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Learning Effectiveness and Memory Size

Abraham Neyman∗

February 3, 2008

Abstract

We study learning effectiveness as a function of memory size.
We quantify the maximal level that a bounded memory machine

(or agent) can match (or reproduce) a long string of inputs as a func-
tion of the input length k and the memory size n. The input string
is an element of Ik and the output string is an element of Jk and the
loss of the agent when matching an input coordinate i ∈ I with an
output coordinate j ∈ J is g(i, j).

This level is expressed by a function v(p, θ) of two variables: a
probability p on I and a nonnegative θ ≥ 0. The function v(p, θ)
is defined as a function of the triple G = 〈I, J, g〉. It equals the
minimum of EQg(i, j), where the minimization is over all distributions
Q on action pairs with marginal p on I, denoted QI , and the mutual
information IQ(i; j) = H(QI) + H(QJ) −H(Q) ≤ θ, where H is the
entropy function.

If i1, . . . , ik are iid I-valued random variables with distribution p,
then for T ⊂ Jk we have E min(j1,...,jk)∈T

1
k

∑k
t=1 g(it, jt) ≥ v(p, log |T |

k ).
Moreover, for every finite set T of functions τ from the finite strings
I∗ of I-elements to J we have E minτ∈T

1
k

∑k
t=1 g(it, τ(i1, . . . , it−1)) ≥

v(p, log |T |
k ). It follows that if σ is the mixed strategy of player 1 in the

infinite repetition of the stage game G that plays a k-periodic sequence
i1, i2, . . ., where i1, . . . , ik are iid random variables with distribution p,
then for every strategy τ of player 2 that is defined by an automaton
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with n states we have Eσ,τ
1
k

∑k
t=1 g(iL+t, jL+t) ≥ v(p, log n

k ) for every
L. This inequality holds also for any strategy τ of player 2 that is
defined by the most general machine with n states of memory (for
example, the machine can have, in addition to its n memory states,
access to a clock and to a randomization device).

On the other hand, for every k and n there is a function f : Ik →
T ⊂ Jk with |T | ≤ n such that 1

k

∑k
t=1 g(it, jt) ≤ v(p, log n

k ) + o(1)
(as k → ∞), where p is the empirical distribution of i1, . . . , ik and
(j1, . . . , jk) = f(i1, . . . , ik). In addition, we prove that there is a
deterministic automaton with n states and input alphabet I that
when faced with a periodic sequence i1, i2, . . . of I-inputs with period
r ≤ k outputs a sequence j1, j2, . . . with limL→∞

1
L

∑L
t=1 g(it, jt) ≤

v(p(σ), log n
k ) + o(1) as k → ∞, where p(σ) is the empirical distribu-

tion of the sequence i1, i2, . . ..
It follows that the value of the two-person zero-sum repeated game

G[k, n] (with stage game G = 〈I, J, g〉), where player 1’s possible
strategies are those defined by oblivious automata of size k and player
2’s possible strategies are those defined by automata of size n, con-
verges, as k goes to infinity and log n

k goes to θ ≥ 0, to the limit
v(θ), where v(θ) is the max of v(p, θ) where the max is over all mixed
stage actions p of player 1. Moreover, player 2 has a pure strategy
in G[k, n] that is approximately optimal. The result remains intact ?
when player 2’s possible strategies are those defined by automata with
time-dependent mixed actions and mixed transitions.

The minimal duration of learning is derived from the analysis of
the L-stage repeated games GL[k, n]. We prove that if k and L

k log k go

to infinity and log n
k goes to θ then the values of GL[k, n] converge to

v(θ).
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1 Introduction

Some hedge funds owe their success to recognizing economic patterns that
their competitors failed to notice. Their discovery of such trading strategies
contradicts the common economic/finance theory wisdom that agents are
fully rational with unlimited computational and memory capacities. After
all, if one hedge fund is capable of finding such profitable patterns, why
should others not be able to trade on the same patterns?

Such contradictions dissipate if one takes into account the limited ratio-
nality of agents.

The present paper derives quantitative results about the level at which a
limited rational agent can utilize repeated patterns of streaming data.

We consider a decision maker that interacts with a stochastic process (it)
with values it in the finite set I. At stage t ≥ 1 the decision maker outputs
an action jt in the finite set J , and thereafter observes the realization it, and
the cost at stage t to the decision maker is g(it, jt) where g : I × J → R.
If the t-coordinate it of the process is a known deterministic function of the
past (is)1≤s<t, then a decision maker with unbounded memory and unlimited
computational ability can compute it as a function of the past (is)1≤s<t and
guarantee at stage t the minimal feasible cost minj g(it, j). In particular, if for
t > k the it coordinate of the process is a function of i1, . . . , ik, a “supersmart”
agent can output the jt that minimizes the cost g(it, jt). However, if the
decision maker has a bounded memory, such a perfect optimization may
prove impossible.

The results characterize a threshold (continuous) function v of two vari-
ables: a distribution p on I and the positive number log n

k
such that 1) the

agent has a simple strategy that uses n states of memory such that for every
k-periodic sequence the average per-stage cost is v(p, log n

k
)+o(1) (as k →∞)

where p is the empirical distribution of (it); and 2) if (it) is a k-periodic se-
quence with i1, . . . , ik iid with distribution p, then for every strategy with n
states of memory the expected average per-stage cost is at least v(p, log n

k
).

The strategy in 1) is the simplest strategy with n states of memory: a de-
terministic (stationary) automaton with n states. Moreover, the automaton’s
program is a natural simple program and finding it requires little sophisti-
cation: a natural random choice leads with high probability to the desired
approximate optimal automaton. On the other hand, the inequality in 2)
holds for the most general strategy with n states of memory: a probabilistic
time-dependent automaton with n states. Therefore the results are robust
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with respect to the choice of modeling strategies with n states of memory.
An important ingredient of the model is that when the agent outputs

jt he is in one of n states of memory and this state can be a function of
i1, . . . , it−1. The state of memory then is the only record of the history
i1, . . . , it−1. At stage t an additional input it is observed. Therefore the state
of memory recording the history i1, . . . , it, mt+1 = m(i1, . . . , it) is a function
of mt = m(i1, . . . , it−1) and it. The classical model of an automaton requires
this function to be deterministic and stationary (independent of t). The most
general model of an n-state memory will allow the function mapping mt and
it to mt+1 to depend on time and a randomization device.

The periodicity of the sequence is essential for the statement of the formal
result but is not conceptually important. An alternative interpretation (or
statement) of the result is that the agent examines a long stream of data
i1, . . . , ik, and outputs a string j1, . . . , jk so as to minimize 1

k

∑k
t=1 g(it, jt).

The agent with n states of memory is modeled here as an automaton with n
states. The states of the automaton are partitioned into transition states and
terminal states. As long as the automaton is in a transition state it continues
to examine the sequence. Once reaching a terminal state it no longer has
access to the sequence and starts to output j1, . . . , jk (as a function of the
terminal state).

We turn now to the statement and the discussion of the results from
a game-theoretic perspective. Let G = 〈I, J, g〉 be a two-person zero-sum
game; I and J are the finite action sets of players 1 and 2 respectively, and
g : I × J → R is the payoff function to player 1. The repeated game, where
player 1’s, respectively player 2’s, possible strategies are those defined by
automata of size k, respectively size n, and the payoff is the average per-
stage payoff, is denoted G(k, n). Ben-Porath (1986, 1993) proves that the
value of G(k, n) converges to the value of the stage game G, as k goes to
infinity and log n

k
+ log k

n
goes to 0 (namely, the size of the larger automata is

subexponential of the size of the smaller automata).
It follows that in order to have an asymptotic nonvanishing advantage

in the repeated game with finite-state automata an exponentially larger au-
tomata size is needed. [12] (respectively, [18]) proves that if lim infk→∞

log nk

k

is > min{log |I|, log |J |} (respectively, ≥ min{log |I|, log |J |}), then the value
of G(k, nk) converges, as k goes to infinity, to the maxmin of the stage game,
where player 1 maximizes over his pure stage actions i ∈ I and player 2 min-
imizes over his pure stage actions j ∈ J . The asymptotic behavior of the val-
ues of G(k, nk) as nk/k → θ > 0 is unknown for 0 < θ < min{log |I|, log |J |}.
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The approximate optimal strategies used in [1] are mixtures of oblivious
strategies (namely, strategies that are nonreactive to the actions of the other
player) defined by an automaton of the specified size. Therefore, if G[k, n]
denotes the repeated game, where player 1’s possible strategies are those
defined by oblivious automata of size k and player 2’s possible strategies are
those defined by automata of size n, then [1] proves that the value of G[k, nk]
converges, as k goes to infinity and log nk

k
goes to 0, to the value of the stage

game.
One possible interpretation of a stochastic process of actions generated

by a mixture of oblivious strategies is a stochastic process of states of nature.
The set I denotes the temporal states of nature and g(i, j) is the cost of the
decision maker (player 2 in the game-theoretic interpretation) as a function
of his/her action j and the state of nature i. Therefore, the result of [1]
demonstrates that a memory size that is a subexponential function of the
length of the (minimal) cycle of the states of nature is insufficient to utilize
the fact that the states of nature follow a cyclic play.

A repeated game model that leads to oblivious strategies of a player is
the case where the player does not observe the actions of the other players.

The present paper proves that for sufficiently large k the value of G[k, n] is
approximated by a function v of log n

k
. The function v depends on the data of

the stage game and its definition uses the entropy function. For a probability
distribution p in ∆(I) (the set of probability distributions over I) and θ ≥ 0,
we denote by Q(p, θ) the set of all probability distributions Q ∈ ∆(I × J)
with marginal QI on I coinciding with p and H(QI) + H(QJ) − H(Q) ≤ θ
(where H is the entropy function). Note that the set Q(p, θ) is closed and
convex, and αQ(p, θ1)+(1−α)Q(p, θ2) ⊂ Q(p, αθ1+(1−α)θ2) for 0 ≤ α ≤ 1.
Define

v(p, θ) = min
Q∈Q(p,θ)

EQg(i, j)

v(θ) = max
p∈∆(I)

v(p, θ)

Let p ∈ ∆(I). We prove that if σ is the mixed strategy of player 1 in
the repeated game G[k, n] that plays a k-periodic sequence i1, i2, . . . where
i1, . . . , ik are iid with P (i1 = i) = p(i), then for every strategy τ of player 2
in G[k, n], we have

Eσ,τ
1

k

k∑
t=1

g(iL+t, jL+t) ≥ v(p,
log n

k
) (1)
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for every L. In particular, Eσ,τ limL→∞
1
L

∑L
t=1 g(it, jt) ≥ v(p, log n

k
). There-

fore the value of G[k, n] is ≥ v(p, log n
k

) for every p ∈ ∆(I), and thus ≥ v( log n
k

).
On the other hand, we prove that in G[k, n] player 2 has a pure strategy

τ such that for every strategy σ of player 1 the long-run average payoff,
limL→∞

1
L

∑L
t=1 g(it, jt), is close to v(p(σ), log n

k
) (explicitly, ≤ v(p(σ), log n

k
) +

o(1) as k → ∞), where p(σ) is the empirical distribution of the actions
of player 1 when using the strategy σ. Therefore, the value of G[k, n] is
(≥ v( log n

k
) and) ≤ v( log n

k
) + εk where εk → 0 as k goes to infinity. It follows

that the values of G[k, nk] converge to v(θ) as log nk

k
→ θ ≥ 0 and k goes

to infinity. Moreover, the limit is uniform over all stage games 〈I, J, g〉 with
‖g‖ := maxi,j |g(i, j)| ≤ 1.

A finite automaton of player 2 with n states is a machine with n states of
memory. The memory state mt is changing from stage t to stage t+1 as a de-
terministic function of the input it. Following a play in stages 1 ≤ t < L the
automaton’s summary of the past play/data is captured by his present state
mL. Two characteristics of such an automaton are the deterministic and
stationary transitions. In [4] a striking difference between a time-dependent
probabilistic automaton and a time-independent probabilistic automaton1

emerges in hypothesis testing. It is therefore of interest to ask whether in-
equality (1) holds also for any strategy τ that is defined by a time-dependent
probabilistic automaton. It turns out that it holds also for any strategy τ
defined by a time-dependent mixed actions and mixed transitions. It follows
that the result about the limit of the values of G[k, n] remains intact when
player 1’s possible strategies are those defined by oblivious automata of size
k and player 2’s possible strategies are those defined by n-state automata
with time-dependent mixed actions and mixed transitions.

The duration of learning is analyzed by studying the value of the L-stage
repeated game GL[k, n], where the possible strategies of player 1 are those
defined by oblivious automata of size k and player 2’s possible strategies are
those defined by automata of size n, and the payoff is the average of the
payoffs in the first L stages of the repeated game. We prove that the value of
GLk [k, nk] is ≥ v( log nk

k
) and ≤ v( log nk

k
) + ε(Lk, k, nk) where ε(Lk, k, nk) → 0

as k and Lk

k log k
go to infinity. It follows that the value of GLk [k, nk] converges

to v(θ) as nk

k
→ θ and both k and Lk

k log k
go to infinity.

1Interesting comments on this issue appear in [2, 3, 5, 8, 9, 10].
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2 Preliminaries

A pure strategy of player 1, respectively player 2, in the repeated game G∗

(with stage game G = 〈I, J, g〉) is a function σ : (I × J)∗ → I, respectively
τ : (I × J)∗ → J , where (I × J)∗ is the set of all finite strings (including
the empty string ∅) of elements of I × J . A pair of pure strategies, σ of
player 1 and τ of player 2, defines a play i1, j1, i2, j2, . . . of the repeated
game as follows: i1 = i1(σ, τ) = σ(∅), j1 = j1(σ, τ) = τ(∅), it = it(σ, τ) =
σ(i1, j1, . . . , it−1, jt−1), and jt = jt(σ, τ) = τ(i1, j1, . . . , it−1, jt−1).

The L-stage average payoff as a function of the pure strategy pair (s1, s2)
is gL(s1, s2) = 1

L

∑L
t=1 g(it, jt), where it = it(s1, s2) and jt = jt(s1, s2). If

(σ, τ) is a mixed strategy pair, then gL(σ, τ) = Eµ,σgL(s1, s2). Whenever the
limit of gL(σ, τ) as L → ∞ exists, it is denoted by g(σ, τ), and termed the
average per-stage payoff.

An automaton of player 2 consists of

• a set of states M

• an action function α : M → J

• a transition function β : M × I → M

• an initial state m∗ ∈ M

The size of an automaton is the number |M | of states.
An automaton A = 〈M, m∗, α, β〉 for player 2 defines a strategy τ = τA

as follows. Define the sequence of states (mt)t≥1

• m1 = m∗

• mt+1 = β(mt, it)

Note that mt is a function of i1, j1, . . . , it−1, jt−1. Define

τ(i1, j1, . . . , it−1, jt−1) = α(mt)

Analogously, one defines an automaton for player 1.
An oblivious automaton is an automaton A = 〈M, m∗, α, β〉, where the

transition function β is independent of the action of the other player. Ex-
plicitly, an oblivious automaton of player 1 consists of a set of states M , an
action function α : M → I, a transition function β : M → M , and an initial
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state m∗ ∈ M . The size of an oblivious automaton is the number |M | of
states.

An oblivious automaton A = 〈M, m∗, α, β〉 defines a strategy σ = σA as
follows. Define the sequence of states (mt)t≥1

• m1 = m∗

• mt+1 = β(mt)

Note that mt is a function of i1, . . . , it−1 and thus, in particular, a function
of i1, j1, . . . , it−1, jt−1. Define

σ(i1, j1, . . . , it−1, jt−1) = α(mt)

A sequence of actions (i1, i2, . . .) is defined by an oblivious automaton of
size |M | if and only if it enters at a stage 1 ≤ t0 ≤ |M | a cycle of length
1 ≤ t1 ≤ |M |+1−t0; namely, there are 1 ≤ t0 ≤ |M | and 1 ≤ t1 ≤ |M |+1−t0
such that for every t ≥ t0 we have (mt = mt+t1 and thus) it = it+t1 . For
example, set t0 = min{t ≥ 1 | ∃t′ > t with mt′ = mt} and t1 = min{t ≥ 1 |
mt0 = mt0+t}.

The set of all automata of size n of player 2 (as well as the set of all
strategies of player 2 that are defined by automata of size n) is denoted
A(n). The set of all oblivious automata of player 1 of size k (as well as the
set of all strategies of player 1 that are defined by oblivious automata of size
k) is denoted by Ao(k). For a finite set A we denote by ∆(A) all probability
measures on A. [k] denotes the set {1, . . . , k}. dαe denotes the smallest
integer that is ≥ α.

For two probability measures P and Q on a measure space X we denote
by ‖P −Q‖ the supremum over measurable Y ⊂ X of 2(P (Y )−Q(Y )). If X
is a finite or discrete space, ‖P − Q‖ =

∑
x∈X |P (x) − Q(x)|. If QI and QJ

are measures on the (finite sets or) spaces I and J respectively, then QI⊗QJ

denotes the product measure on I × J with marginal measures QI on I and
QJ on J .

3 The results

The deterministic play induced by a pure strategy σ ∈ A(k) of player 1
and a pure strategy τ ∈ A(n) of player 2 enters a cycle (of length ≤ kn)
and therefore the average per-stage payoff, g(σ, τ), is well defined. A mixed
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strategy σ ∈ ∆(A(k)) of player 1 and a mixed strategy τ ∈ ∆(A(n)) induce a
random play, which is a mixture of periodic plays, and therefore the expected
average per-stage payoff is well defined and denoted g(σ, τ).

For p ∈ ∆(I) and θ ≥ 0 we denote by Q(p, θ) the set of all probability
measures Q on I × J such that QI = p and H(QI) + H(QJ)−H(Q) ≤ θ.

Note that for every distribution Q ∈ ∆(I × J) we have 0 ≤ H(QI) +
H(QJ) − H(Q) with equality iff Q is a product distribution, and H(QI) +
H(QJ) − H(Q) ≤ min(log |I|, log |J |). The term H(QI) + H(QJ) − H(Q),
called the mutual information of i and j, is an information-theoretic quantity
that measures the dependence of i and j when Q is the distribution of (i, j).

For p ∈ ∆(I) and θ ≥ 0 we denote by vg(p, θ), or v(p, θ) for short, the
minimum of EQg(i, j) where the min ranges over all Q ∈ Q(p, θ), namely,

v(p, θ) = min
Q∈Q(p,θ)

EQg(i, j)

and vg(θ), or v(θ) for short, denotes the maximum of v(p, θ), where the max
ranges over all p ∈ ∆(I), namely,

v(θ) = max
p∈∆(I)

v(p, θ)

Note that for every p ∈ ∆(I) and θ ≥ 0, v(p, θ) and v(θ) are functions of the
data of the stage game 〈I, J, g〉. A useful relation is

v(p, 0) = min
j

∑
i∈I

p(i)g(i, j) ≥ v(p, θ) ≥ v(p, 0)− ‖g‖
√

2θ ln 2

Indeed (see, e.g., Cover and Thomas (1991), p. 300), for every distribution
Q ∈ ∆(I×J), H(QI)+H(QJ)−H(Q) ≥ 1

2 ln 2
‖Q−QI⊗QJ‖2. Therefore, the

inequality H(QI)+H(QJ)−H(Q) ≤ θ implies that ‖Q−QI⊗QJ‖ ≤
√

2θ ln 2.
Thus, EQg(i, j) ≥ EQI⊗QJ

g(i, j) −
√

2θ ln 2‖g‖ ≥ v(QI , 0) − ‖g‖
√

2θ ln 2,

implying that v(p, θ) ≥ v(p, 0)− ‖g‖
√

2θ ln 2.
Another property of the function v(p, θ) is its convexity in θ, which follows

from the concavity of the function Q 7→ HQ(i | j).
The first proposition bounds from below the values of G[k, n] and GL[k, n]

as a function of log n
k

.

Proposition 1

Val GL[k, n] ≥ v

(
log n

k

)
and Val G[k, n] ≥ v

(
log n

k

)
and Val GL[k, n] →L→∞ Val G[k, n].
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The proof is given in Section 4.
The next proposition generalizes Proposition 1. To motivate it, we de-

scribe here the family, parameterized by p ∈ ∆(I), of oblivious strate-
gies σ(p) ∈ ∆(Ao(k)) such that minτ∈A(n) gL(σ(p), τ) ≥ v(p, log n

k
). For

p ∈ ∆(I) the strategy σ(p) plays a k-periodic sequence i1, i2, . . . , ik, . . . such
that i1, . . . , ik are iid and the distribution of it is p. It follows that 1) the en-
tropy of (i1, . . . , ik) equals kH(p), and 2) the expected empirical distribution
of i1, . . . , ik equals p. Under these two conditions on the oblivious strategy
σ, a more general inequality holds: for every family T of n mixed strategies
of player 2 we have ∫

min
τ∈T

gk(s, τ) dσ(s) ≥ v

(
p,

log n

k

)
(2)

The next proposition generalizes inequality (2) to the case when condition 1)
holds but H(i1, . . . , ik) ≤ kH(p). Given an oblivious strategy σ of player 1
in the repeated game and a positive integer k we denote by pk(σ) the average
empirical distribution of (i1, . . . , ik), namely, pk(σ)[i] = 1

k

∑k
t=1 Prσ(it = i).

Proposition 2 Let σ be an oblivious mixed strategy of player 1 such that
the per-stage entropy of the process i1, . . . , ik is H. Let T be a set of n mixed
strategies of player 2 and set p = pk(σ). Then∫

min
τ∈T

gk(s, τ) dσ(s) ≥ v(p,
log n

k
+ H(p)−H)

Note that we can assume without loss of generality that the support S of
σ is finite. Thus,

∫
minτ∈T gk(s, τ) dσ(s) =

∑
s∈S σ(s) minτ∈T gk(s, τ). Note

that if H = H(p) (namely, i1, . . . , ik are iid with Pr(it = i) = p(i)), then the
term H(p)−H in the argument vanishes.

An interesting special case of Proposition 2 is when n = 1. This spe-
cial case implies a characterization both of the oblivious strategies that are
approximately optimal in long finitely repeated games and of the oblivious
strategies that are optimal in the infinitely repeated game. Indeed, for n = 1,
Proposition 2 implies that for every oblivious strategy σ of player 1, every
positive integer k, and every mixed strategy τ of player 2, we have

gk(σ, τ) ≥ v(pk(σ), H(pk(σ))−Hk(σ)) (3)
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where Hk(σ) is the per-stage entropy of the process i1, . . . , ik. It follows that
if σk is a sequence of oblivious strategies of player 1 in the k-stage repetition
of the stage game G = 〈I, J, g〉 and H(pk(σk))−Hk(σ

k) → 0 as k →∞, then

lim
k→∞

(min
τ

gk(σ
k, τ)−min

j
g(pk(σk), j)) = 0

(see [17, Lemma 3]). Therefore, if p ∈ ∆(I) is an optimal strategy of player
1 in the stage game G and σk is a sequence of oblivious strategies of player
1 in the k-stage repeated game (respectively, the restriction of an oblivious
strategy σ of the infinitely repeated game to the first k-stages) with2

pk(σk) → p and Hk(σ
k) → H(p) (4)

then σk is approximate optimal in the k-stage repeated game (respectively,
σ is optimal in the infinitely repeated game) with stage game G = 〈I, J, g〉,
namely,

lim
k→∞

min
τ

gk(σ
k, τ) = Val G

On the other hand, if σk is a sequence of oblivious strategies of player 1 in the
k-stage repeated game (respectively, the restriction of an oblivious strategy
σ of the infinitely repeated game to the first k-stages) and p ∈ ∆(I) and
condition (4) does not hold, namely, lim supk→∞ ‖pk(σk)−p‖+ |H(p)−Hk| >
0, then there is a stage payoff g and ε > 0 such that p is an optimal strategy
of the stage game G = 〈I, J, g〉 but σk is not ε-optimal for sufficiently large
k (respectively, σ is not optimal in the infinitely repeated game).

If p∗ is a unique optimal strategy of the stage game G, then there is
δ = δ(G) > 0 such that v(p, ∗) ≤ v(p∗, 0)− δ‖p− p∗‖1. Therefore, for every
oblivious strategy σ we have

min
τ

gk(σ, τ) ≤ v(pk(σ), 0) ≤ v(p∗, 0)− δ‖p− p∗‖1 (5)

and
min

τ
gk(σ, τ) ≤ v(p∗, 0)− δ

√
|Hk −H(p∗)| (6)

Therefore, if p is the unique optimal strategy of player 1 in the stage game,
then an oblivious strategy σ in the infinitely repeated game is optimal if and
only if condition (4) holds.

Now we turn to the main result of the paper.

2Condition (4) states, in other words, that the relative entropy (Kullback-Leibler di-
vergence) between σk and p⊗k is o(k) as k →∞.
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Theorem 1 Let θ ≥ 0 and (nk)k≥1 with log nk

k
→ θ ≥ 0 as k →∞. Then

Val G[k, nk] = max
σ∈∆(Ao(k))

min
τ∈A(nk)

g(σ, τ) →k→∞ v(θ) (7)

and

Val G[k, nk] = min
τ∈∆(A(nk))

max
σ∈Ao(k)

g(σ, τ)

≤ min
τ∈A(nk)

max
σ∈Ao(k)

g(σ, τ) →k→∞ v(θ) (8)

and, moreover,3

∃τ ∈ A(nk) s.t. ∀σ ∈ Ao(k) g(σ, τ) ≤ v(p(σ), θ) + o(1) as k →∞ (9)

and
Val GLk [k, nk] = min

τ∈∆(A(nk))
max

σ∈Ao(k)
gLk

(σ, τ) → k→∞
Lk

k log k
→∞

v(θ) (10)

The theorem has four parts, each one of independent importance. The first
part, (7), provides the asymptotic behavior of the values of G[k, nk]. The
second part, (8), asserts that player 2 has an approximate optimal pure
strategy in the game G[k, nk]. Namely, if nk ∼ 2θk, then player 2 has a
pure strategy τ ∈ A(nk) such that for every strategy σ ∈ Ao(k) of player 1,
g(σ, τ) ≤ v(θ) + o(1). The third part asserts that moreover the approximate
optimal strategy τ ∈ A(n) can also exploit the suboptimality of σ. The fourth
part, (10), provides an upper bound for the duration of effective learning.
Note that in contrast to (8), the approximate optimal strategy of player 2 in
the finitely repeated game is a mixture of automata. We do not know if the
limit in (10) also holds when the min is over pure strategies τ ∈ A(nk), nor
if the condition Lk

k log k
→∞ is necessary.

The following lemma is used in the proof of Theorem 1.

Lemma 1 Let I and J be finite sets. There is a sequence εk > 0 that
converges to 0 as k →∞ and there are subsets Sk(θ), θ ≥ 0, of Jk such that
1) θ ≤ η =⇒ Sk(θ) ⊂ Sk(η) and |Sk(θ)| ≤ 2θk, and
2) for every g : I × J → R with ‖g‖ ≤ 1 and θ ≥ 4εk, for every i =
(i1, . . . , ik) ∈ Ik, there is j = (j1, . . . , jk) ∈ Sk(θ) such that

g(i, j) :=
1

k

k∑
t=1

g(it, jt) ≤ vg(e(i), θ) + εk

where e(i) is the empirical distribution of i.

3Stronger optimality properties of τ will be discussed later.
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4 Proofs

4.1 Proof of Lemma 1

Let 0 < εk →k→∞ 0 with 2−2εkk = o(εk) as k → ∞ be such that k|I| ≤ (k +

1)|I×J | ≤ 2εkk/2 and |I|k exp(−2εkk/4) = o(ε
|I×J |+1
k ) and H(Q)−H(Q′) ≤ εk/8

whenever ‖Q−Q′‖ < |J |/k.
Let 0 ≤ δk be the max of vg(p, θ−4εk)−vg(p, θ) where the max is over all

g : I×J → R with ‖g‖ ≤ 1, p ∈ ∆(I), and θ ≥ 4εk. The function (g, p, θ) 7→
vg(p, θ) is continuous, and therefore uniformly continuous on (g, p, θ) with
‖g‖ ≤ 1 and θ ≤ log |J |. For θ ≥ log |J | we have vg(p, θ) = vg(p, log |J |).
Therefore εk → 0 implies that δk → 0 as k →∞.

Let Xj, j = (j1, . . . , jk) ∈ Jk, be iid random variables that are uniformly
distributed on [0, 1], and set ε = εk. First we define random subsets Sk(θ) of
Jk that depend on the values of Xj:

j = (j1, . . . , jk) ∈ Sk(θ) iff log Xj ≤ (θ − 3ε−H(e(j)))k

where e(j) is the empirical distribution of j.
The definition of Sk(θ) implies that

Pr(j ∈ Sk(θ)) ≤ 2(θ−3ε−H(e(j)))k

and that Sk(η) ⊂ Sk(θ) whenever η < θ.
For every q ∈ Tk(J) := {e(j) : j ∈ Jk} the number of elements in

Tk(q) := {j ∈ Jk : e(j) = q} is ≤ 2H(q)k and therefore the expected number
of elements of Sk(θ)∩Tk(q) is ≤ 2(θ−3ε)k. The number of elements of Tk(J) is
≤ k|J |. Therefore, the expected number of elements of Sk(θ) is ≤ k|J |2(θ−3ε)k.
As k|J | ≤ 2εk we deduce that

E|Sk(θ)| ≤ 2(θ−2ε)k

By Markov inequality we have that

Pr(|Sk(θ)| > 2θk) < 2−2εk = o(ε)

Therefore

Pr(∃` ∈ N s.t. |Sk(`ε)| > 2`εk) < 2−2εkO(ε−1) = o(1)

13



Fix g : I × J → R and i = (i1, . . . , ik) ∈ Ik. For notational convenience
we define vg(p, x) to be equal to vg(p, 0) when x < 0. What is the probability

that there is j ∈ Sk(θ − ε) with 1
k

∑k
t=1 g(it, jt) ≤ vg(e(i), θ − 4ε) + |J |

k
‖g‖?

The definition of vg implies that there is a distribution Q′ ∈ Q(e(i), θ−4ε)
s.t. EQ′g(i, j) ≤ vg(e(i), θ − 4ε). There is Q ∈ Tk(I × J) with QI = Q′

I and

‖Q − Q′‖ ≤ |J |/k. Therefore, EQg(i, j) ≤ EQ′g(i, j) + |J |
k
‖g‖ ≤ vq(e(i), θ −

4ε) + |J |
k
‖g‖. By the choice of ε = εk and Q′, H(QI) + H(QJ) − H(Q) ≤

H(QI) + H(Q′
J)−H(Q′) + ε/4 ≤ θ − 4ε + ε/4. Set q = QJ .

Fix θ ≥ 4ε. Let us compute the probability that there is j = (j1, . . . , jk) ∈
Sk(θ) such that the empirical distribution of (i1, j1), . . . , (ik, jk), denoted
e(i, j), equals Q. The number of elements j = (j1, . . . , jk) ∈ Tk(q) is
≤ 2H(q)k. The number of elements j = (j1, . . . , jk) ∈ Tk(q) with e(i, j) = Q
is |Tk(Q)|/|Tk(e(i))|. Note that

|Tk(Q)|/|Tk(p(i))| ≥ 2(H(Q)−H(e(i)))k/(k + 1)|I×J | ≥ 2(H(Q)−H(e(i))−ε/2)k

where the last inequality holds by the choice of ε = εk.
If θ − 3ε − H(q) ≥ 0 then Sk(θ) ⊃ Tk(q). Otherwise, for every fixed

j with e(j) = QJ , the probability that j 6∈ Sk(θ) is the probability that
log Xj > (θ − 3ε−H(QJ))k, which equals 1− 2(θ−3ε−H(QJ ))k. Therefore the
probability that j 6∈ Sk(θ) for every j = (j1, . . . , jk) ∈ Tk(q) with e(i, j) = Q
is

(Pr(log Xj > (θ − 3ε−H(QJ))k))|Tk(Q)|/|Tk(e(i))|

= (1− 2(θ−3ε−H(QJ ))k)|Tk(Q)|/|Tk(e(i))|

≤ exp(−2(θ−3ε−H(QJ ))k2(H(Q)−H(e(i))−ε/2)k) ≤ exp (−2εk/4)

where the last inequality uses Q ∈ Q(QI , θ − 4ε + ε/4) and e(i) = QI .
Therefore the probability that there is i ∈ Ik such that for every j ∈ Sk(θ)

we have
1

k

k∑
t=1

g(it, jt) > vg(e(i), θ − 4ε) +
|J |
k
‖g‖

is less than |I|k exp (−2εk/4) = o(ε|I×J |+1).
Let Y be an ε grid of all functions g : I × J → R with ‖g‖ ≤ 1 with

at most (3/ε)|I×J | elements. Then, the probability that there is g ∈ Y and
i ∈ Ik such that for every j ∈ Sk(θ) we have

1

k

k∑
t=1

g(it, jt) > vg(e(i), θ − 4ε) +
|J |
k
‖g‖
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is
≤ (3/ε)|I×J |o(ε|I×J |+1) = o(ε) as k →∞

Therefore, the probability that there is g with ‖g‖ ≤ 1 and i ∈ Ik such
that for every j ∈ Sk(θ) we have

1

k

k∑
t=1

g(it, jt) > vg(e(i), θ − 4ε) +
|J |
k
‖g‖+ ε

is
≤ o(ε) as k →∞

Therefore, the probability that there is g with ‖g‖ ≤ 1, i ∈ Ik, and 1 +
log |J | ≥ ` ∈ N such that the inequality

1

k

k∑
t=1

g(it, jt) > vg(e(i), `ε− 4ε) +
|J |
k
‖g‖+ ε

holds for all j ∈ Sk(θ) is
≤ o(1) as k →∞

Define Ŝk(θ) = Sk([θ/ε]ε) where [∗] is the integr part of ∗. Note that
Sk(θ − ε) ⊂ Ŝk(θ) ⊂ Sk(θ). Therefore the sets Ŝk(θ) satisfy 1) of Lemma 1.
The probability that the set Ŝk(θ) satisfies condition 2) of Lemma 1 for the

sequence ε̂k = εk + |J |
k

is close to 1. In particular, there is a realization of Xj

such that Ŝk(θ) satisfies condition 2) of Lemma 1.

4.2 Proof of Proposition 1

Fix p ∈ ∆(I). Let X1, X2, . . . , Xk, Xk+1, . . . be a k-periodic sequence of
I-valued random variables with P (X1 = i) = p(i) and X1, X2, . . . , Xk iid.
Therefore, for any positive integer d, Xd+1, . . . , Xd+k are iid. The mixed
strategy σ of player 1 is to play the action Xt ∈ I at stage t. Obviously,
σ is a mixture of strategies that are defined by oblivious automata of size
k. Let τ ∈ A(n). Consider the probability distribution induced on plays
(i1, j1, . . . , it, jt, . . .) by the strategy σ and the pure strategy τ . Fix a positive
integer d. The expected average payoff in stages t = d + 1, . . . , d + k is

Eσ,τ
1

k

k∑
t=1

g(id+t, jd+t)

15



Let Qt be the expected distribution of (id+t, jd+t) and Q = 1
k

∑k
t=1 Qt. Then

Eσ,τ
1

k

k∑
t=1

g(id+t, jd+t) = EQg(i, j)

Obviously, QI = p. Next we prove that log n
k

≥ H(QI) + H(QJ) − H(Q)
(= HQ(i) + HQ(j)−HQ(i, j) = HQ(i)−HQ(i | j) = H(p)−HQ(i | j)).

HQ(i | j) ≥ 1

k

k∑
t=1

HQt(i | j) =
1

k

k∑
t=1

H(id+t | jd+t)

≥ 1

k

k∑
t=1

H(id+t | id+1, . . . , id+t−1, md+1)

=
1

k
H(id+1, . . . , id+k | md+1)

=
1

k
H(id+1, . . . , id+k, md+1)−

1

k
H(md+1)

≥ H(p)− log n

k
= HQ(i)− log n

k

The first inequality (above) follows from the concavity (with respect to the
underlying probability distribution) of the conditional entropy. The second
inequality follows from the fact that jd+t is a function of (id+1, . . . , id+t−1, md+1).
The following two equalities follow from the chain rule (additivity rule) of
entropies. The last inequality follows from the fact that the number of pos-
sible values of md+1, the state of the automata of player 2 at stage d + 1, is
≤ n, and thus H(md+1) ≤ log n.

Therefore,

HQ(i)−HQ(i | j) = H(QI) + H(QJ)−H(Q) ≤ log n

k

Therefore,

Eσ,τ
1

k

k∑
t=1

g(id+t, jd+t) = EQg(i, j) ≥ v(p,
log n

k
)

For every r ≤ k the finite sequence X1, . . . , Xr is an iid sequence with Pr(Xt =
i) = p(i) and therefore

Eσ,τ
1

r

r∑
t=1

g(it, jt) ≥ v(p, 0) ≥ v(p,
log n

k
)
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Fix L. There are nonnegative integers ` and r < k such that L = r + `k.
Note that

Eσ,τ

L∑
t=1

g(it, jt) = Eσ,τ

r∑
t=1

g(it, jt) +
`−1∑
d=0

Eσ,τ

k∑
t=1

g(ir+dk+t, jr+dk+t)

≥ Lv(p,
log n

k
)

and therefore

Eσ,τ
1

L

L∑
t=1

g(it, jt) ≥ v(p,
log n

k
)

The function p 7→ v(p, θ) is continuous in p and therefore attains its max.
Therefore there is p∗ with v(p∗, log n

k
) = maxp∈∆(I) v(p, log n

k
) = v( log n

k
), and

thus

Val GL[k, n] ≥ v(
log n

k
)

and

Val G[k, n] ≥ v(
log n

k
)

The convergence of the sequence of values of GL[k, n] to the value of G[k, n]
follows from the fact that the play defined by strategies σ ∈ A(k) and τ ∈
A(n) enters a cycle of length ≤ kn within k stages. Therefore the L-stage
payoff gL(σ, τ) is within 2kn

L
‖g‖ of the payoff g(σ, τ) in the infinite repeated

game.4 �

4.3 Proof of Proposition 2

First assume that T is a set of n pure strategies of player 2. Let τ be a function
from {(i1, . . . , ik)} → T . Let Qt be the distribution of (it, jt) induced by σ
and τ(i1, . . . , it), and Q = 1

k

∑k
t=1 Qτ

t . Repeating the argument of the proof
of Proposition 1 we have

HQ(i | j) ≥ H − log n

k

and thus

H(QI) + H(QJ)−H(Q) ≤ H(p)−H +
log n

k
4The same argument also shows that VAL GL(k, n) →L→∞ VAL GL(k, n).
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which proves the proposition when T is a set of n pure strategies.
Let S be the support of the mixed strategy σ, T = {τ1, . . . , τn}, and

f : S → {1, . . . , n} (measurable) such that∫
min
τ∈T

gk(s, τ)dσ(s) =

∫
gk(s, τf(s))dσ(s)

Let T1, . . . , Tn be the support of τ1, . . . , τn respectively, and τ := τ1⊗ . . .⊗ τn

the product probability on T1 × . . . × Tn. For every ω = (t1, . . . , tn) ∈
T1 × . . . × Tn let T (ω) be the finite set of pure strategies {t1, . . . , tn}. Note
that

g(s, τf(s)) =

∫
g(s, tf(s)) dτ(ω)

Therefore ∫
g(s, τf(s)) dσ(s) =

∫
g(s, tf(s)) dτ(ω) dσ(s)

≥
∫

min
t∈T (ω)

g(s, t) dτ(ω) dσ(s)

=

∫
min

t∈T (ω)
g(s, t) dσ(s) dτ(ω)

≥ v(p,
log n

k
+ H(p)−H)

�

4.4 Proof of Theorem 1

Assume that log nk

k
→k→∞ θ > 0. As

min
τ∈A(nk)

max
σ∈Ao(k)

g(σ, τ) ≥ Val G[k, nk] = max
σ∈∆(Ao(k))

min
τ∈A(nk)

g(σ, τ)

in order to prove (7) and (8), it suffices to prove that

lim inf
k→∞

Val G[k, nk] ≥ v(θ) (11)

and
lim sup

k→∞
min

τ∈A(nk)
max

σ∈Ao(k)
g(σ, τ) ≤ v(θ) (12)
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Note that the function Q 7→ EQg(i, j) is continuous on ∆(I × J). For
every p ∈ ∆(I) and θ ≥ 0 the setQ(p, θ) is a closed subset of ∆(I×J) and the
map (p, θ) 7→ Q(p, θ) is continuous in the Hausdorff topology on the closed
subsets of ∆(I × J). Therefore, the functions (p, θ) 7→ v(p, θ) and θ 7→ v(θ)
are continuous. Thus v( log nk

k
) →k→∞ v(θ) and v(p, log nk

k
) →k→∞ v(p, θ).

By Proposition 1 we have Val GL[k, nk] ≥ v( log nk

k
) →k→∞ v(θ) and

Val G[k, nk] ≥ v( log nk

k
) →k→∞ v(θ). Therefore,

lim inf
k→∞

Val GLk [k, nk] ≥ v(θ)

and
lim inf

k→∞
Val G[k, nk] ≥ v(θ)

To prove (12), we construct for every sufficiently large k a pure strategy
τ k ∈ A(nk) such that if σ ∈ Ao(k) generates a sequence of actions i =
(i1, i2, . . .) with empirical distribution e(i) ∈ ∆(I), then

g(σ, τ k) ≤ v(e(i), θ − ηk) + ηk

where ηk → 0 as k →∞.
Set θk = log nk−(2+|I×J |) log k

k
. We order the elements of ∪k/2<r≤kSr(θk) so

that all elements of Sr(θk) precede the elements of Sr′ whenever r > r′.
The first element of Sk(θk) (and thus of ∪k/2<r≤kSr(θk)) is denoted j∗. The
successor of an element j ∈ ∪k/2<r≤kSr(θk) (but the last one) is denoted j′.

For every j ∈ Sr(θk) ⊂ Jr we define a sub-automaton Aj with r|I×J |+1

states {(j, 1), . . . , (j, r)}×{0, 1, . . . , r−1}I×J (where the second factor stands
for all functions from I × J to {0, 1, . . . , r − 1}.

Informally, the sub-automaton Aj, where j ∈ Sr(θk), tests whether the
sequence i defined by the oblivious automaton σ ∈ Ao(k) of player 1 is
r-periodic and whether it results, when matched with the r-periodic play
defined by j (repeatedly), in a payoff ≤ v(e(i), θk) + εr where (εr)r is the
sequence given by Lemma 1.

The initial state of the sub-automaton Aj is (j, 1, 0), where 0 is the con-
stant 0 function. The action function of the sub-automaton Aj is

α(j, t, ∗) = jt

To simplify the definition of the transition, we introduce the following no-
tations. For j ∈ Jr, t ∈ [r], x : I × J → {0, . . . , r}, and i ∈ I we
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denote by x′(j, t, x, i), or x′ for short, the function x + 1i,jt where 1i,jt is
the indicator function (1 on (i, jt) and 0 elsewhere). For a nonnegative
nonzero real-valued function x : I × J → R+ we define e(x) ∈ ∆(I × J)
by e(x)[i, j] = x(i, j)/

∑
(i,j)∈I×J x(i, j), and eI(x) is the marginal of e(x) on

I, namely, the element of ∆(I) defined by eI(x)[i] =
∑

j∈J e(x)[i, j].
The transition function of the sub-automaton Aj is

β(j, t, x, i) =


(j, t + 1, x′) if t < r

(j, 1, 0) if t = r and g(x′) ≤ v(eI(x
′), θk) + εr

(j′, 1, 0) if t = r and g(x′) > v(eI(x
′), θk) + εr

Recall that (j′, 1, 0) is the initial state of the sub-atomaton Aj′ .
Informally, the automaton τ ∈ A(nk) of player 2 will first count up to k,

by which time an oblivious automaton of player 1 will already have entered
a cyclic play. The period of this cyclic play is a positive integer 1 ≤ r ≤
k. However, an r-periodic play is also a 2r-periodic play. Therefore, this
cyclic play has a cycle of length r with k/2 < r ≤ k. The automaton τ of
player 2 will look for a periodic play with period k/2 < r ≤ k, by starting
testing k-periodic plays, and recursively, if no successful match to the r-
periodic assumption is found, moving to searching for an (r − 1)-periodic
play. The construction of the automaton is obtained by gluing together the
sub-automata Aj, where j ranges over all elements of ∪k/2<r≤kSr(θk).

The set of states of Aj is denoted Mj. Set Mr = ∪j∈Sr(θk)Mj and M = [k]∪
∪k/2<r≤kMr. Note that |M | ≤ k+

∑
k/2<r≤k |Mr| ≤ k+

∑
k/2<r≤k |Sr(θk)|r|I×J |+1 ≤

k +
∑

k/2<r≤k 2θkrr|I×J |+1 ≤ k2+|I×J |2θkk ≤ nk (where the second to last in-

equality holds for k ≥ 2).
Without loss of generality we assume that ‖g‖ ≤ 1. Property 2) of Lemma

1 guarantees that the play induced by an oblivious automaton σ ∈ A(k) and
the constructed automaton τ ∈ A(nk) of player 2 enters a cyclic play with a
payoff ≤ vg(e(i), θ − ηk) + ηk, where ηk = max(θ − θk, maxk/2<r≤k εr).

Therefore, for every strategy σ ∈ Ao(k) we have

g(σ, τ) ≤ vg(e(i), θ − ηk) + ηk

Note that ηk →k→∞ 0 and recall that the function θ → v(θ) is continuous.
Therefore

g(σ, τ) ≤ vg(e(i), θ) + o(1) as k →∞
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which proves (8). It follows in addition that

min
τ∈A(nk)

max
σ∈Ao(k)

g(σ, τ) ≤ v(θ − ηk) + ηk

Therefore,
lim sup

k→∞
min

τ∈A(nk)
max

σ∈Ao(k)
g(σ, τ) ≤ v(θ)

This completes the proofs of (7) and (8). �

The proof of (10) is presented in the next section after a short discussion
regarding learning duration.

4.5 The learning duration

The ‘minimal’ learning duration is derived from the asymptotic behavior of
the values of GL(k, n). The value of GL(k, n) is ≥ v( log n

k
) and its limit as

L →∞ exists. This limit is ≤ v( log n
k

) + o(1) as k →∞.
We study the asymptotic condition on the duration L = L(k, n) such that

the value of GL(k, n) is close to v( log n
k

).
The approximate optimal strategy τ that is constructed in Section 3 ac-

complishes its learning duration in about 2θk stages. Therefore, if lim inf log Lk

k
≥

θ then
GLk(k, nk) → v(θ)

We will show that the much weaker asymptotic relation, lim Lk

k log k
→∞,

suffices. The learning comprises two phases. The first phase determines the
length of a cycle. The second phase searches for a cyclic sequence of actions
that leads to an average per-stage payoff of no more than v(θ) + o(1), where
p is the empirical distribution of i1, i2, . . ..

4.6 Learning the length of a cycle

The learning of the length of the cycle is probabilistic. If there is a cycle
of length k/2 < r ≤ k the randomly selected (deterministic) automaton of
player 2 will find this length r of the cycle with probability close to 1. For
this part of the learning a duration � k log k suffices.5 Once the length r of
the cycle is discovered an additional � r stages suffice for guaranteeing an
average per-stage payoff ≤ v(θ) + o(1).

5We do not know if it is also necessary.
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Assume that if k/2 < r ≤ k is not the length (namely, not a multiple)
of a (the) cycle of the play of player 1. Then for any s ≥ k there is a stage
s < t ≤ s + k such that it 6= it+r. Therefore, if we pick at random a subset
T of integers such that for every s < t ≤ s + k the probability that t ∈ T is
≥ δ > 0 (e.g., pick at random an integer s − δk ≤ t0 ≤ s + k, each equally
likely, and choose T = {t0 + 1, . . . , t0 + d2δke} for k sufficiently large and
δ > 0 sufficiently small), the probability that there is t ∈ T with it 6= it+r is
at least δ. Therefore, by performing sufficiently many such checks (say K) we
can rule out each non-cyclic length r with probability close to 1 (≥ (1−δ)K).

Fix a sufficiently small δ > 0 and set K = d2
δ
ln ke and q̄ = d1/(2δ)e (the

least integer ≥ 1/(2δ)).
The random automaton will pick a list of integers tqj , with q = 1, . . . , q̄

and j = 1, . . . , K, with

2k + 4(q − 1)kK + 4(j − 1)k < tqj < 4(q − 1)kK + 4jk

all such lists equally likely. Note that tqj ≤ 4q̄kK ≤ 4
δ
kK ≤ 9

δ2 k log k.
The cycle learning phase is done in stages t ≤ 4kK/δ. This learning

phase is partitioned into sub-phases, indexed by the values of q and j. Set
T−

qj = {tqj + 1, . . . , tqj + dδke}, Cq = {k− qdδke+ 1, . . . , k− (q− 1)dδke}, and
T+

qj = T−
qj + Cq (where + is the algebraic sum) and Tqj = T−

qj ∪ T+
qj . Note

that |Tqj| = 3dδke and |Cq| = dδke. In the qj-th sub-phase, the automaton
records the actions of player 1 in stages t ∈ Tqj, and eliminates from the
set of possible cycles all r ∈ Cq for which a contradiction is discovered.
Thereafter, no further use of the recorded play in this sub-phase. Note that
tq̄K + 2k ≤ 4kK/δ and thus all the q̄K sub-phases of checks end before stage
[4kK/δ].

Note that ∪q̄
q=1Cq ⊃ {[k/2], . . . , k}, and the number of subsets of Cq is

2dδke.
The number of sequences of |Tqj| elements of I is |I||Tqj | = |I|3dδke, and

the number of subsets of the set Cq is 2dδke.
The set of automata states is the Cartesian product of three sets. The

first factor is the set M1 = {1, . . . , [4kK/δ]}; it has [4kK/δ] elements and
it enables the automaton to count the first [4kK/δ] stages of the repeated
game.

The second factor is the set M2 = I3dδke; it has |I|3dδke elements and it
enables the automaton to record the actions of player 1 in stages t ∈ Tqj. Note
that the natural ordering of the stages t ∈ Tqj enables us to identify ITqj with
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the factor M2 = I3dδke of the automaton; a list (it)t∈Tqj
is identified with the

element (it̂) ∈ I3dδke where for t ∈ Tqj we set t̂ = |{1, . . . , t}∩Tqj|. Note that
this identification maps an element y ∈ M2 = I3dδke to an element ỹ ∈ ITqj

and for r ∈ Cq and t ∈ T−
qj we have ỹt = ỹt+r iff yt̂ = yt̂+r−(1+k−(q+1)dδke).

The third factor is the set M3 of all subsets of the set {1, . . . , dδke}; it
has 2dδke elements and for every integer 1 ≤ q ≤ 1/δ the unique 1-1 order-
preserving map from M3 into Cq identifies M3 with Cq. This identification
enables this factor of the automaton (together with the ‘recorded’ play in
stages Tqj) to keep track, following the play in stage tqj = tqj +k− (q−2)dδke
(the last stage in Tqj), of all cycle lengths r ∈ Cq that are compatible for
every j′ ≤ j with the play in stages Tqj′ .

In sub-phases 1j, j = 1, . . . K, the automaton searches a cycle length
r ∈ C1 that is compatible with the play in each sub-phase T1j′ . If such a
compatible cycle length r is found, the automaton moves to the first state of
an automaton M r. If r ∈ C1 is not a length of a cycle, the probability that
the cycle length r is compatible with the play in stages T1j (namely, it = it+r

for every t ∈ T−
1j) is ≤ 1 − δ. The events “the cycle length r is compatible

with the play in stages T1j”, j = 1, . . . , K, are independent. Therefore the
probability that a non-cycle length r is compatible for each j = 1, . . . , K with
the play in T1j (namely, it = it+r for every t ∈ ∪K

j=1T
−
1j) is ≤ (1− δ)K , which

is about 1
k2 . Therefore the expected number of ‘undiscovered’ non-periods

r ∈ C1 is ≤ |C1|/k2 < 2δ/k.
If all r ∈ Cq−1 are excluded as periods, we proceed to test the possible

periods r ∈ Cq in sub-phases qj , j = 1, . . . K.
Let us describe the transitions of the automaton (as a function of the

random integers tqj) in states (t, x,D) ∈ M1 ×M2 ×M3. The initial state is

(1, x0, C1) (where x0 is an element of I3dδke).
For t /∈ ∪qjTqj, the transition from a state (t, x,D) is simply effected by

adding 1 to the stage counter t and leaving x and D unchanged:

β((t, x,D), ∗) = (t + 1, x, D) if t /∈ ∪qjTqj

For x ∈ I3dδke, t ∈ Tqj, and i ∈ I we denote by x′(x, t, i) (or x′(t, i) or x′

for short) the element y ∈ I3dδke with ys = xs for s 6= t̂ and ys = i for s = t̂.
For tqj 6= t ∈ Tqj, the transition from a state (t, x,D) is to the state

(t + 1, x′, D), which leaves the third coordinate D unchanged, adds 1 to the
stage counter t, and replaces the sequence of I elements x with the sequence
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x′ = x′(t, i):

β((t, x,D), i) = (t + 1, x′, D) if t ∈ ∪qj(Tqj \ {tqj})

For q = 1, . . . q̄, D ⊂ Cq, and y ∈ I3dδke we denote by D′(q, D, y) the
subset of D consisting of all r ∈ D such that yt̂ = yt̂+r−(1+k−(q+1)dδke) for

every t ∈ T−
qj .

The transition function from a state (t, x,D) where t = tqj depends on
whether j = K or not. If j < K, the transition adds 1 to the stage counter
t, and modifies the set D ⊂ Cq of non-excluded cycle lengths with its subset
D′(q, D, x′(t, i)):

β((tqj, x, D), i) = (t + 1, x′, D′) if j < K

where x′ = x′(t, i) and D′ = D′(q, D, x′(t, i)).
The transition function from a state (t, x,D) where t = tqj and j = K

depends on whether D′ = ∅ or not. If D′ = ∅ we move to state (t+1, x0, Cq+1),
namely,

β((tqK , x, D), i) = (t + 1, x0, Cq+1) if D′ = ∅

If D′ 6= ∅ we move to the first state of the sub-automaton M r, where r is a
non-excluded cycle length Cq.

The probability of accepting a non-period r ∈ Cq as a period of the
sequence it is ≤ δ/k. Therefore the probability of approving an erroneous

cycle length k/2 < r ≤ r is ≤ dk/2
δk
eδ/k ≤ 1/k.

The number of states of the automaton used in the first phase is |M1 ×
M2 ×M3|, which for sufficiently large k is ≤ 25δk log |I|

4.7 Effective learning when cycle length is known

The second phase starts following the specification of a cycle length k/2 <
r ≤ k. For every cycle length r we define an automaton M r.

We partition the cycle length k/2 < r ≤ k into ` blocks of size r1, . . . , r`

(we may assume r1 ≤ r2 = . . . = r`), and run the learning on the blocks
in tandem. We have

∑`
s=1 rs = r and we denote Rs =

∑
s′≤s rs′ . We use

the notations of Lemma 1 and the proof of Theorem 1. Let 0 < εk → 0 as
k →∞ and Srs(θrs) ⊂ Jrs be such that for every i ∈ Irs there is j ∈ Srs(θrs)
such that

g(i, j) ≤ vg(e(i), θrs) + εrs
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Given a list j = (j1, . . . , j`) with js ∈ Srs(θrs) we define a sub-automaton
Aj, which is a kind of product of the sub-automata Ajs used in the proof of
Theorem 1.

The states of the sub-automaton Aj are the triples (j, t, x) where 1 ≤ t ≤
r, and for Rs−1 < t ≤ Rs the term x is a function from I×J to {0, . . . , rs−1}.
We order the elements of each set Srs(θrs) and its first element is denoted
js∗, and j∗ = (j1∗, . . . , j`∗). For j = (j1, . . . , j`) ∈ ×`

s=1Srs(θrs) and 1 ≤ s ≤ `
we denote by j′s the list j where only its s-th component js is replaced by
the successor of js in the order of Srs(θrs).

The number of states of Aj is ≤ r|I×J |+1. Therefore the number of
states of the automaton A that is composed of the sub-automata Aj is
≤ (

∏`
s=1 |Srs(θrs)|)r|I×J |+1 ≤ r|I×J |+12r maxs θrs .

The initial state of the automaton M r is (j∗, 0, 0). The action function is
defined by

α(j, t, x) = jt

The transition is defined as follows.

β(j, t, x, i) =



(j, t + 1, x′) if Rs < t < Rs+1

(j, t + 1, 0) if t = Rs < r and g(x′) ≤ v(eI(x
′), θrs) + εrs

(j, 1, 0) if t = r and g(x′) ≤ v(eI(x
′), θrs) + εrs

(j′s, t + 1, 0) if t = Rs < r and g(x′) > v(eI(x
′), θrs) + εrs

(j′`, 1, 0) if t = r and g(x′) > v(eI(x
′), θrs) + εrs

After r|Srs(θrs)| stages the s-th component js of j stabilizes, and therefore
if C = maxs |Srs(θrs)|, then after rC stages the entire list j stabilizes. If
i = (i1, . . . , i`) is the corresponding partition of the play of player 1 in a
cycle, the play in the ‘stabilized’ r-cycle is (i, j) with average payoff

g(i, j) ≤ 1

r

∑̀
s=1

rs(v(e(is), θrs) + εrs)

Fix ε > 0. There exists r0 > 0 such that for every r ≥ r0 we have εr < ε.
Recall that v(∗, ∗) is uniformly continuous. Therefore there is δ > 0 such
that v(p, θ − 6δ log |I|) ≤ v(p, θ) + ε. If we select 2r0 > rs ≥ r0 and set
θrs = θ − 6δ log |I| we deduce that

g(i, j) ≤ 1

r

∑̀
s=1

rs(v(e(is), θ) + 2ε)

≤ v(θ) + 2ε
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The number of states in M r is then ≤ r|I×J |+12r(θ−6δ log |I| and therefore
the number of states of the automaton that collates all the the sub-automata
M r and the initial part that ‘computes’ the cycle length is ≤ 2(θ−δ/2 log |I|)k,
which is ≤ nk for sufficiently large k.

It follows that

lim sup
k→∞

Val GLk(k, nk) ≤ v(θ) + 2ε as
log nk

k
→ θ and

Lk

k log k
→∞

As this inequality holds for every ε > 0 we conclude that

lim sup
k→∞

Val GLk(k, nk) ≤ v(θ) as
log nk

k
→ θ and

Lk

k log k
→∞

�

5 Extensions

A finite-memory generalization of a finite-state automaton is a finite-state
automaton with time-dependent actions and transitions. A time-dependent
automaton of player 2 is a quadruple A = 〈M, m∗, (αt, )

∞
t=1, (βt)

∞
t=1〉 where

m∗ is the initial state, βt : M × I → M is the transition function at stage
t, and αt : M → J is the action function at stage t. Let A∗(m) denote all
time-dependent automata with |M | = m states.

A time-dependent automaton A = 〈M, m∗, (αt, )
∞
t=1, (βt)

∞
t=1〉 defines a

strategy τA as follows. Set m1 = m∗ and i1 = α1(m1), and define induc-
tively mt+1 = βt(mt, it) and τt(i1, j1, . . . , it−1, jt−1) = αt(mt). Note that τA

is a pure strategy.
The set of all time-dependent automata of size n (as well as the set of all

strategies induced by time-dependent automata of size n) is denoted A∗(n).
Obviously, A∗(n) ⊃ A(n). Therefore, Theorem 1 implies that

lim sup
k→∞

min
τ∈A∗(nk)

max
σ∈Ao(k)

≤ v(θ)

whenever limk→∞
log nk

k
= θ ≥ 0. In addition, the proof of Proposition 1

shows in fact that

max
σ∈∆(Ao(k))

min
τ∈A∗(n)

Eσ,τ
1

T

T∑
t=1

g(it, jt) ≥ v(
log n

k
)
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Therefore, if log nk

k
goes to θ ≥ 0 as k goes to infinity, then

lim inf
k→∞

max
σ∈∆(Ao(k))

min
τ∈A∗(nk)

Eσ,τ lim inf
T→∞

1

T

T∑
t=1

g(it, jt) ≥ v(θ)

and thus we conclude that

lim
k→∞

max
σ∈∆(Ao(k))

min
τ∈A∗(nk)

Eσ,τ lim inf
T→∞

1

T

T∑
t=1

g(it, jt) = v(θ)

Another finite-memory generalization of a finite-state automaton is a
finite-state automaton with time-dependent mixed actions and mixed transi-
tions. A time-dependent mixed actions and mixed transitions automaton of
player 2 is a quadruple A = 〈M, m∗, (αt, )

∞
t=1, (βt)

∞
t=1〉, where βt : M×I×J →

∆(M) and αt : M → ∆(J).
A time-dependent automaton with mixed actions and mixed transitions

A = 〈M, m∗, (αt, )
∞
t=1, (βt)

∞
t=1〉 induces a mixed strategy τA as follows. Set

m1 = m∗. For every strategy σ of player 1 Pσ,τ (i1 = i) = α1(m1)[i], and
define inductively Pσ,τ (mt+1 = m | m1, i1, j1, . . . ,mt, it, jt) = βt(mt, it, jt)[m]
and Pσ,τ (it = i | m1, i1, j1, . . . , it−1, jt−1) = αt(mt)[i]. Note that τA is a mixed
strategy.

The set of all time-dependent automata with mixed actions and mixed
transitions of size n (as well as the set of all strategies induced by time-
dependent automata with mixed actions and mixed transitions of size n) is
denoted A∗

∆(n).
After a finite history (m1, i1, j1, . . . ,md, id, jd) of the play (and sequence of

states of the automata of player 2) the strategy of player 2 in the subgame is
one of n mixed strategies, depending on the automata state md+1. Therefore,
Proposition 2 implies that there is a strategy σ ∈ ∆(Ao(k) such that for every
time-dependent automaton A with mixed actions and mixed transitions with
n states and every d ≥ 1 we have

Eσ,τA

1

k

k∑
t=1

g(id+t, jd+t) ≥ v(
log n

k
)

and for every r ≤ k

Eσ,τA

1

r

r∑
t=1

g(it, jt) ≥ v(
log n

k
)
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and therefore

max
σ∈∆(Ao(k))

min
τ∈A∗∆(n)

g(σ, τ) ≥ v(
log n

k
)

Therefore, the above result implies that if log nk

k
→ θ ≥ 0 then

lim
k→∞

max
σ∈∆(Ao(k))

min
τ∈A∗∆(nk)

g(σ, τ) = v(θ)

We conclude that a mixture of oblivious automata of size k can approximately
secure the value of the stage game against any time-dependent automaton
with mixed actions and mixed transitions and of size subexponential in k.

6 Equilibrium payoffs

Direct and indirect results about the values and equilibrium payoffs of the
two-person repeated games G(k, n) and GL(k, n) appeared in [11, 12, 13,
14, 15, 16, 17, 18]. The results of the present paper enable us to derive
exact asymptotic results on the equilibrium payoffs of the repeated games
G[k, n] and GL[k, n], and to extend the asymptotic analysis of the values and
equilibrium payoffs of the repeated games G(k, n) and GL(k, n) in the case
where the size of the larger automata is an exponential function of the size
of the smaller automata.

Let G = 〈I, J, g〉, where g = (g1, g2) : I × J → R2, be a two-person non-
zero-sum game. The set of equilibrium payoffs of the infinitely repeated game
G[k, n] (respectively, G(k, n)) is denoted E G[k, n] (respectively E G(k, n)).
Let F denote the convex hull of the set of all vector payoffs g(i, j) with
(i, j) ∈ I × J . For θ ≥ 0 define v1(θ) = maxp∈∆(I) minQ∈Q(p.θ) EQg1 and
define v2(θ) = minp∈∆(I) maxQ∈Q(p,θ) EQg2.

An important ingredient in determining the equilibrium payoffs of the
repeated games G(k, n) and G[k, n] is the characterization of the individual
rational payoffs. The individual rational payoff of a player equals the value of
a corresponding two-person zero-sum repeated game. Proposition 1 implies
that the individual rational payoff of player i in the repeated game G[k, nk]
converges to vi(θ) as k → ∞ and log nk

k
→ θ. Therefore, using the classical

arguments used in the proof of the folk theorem, we have

lim
k→∞

E G[k, nk] = {x ∈ F : xi ≥ vi(θ)} as
log nk

k
→ θ
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By part (5) of Theorem 1 we deduce that the individual rational payoff
of player i in the repeated game GLk [k, nk] converges to vi(θ) as k → ∞,

Lk

k log k
→∞, and log nk

k
→ θ. Therefore,

lim sup
k→∞

E GLk [k, nk] ⊂ {x ∈ F : xi ≥ vi(θ)} as (
log nk

k
,

Lk

k log k
) → (θ,∞)

The inclusion

lim inf
k→∞

E GLk [k, nk] ⊃ {x ∈ F : xi > vi(θ)} as (
log nk

k
,

Lk

k log k
) → (θ,∞)

follows, e.g., from simple arguments in [13].
The asymptotic behavior of the individual rational levels in the repeated

games G(k, nk) as k → ∞ and log nk

k
→ θ > 0 is still unknown. [12] raises

the question whether or not the limit of the values of G(k, nk) (where G is a
zero–sum game) exists as k → ∞ and log nk

k
→ θ > 0, and seeks the charac-

terization of the limit when it does exist.6 As Ao(k) ⊂ A(k), Proposition 1
provides a partial answer to this question by implying a lower bound:

lim inf
k→∞

Val G(k, nk) ≥ v(θ) as
log nk

k
→ θ (13)

In addition, the inclusion Ao(k) ⊂ A(k) implies that the individual ratio-
nal level of player 1 (respectively, player 2) in G(k, n) is at least (respectively,
at most) his individual rational level in the game G[k, n], which by Proposi-
tion 1 is at least v1( log n

k
) (respectively, at most v2( log n

k
+ o(1))). Therefore

(13) implies that when nk ≥ k →∞ and log nk

k
→ θ we have

lim inf
k→∞

EG(k, nk) ⊃ {x = (x1, x2) ∈ F : x1 ≥ v1(0) and x2 ≥ v2(θ)}

and

lim sup
k→∞

EG(k, nk) ⊂ {x = (x1, x2) ∈ F : x1 ≥ v1(θ) and x2 ≥ v2(0)}

6[19] contains exact results on the corresponding questions in the repeated game model
with bounded recall.
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