromise will be unavilable since only

one of the points x and x' will be feasible.zz

e

. zﬂota,- hmmr, that. it 1is not .the case for: ‘arbitrary sets S-and.S! that (1/2)F(s, 0)
+ (1/2)R(S",0) 1s always less than or equal to F(T,0), for T = (1/2)s + (1/2)s'. A
class of solutions.which has this property on a subset .of. the class B! of games is
studied by Perles and Maschler [1979].
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PART II: OTHER MODELS' OF BARGAINING

A. A Critical Evaluation of the Independence Properties
~In Part I we saw that an individually rational solution f which is independent

of equivalent utility representations and independent of irrelevant alternatives
can be uniquely determined by specifying the.outcome which it selects in the
'cmﬂéﬁ'.gm (&,0). Each of the two independence properties represents an
assumption concerning the.way.in which different bargaining games .are related to
one another, and together they essentially imply that.the process.of bargaining
in an arbitrary game is no different from. the bargaining which occurs in the game
(I,'é')'-,' or at least no different in any way which affects:the final agreement.
“Ingofar as a .solution is intended.to:be:a deseriptive model of the bargain-

-ing process, these assumptions can be. tested empirically,lfand' in addition, both
of the independence properties can.also. be. challenged. on conceptual grounds. In
‘this section. we..wlll .consider some of. the oh;lect.:l.o:i‘s which can ;_be.raiseci against
‘the assumptions implicit in the.two independence properties, and.in the subse-
-quent sections.we will consider the consequences of replacing them with alterna-

- tive assumptions.

-Independence of Equivalent:Utility Representations
. :The assumption that & solution (which models a given bargaining process) is

independent.of equivalent.utility representations can.be. interpreted in several
-ways, depending on what information is assumed to be available.to the bargainers.
-The traditional: game-theoretic assumption. is that the.players are completely in-

-formed.of one.another's: .preferences,. as. captured by their. utility functions.

lThere;-has ‘been-a fair. amount of. empirical work .done.which. relates to bargain-.
dng, but much of .it i{s in a form which makes it.difficult to comnect with the
‘kinds of pure bargaining situations we are considering here.. Even: the various
experimental investigations which have.been explicitly designed.to evaluate. = .
‘Nash's solution have been conducted under such a diversity of conditions that it
is.difficult to.draw systematic conclusions from their results. .For'a sample of
the empirical:work, see.Crott [1971], de Menil:[1971],.Foursker. and. Siegel [1963],.
‘Nydegger. and Owen: [1975], O'Weill [1976], Rapgport, et. al. [1976], .[1977], Siegal
and: Fouraker [1960], and Stone [1958]. .Some of .this work is reviewed in Roth

and Malouf [1979]. :
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However in many cases of. practical interest,.the bargainers have much less complete
information about the preferences of the other bargainers. .In particular, we shall
consider bargaining situations in which players knw.ona'umtheﬁ's.preferences only
over riskless events,. but . not over lotteries.

In such situations it might. still happen.that.the bargaining process depends
-on’ the .attitude of the players: towards risk; even though each player knows only his
own risk posture.. That is, each player's negotiating behavior can.still be in-
fluenced by. his . own risk. posture, which in: turn could.be. reflected in the final
agreement.. . However it is also.plausible that, .in situations of this sort, the at-
titude .of. the. players. towards risk would influence.the bargaining process only
indirectly.and .incompletely, or even not at a-ll'.z.' In -th:l.-s-:c'ase we .would expeect
‘that bnrgaining would be independent of a wider class of transformations than
these required by property.l. -That is, for bargaining: games in which a player's '
-gt:titude towards Yisk.is of mno consequence, a.-.il.'argér-_-.class..of utility fﬁnc.tions
are -eqﬁ:hralent to.one.another.. . In Section:B of Part II we will.consider the con-
sequences. this: has.for a theory of bargaining.

- .We.will -also want to.consider bargaining situations.in which the.players not
onl'f' have. complete. information about. one.another's preferences.and risk postures,
but :dho;:pﬁssesan; other :I.ufomt:ton;;which:m;y; effect the bargaining process. Note
.that.the. requirement..that.a solution be. independent.of .equivalent utility repre-
.sentations and also.symmetric. constitutes a requirement:that it be.completely in-
_sensitive.to .any. information other .than that.contained in.the utility functions -
‘of:the. players. Even without the symmetry: .proper.tsz,,-;o?.lops‘aa:a bargaining game
.4s.specified only by its utility. payoffs, a solution which: is .:1ndependént of
&qﬁyﬁm&;utﬂi&yx:spremtm;m -no. digtinetion between:. different bargain-

.ing situations which:may be perfectly distinguishable to. the.participants.,

2 Some -of thnaxpermnnm .evidenee.can be -tﬂterputed&s@:suppe;ting ‘this latter

-conclusion. .0f course the details.of how:the.negotiating process.is implemented
-in.an, experimental bargaining eituation. determine .how much:information can be
indireetly conveyed. through the behavior of.the bargainers, and.so.it. is difficult
:to.draw any.very -general conclusions on.the basis of limited: experimental evidence.
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Consider, for instance, .the following.two=-player bargaining. problem. FPlayers
1 and 2 bargain over:a.probability p ¢ [0,1] to determine.a lottery which, with
probability p, gives player 1l a prize.of €y dollars.and.player.2: zero.dollars; and,

with probability (1.~ p), gives a prize of ¢, dollars to: player. 2. and zero dollars

2
to player 1.. The players are free to agree on .any probability p . between O and 1,
and if they fail to reach an. agreement, each player.receives zero.dollars., Then if
players 1 and 2 start with.initial wealth W .and. Wy .respectively, and if their
utility functions for money are Yy -and-uz,. then this bargaining game can be repre~

" gented in the space of utility. payoffs by the pair ($,d) where. d = (ul(\»:fl).u2 (wz))
and S = {(xl,xz) _>_dlxl < pul(wl + cl) + (1 - p)ul(wl) .and x, < 1 - p)uz(wz + c2) +
puz(wz) for 0 <p <1}. That is, S is the convex hull of the.three points d,

(uy (wy + ¢;)5u,(w))) and 1y (wy)suy(wy + ).

ula.nd u,y

ul(wl + cl) = "‘2('2 + cz) = 2 and ul(wl) = uz(wz) = (0, .then S is the convex hull of

If we choose the.origin and scale of the utility .functionsa: so that
the points (0,0), (2,0) and .(0,2), and so (S,d) = .(A,0). Consequently F(S,d) =
1,1) = ((l-IZ)ul(wl + cl), (1!2)u2(w2 + -cz)) « .That. is:the.Nash selution F(S,d)
selects the utility vector corresponding to agreement .on the probability p - 1/2.

_Of course the same bargaining s.ituatiun,..is.' equally.well represented by the
: gtﬂity payoffs available in. terms:of the u'l:iliby!-fmt;.ons.'ul. .and- vz,': where uy is
player 1's utility.function normalized as above,.'-while:wz:.;isz,a autility function for
player 2 normalized so that vy (wz)' =0 and v, (w, + cz.). = 100. That is:v, = 50u, is
simply an alternative representation of player :2%s:preferences, s:tmée- ;he choice
of scale is arbitrary. Then: the set of .'£eu'sihibe:_.utitity-_;..pnyof-fa‘. in:terms of the
utility functioms. uy ‘and Yy 1s eimply the set S' equal.to the convex hull of the
-points (0,0),- '{2_.0), and. (0,100), where (0,0) is still.the:disagreement. payoff. So,
since the: Nash.selution F:is. 1ndependm..o£, equivalent ,utility rspresentations, it
follows that F(S',d) = (1,50),. which in:the. game (S',d) corresponds as before to

" the agreement.on.the probability.p =.1/2. That is,:the games (8;d) and (8',d) as

..described . here. are.equivalent: representations .of .the same bargaining situation in

:which the potential. cash awards are.c and-'c'z,'n..and .80 the:Nash: solution makes no

1
distinetion; between them,. The underlying bargaining situation.can:be represented
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as a symmetric game in utility space, and the Nash solution:selects the agreement
at which each player has an equal chance . of receiving his prize, and so player i's
expected monetary reward is equal. to ci/.z for i=1,2.

Now suppose :the underlying bargaining .situation is changed: by increasing the
amount of money which player 2'may receive, from e,y dollars to.some larger amount
ci such that uz(wz + ci) = 100, That is, ci is .80 much larger. than c, that player
2 would be indifferent between receiving ¢, for certain, or participating in a.
lottery which gave him a. 1/50.probability of winning :ci .and ‘49/50 probability of
winning nothing.

Let (T,.d.'-) be the resulting bargaining game:-when the utility payeffs are ex-
pressed .in terms of the (original) ut-ilil:y_ functions u, and Uye Then
(T,d") = (S',d‘) ,-.and so F(T,d") =.(1,50), corresponding to agreement.on the prob-
ability p = 1/2 (see figure 8, p, 65).. So the same. property.of..the Nash solution
‘which makes it insensitive to the. purely formal change in.representation from u,
to v, t_ll-ao. makes it insensitive :to the actual change from..cz_ tovci-. .That is, the
"model:of the game in utility.space, where the origins and scales of the payoffs
are arbitrary, is a model which.takes.no .account of the '.magniftude_ of ¢ and Cye
Indeed, the: game .1s. completely defined from the point. of view of this modeél even
before- cl.;and ¢,-have been specified.

However..the -available.empirical evidence .suggests .that the size: of the poten-
tial monetary gad;ns::.lof ‘the players may in fact affect -the outcome of bargaining
.when:both: players have complete information about the size. of the -pﬂzes.a For
instance, .an experimental study .Ius:l._ng games of .the forir just .discussed is reported
in Roth .and:Malouf. [1979]. .In.that study, one of the experimental ;mipulationé
.invelved the. information made ‘available to each player.about.the monetary prizes
ey -and.c,. -In:the: “high information" conditien, each player knew the monetary
value.of both prizes, while in thé "low information" conditionm,.each player was
‘informed .only of .the value of his own:prize.. For the games studied 4in: this experi~

ment,. it was found that .the agreements. reached. in' .the:.low -information condition,

3see e.g., Nydegger and Owen [1975], Rapoport et al. [1976], [1977].
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regardless of the values.of cl.and s were not significantly different from the
agreement: predicted.by Nash's solution, at which each player. 1 received a prob-
ability of 1/2 of receiving his potential prize ey .For games in which the prizes
¢y and <,y were.equal,. it was found that Nash's.solution was also .a good predictor
in the high. information.condition; i.e., the.agreements. reached continued to give
each player an equal probability of winning his own.prize. However for games in
which cl.and- ¢, were unequal, the agreements reached :in.the high information con-
dition were significantly different from the agreement predicted.by Nash's solution,
In particular, the agreements reached.tended te give a higher probability of winning
"his own prize: to. the player with the smaller:monetary .prize, .although not so much
higher as to equalize the expected monetary value.of the lottery. which each f)layer
received.. Thus:in . the high information condition, the:outcomes..reached in the

. games studied. seem. to ‘have. been influenced by comparisons cof the monetary payoffs
.available to the glsyers.

It 1s not hard ‘to see why this might be the case. .When the. players know tﬁe
magnitude -of the Ip_etent::!.ari, -monetary gains, an element :is introduced.into the bar-
gaining process which is absent from.Nash's model.. For instance, the agreement
at-which: players. get ;equal gains is ,wellu'defin-ed‘.\in a monetary..context, but has
no meaning-at all.in.terms of utility.functions each.of which is scaled .#rbitrar:lly..
That is, if neither player.knows:the. size .of.the.other player's monetary prize
then the.only property.of .agreements.which the.playere can negotiate  about is the
probability.p. When:the players each.know.the.size of both:prizes, then they can
.also describe :agreements. by the.expected .monetary gain which.results. Thus the
.additional information enriches:the.language avaﬂa‘blé in the:negeotiations towards
.ruchingusn agzeement, -and.we will investigate some ways in which this might

affect. .the agreement reached.

_"‘If. we .wanted to model this bargaining situation as' a noncooperative game, the
.difference: between the ‘two . information conditions would.be that the strategy
.sets.0f the players are larger in .the high information condition.. That is,
‘certain-bargaining strategies are .available in:the-high- inf,om::l.on condition
‘which are unavailable in.the:low.information condition.
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In Section C we will explore some models of bargaining.which permit at
least some well-defined comparisons to he.made_..of_.t:he gains which:an agreement

offers to the different players.

Independence of Irrelmn;t'-utemt:_lves.
Much of the criticism directed at the Nash solution has been concerned with

its :indepmdence ‘of irrelevant: alternatives, which has also been the property

‘most difficult to mtiv&te.-s :This property requires that a solution seiact an
outcome us:i.ng:‘ criteria which depend only on the. disagreement. point and the selected
outcome itself, and not on any.other .outcomes.in the feasible 33&36 By calling
‘other outcomes "irrelevant," the property's name reflects the assumption which it
makes regarding .t.he“bal_:ga.:l;ning process.

There 1is. some empirical evidence.on each side .of the question of how real.-l
istically this.assumption models various forms: of bargaining,. but it is not diffi-
I'c,ult‘.tq‘ a.rsue._;tha“t‘tt'xe. entire range of feasible outcomes milahle .'.in\.a':galme'might:
reasonably affect the negotiations which take.place,. if only by affecting the |
dinitial .aspitanions-.o:.ﬁ.:-the Jbargainers. .Consider for instance the game. (S,0) shown
in Figure 9. (p. 65), whose :feasible set.is contained in .the set A. The Nash ‘solu-
tion predicte that;, : siﬁce; -E(I,'d'); = (1,1) is contained 'in S, this will be the point
selected in the game (5,0). as.well, even. though the ..aymé:;ry._ ‘which might encéurage
the players to .agree on this.point -.m,:th\e-'game (2,0) 1s'no.longer present in the
-game (S,0). | |

. In Sections B and D we will consider some models which do.not incorporate the
‘assumption.of independence of irrelevant altermatives, .including some models which

‘explicitly involve the:“aspiration levels" which:the players’in-a m& might form.

3See 6.8, Luce and Raiffa [1958].

615: we.view. a.solution: as a function which.sets up some:binary relation between -
alternative outcomes, and then selects.the maximal: element of:this relation in

‘the feasible .set,:then' the property of independence .of.irrelevant alternatives - -
specifies that, for a fixed disagreement point, the binary.relation is independent .
‘of the. feasible:set, That is, the criteria.in terms .of which such a-solution com—
pares altermative ocutcomes .are the . same:for all possible feasible sets.
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B. Ordinal Models of Bargaining

In this section we will investigate the.possibility:of developing a theory of
bargaining which depends only on the ordinal information. contained in the players'
utility :Eunctions.]-' By ordinal information, we mean information about each
player's preference ordering over:riskless alternatives. If A is . a-set of risk-.
less-alternatives. over which.player i has a preference ordering, then any real-
valued function u, on A such that ui(,a) > “1(b)' if and only if player 1 prefers a

i

to.b is an ordinal utility function for player i. Thus if u " .is .a .utility func-

tion representing player i's preferences on A, then Vg is also such a . utility f\;,nc-
tion if and only if v, = j_(mi)z where m, is a monotone. increasing (i.e., order
preserving) function from the set of real numbers to itself. That is, for any real
- numbers :x and.y,mi(x) >-mi(y).1£ and only if x > y. We will confine our attention
to continuous (invertible) order preserving. transformations, and for any x in R®
denote (ml-(xl-)...:,m u(:tn)) by m(x).

As in Part I, an n-player bargaining game.can be .represented. in the space of
utility payoffs by: the pair. (S,d), where S is .a.compact sul;set;: of R® containing d
and at least one point x such that x >'d, -However,:since we will:.no longer be con-
sidering alternatives whiech involve lotteries, the requirement that.S be a coﬁvex
set 'ie no. longer a natural one. We will impose. a weaker restriction on bargaininé
games. (S,d) and require.only that: the set of strongly Pareto.optimal outcomes in S
.be contractible (i.e., that it contains no."holes").  For two player games, this is

equivalent to requiring that each.player's utility payoff in the: set P(S) can be

Lour: attention only to ordinal properties can be interpreted.in two different.
.ways. On-the one hand, we.can assumethat. the players"' choice behavior can be
fully modelled by .a.cardinal. (expected) -utility function, but: that only the
-ordinal: properties of this utility function are relevant.to.the bargaining process
‘dn the situations.we: are considering. . Altemtiwely, ‘we.can:;censider the case .. .
-where each: playgr '8: choice behavior. is.insufficiently regular. to. be accurately
represented: by &. cardinal utility functien(cf. p. 2), but obeys:the weaker con-
ditions needed for. tepmentat:ion by. a purely ordinal utility function.

2That-. is. for.any.a in A, vj{@)» = n,(u,(a)).
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described as a -decreasing continuous functicn.of .the. other .player's utilit:y_.a

Formally, let B* denote the set .of all non-degenerate bargaining gaines (s,d) of

this k:lnd.4
Then a solution is.a function f£: B* + R® such that £(s,d) € S, and it is in-

dependent of ordinal transformations if it possesses the following property.

; ‘Progerl:x' 9. Independence: of Ordinal Transformations: For any bargaining

game (S,d) ia B* and any ceantinuous, order preserving functions.m,, 1 = 1l,...,n,

1°
let the bargaining game (S',d') be defined by S' = m(8) = {y ¢ Rnly = m(x) for

some x in S} and d'= m(d). Then.fi(s',d-') =.mi(fi(s,.d)).-fnr i=1,...,n,

. Note that Property 9 is a. stronger independence condition:than Property 1,
in. the .sense that the. positive: linear. transformations described in Property 1 are
a. strict subset of the.monotone transformations:described in Property. 9. That is,
any solution which*possesses Property.9 also possesal'es Property 1. o

- . Since: the (non-symmetric). Nash solutions possess.Property.l. but.nmot Property
9, and: since the class B of.games:with..convex payoff sets is. contained in the

‘class B¥*, we can draw the.fellowing conclusion.

Theorem 9:. No ordinslly independent solution.exists.which.also .possesses the
properties jof strong individual rationality and independence of. irrelvant alter—

natives.

- That'is, ..nh.-qo'lution;which possesses.Property 9. can.also possess Properties

3 and 6.

3!,,11&5 would be.the case, for instance,.for games.whose.outcomes. cerrespond to the
division of divisible .commodities. .See, however,.the.last two .paragraphs of this
sectlion. -

4Ea1ugiug. the ¢lass.of allowable .games reduces the:set of:solutions which are
‘defined ‘on:that.:class... Since: scme of our results in this section.shall be impos-
-8ibility. results.(e.g., Theorem.9.and .10, and.Corellary.10.1l) we should note that .
these. results:would continue to hold even on the class.B.:of bargaining games con-
sidered in Part I.. The.proofs of -these results have.been:.construeted so as to
make  this.perfectly clear.
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Proof: Suppose that, contrary to the theorem,.a. solution f.existed which
possessed the properties named .in the theorem.. Then since.it is ordinally inde-
pendent,. it is also independent of equivalent utility representations, and so the
argmentof part (ii) in. the proof of Theorem 2 can easily be.extended:to the noﬁu
symmetric case to show that f must be Pareto optimal.. Then by Theorem 3 this
‘solution must coincide with a non-symmetric Nash solution.for games with convex
payoff sets. Since these solutions.are not independent .of arbitrary monotone
tranufomtinns (e.g+s the concave.transformations.considered in Section D of

Part I), this provides the contradiction needed to complete the proof.

. In.fact, Theorem 9 can.be considerably strengthened: .Shapley:.[1969] proved

:the following result for the case n = 2.

. Theorem 10: For. two-player .games, no ordinally independent _.alniution exists

.which also possesses the property of strong individual ratiomality.

Proof: -Consider the 2-player game (S,d), where.S is the convex hull of the -
.points.(0,0), :(1,0) and (0,1), and d = (0,0). Let (S',d') be the game derived -
from. (S,d) as. in. the.statement .of Property 9 by the.transformations
ny (x) = 2%/ + x), my(x).= %/(2 - .x) .defined .on the interval 0._-5_.;1: < 1. It is
- eagily -vgrif,ied __that both m aﬁd ‘w, .are ‘order preserving.on. this. interval, that
Nl(O)- = mz(ﬁ) = 0-and ml(l) = mz(}.). - 1, and that:.ml(x) > x and mz(x) < x for
0 <x < 1. Also,. if.xl-' +x, = 1, then ml(xl) + mz(xz)- = 1l.as well, and so
8" = m(S) = {y|y = m(x) for eome x € S} = S§. That is, the transformation
w = (m,,m,) maps the set S into itself, leaving only the.points:.(0,0), (1,0), and
(0,1) fixed .(see Figure 10, p. 71). |

. 50.(8yd) = (8',d');. consequently f(S,d) = £(s',d*). If f obeys Property'%
then £(8,d) = m(£(S,d)) as well: i.e., £(5,d) is a fixed-point of-m. But none of
the thzee:.fﬁed-p-oints.:of ‘m-centained .in § is.strictly positive,‘and so we have
shown that ordinal.independence ds; incompatible with.strong. individual rationality,

3
.as stated:in the theorem.
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The theorem we have just proved reflects the fact that two-player games of
the kind considered. in the proof can be ordinally transformed ‘into themselves
without leaving "enough" fixed-points on which to base an ordinally-independent
theory. .It is not the case,. however, that all two-player games. yield as few fixed
points.

Consider, for example, fha game (5,0) where S is the convex hull of the points
(0,0), (2,0), (4,2), (1,5), and (0,3). (See Figure lla, p. 71.)

If m = (mi,mz) is & pair of monotone transformations such that (S,d) =
(m(S),m(d)), then each of the five extreme points of S must be.a fixed point of S,
gince each can be described by .purely.ordinal’ pmpetties.s . 'For instance, the
point (2,0) .is player 1l's most preferred outcome in.the get. of .outcomes whict-t-
player 2 finds indifferent to the-disagreement point, while the point (4,2) is
player 1's most preferred.outceme.in the.set of Pareto.optimal .outeomes. These
are properties which must .be preserved by any ordinal .transformations of the
players' utility functions. |

. :Each of. these ‘fixed~points serves as .8 sort.of.benchmark from which other
fixed points can:be. determined. . For instance, .the point. (2,4) .can be.described in
purely ordinal terms by moting .that it is the unique Pareto.optimal point which

-gives.player.l the. same utility as the fixed.point (2,0).. Each of these "second-
generation"” fixed points is:indicated by an x in Figure 1lla, while Figure 1llb
- shows the full.set .of.third:-and. fourth generation. fixed. points.as well. That is,
- each.of: the .24.points.shown. in:Figure.llb.can be.specified by. purely ordinal
properties, and.so.each of these points is fixed under the:transformation m.
- If .we could. specify. a .subclass of the games contained:in.B* which were
Mgufficiently rich" in. fixed points, then we might hope te be able to find
rmmﬂy«mlﬁbehn‘wed', -~ ordinally-independent .solutions on.this subclass.
Shapley and. Shubik.[1974] have: shown, .in fact,.that for games with at least

That- is, '.tﬁiae'-pbim:s .can.be uniquely described using enly ordinal: comparisons
(>, =,.<), which are independent of ordinal transformations.
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three players, the subclass of games whose outcome sets are "fyll-dimensional"®
admits -prdinally. independent. solutions which:are.both symmetric and Pareto optimal,
as well as strongly individually ‘rational,. .In particular, they censtruct a solu-
- tion with these properties.for the case n = 3.

To get.an idea.of how.the two-person case.is different. from the n-person case
for n > 3 with respect to comstructing.an ordinally. independent solution, recall
that in .the two-person case it is. possible to.transform the :simplex into itself

: u-ing'monoi:one. transformations:on each player's utility,. in: such.a way. that no in-

~terior points.remain. fixed..: It.is .also possible,.using monotone ‘transformations _
‘of each player's .utility, to transform any Pareto surface so. that all of its points
1lie.on'the simplex: {,e.,. 80 .that- every: point :(xl,xzj..is" transformed into a point
(1111(;:1) ,mz'(xz)) such that'-.ml(xl) + mz(xz) =1, ‘(See Figure 16(b), p. 71).

Neither of these observations carries.over .into the case n >.3.  In three or
"more' dimensions. tl}e -simplex cannot be.mapped non=trivially into: itself by means of
-monotone-transformations of the.players! utility functions,.and. arbitrsfy Pare.to
.surfaces cannot.be mapped . .inte. the simplex.?

To demonstrate this latter wobs-emation,-_cons—idaz:\;a.-.ra:eto; surface containing
‘the points (0,2,4), (2,4;0) .and (4,0,2) as well as the;.pu:l.nt.:s (1,5,3),. (3,1,5) and

(5,3,1). " Suppose some.monotone. transformatiotf.m - (ml,mz',ms)- .did map these points
‘into the simplex, then it.would satisfy the following equations :

L my () 4 my(2) +mg() = 1= m () + my(5) + my(3)
.ml(z) + mz.(ﬁ')-‘-l* m3(0) = ] = 'm1(3} + mz(l) +~m3(5)
:_m'l(-ﬁ) + m2(0) + m3(2). =] -t.ml(S) +m2(3) +Im3(1) .

‘However these.equations cannot .be simultaneously satisfied, since.the:monotonicity

-of;each.m 4 1mplies. that the sum of the nine terms.on the.left-is strictly less

&pecifioa.u‘y. they consider only.Pareto optimal sets. which: are the intersection
‘with the mmgative orthant.of an.open:, .set containing. t:he origin.

= mt, Pareta: surf.aces .cannot, in general,.be mapped:into.the simplex is an ob-

-servation due .to Bradley, and Shubik:[1974].. Our.exposition of.this.point closely |
follows that of ‘Shapley-and:Shubik [1974]. : : co
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than the sum of the nine .terms.on the right, 'since each term m i(kD" on. the left can
be paired: with.a larger term mi(k-ﬂ) .on.the right (i.e,, mi(o) < ml(l) ,
ml(Z) *‘-ml(.'.’o)-.' ml(‘t) '<-m1(5), m2(2) < m2(3), etc.) So.there is no vector m of
monotone transformations of each player's utility function which maps these six
points into the simplex;s

"So when there .are more than two.players; the gimplex.and other full dimensional
bargaining -surfaces possess sufficient “rigidity" ﬁﬁ-th .respect . to. ordinal trans-
.formations so as.to admit symmetric ordinal solutions.  However, regardless of the
number of ba:gai.nera, the .following. corollary .of Theorem.10. shows that no satis-
factory ordinally invariant solution.can.be.defined.on the. entire class B* of bar-

gaining games,

...Corollary 10.1:. For any n, .there.is no solution defined.on the class B* which
‘is both. ordinally independent .and strcngly.' individually rational.

-

~Proef: - In Theorem.l@ we have already considered.the.case.n = 2, so let.
»m =k + 1 for some. k > 2. Consider the game’ (S,0) where S is equal to the convex
hull of the set {(p/Kyeeesplky (1 = p))|0 <p < i} and the origin. Let
m = (;!11, .e "mk"mk-I-l)' be the vector .of monotone transformations.such that for
4 = dyeeesk, me(x) = (1/K) - (1 - kx)/(k - kx) on the interval:0 < x < 1/k, and
Dy ) = kx/(k.~ 1.+ x), on the interval 0 < x < 1. Then the vector m of trans-
formations. takes.the set S into itself, leaving omly the origin and the points
{0y s00s0s1) -8nd. (1/Kyeespl/k,0) fixed. As.in the.proof of Theorem 2, .any ordinally
~independent: solution must.therefore select.one.of.these points. Since none of these

- peints is strictly:positive, thecorollaty is proved.

.Note.that:although the .game .considered in.the.proof. of.the .corollary is very
- much.less. than: full. dimensional, it.is:not.at.all degenerate im.the:game theoretic

sense....In particular,.no.player: is indifferent between any: two. Pareto-optimal

-

nrada.ay msn@m ‘show: that, .in three dimensions,. at -least six points are
needed to-ebserve. this phenomenon. If n > &, it is possible te exhibit four '
points which cannot:all.be transformed. 4nto" the simplex.
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outcones of the game, so that it represents a-:sitﬁation" in which each player has an
active interest in the: bargaining. :Thus, regardless of the number of players, any
ordinally independent solution. will: .only.b-ehave-ri-n.. a.satisfactory manner on a sub-
class of games which excludes.at least some games which arise. in a natural way.

It can nevertheless be illuminating to consider .the consequences of ordinal
invariance even over a restricted class of games.. For instance, :consider the class
of games which can arise when n individuale (n.>'2) with initial wealth w,

(;I.- = 1,..s,0) must: bargain over how.to split a positive quantity Q of money.

. When we considered such games before (Part I, Section D).we assumed .that a utility
function for money was .an increasing . concave. function.. .Since.concavity is not
preserved. under arbitrary monotone transformations,: a.utility function for money

¢ -in.our present: context .can be any increasing _fm_mtiqn.; That ‘is, from the point
of view of an ordinally.independent.solution,.any increasing function (of money) is
equivalent. to any‘other. : '
.Specifically, for an individual with initial wealth Vg any: utility function
for money.is equivalent.to the function u i(w-i 4+ ¢). = ne/Q, and so ti;e .set of Pareto
optimal outcomes. for .a ‘bargaining game. over money .is ordinally equivalent to the

- gimplex,.. That. is, if- (S,d)-.isfa.‘baté#ining_game.for.money, then there exists a

vector m = (mI,-.... .mﬁ) of monotone transformations.of each:player's utility func-

tion such that.ﬁ(sgd) = (X,0) .9 If f 18 an ordinally independent.solution which is

9l_lel'_t:«z‘. -that:it ‘is immaterial whether we consider the unit simplex
- §7= {x.> 0|Zx; = 1} or the set P(A) = {x > 0|ix, = n} = ns.
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symmetric and Pareto optimal®V (on at least the .class of monetary games), then

£(A,0) = (1,..+,1), corresponding to the monetary split cf = Q/n for 1 = 1,...,m.
Consequently f, (S,d) = mIlfi(_I,E) - m;_l(l) = mzl(ui(wi-l-ci)) for 1 = 1,...,n, where
m;]' denotes the inverse of m, .and uy s the'.ﬁtili.ty‘.functiunz..defined at the be-
ginning of the paragraph. So for any game (S,d). representing a;situation in which
the players can split a given sum.of money, the solution f .selects the utility
vector corresponding to an. equal division of. momey among.all:.n bargainers.
In some respects this is.a curious phenomenon... In:Part .I we observed that,
‘when. we: take: into acceunt.the attitudes.of the players.towards risk, bargaining
games . for.money .can become. very asymmetric, and the. (symmetriec): Nash solution can
lead :to .an. unequal division of money...In the previous.section we.observed that
.only. when additional information is.added:to. the models.considered in Part I does
.it:-become meaningful to. compare. the. gains which a given .a.greement\._.giveé to dif-
ferent:players.. .In.this sectien.we considered.a. model,which contains stfictly
.less information:.than.the.model of Part I, since it:makes.no use of. the players'
...risk posture. . But,. .even though the.model. is concermed.only.with the set of
~--utility payoffs, .it now becomes .possible in .the class of monetary.games to iden-
. tify..the .outcome .corresponding. to .an-.e.q.ual .division of .the available money among

. t;h'e." playar_s_;,:.l'jf.'and‘. this. is the:unique .outcome selected. by.an ordiﬁally indepen-

g loTo fomllyt demonstrate.that .such a.solution . exists, we-need at.least to show
- that.the ;point (ly...,1). is. fixed under monotone transformations which take A into

. itgelf.. For the case.n.= 3,. suppose that m,, ,-and are.order-preserving trans-
ny, By, and my

formations. Which take A.into itself, and.let.v.be.the image under.m.of the point .
1= (1,1,1)3, 4.6, V.= (ml(l),uz(l),ma(ll). _Note that. since m(A) = A, it follows

" from the. fact. that. each.m, .is order-preaming that mi({l) 0 and mi(3) = 3 for
i=.1,2,3, andt:hst foranyxinP(A), Im, (x) -=Exi- 3.
Suppoae that v. ¥ 1; e.g., -suppose. that ml(l) >.1. Let w.be the point
W= (1.0.2). ‘then .since ml(l) > 1 it follows.that ,m3(2) <2 since..mi(wi) = 3 and

. my(0). = 0. - By. considering the point (0,1,2) in the:same.way, .the fact that.

g n3(2) <:2.implies that nz(l) >.1l. $So.the assumption that m:[(l) >.1.implies that
'“'2(’1) > 1 also, .and the parallel argument. :I.mplies that . my (1) > 1.88 well, This
. .contradicte the:requirement :that. !:mi.(l) .= 3, and so.it follnw:s .that 1 is a fixed
. point of m.. ‘
'naf. .course nothing in our.treatment specifies.that. -khcquntinx Q. to be divided. :
.isn't some form.of "play money".which. may.have different values.to.different play- -

. ers.. That.is,::the: exchange rates of play meney inte .dellars.can.be different
. order=preserving. functions for the different players.
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dent solution which is symmetric and Pareto.optimal on the class of monetary
games.

Iﬁ is worth noting that the results in this.section depend to.a large extent
on the fact that we have been considering games with a continuum of .feasible out-
comes. 'If.we considered games in which the Pareto eptimal set.were finite, then
even the two person case would yield a variety of .ordinally.independent solutions.
'For instance the "“second individually rational Pareto .optimal point from the left"
is an ordinally independent description in such a game, and so we could define an
-ordinally.independent .solution which selects such a point,. (although it obviously
would not be independent of irrelevant alternatives).

It seems likely that, in some .situations with.a .finite.number of alterna-
tives, -ordinally independent solutions of this kind.may actually be descriptive.

- For. instance,. suppose. that you and a friend need to decide.to. what restaurant you
- gshould go for dinmer.. If .each of you .has a different first choice,.you might well
agree on a..comnn.‘aecond.choice... This is an.ordinaily independent.proposal, since
- it takes mo account of the intensity of each persen's preferences. In disagree-

‘ments of greater importance, however, it might be that:considerations.of intensity

would be more likely to at.least enter .into.the negotiations.
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C. Interpersonal Comparisons

In the previous section we considered solutions which depend only on the
preferences of the players for.riskless altamtivea, -and. not on .the other infor-
mation contained in their expected utility functions.. .Such solutions are inde-
pendent of a2 -wider range of .transformations. than are aclutions :which. depend on
the:cardinal properties of the players' utilities.. But whether we have been con-
-sidering.ordinal or. cardinal ‘-_solut::l,on:s, -we have thus far been concerned with
transformations..of .any’ given bargaining problem obtained by transforming inde-
.pendently. the nt::tl:l.f.y functiens of each player. Both Preperties 1 and 9 specify
:thavt-la game G' = (8',d') is essentially equivalent to a.game.G.= (S,d) if and
.only 1if G'.can be . obtained from G by allowable transformations.of.each player's
utility.. .Since the.class of allowable transformations is defined.in terms of
functions .of .a .single.variable-~each player's utility payoff. at-a given outcome--
'no information abdut the relative payoffs .pf.;di_f_f_er_;-ent players at a give;:l out—
-come need. be.preserved.in the passage from G to G'.. Solutions which are inde-

- pendent-of. such transformations are,.therefore, insensitive.to information con-
..cerning’ the.relative payoffs of.different players.
- -We have already.argued in .Sect_i;n.A..-that ‘information. gbout: the relative pay-
. offs :(g.gﬂ_.nonetaﬁ—:;p&yofﬁﬂ., to. the players.may.have seme .influence on the
"bargaining process.. .In this section.we will:consider some.solutiens which are
not required .to- be insensitive to.all.information concerning relative payoffs.
. The first.of the solutions we will consider.is. se:;rsit;(;.ve;.‘t;o,\a. very wide range of
. :changes-in the:relative.payoffs to .the pilayers while. ;he second: is gensitive to

. «xelative.payoffs only. in eertain.limited respects.

. Bréportiopal Solutions’

... In:Section A of Part II we considered some games with monetary prizes, and

saw:that .a :golution which-is independent .of equivalent utility. representations

' J'Solut;ions #éiatued',.to.thue.-icoasidexedghe;e.hava-bqeu‘,_;:ms:l.dezed by Raiffa
- [1953], . Isbell [1960], Kalai [1977b], Myerson [1977], and Roth.[1979a]. Our
presentation here follows primarily from.Kalai [1977b] and Roth [1979al.
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(Property 1) is incapable of distinguishing. a purely formal .change.in the scale of
a player's utility function from an actual change in the monetary awards for which
he is bargaining. .Now we'wul.consider. a family of solutions defined on games in
which the payoffs to the players are taken.to be defined in terms of a common
scale.

Specifically, we will consider solutions f defined.on.the class B of games

which we considered in Part I, which possess.the follewing independence property.

. Property 10:. Independence of Common Scale .Changes: For. any.bargaining game
(B,d) and: real numbers a > 0 .and.bi,- i = 1,...on, let the game (5',d') be defined
by 8! = {.y.s.Rnl. for some x in S, y, = ax, +by for.i = l,...,0n} and d; = ad, + bi
for i = 1,.0050.. 'I.‘han.f{(s',d') = -afi{S,d) + bi for 1 = ly...40.

. Note that Property 10. is strictly weaker than ..Propérty .1;..any.solution which
.possesses Property 1 .must also. possess Property'lo-,:\_;'bnt._, not conversely. - Property
10. requires. a solution to. treat games (S,d).and (8',d') as equivalent only if the
. proportional. gains made. by each of .the players at corresponding outcomes in the .
. two.games are equal. (If.y =ax+ b, whe're b._--(bl....,bn) ‘then for any
i, j e N, .(;;i - d:'.)!'(:v.:‘11 -'dj) -'(yi = <I':;_)/(3rj - d;) where d' = ad + b, .as in the
statement. of Property:.10.) Of course a Nash solution.treats. such.games as equiva-
lent since it .possesses Property 1; i.e., it treats. a strictly.larger class of
games. as. equivalent. .Consideration of.the equivalence.class.of games implied by
Property. 10’ leads naturally -to. the definition.of the.family of .proportional solu-
. ‘tions,..as follows. . ~ |
w13 AcpEOpOTtional solution £: B -+ R® .is a solution such.that, for some strictly
.positive n-tuple p = (PyseensPy) and any bargaining. game (S,d) in B,
- £(8,d) = A(S,d)p + d,
where A(S,d) is the real number defined by
A(8,d) = max{t|(tp + d) € S}.
.80 if £ 1is thesprn?mtionkl‘, solution. mrrespapdiné to.a given n~tuple p, then for
_any game (S,d) end any players 1 and j, if £(S,d) = x then (x, - d)/ ey = dy) =

b
pi/p e The solution £ .selects the maximal feasible outcome at which the players'
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gains over their disagreement payoffs are in propertion.to. the components of p.

A given proportional solution .f can always be specified. by an n=tuple p normalized
so that I:pi.- n, in which ca.se.f(z,ﬁ). = p. . A proportional solution can therefore
be viewed as generalizing the results.of the gsme (A,0) to arbitrary games, in such
a way: that the gains which the players receive’ in.any.game are in the same pfo-
portion as in the game (I,-ﬁ}.

"It is straightforward.to verify. thai--a proportional solution as defined above
is always individually rational and independent .of irrelevant alternatives, and
also .that it. is independent of.common scale changes; i.e., it possesses Property
10. (This.latter observation follows quickly from .the.fact that if (8',d') and
(8,d).are.related.as.in the statement .of Property 10,..then A(S',d') = aA(S,d).)
However.a proportional, solution:is neither Pareto . optimal nor strongly individ-
ually.rational. over the entire.class.B of bargaining games.. Consider,. for example,
‘the symmetric proportional solution .f in.the case n = 2, so that £(4,0) = (1,1).
Let.S be the-conv;.x.hull; of -the points (0,.25),. (1.5,.5), (2.0) and (0,0), and let
T he the convex hull-of. the last.three.of these four points..(see Figure 12, p. 81).
Then £(S,0) = (.3,.3), and £(T,0) = (0,0) neither of which is Pareto optimal

“(since (1.5,.5) is.a feasible payoff in both games).
Thus:a .proportional: solution describes bargaining among players: who are will-

-ing to.sacrifice some .potential .gain for themselves in order. to_prevent any of the
“other. players from receiving disproportionately.large .gains.z" ‘This kind of be-
havior can.perhaps best be understood.if we consider bargaining situations in
.whiech.the. final outcome will serve as the disagreement. point :for:some future bar-
sa.in:l.aﬁ situation.. .Then a.proportional solution describes bargaining among players
who are unwilling to compromise. their future.bargaining positions.

. Formally, we will.show that.the class of proportional solutions f can be

.characterized by l:ﬁe following property.

-_zlglot'e that the,ilotion of “disproportionate. gains". can only be formulated in a
.coatext. in.which the.ratios of.the.players’ gains. at .each outcome convey some mean—
-ing.. This 1s not the case.if the. payoffs.are expressed in terms of independently
scaled. expected utility functions.
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Property 1l: Decomposibility. If (S,d) and (T,d) are bargaining games such

that T contains S, then £(T,d) = £(T,£f(S,d)), whenever (T,£(S,d)) e B.

A solution which possesses Property 1l represents a bargaining process in
which the set of feasible outcomes T can be decomposed into subsets: without chang-
ing the final outcome. That is, if the players first negotiate over a subset S
of outcomes. (such that S contains d), under the usual.rules of bargaining, and
subsequently negotiate over the entire set T of outcomes f;s:l.ng the agreement
reached in the first stage as-a disagreement point,.the outcome will be the same
as if the entire.set T of outcomes were subject to negotiations in one et.age.3

‘Decomposibility is closely related to the following property.

.. Property 12: Monotonicity. If (S,d) and (T,d) are bargaining games such
" that T contains S, then £(T,d) > £(S,d).

That is,.a monotonic solution models a. bargaining process in which a1l of the bar-
- galners benefit from any enlargément of the set .of feasible outcomes. In the
context of .our present discussion, monotonicity is related. to decomposibility

through the following lemma.

.. Lemma 11.1: 1If £ is a solution which is independent of common .scale changes,

‘decomposible, and individually rational, then. f is monotonic.

Proof: Since f possesses Property 10, we can without. loss of generality con-
fine our attention to games whose disagreement point is.equal .to the origin. So
let (T,0) and (S,0) be games such. that T contains S, and for any number a let
aS = {ax|x € 5}. Then for any a such that 0 < .a < 1, (T,£(a$,0)) is a non-
dggeher'ate__];_a_;:xainj.ngl game; i.e., (‘r,f@S.ﬁ)) € B, since T contains points which
are strictly greater than f(aS,0).

I

3Kn.hi. [1977b] suggests Kissinger's "step-by-step" disengagement accords in the
. Middle East.as an example.of a negotiating process which might be. expected to obey
Property 1ll. That is at each stage. the participants.evaluate. any.agreement in
terms of ‘the bargaining position. which.it will leave them in:for.subsequent nego-
tiations. .In Roth.[1979a]: Property.ll is .called "path independence."
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So the decomposibility of £ implies that £(T,0) = £(T,f(aS,0)), while inde-
pendence of common scale changes and individual ratiomality imply that
f(T,_ﬁ) > f(as,ﬁ) = af(S,T)'). Since the number.a can.be taken arbitrarily close

to 1, it follows that £(T,0) > £(S,0), as required.

The lemma shows that decomposibility.is a very powerful assumption, since it
implies monotonicity, which is itself a powerful assumption.. For instance, the
assumption that a solution is monotonic is incompatible with: the assumption that
it is even weakly Pareto opt:tmal.4 To see this, consider the points x = (1.5,0.1)
and y = (0.1,1.5) and 1et.A.x.and.Ay be the line segments joining the origim to x
and to y, respectively. Then if £ is any Pareto .optimal snlution,.f(ﬁk,ﬁ) = x and
f(&y,ﬁ) = y, while if f is monotonic then £ (A,0) = z such that z > x and z > y.
But z ¢ A implies zy + z, < 2, 8o no feasible point in K.is..greater than both x
and y (see Figure 13, p. 8l). .Consequently there is .no solution which is both
monotonic and. Pareto optimal for all games.

_However if. we.confine our attention. to.games with disposable utility, mono-
tonicity is no longer . incompatible with. (weak) Pareto optj.mality.s Specifically,
define the class.D.of games with disposible utility.to be the class of games
(s,d) € B such. that the set S' defined by st = {x e.S|x > d} is equal to the set
S; defined. by S; = {y|d < y < x for some x in S}. Then we can state the following

result.

““Lemma 11.2: If £ is'a decomposible. solution which is strongly individually

.. rational on.the class. D, then. £ is.(weakly). Pareto optimal on the class D.

-6C£. Luce and Raiffa [1957], pp. 133=~4.

5]‘.slmal:l. [1959] .considers. monotonic solutions:and argues that, in. practice, all
games. ean.be viewed. as having disposable utility.
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Proof: Let (S,d) ¢ D and suppose the point £(S,d) = x is not Pareto optimal
in S. Then there is a y € 8 such that y > x. Then (8,x) € D, so (letting S = T),
decomposibility. implies. that £(8,d) = £(8,x) = x. But if £ is strongly individu-
ally rational for games.with disposable. utility, then £($,x) > x, which gives the

contradiction needed to prove that x must be: Pareto optimal.

Note that a proportional solution meets.the.conditions.of the lemma, and is
Pareto optimal on the class D...In fact proportional solutions can be character-

ized on the class D as follows.6

. Lemma 11.3: If £ is an individually rational solution.which is independent
of common scale changes.and .decomposible, and if. f.is.strongly individually

rational-on .the class D, .then £ is proportional.on the class D.

. . That is, there is.a positive n~tuple p such that if. (S,d) is.a game with

disposable: utility, .then £(S,d) = A(S,d)p + d.

Proof: Let.f be.a.solution which obeys.the .conditions stated. in the lemma,
"and let.p = E(_A'..a)-..-.‘]?hen Lemma.1ll.2 implies that .Zpi = n, - Let: € be a positive
number such that € < n ~ Py for 1 =1,...,n, and let qi = (qi,....,-q:'l) be the
.vector such. that qi = O-.for_j ¥ 1 and qi =py +¢& for £ = 1,...,n. For any such
€, let As be the convex hull.of the points p,._ql,...,qt,l,.ami 0.. Then Ac :l§ a N
subset of A, .0 the monotonicity of £ (Lemma 11.1) implies.f Qé,-ﬁ-) < £ 4,0) = p.
But Lemma 11.2 implies that fue.ﬁ) is Pareto optimal in A_, and so f(Ac.ﬁ) = p.

(See Figure l4a, p. 85.)

.We are now in a position .to.show that f_{s.ﬁ'), _:;_ A (S,0)p: for any .game (s,0) € D.
Observe. that, .because (8,0) is a.game with. dispesable utility, it contains all
points.y such that. 0 Ly < A(S,0)p. _Consequently, for every.positive number
6 < 1, there exists a set A e of the kind described in the.previous. paragraph such
that..._sx(s,ﬁme is contained in S (see Figure 14b, p. 85). So

. £(8,0): > f(_ﬁA(é‘,a)Ae_) = _M(S,T.f)-p (where the inequality. is a comsequence of

bgere we follow.Kalai [1977b].
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where m(A,D) = inf{(Ax,x):[|x|]= l, x ¢ H(A,D)} .,

M(A,D) = sup{(Ax,x):|x|= 1, x ¢ H(A,D)} .

Before recofding further properties of the phase shift it will be

instructive to consider an example.

Let A be a self-adjoint nxn matrix considered as an operator on
c¢®. Let Df = (£,y)y be a one dimensional operator on ¢® with range
spanned by the vector Y € ﬁn. After diagonalization of A the phase
shift of the perturbation A+A+D has a fairly explicit description. 1In

fact, assume A is diagohalized as the matrix

a

whgre 0y 205y <-4 Za . In this diagonalization of A the opera-
tor D = ( ,y)y is unitarily equivalent to D = ( ,x)x, for some

X = (xl,..a,xn) e'¢n.

For z not equal to any of the eigenvalues (ull,...,ann), the
perturbation determinant has the form
2
|

. (2.8)

nn

AB/A(Z) =1 + (cr.ll-zl-llx1|2 +.o+ (@ -z)-l.|xn

From (2.7) it is clear that the phase shift for the perturbation
A -+ A+D equals the characteristic function of the set in R where the

function (2.8) is negative. The graph of (2.8) on R is the following:
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monotonicity, and the equality a. consequence of Property 10).. Since § can be arbi-
trarily close to 1, it follows that. £(S,0) > A(8,0)p.
To complete the proof we need to.show that £(S,0) < A(S,0)p. For any & > 1

define the set

SG = {x 13]:{ < y for some y in the convex hull of S and the

point 6A(S,0)p}.

Then (S, ,0) 1s the (smallest) game with disposable.utility which contains the set
S and the point 6A(5,0)p (see Figure 15a, p. 85). -Note that A(84,0) = 8A(5,0),
-and since 6A(S,0)p is strongly Pareto optimal in SG’ £(36,-6) = §1(S,0)p follows
immediately from the conclusion drawn in.the previous paragraph that
.f(Sc.ﬁ) > 8A(8,0)p. But 56 contains S, .so. by monotonicity 61(8_,-0-)13 =
fﬁsc,ﬁ) if(s,ﬁ) for any 6 >.1, and so f(S,ﬁ) < A(S,0)p.

We have shoﬁn’ that £(S,0) = A(S,0)p; and since by assumption the solution f
possesses Property 10, £(S,d) = A(S,d)p + d for any (S,d) € D. |

.We can reach almost the same conclusions.on the entire class B. of games, as

follows. 7

. .. Theorem.ll: Let f be an individually rational solutiom which is strongly
individually rational on.the class D, .and which is decomposible and independent of
. common. scale changes. Then for any game (S,d) ¢ B, £(S,d) = k(S,d)p + d vhere

0 <.k(5,d) < A(S,d).

.Proof: For.any (S,d) € B, let z and z be n-tuplés such that, for any
y €8, z2<y<2z, and let T = {x|[z < x < z}. Then T contains S and (T,x) € D for
any x €. S,.80 Lemma 11,3 implies £(T,x) = A(T,x)p + X. .. So,. by the decomposibility
of £, A(T,d)p.+ d = £(T,d) = £(T,£(5,d)) = A(T,£(S,d))p + £(5,d). So £(5,d) =

[A(T,d) - A(T,£(S,d))]p + d = k(S,d) + d, as required (see Figure 15b, p. 85).

"Here we follow Roth [1979a].
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So proportional solutions are maximal solutions.obeying the conditions of
the theorem. That is, if g is a solution obeying the conditions of Theorem 11,
then there exists a proportional .solution f such that, for every (S,d) € B, .
£(s,d) > g(8,d), while for every (S,d) € D, £(§,d) = g(S,d).a

Proportional. solutions .also possess the follewing properties, which we in-
troduce now in.order to provide an alternative characterizatiom of proportional

solutions, and which will also be.of interest in the. next section.

... Property 13: Individual Monotonicity. If (T,d) and (S,d) are games such
that T contains S .and,. for some i e N, 'I; intersected with {x ¢ Rn|xi = di}

is equal to the intersection of S; with {x E.Rnlxi = .d:[},'the.n fi(T.,d) > fi(S,d).

This property can best.be understood by observing: that for every outcome x in S+
there is a vector. y in the intersection of S; with {x.e R.’Tll.xi F-di} such that

x = yk.. for every k'# i. So the .property.states that if the set .8.of feasible
outcomes is enlarged to a set T in such & way that, for.every (n = l)-~tuple of pay-
offs to players other than i the range of feasible payoffs .to player i is increased,
then player i's final payoff in the.enlarged.game .should:be.at least.as large as
his final payoff in the original game. Note.that individual monotonicity is a
weaker.property .than monotonicity; 1f.e.,-a solution.which possesses Property 12

also. possesses.Property. 13, but.not’ conversely .9

870 see that not every solution: which cbeys.the conditious: of Theorem 11 need be

proportional (i.e., to see that k(S,d) need not be identdcal to. A(S,d)) consider
the case n = 2,. For any (S,d) € B define

8, = max {:;l-l(xl-,--dz)'_ € S} .and s, = max {le(dl’x2) € 8} ,
and let p = (p;,p,) > 0. Let f be the solution defined by £(S,d) = d if
(31,32) - (dl,. 2.) , and £(8,d) = _IL(,S.,d)p 4+ d otherwise. Then f is:not a propor- .
tional. solutien, but-it is. straightforward to verify. that f obeys. the conditiocns
of the theorem. :

9In section. D we will consider a solution which is individually . monotonic but
_not monotonic. .The notion: of. individual monotenicity was.introduced. in Kalai and
‘Smorodinsky- [1975] -and. Kalai [1977b].
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Property 1l4: Continuity on the .class D. Let (S j’d)'e -D bhe bargaining games
defined for a sequence. of sets Sj.auch that, in the limit as j. goes to infinity,
.‘5.j converges to. § (in the Hausdorf topology), where.(S,d) is.also in the class D.

Then 1lim £(S.
Jom 3

'd) = f (S ’d)o

It is easy-to .verify that a proportional solution is individually monotomic,
and continuous on the class.D. . (However, unlike .the Nash solutions, proportional
solutions are.not continuous over the .entire.class B of games.)lo In fact,

proportional. solutions .can.be. characterized.by properties.3, 10, 13, and 14, as

follows.

Theorem 12: If f is an individually. rational .solution.which.is. strongly in-
dividually rational on the class D, and .if f is.independent of irrelevant alterna-
tives, independent.of common.scale changes, .individually monotonic,. and continuous

on. the.class D, then .f is.a.proportional solution.on the class B.

. :The proof .will .proceed -in two parts.. In Part 1, we will show that a solu-
‘tion f which.meets:the conditions of. the.theorem. mus-n:. be.proportional .on the class
D, and.in Part-2 we .will show.that it must. be proportional.on.the entire class
B 1L .Specifically, we will first demonstrate that.for any ($,0) € D, £(S,0)
is. of. _l:h;.fofn; x(S,0)p, and in Part 2:we will relax the assumption that (S,0) ¢ D.
Since f..possesses Property.l1l0, it is independent..of the origin of each player's
payoff..scale, and -.so.ekmhlishing,_.the theorem for any .game:-. (s.,ﬁ).,is .sufficient t:o

‘establish it for .any.(S,d) as well.

1.9Fcr:.:iustaaeé. 4n the. two=persoen. case . let . :f be the.symmetric. proportional solu-

tion, and vlet\.Sj‘.be:- the line joining the origin.to the point o =01, 1+ (1/1)).
Then an._jls-mes .to.infinity, S 7 .converges. to the line. segment S.joining the origin

to. (1,1), but £(5, ,0) = 0 for all j, while £(8,0) = (1,1).
Mpare 1 follows Kalai [1977b] while Part 2 follows Reth [1979a].
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"Proof of Part 1:. Let f be a solution obeying the conditions of the theoren,

and let p = £(A,0). Let (S,0) € D be a game chosen so that the point z = A(S,0)p
is strongly Pareto optimal in S, and let

n

that C contains A, and that the intersection of C with {x|xi = 0} is equal to the

i

<n, for 1 = 1,...,n}. (See Figure 1l6a, (p. 90), and note

intersection of A with '[xlx:L = 0} for every i.)

Independence of common scale changes implies that f£(A (S,0)4,0) .= A(S,0)p, and
so independence of irrelevant alternatives implies that £(S',0) =.A(S,0)p, where
S' is the intersection .of S with l.(S,‘b-)I.' But the set S* equal to the inter-
section of S with A(S,0)C contains S', so individual monotonicity implies
fi(s*,ﬁ) 3f1(s',3) = A(s,0)p, for every i = 1,...,n. That is, £(s%,0) >
A(S,0)p = z, and so the assumption that z is strongly Pareto oﬁtimal in S (and
hence in S*) implies £(S%,0) = z.

To see that f(S,ﬁ) = z, observe that if T is any subset .of S which contains
S* (as S does) then independence of irrelevant: alternatives implies . .that either
f(T,.E) =z o-r else £(T,0) ¢ S*. That is, either £(T,0) =z or else
£(T,0) ¢ A(S,0)C. . But the point .z .is contained in the interior of the set
A(s,0)C (since p>0is contained in the interior of C), and consequently the con-
i::l.nu:l.‘ty of . £ insures.that f(s,ﬁ) -.z.j'-z. (See Figure 16b, p. 90.)

This almost completes the proof of Part.l, except.that we began with the as-
‘sumption that. the game (8.3), €D was.chosen so that z is e-;t-rongly_.]?areto optimal

in S. To see that we can relax this assumption, first note that:for any game

12, e {r} be a family of sets defined for a.c [0,1] such that. 1:0_' =5%, T; = 8,
and'a < b implies T, is contained in T,. In addition,. let the family {Ta} be con-
tinuous: i.e., 1if -{ai} is a sequence of numbers converging to a, .then 'Ll.‘a con-

: i
verges to T,. Then continuity implies. that £ (Ta,ﬁ)-'.tmcea ‘a continuous path from

f(TO.E)' to f(.']‘.'lfﬁ) . But since, for every a, f('Ia,ﬁ)' is either equal to z and thus
in the interior of A(S,0)C or else f(za.‘ﬁ’) £ A(5,0)C, it follows that £(T_,0) = z

for all a ¢ [0,1], since no continuous.path can "jump! from.the interior of a set
to its exterior, without crossing its boundary.
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(S.-ﬁ') € D the point z '.-_“JL(S,H)p must be at least weakly Pareto optimal. (If not,
there would exist some point y in S with y > z + €p for some € > 0. Since

(S,0) € D, z + ep must be contained in S, which contradicts the definition of
A(S,0).) Since z is weakiy Pareto optimal in S, we can construct a. sequence of

.games (Sj,O) € D in which z is strongly Pareto optimal such.that the sets S, con-

h
verge to S. The continuity of £ then.implies that £(S,0) = lim f(Sj.H). which our
00

previous argument has shown is the point z, as required.

.-..Proof of Part 2: For any game (S,0) ¢ B, define _

S; = {y iﬁly < x for some x in S}. Then (S;,'ﬁ.) € D, and so we -have just shown
that. f@;,ﬁ) = A(S;,H)p. We need to show that £(S,0) = A(S,0)p.

Let z -'.A(S,E)p, and observe that if z is Pareto optimal :l.n S :then it is also
Pareto.optimal in S;, 80 1(8;,-5') = 1(8,6). Thus in this case f(,S;,ﬁ) = z, and in-
dependence of irrelevant alternatives implies that. £(S,0) = z as well.

. -Next.observe that for. any.game..(s.,a) € B, it .must be the case that £(S,0) > Ze|
1f z = 0, this follows.immediately from the individual rationality of f. Other-
wise.z.> 0., .For anmy i in N, define st e (xe Slxi < zy}. ‘Then a0 = a¢s,0),
and .z is Pareto.optimal in 31, .80 the argument of the previous .paragraph insures
that. f(Si,ﬁ) = z, Independence of irrelevant alternatives now implies that either
£(S,0). = z or else £(S,0) ¢ Si. In either case, -fi(S,'E). 22z and since i was
chosen arbitrarily, £(S,0) > z.

To. show that £(S,0) = z, let y = £(5,0) .and let T = {xeS|x < y}. Then if
(T,0)eB (i.e., if y > 0) then .£(T,0) = y by independefice of irrelevant alternatives
Soi(!l‘n.a) >y by individual monotomicity, which implies y = f'aD,”é‘) = x(rD,'Gjp,
since y is strongly Pareto optimal. in T). But in the previous paragraph we
showed y > 2,.80 z = A(S,0)p is an element of T, which implies A(S,0) < a(tn,'d).
‘Similarly, y = A(T;,0)p is an element of S, .s0 A(T;;0) < A(S,0). Thus
A(8,0) = A(T,),0), 80 £(5,0) = y = z.

.. To .cohplel:ée.the .proof, we need to show thar.t:he same conclusion holds when
(T,0)¢B, i.e., when.y, = 0 for some k. Since we have. shown that y > z, this can
‘only occur when A(s,0) - 0, 80 z = O.. I.et;? be .the positive vector défined by

L] -~
vy = yi-if y'i > 0, and = €. if ¥y = 0, where ¢ is .an arbitrarily small positive
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-~ L]
number. Letting T = {xeslx < ¥}, independence of irrelevant. alternatives implies
Lo J— . L] — L] —
£(T,0) =y, and individual momotonicity implies A(TD,O)p = f(TD,O) > y. Since
- L3
A(_Tn,o) can be made arbitrarily.small by choosing. e = Vi small, . it follows that

y=2z = 3, which completes the proof.

Ordinal . Interpersonal COmpar'ison513

The proportional solutiens which we have l_men.censidering: involve cardinal
comparisons of different players' payoffs, which are meaningful. only in a context
in which there is a great deal of information about the relative payoffs of the
various players at every outcome. Now we will consider interpersonal comparisons
in the context of solutions which are sensitive only .to.ordinal information. The
relationship bur treatment of this subject bears to:our treatment .of proportional
solutions is approximately the same as.the relationship between:our treatments of
ordinally and cardinally independent solutions involving no interpersonal com-
parisons... We will.consider two-player. games in: the ‘class B* which we have already
studied in an .ordinal context-without interpersonal. comparisons,.and we will show
that allowing.ordinal. interpersonal comparisons. will add sufficient structure to
the. problem: to- permit.us to.derive a non=trivial solution.

~Formally, we will consider. two-player games (S,d) .c.B*.. Recall that S is a
..compact. subset .of the plane whose-.s-trong. Pareto set P(S) s which by definition is
the set {x € Sly >xand y ¢ S implies y = x}, can also be described as the set
P(s) = {"(xl,t(xi).)|§1 <x 151} where ¢ is a real valued, continucus, strictly

decreasing function defined on.the interval [x,,x;1. _
. If the.set.S.is.the .set:of feasible. utility. payoffs. to: the: two.players, then
-it: conveys: (at least) ordinal information. about.each.player's ﬁ;:e.ﬁereﬁces for out-
comes.:” We.will.be .interested in solutions which may be.sensitiwve.to ordinal inter-
.\-personai::umpariaons.xs.‘ well, i.e., we.will be:leoking at.selutions which obey the

.following independence property.

L1he material presented under.this. heading follows Roth [1979c], and Roth and
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Property 15: Independence of Ordinal Transformations Preserving Interper-
sonal Comparisons. Let.(S,d) and (S',d') be two-player games in B* such that
di = tiFdl,dz) for i = 1,2 and S' = {(tl(x'.l.'xz)' tz(xl,-xz))l(xl,xz) € S} where
t= (tl,tz) is a transformation t: S -+ R2 such that for.all x, y in. S and 1 = 1,2,
1) . ti(xl,xz) > ti(yl,yz) if and only if X, 2y and
(1) t]_(xl,xz) - tl(dl,dz) > tz(xl,xz) - .tz(dl,dz'.). if and only
if x, - dlixz - d,.

Then :Ei(S',d') = ti(f(s,d)).

So G' = (8',d") and G = (S,d) are equivalent from the point.of view of this
property if G' is derived from G via a transformation t. (of feasible. payoff vec-

tors in G to feasible payoff vectors in G‘)‘M

which (1) preserves .each player's
ordinal preferences, and (ii) preserves information about:which.player makes
larger gains at ansr given outcome. A solution which possesses this property can
thus .be sensitive not only to the:players’ preferemces over.outcemes, but also to
their feelings about which.one of.them benefits more:at any.given .outcome. Note
that a transformation t.which .preserves interpersonal. comparisons divides the
plane. into. the:three regions {xlxl - 'dl =x, -..dz}, {:c]xl - dl > %, = dz},

and {xlxl - dl <x, - dz}, and it transforms.a: point. from any of. these reg.:l.ons

into a point in.the same regiomn.

_For two~player games .in the class B* we:can. state the following result.

. ... Theorem 13: There is a-unique solution.f which is: strongly individually
rational,. strongiy Pareto. optimal, independent :of.irrelevant alternatives, and in-
dependent. of ordinal transformations.preserving. 1ntupersom1-‘comru@s. it is
the..'sqlut:l.on' f = E defined by E(S,d) = x-such that min '[xl' - dl’ x, = .Idz} >

min {yl = dys-7, .-'.dz'}--for all y € P(S) such that y ¥ x.

Mthe" transformation is.defined .on payoff vectors, and part. (ii) of Property 15
requires that .in.fact. the .transformations .of .one.player's payoffs must be related .
‘to’ the transformation:of.the .other's.. Note' that Property:15 is .strictly stronger
than Property 10;.1i.e., any solution which is independent of ordinal.transforma-. .
tions .preserving. interpersonal. comparisons..is .also .independent.of.common scale
changes, but not. conversely.. On.the other hand Property:.1l5 is strictly weaker
than Property 9, independence of.ordinal.transformations.
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The solution E picks the strongly Pareto.optimal point which maximizes the
minimum gains available to the playermls The: letter E was chosen to reflect the
fact that this solution selects. the outcome which gives both.players equal gains,

" whenever there exists a strongly Pareto optimal outcome with this property. That
is, whenever there is & point x in P(S) such that x - d; =x, -d,, then
‘E(S,d) = x, If no point in 'i"(s). gives the players equal gains, then it must be
that P(S) is contained either in the set {x']xl -d; >x,-d,} or in the set
fx|xl - dl <x) - d }'.'16 In the first case E(S,d) = x is the point at which x, is
maximized, in the second case it is the point which maximizes X;+ That is, the
solution E always chooses the strongly: Pareto optimal point which comes closest to

giving the players equal gains.

‘Proof: It is straightforward to verify that the function E defined in the
statement of ‘the theorem is well-defined and possesses .the.properties specified by
the theorem.- We'.;'eed':to ‘show. that it :tS"the‘.unique.solutien:'wit_:h:':hose'.ptoperi:ies;-
i.e., that if £ is. a solution possessing the specified preperties, then
£(S,d) =:E(S,d) - for any (S,d) in B*_.

First observe that if f is individually rational, strongly Pareto optimal,
and independent .of irrelevant alternatives, then for any (S,d) & B#*, |
£(S,d) --n.-é(':,d) .-'wher.e T is the union of ,-P'(S+) a.nd {d}. (This follows since indi-
vidual rationality implies that £(S,d) ¢ st = {x € S|x >.d}, strong Pareto opti-
mality implies £(S,d) e F(-S*)-,. and so independence of irrelevant alternatives
implies that £(8§,d) = £(T,d) for any.subset T of S which contains FshH.) e wina

sometimes :denote the game . (T,d) by -('f"(,s*'),d)., which is.a slight abuse of our

' ls'rhm is.a unique such :point which.is strongly Pareto optimal, . Of course there

may be several points in a: set.S: which maximize the minimum. gains available, ‘but
"all. but: the point E(S,d) must be only weakly Pareto optimal. .The function E ‘can
be described as-a:lexicographic nax:l.min function, sinee it selects the point
- (x1,%,) € 8 such: that max {xr»dl.xz 53 > max {y,~d,,y,7d,} where the maxima are

taken over all points z € S such that min {zl-dl,z } > min {w ~d;sw,~d, }

for all w € S, ,

16yn1s follows from the Mean Value Theorem, since P(S) 1s defined by & contin-
uous, decreasing function ¢.
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notation, since d £ i"(s'.")_.- However it will.be understood that in.this case the
set of feasible payoff vectors is the union.of F(S+) and {d}. So it will be
sufficient to show that f and E coincide on games of the form (P(s1),d), and
Property .15 further insures that .it. will be . sufficient to.show thi.s when d = 0.

. First we show that £(P(A),0) = E(P(A),0) = (1,1), (where P(A) is of course
the line segment .joining the points (2,0) and (0,2)). To show this it is suffi-
cient to note that the union of P(A) and {0} can be mapped into itself. by the trans-

formation t = (tl,tz) given by

2x1f Qa + xl) for 0 < % XX,
£y (xp0%p) = |
x +x, - tz(xl,xz) . for 0 X, < x4
x, + x:z - t,(x,x%)) for 0 < x; <x,
£y (xpaxp) =
, 2x2/(1 + xz) for 0 Xy <X

This transformation.t .defined .on.the union of P(A).and.{0} satisfies the conditions
of Property 15 and leaves only.. the points 0, (2,0), (1,1), and (0,2) fixed.]'?

But since t transforms the game (P(A),0) into.itself, Property 15 requires that
£PA),0) = t(£P@),0)); i.e., £(P(A),0) must be a fixed point of t.. The unique
£ixed point of t in P(A) which is strongly individual ratiomal.is the point (1,1),
and so £(P(A),0) = (1,1), as required.

. Next, we will demonstrate.that it .will be sufficient for.our:proof to show
that f and E coincide .'on.éames @sh ,0) such that P(S) is.a .subset of P(A). To
see this, consider an arbitrary game of.the form @&shH, D, .axigllet:._(f(‘l‘) ,0) be a

. game such that 'ﬁ(m)_-con:amsi(s), and P(T) = {(x),4(x))) |o &%) <X} where ¢ is
a continuous decreasing. function such that ¢.(§1.)' =.0.:. (Thus P(T)  touches both
axes; 1.e., it contains points of the form (6,52) and. (:_:1,0)..)' Then there is a
_(unique) point.x*.in P(T) which gives. the.players equal g&:l.ns;ls let x* = (c,c),
‘where ¢.is.a positive real number.. The t:vansforu_ﬁtion. t.=. U;l.,:z) given by

4

1 he transformatien t moves: each non<fixed .point of P(A).closer to the point

a,1).

18&3;1:&, by the Mean.Value Theorem.
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x; . for 0 < x 2
tl(xl.xz) =

2c -~ x, othervise

2c - x,y Cfor 0 <x, <c
tz(xlixz) =

xz otherwise

transforms the game (P(T),0) into.the game (cP(A),0) (see Figure 17, p. 97). So
the transformation t' = t/c tramsforms (P(T) .3) 4into (P(A),0), and thus transforms
the arbitrary game ('f(s"'} ,0) into a game whose strong Pareto set is a subset of
i"(x). Property 15 thus assures that if £ and E coincide on subsets of ?(K) then
they coincide everywhere.

But if P(S) is a subset of P(A) which contains the.point £F@A),0) = (1,1),
then independence of irrelevant: alternatives implies £(®(8),0) = (1,1) as well.
If (1,1) is not an element of P(S) then P(S) is contained either in a.line segment
joining (0,2) to x = (:_cl,xz) such that x max-imizeg player 1’5. payoff in P(S) and
:_:1 < x,, or else in a line segment joining (2,0) to the point x = (xl,Ez) which
maximizes. player 2's payoff, and for which Ez < x,.

.But .either line segment can be transformed into: itself leaving only its end-
points fixed, so that Property 15 together:with independence .of irrelevant alterna-
tives .and strict individual rationality -:I.mblies that £ (_P'(Sj.,-ﬁ)f x= E®(S),0),

which completes the proof.

.Note that.the-solution .E.can be. experimentally.distinguished. from the sym-
metric proportional solution .only on. games .ﬁhich‘-havemno -strongly: Pareto optimal
point: which gives:the: .playe:s;equ;rl gains.. .Much.of the éxperimentation in the

. .psychological literature has concentrated. on games.in which ,the..iaayoffs are :In
money,.and. there is.some avideneg:."? that in such games.some aspects of the

_player's behavior. can be explained in.terms of the.solution E.

19:8ee' for example ‘the. work of Rapoport and his colleagues,:and Roth and Malouf
[1979]. _ '
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Figure 17
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D. ‘Irrelevant" Alternatives

In the previous section we explored.some solutions which, like the (symmetric
and non-symmetric) Nash solutions, are independent of irrelevant alternatives but
which, unlike the Nash solutions,-are . not independent .of equivalent utility repre-
sentations. In this. section we will consider some solutions.which .are. independent
of equivalent.utility representations, but which are not independent of "irrele-
vant" alternatives. That is, we.will consider .seme solutions.which are sensitive
.to changes in the set of feasible outcomes in. a way.which the Nash: solutions .are
not.

.. When.we.first discussed. the two independence properties, we _sugg;asted that
independence .of. equivﬁlent..utility -representations can be thought. of. as specifying
-the: information on.which bargaining might depend, .while. independence of irrelevant
altemtives.speci:fies the kind of bargaining process.being modelled.. So in this
.gection we will be considering bargaining which may proceed in a different way than
the bargaining modelled by .the -Nash solution, but.which.iiill':have available the
same information—i.e., will have available information about.each:player's prefer-
ences just suffiecient to determine his expected: utility-,funcf:ion up.to an arbi-
trary .choice of .origin and.scale. We will again.be.considering bargaining games
-in the class B.

" The word."irrelevant" .in the name of Property 3 obviously prejudges the
issue.. A.more descriptive name:would: be "independence. of alternatives other than
- the .d.-isagreﬁent .point," since the property essentially specifies:that a solution

».possessing it may. not .dépend: on.any point in the. feasible. B-Et except possibly the
:-disagzeéwent. po‘int-.l' In this.section we will consider solutions which may depend

son other .points in. the  feasible .set as well.

.An Individually Monetenic Solution _
. The. solution constdered here has received.considerahle attention in the re-
.cent. literature, and.together with some closely.related.solutions, has been studied

. =
from several .different .points-of view by.a.number of. investigaters. interested in

Let. Roth [1977d].
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two-person bargaining games. (See e.g., Butrim .[1976], Crott [1971], Kalai and
Smorodinsky [1975], Nydegger and Owen [1975], .Raiffa [1953], and Schmitz [1977],
and cf. Footnote 3.) This solution is.not independent of "irrelevant" alterna-
tives, in the sense that it depends not only on the d':l.sag:eement paj-roff but also
on the maximum payoffs each player might hope to receive.. séi::ecifically, for any
two~player game (S,d) let x(S) = (il,izj.be the vector defined by ii =
max {xi](xl,xz) € S+} for 1 = 1,2.2. Let G be the: solution such that G(S,d) is the
maximal point on the line joining d to x(S) which is contained in S. That is,
6(S,d) = x such.that x € S, (x, - 4,)/(x, - 4,) *'(:_:l - dl)f(;cz -dy)), and x > y
for all y € S such that (y; - 4,)/(y, - d,) = _(El - dl)!(iz - d,).. (See Figure
18, p..100.)3

.Kalai and.Smorodinsky.[1975] provide.the following.elegant characterization

of the solution G in terms of Properties 1, 2, 7, and 13.

. Theorem 14: The solution G is.the .unique.solution.defined.on two player
games in :the.class. B which is strongly.Pareto optimal,. symmetric, independent of

equivalent utility representations, and. individually monotonic,

zwm no. confusion will .xresult. we .will.sometimes.suppress ‘the dependence on S
‘and: wr:l.t.e. x (8) as simply.x X,y Just_as we suppress.the.dependence.on d when we
write 5T = {x e S|x > d}. :
3Crot:t. [1971] independently -proposed this solution for: games. whose disagreement .
.point. is the origin to.model the results.of an experimental: investigation. Kalai
and’ Smorodinsky [1975] observed that the: solution is individually monotonic, and
vpmvide.d ‘the. axiomatic.characterization.which we:will .present :as' Theorem 14.
-Nydegger -and Owen- [1975] conducted. some experiments motivated:by the results of
-Kalai and Smorodinsky,.and unlike Crott, .obtained. results.for which.the solution
G .did not provide an adequate model. : (In fact their results were.instead more
: consistent.with either the :symmetric.proportional solution.or the "equal gains"
solution. E.considered in the previous: section.). . Butrim [1976] also considers
the solution G:from an axiomatic. peint of view.
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Proof: It is relatively straightforward to verify that the solution G for
two-player. games possesses the properties named in the theorem. To see that it
is the only solution which does,.let f.be any solution possessing the properties
named in the theorem:. we will show that £(S,d) = G(S,d) for any game (S,d).

Since £ and G are both independent of equivalent utility representations, it will
be sufficient to show .that they coincide on all games of. the form (S,0), such that
x(s) = (1,1.%

So.let (S,0) be a two-player game with x(S) = (1,1), and let (T,0) be a game
such that T contains .S and the set T4 = {x e T|x.> 0} is equal to the set S; =
{y]ﬁi ¥y < x for some x in S}. (See Figure 19, p. 100.) Then x(T) = (1,1) and the
property of individual monotonicity mplieé thaﬁ £ 1(EIT,E) > £ 1(5,3} for 1 = 1,2, so
that f(T,ﬁ) > f(S,E).S But any point which is strongly Pareto optimal in S is also
strongly Pareto optimal in T, so that £(S,0) is strongly Pareto optimal.in T. Con-
sequently £(T,0) = £(5,0). ' .

Let T' be the convex hull of the points 0, (0,1), (1,0) and G(T,0), all of
which are contained in T. Then T contains T', which is a symmetric set, since
cl(r.ﬁ) = GZ(T,'EJ‘). Since the solution f is symmetric as well.as Pareto optimal, it
follows that £(1',0) = G(T,0). But T' is contained in T and-E(I') = X(T) = (1,1,
s0 individual monotonicity implies (cf. Footnote. 5).tha.t.f(T,E) > f (T°,0) = G(T,H),
and since G(T,0) is strongly Pareto optimal in T, it follows that £(T,0) = G(T,0).

But G(T,0) = G(S,0), so £(5,0) = £(T,0) = G(5,0), as required.

Ahat is, we can choose the utility representations so.that:any game. ie equivalent
to .one which has been.normalized:as indicated.

sIt is.-straightforward. to verify -that:if f is a .solution.which possesses Property
13, individual.-monetonicity, then it also . possesses. the.following weaker property.

R )
.- +:Property 13':. Restricted monotomicity. 1If (I,d).and (S,d) are games
~such.that. T.contains S ‘and x(T). = x(S)., then £(T,d) > £(S,d). -

This property. is the.only consequence of individual mono_ton:_l.n:l.ty... needed in the
proof, : (€f. Kalai.and:Smorodinsky .[1975], Schmitz:[1979],.Roth [1979d].)
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We can best compare the solution.G with.the Nash solution F by observing that

in Theorems 1l and. 14.we. have characterized them with.essentially the same list of
properties, . except.-that F 4s.independent.of irrelevant alternatives while G is in-
dividually monotonic, Since F.and G are not equal, 'an: immediate .corollary of the
two theorems.is that G is:not.independent of irrelevant alternatives (a fact which
is apparent. from its definition) while F is not individually monotenic. Of course
F.and G coincide on all symmetric. games, and on all games which.can be converted
into. symmetric.games by equivalent utility representations.. .Thus for ‘i.nstance
F(A,0) = G(A,0) = (1,1), but the .two.solutions .can be. thought of as generalizing
-this outcome.to.other games. in.different .wa]rs.G

.. .For. example, let S.be .the:.convex hull of the. points (2,0),.(1,1), (0,1) and

0. Then S is cbhtained in A, and F(A,0) = (3,1) 1s.an element. of S, so the fact
-that F.is independent of irrelevant.alternatives.implies that E(S,0).= (1,1) also
(cf. Figure 9, p. 65). . However x(S) = (2,1), s0.G(S,0) = (4/3,2/3). Thus G model:
a bargaining process in which a player's. final .payoff.decreases.as his maximum
feasible payoff decreases. |

.To" see:that'F is mnot individually monotonic, consider the sets.S and T where

...8:1isthe convex hull. of. the points 0, (0,1), (1,0), and -(,3/4.,3/4),. and T is the
.c,o:wex.hull,.o-f..-ﬁhe..paints,ﬁ,-:(0.1), (1-,0), and "(1,.7) .-7 Then § is symmetric, so
F(8,0) =.G(S,0) = (3/4;3/4). Furthermore, T.contains S and X(T) = X(S), so indi-

_vidual monotonicity implies’ that G(T,0) > G(§,0), and in fact G(T,0) = ._

- (10/13,10/13), (see Figure 20, p. 103). But F(T,0) = (1,.7), so that, unlike the
‘golution.G,. the Nash .solution .models.a bargaining -pm;:.essnin:which. playei: 2 does
less well in.the. game (T,0) than.in.the game .(S,0), even though the set T offers
‘him a wider .range. of payoffs for any given payoff to player.l.(cf. the discussion

-of :Property 13).

A

GSpecif:lcallly,' independence of. irrelevant alternatives permits'.the.solution of one
game. to be ;dedagizd_: from another game.with:a larger set of.feasible outcomes, while
‘imdiwvidual monotonicity: permits.the:solution of .a .game .to be deduced from a game-.
. with.a:smaller set of. feasible. outcomes. (cf. the proof. of.Theorem 14).
-%h—:l:&exnnple:yes .used by .Kalai. and Smorodinsky.[1975]. to motivate the solution
‘G .by. eontrast .with the Nash solution.
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We note in:passing. that the solution .G shares with F.the property of risk

sensitivity which we studied in Section D of Part I. That:is, in two-player bar-
gaining games, a.player's final payoff as modelled by G increases ae his opponent
becomes more risk averse.. Specifically, we have .the following xesult, which

parallels Theorem 5 (ef. Kihlstrom, Roth, and Schmeidler [1979]).

. :Theorem 15; The utility.which.the solution G assigns to a player in a two-
person game increases as his .opponent.becomes more risk averse. That is, for
.i.= 1 or 2, Gi(S'.d)- 3_Gi(s.d-)., vhere (S,d). is obtained from (S,d) by replacing

player j (J.# 1) with a more risk averse player.

Proof: Let (;i-,a) be derived from (S,d) by replacing the utility function w of
.player 2, say, with a more :1sk..-4ve:ae.utu:l.ty function -;t,-.’such- that ;ar(c) = k(w(c))
for all.c in the underlying set of alternatives.C. (Recall.from Theorem 4 that k
is an increasing .concave function.) Since.the solution .G is independemnt of equiva-
1enl:.ubﬂiﬁy,..representat:ions.,..‘we-ca.n.choose .any normalization for ‘;r, and hence for
k.. So let k(d,) = dz.an'd-k(:_iz) = iz  This is.equivalenf to letting
;(E) = w(c) = d, and :i(_mz) = w(m)) = §2, where C is the disagreement alternative
and m, ‘is: the alternative .in C: which yields. player 2 his.maximum utility in the
Pareto.set of .the set S+ ={x e S[.x > d}. Similarly, let oy be the alternative
which yields.player 1 his mimum.payoff in 2(sh), so u, () = .

* Note th;t- w.(mz) > .w-(mI) > w(c), and so.there exists some.number o between 0
. and. 1 .such .that n(ml)-:- aw(c) + (1-a)w(m2).. .Consequently. tl:xe. .concavi.ty of k im-

plies that...;(ml). i.w(ml), since
W) = k(w@y) > ek@@) + 1-0kw@m)) = wim) ,

vhere: the:last equality follows.from. the fact .that k(w(c)) = w(c) and
k(w(m,)) = wm,).

Se.if we denote ‘the Pareto sets.P(S) and P(S). as sets consisting of points
of. the:form (x,3¢(x,)) and (xl,;(xl.).), rég;ectively, then ;Gil). > ¢{§1) , and
-¢Qu1(m2).) - ¢(ul(m2)). That is ¢ 1s greater than ¢ at either end point of the

Pareto: set r(s'*') » and since ; = k(¢) and k is conecave, this implies that
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;(xl) > ¢(xl) for. -all'xl € [ul(mz),z_:ll. That is, every point in P(S+) is less thanl
or equal to. the corresponding point in P(§+); (see Figure 21, p. 103). Since

X(s) = X(S) and d = d, it therefore follows that G(S,d) = ¢(S¥,d) > a(s*,a) =
G(s,d), and so clcé.ﬁ) > Gl(s’d)’ as required.

Although the literature concerning the solution G has been concerned exclu-
sively with two-player games, G is nevertheless well-defined for games with any
mnnhe;:'of players.a However G need not be Pareto optimal for: games involving more
than two players. In fact, for games with more than two players, no. solution ex-
ists which possesses the properties used to characterize.G in Theorem 1l4. In
fact, we have the following. result . (Roth [1979d]).
Theorem 16: For bargaining games with 3 or more players, no 'sclution exists

which is Pareto optimal, symmetric, and individually momotonic.

: Specifically, we -\;i'll.vprove. that no solution.for n person games (n.> 3) possesses
the properties of Pareto optimality, symmetry, .and restricted monotonicity (cf.

footnote 5).

Proof: We will assume that f i1s a solution which possesses. the properties
snamed in. the theorem, and show.that this leads to a contradiction.. Consider the
-n-iperéon game (n > 3) whose disagreement point is equal to the. o-'riéin (which we will
denote by .ﬁ), and whose feasible set § is equal to the convex hull of 0 and the
points.-é._and-q such that p, = 0 agd Py =1 for i # 1, and q, = 0.and 4y = 1. for
J #2 (see Figure 22, p. 106). Then the set of Pareto optimal points in S is the
.line:segment. joining p to q, so £(8,0) = # :Lé a convex combination of p and ﬁ. In
.-.p;a__.a':t:-':l.'c'.ulm.',-_x:,1 =1,

-‘How.,conside:' tﬁe game (:l!,'f)'), where T = {x _>__75|in <.(n =1) and x, < 1 for
4% 1, +eey.n}le Then (T,0). is & .symmetric game, so ﬁI(I,E) = .'fz('r.ﬁ) = L. =
£,(1,0), and. the Pareto optimality of f implies that ‘

gror an--n-p:[;ye.'ﬁ.gaue .'(§,d), G(8,d) = x is the maximal point such that
(xi - di-)-/(xi -—.dj) .w.(x1 - di){'(;j - d_-]) for all 1, J € N.
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But the point (1, 1, ..., 1) is the ideal point both of the game (S,0) and of
the game (T,0), so the fact that T contains S.and. the. restricted monotonicity of
f (cf. footnote.5) imply that z > x. Since.we have shown: that. z, = -"‘;—1 and Xy = 1

this gives the contradiction needed to complete the proof.

It is straightforward to verify that.the solution G is symmetric and indi-
vidually m:;notonic for any n. Theorem 16.therefore.implies that.G dees not possess
the property of Pareto optimality for mn > 3; i.e., G(S,d) need not be Pareto
optimal in S. In fact, for the game (S,0) considered in .the proof, G(S,0) = 3,'
which is not Pareto optimal.

This. shﬁuld- serve.to emphasize that G-is wvery closely related to. the propor-
tional -solutions studied in the previous section. For games .(S,d) normalized so
that d; = d, = ... = d -and 21(8) = ;:2(5)' = ... - En(s), G.coincides with the
symmetric. proportional.sclution. The difference between.the.two solutions lies
in the way the.outcomes. of such games. are generalized to other games: a propor-
tional solution gives the players.gains which are. in.fixed proportion to one.
another, while for any game.(S,d), G.assigns the..-.-playé.rs:.-gainsk.in':; proportion to

9

. the quantities :_:1(5) -4,

.Dependence. on the ‘Ideal Point
. The solution G is not independent. of -al#gmtivgs.-_O;ther:,t.ba.n.' the:disagreement
point, since. it.is.also.dependent on'the point x(S), which is scmetimes referred
to .as. the ideal. point of the.set . S. However G is independent .6_;£ .alternatives wh:l.cﬁ
.do.mot determine the ideal point: i.e., it is a Tsoln.t;:l.on ‘wbicfupossesses the

-following property.

... -Property 163. . Independence of Alternatives Other Than. the Disagreement Point
and Ideal:Point... Suppose.that .(S,d).and (T,d) .arve bargaining. games such that T
.contains-.S,. x(S) =.x(T), and £(T,d) is an element of.S, .Then £(8,d) = £(T,4d).

gFor some related work, .see Rosenthal [1976],.and Schmitz [1977].
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Of course G is not the.omly solution which possesses. this property; for in-
stance the Nash solutions possess. it too, since any.solution which possesses
Property.3 must possess.Property 16 as.well. The relationship between Properties

3 and 16 suggests.consideration of the following.independence property as well.

Property 17: Independence: of Alternatives Other Than the.Ideal Point. If
(S,d) and (T,d') are bargaining problems such that x(T) = X(S) and T contains S,

and 1f £(T,d'). is an.element of S, then £(S,d) = £(T,d").

Solutions which.possess Property 17 have been considered .in the. literature;
e.g.s Yu [1973] and Freimer and Yu [1976] .consider solutions which select the
"closest“-.-point in S to x(S), in.terms of some metric. . Such a solution is Pareto
opt:lmai.and. symmetric, -but not . independent.of equivalent utility representations.

In fact, we have the following. general result (Roth [1977d]).

Theorem 17: There exists no solution:on the class B which is symmetric,
Pareto optimal, .independent: of alternatives other.than. the ideal.point, and inde-

pendent.of equivalent .utility representations.

Proof:. It will be sufficient to demonstrate.that no solution.satisfying the
. conditions of the theorem exists for the.case n.=.2. .Suppose.te the contrary that .
f.1s such a.solution,.and let T be the convex hull of the points .(0,~2), (~2,0),
. (=15,0),: (=15,-15),. and: (0,-15), and:let d' = (=15,-15). Then (T,d') is a sym~ .
.metric bargaining.problem:whose Pareto. surface. is. the.line segment joining the
. points.(0,=2). and.  (~2,0). Consequently £(T,d) = (=1,-1).
Let S be the convex:hull of the. points. (0,-6), (~1/2,-3/2), (~1,~1), (~6,0),
_and. .(—«6,-—.6)- Then T contains S, f(T,.d'j e 8, and X(S) = x(T) = (0,0). So
:Property. 17.requires. l-:h.at\.f(S,d) = £(T,d") = (»1,~1) for any disagreement point d.
Now let S' u'{(2x1.(z/3)x2)1(x1.x2) € 5}, and let d" = ;2d1,(223)d2). Then
independence of equivalent utility. repﬁésen’tauiona implies that

£(5',d") = (-2,-2/3). But T contains S', which is the convex hull of the points
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(0,-4), (~1,-1), (-2,-2/3), (-12,0), and (~12,4). Also x(S') = %(T) = (0,0) and
£(T,d') € S', and so Property 17 implies that £(S',d") = £(T,d") = (~1,~1). This
supplies the contradiction needed to complete the proof.

For some related work, see Thomson [1978], and Thomson and.Myerson [1978].
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Appendix: Summary of the main properties and results

i

Property 1. (p. 6) Independence of Equivalent Utility Representations: For any
bargaining game (S,d) and real numbers a, and bi for i =1, ..., n such

that each a, > 0, let the bargaining game (S', d') be defined by

i
s'={ye Rnl there exists an x in § such that y, = a;x, + b, for

)
1=1, «eoyn} and d, = ad, +b, for i =1, ..., n, Then £,(s', d') =

191
aifi(s,d) + b:l for 1 = 1, se.p N

Property 2. (p. 6) Symmetry: Suppose that (S,d) is a symmetric bargaining game—
i.e., suppose that dl = d2 B oLee = dn, and that if x is contained in S, then

so is every permutation of x. Then

fl(sad) = fz(sad) B oeee = fn(svd)o

Progértx’ 3. (p. 6) Independence of Irrelevant Alternatives: Suppose that (S,d)
and (T,d) are bargaining games such that T contains S, and £(T,d) is an

element of S. Then £(S,d) = £(T,d).

Property 4. (p. 7) Pareto optimality: For any bargaining game (S,d), if x and y

are elements of S such that y > x, then £(S,d) ¥ x.

Theorem 1 (Nash's theorem) (p. 8): There is a unique solution possessing Proper-

ties 1=4. It is the function f = F defined by F(S,d) = x such that x > d and

n n
1 (xi-di) > I (y:l.—d:l.) for all y in S such that y > d and y ¥ x.
i=] i=1 ~

Coroliary 1.1 (p. 12): Suppose that for any._symmetric bargaining -game (A,d) such
that d = (0, ..., 0) and P(A) is a subset of the hyperplane T = {xli‘.xi = n},
that £ is a solution such that £(A,d) = (1, ...y 1). Then if f possesses

Properties 1 and 3, £ is identical to the Nash solution F.

Property 5. (p. 13) Individual rationality:  For every bargaining game (S,d),
4 )
£(S,d) > d. '
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Theorem 2 (p. 14): There are precisely two solutions f possessing Properties 1,
2, 3, and 5. One is Nash's solution, f = F, and the other is the disagree-

ment solution f = D defined by D(S,d) = d for all bargaining games (S,d).

Theorem 3 (p. 16): For each strictly positive vector p with Ipy =, there is a
unique solution f possessing Properties 1, 3, and 5, such that £(2,0) = p.
For any bargaining game (S,d), £(S,d) = x, such that x > d and

P P
ll(xi _d:l) i, I[(yi -di) i for all y in S such that y > d and y # x.

Property 6. (p. 17) Strong individual rationality: For every bargaining game
(s,d), £(s,d) > d.

Property 7, (p. 18) Strong Pareto optimality: For any bargaining game (S,d), if

x and y are distinct elements of S such that y > x, t.he:n £(8,d) # x.

Theorem & (p. 39): A utility function v is more risk averse than u if and only if,
for all riskless outcomes c in C, v(c) = k(u(c)), where k is an increasing

concave function.

Theorem 5 (p. 44): The utility which Nash's solution assigns to a player in a
tw-person game increases as his opponent becomes more risk averse, That is,
Fi(s’d) 2> Fi(s,d) where (S,d) is obtained from (S,d) by replacing player

j,(i#1), with a more risk averse playér.

Proposition 5.1 (p. 46): If v, and uj are two utility functfons such that v, is

more risk averse than u 1 then the risk limit ?:I.I for any pair of proposals is

lower under vy than under uy.

Property 8 (p. 47) Risk sensitivity: If a two-person bargaining game (8,d) is
transformed into a game (S',;d') by replacing player i- with a-more risk averse

player, then f‘j (8',d") > £,(5,d).

3

Theorém 6 (p. £7): If f is a solution for two=player games which possesses

Properties 4 and 8, then it also possesses Property l.
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Theorem 7 (p. 50): F(S*,d%) = z* = (u, (w; + c}), u,(w, + c})) such that

cf + cir = Q and bl(wl,ci) = bz(wz,cg).

Theorem 8 (p. 57): For preferences which obey Conditions 1-5 (pp. 54-56), the
utility 6 of playing position k in a bargaining game (8,0) is Gk(s) = Xs
where for any S € B', k ¢ N, Bk(s) =X where x is the unique element of S+

9y 9y

such that Iix,” > Iy, for all y ¢ st such that ¥ ¥ x, where q = (ql,...,qn)

is the vector such that 9 = ¢, Iq; =n, and q = 9y for 1, § # k.

Corollary 8.1' (p. 58): The Nash solution is equal to the utility vector 6 reflect-

ing strategic risk neutrality.

Property 9. (p. 69) Independence of ordinal transformations: For any bargaining
game (S,d) in B* and any continuous, order preserving functions m,
1=1,00e50, let the bargaining game (S',d') be defined by

S' = m(S)

{y e Rn|y = m(x) for some x in S} and d'= m(d). Then

fi(s',d') mi(fi(s'd)) for 1 = 1,.0e,n,

Theorem 9 (p. 69): No ordinally independent solution exists which also possesses
the properties of sf:rong individual rationality and independence of irrele~

vant alternatives.

Theorem 10 (p. 70): For two-player games, no ordinally independent solution exists

which also possesses the property of strong individual rationality.

Corollary 10.1 (p. 74): For any n, there is no solution-defined “on the class B

which is both ordinally independent and strongly individually rational.

Property 10 (p. 79): Independence of common scale changes: For any bargaining
game (S,d) and real numbers.a > 0 and b, 1= 1,¢.,n, let the game (s',d")
be defined by S' = {y ¢ R.nl for some x im S, yg = ax, + bi for 1 = 1,...yn} and

df = ad; +sb; for 1 = 1,.e0,n. Thenm £,(5',d') = af,(5,d) + b, for 1 = 1,...,n.

Property 11 (p. 82): Decomposibility: If (S,d) and (T,d) are bargaining games

such that T contains S, then £(T,d) = £(T,£(S,d)), whenever (T,£(8,d)) ¢ B,
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Property 12 (p. 82) Monotonicity: If (S,d) and (T,d) are bargaining games such

that T contains S,. then £(T,d) > £(8,d).

Lemma 11.1 (p. 82): If f is a solution which is independent of common scale

changes, decomposible, and individually rational, then f is momotonic.

Lemma 11.2 (p. 83): If £ is a decomposible solution which is strongly individu-
ally rational on the class D, then f is (weakly) Pareto optimal on the class

D.

Lemma 11,3 (p. 84): If £ is an individually rational solution which is indepen-
dent of common scale changes and decomposible, and if f is strongly indi-

vidually rational on the class D, then f is proportional on the class D,

Theorem 11 (p. 86)' Let f be an individually rational solution which is stromgly
1udiv:ldua11y rat.:l.onal on the class D, and which is decomposible and indepen-
dent of common scale’ changes. ‘Then for any- game (S d) € B,

£(5,d) = k(S,d)p + d where 0 < k(S d) < x(s,d).

Property 13 (p. 87): Individual momotonicity. If (T,d) and (S,d) are games such
‘that T contains S and, for some i € N, 'I; intersected with {x ¢ Rnlxi =d}
is equal to the intersection of S; {x ¢ Rnlxi -*'di}, then

£,(1,d) > £,(S,d).

Property 14 (p. 838): Continuity on the class D: Let (S;| »d) € D be bargaining
games defined for a sequence of sets Sj such that, in the limit as j goes to

infinity, Sj converges to S (in the Hausdorf topology), where (S,d) is also

in the class D. Then lim £(S

y2d) = £(5,d). '
pica _

Théorem 12 (p. 88): If £ is an individually rat:ioﬁal solution which is strongly
individually rational on the class D, and if f is independent of irrelevant
al_ternat:l.vds, independent of common scale changes, 'imt}ividually monotonic,
and continuous on the class D, then f is a proportional solution-on the

class B.
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Progei:gz’ 15 (p. 93): Independence of ordinal transformations preserving interper-
sonal comparisons: Let (S,d) and (S',d') be two-player games in B* such that
d; = ti(dl,dz) for 1 = 1,2 and §' = {(tl(xl,xz), tz(xl,xz))] (xl,xz) e S}
where t = (tl.tz) is a transformation t: S + R2 such that for all x, y in S
and 1 = 1,2,

(1) t:i(xl,xz) > ti(yl,yz) if and only if X, 29y and
(i1) tl(xl,xz) - t1(d1'dz) > tz(xl,xz) - tz(dl,dz) if and only
ifxl-dlg_xz—dz. '

Then £,(s",d") = t,(£(5,d)).

Theorem 13 (p. 93): There is a unique solution f which is strongly individually
rational, strongly Pareto optimal, independent of irrelevant alternatives,
and independent of ordinal transformations preserving interpersonal compar-
isons. It i€ the solution f = E defined by E(S,d) = x such that
min {xl -d;, %, - dz} > min {'yl =d;s ¥, - dz} for all y € P(S) such

thaty*x-

Theorem 14 (p. 99): The solution G is the unique solution defined on two player
games in the class B which is strongly Pareto optimal, symmetric, independent

of equivalent utility representations, and individually monotonic.

Theorem 15 (p. 104): The utility which the solution G assigns.to a player in a
two-person game increases as his opponent becomes more risk averse. That is,
' FARPS ' aA A
for i =1or 2, Gi(s,d) iGi(S,d), where (S,d) is obtained from (S,d) by re-

placing player j (j ¥ i) with a more risk averse player.

Théorem 16 (p. 105): For bargaining games with 3 or more players, no solution

exists which is Pareto optimal, symmetric, and individually monotenic.

Property 16 (p. 107): Independence of alternatives-other-than:the disagreement
point and ideal point: Suppose that (S,d) and (T,d) are bargaining games
such that T contains S, X(S) = x(T); and £(T,d) 18 an element of S. Then

£(s,d) = £(T,d).
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Property 17 (p. 108): Independence of alternatives other than the ideal point.
If (S,d) and (T,d') are bargaining problems such that x(T) = x(S) and T con~

tains S, and if £(T,d') is an element of S, then £(S,d) = £(T,d').

Theorem 17 (p. 108): There exists no solution on the class B which is symmetric,
Pareto optimal, independent of alternatives other than the ideal point, and

independent of equivalent utility representations.
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