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GROWTH AND INDETERMINACY IN DYNAMIC MODELS 
WITH EXTERNALITIES' 

BY MICHELE BOLDRIN AND ALDO RUSTICHINI 

We study the indeterminacy of equilibria in infinite horizon capital accumulation 
models with technological externalities. Our investigation encompasses models with 
bounded and unbounded accumulation paths, and models with one and two sectors of 
production. Under reasonable assumptions we find that equilibria are locally unique in 
one-sector economies. In economies with two sectors of production it is instead easy to 
construct examples where a positive external effect induces a two-dimensional manifold of 
equilibria converging to the same steady state (in the bounded case) or to the same 
constant growth rate (in the unbounded case). For the latter we point out that the 
dynamic behavior of these equilibria is quite complicated and that persistent fluctuations 
in their growth rates are possible. 

KEYWORDS: Externalities, uniqueness and indeterminacy of equilibrium, convergence. 

1. INTRODUCTION 

OUR GOAL IS TO CLARIFY THE EXTENT to which equilibria are (or are not) 
indeterminate in infinite horizon models of capital accumulation with a repre- 
sentative agent and external effects in production. We call indeterminate a 
situation in which there exists a continuum of distinct equilibrium paths sharing 
a common initial condition. In the models we study the latter is represented by 
the initial allocation of the capital stock. 

Various models of this kind are currently being used to describe the endoge- 
nous nature of growth phenomena. Generally it is assumed that, due either to 
the lack of appropriate markets or to the intrinsic nature of the production 
process, the productivity of an individual firm's input(s), x, is affected by the 
aggregate level of utilization of the same or other input(s), K, so that the 
production function of the individual firm should be written as f(x, K). In 
certain instances the external effect is assumed to be strong enough to induce 
aggregate increasing returns even if individual decision makers still face de- 
creasing payoffs from their own inputs. 

1This is a much revised version of a paper which was previously circulated under the title 
"Indeterminacy of Equilibria in Models with Infinitely Lived Agents and External Effects." We are 
grateful to David Cass, Leo Hurwicz, David Levine, Joe Ostroy, John Riley, and Paolo Siconolfi, 
and two anonymous referees of this journal for useful suggestions and criticisms. The present 
version benefited from comments received during presentation at the NBER General Equilibrium 
Group Meeting in Minneapolis (April, 1992), at the NBER Economic Growth Group Meeting in 
Cambridge (April, 1993) and during seminars at the Universite du Quebec at Montreal, Columbia 
University, New York University, Brown University, University of Pennsylvania, UCLA, Stanford 
University, University of Tel Aviv, University of Chicago, Universidad Carlos III (Madrid), Universi- 
tat Pompeu Fabra (Barcelona), Delta-ENS (Paris), and the XI Latin American Meeting of the 
Econometric Society (Mexico City). The usual disclaimers apply. 
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Beside the obvious implication of rendering the associated competitive equi- 
librium inefficient the introduction of such externalities has other important 
effects. Here we concentrate on the positive complementarity it induces be- 
tween individual actions, the full extent of which is not captured by market 
prices. When private returns from capital are affected by its aggregate level, 
multiple expectations-driven equilibria become possible. Societies with distinct 
institutional mechanisms may coordinate private beliefs in different ways, thereby 
generating different publicly held expectations about future economic events. 
This takes place in spite of the identical technologies, preferences, and initial 
economic conditions. From a theoretical viewpoint this situation is commonly 
described by means of dynamic models in which competitive equilibrium is 
indeterminate, While this need not be the only compelling explanation for the 
factual diversity in the growth patterns of various countries, it certainly appears 
as one worth investigating. 

The relevance of this point of view is reinforced by the pervasiveness of 
indeterminacy in dynamic economic models, something of which we have 
started to become aware since the work of Kehoe and Levine on the Overlap- 
ping Generations Model (Kehoe-Levine (1985)). More recently a number of 
authors have encountered the same form of indeterminacy also in dynamic 
models of search and matching, e.g. Diamond-Fudenberg (1989), Howitt- 
McAfee (1988), Boldrin-Kiyotaki-Wright (1993), Mortensen (1991), and in dy- 
namic models of production and accumulation when externalities are intro- 
duced, e.g, B3oldrin (1992), Matsuyama (1991). 

On pure logical grounds nothing seems to prevent this kind of indeterminacy 
from occurring also in the representative agent model of capital accumulation, 
Given the extent to which models of this form are now used for the purpose of 
empirically assessing the economic sources of growth, it is worth trying to clarify 
the matter, If the indeterminacy is present the interpretation of many simple 
estimations, obtained by pooling together data from a variety of different 
countries, can be questioned as there is no reason to believe that these 
countries should be moving along the same equilibrium path. On the other hand 
if a set of hypotheses can be found under which equilibria are locally unique, 
then one would rest assured that a minimal theoretical framework exists within 
which comparative static and dynamic exercises can be carried out. 

For the one sector model, indeterminacy can be ruled out under fairly weak 
assumptions, that are consistent with those often adopted in the more applied 
literature. For the case of bounded accumulation, this result seems to enjoy 
already the status of a "folk theorem" (compare, for example, the discussion in 
Kehoe (1991)) and we will only briefly mention it in our exposition, without 
reporting the fairly obvious proof. The unbounded case is more delicate and, to 
the best of our knowledge, has never been examined before. We provide 
conditions under which all trajectories display a unique asymptotic constant 
growth rate, and prove that this also implies local uniqueness of equilibria. 
From a practical viewpoint this is tantamount to showing that the old neoclassi- 
cal prediction of "convergence" emerges once again, albeit in a slightly different 
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form. Moreover we show that under our restrictions poorer countries grow 
faster and growth rates are inversely correlated with income levels. 

The two-sector model we examine has only one capital good, which can be 
interpreted either as human or physical capital. Models with both physical and 
hurman capital stocks of the kind suggested in Lucas (1988) and Romer (1990) 
are therefore not examined. In the absence of external effects Lucas' model has 
recently been studied by Caballe and Santos (1991). Also, Chamley (1992) 
studies an example of the same model with an externality in the accumulation of 
human capital. As one would expect equilibrium is unique in the world of 
Caballe and Santos while multiple balanced growth paths exist in the example 
that Chamley analyzes. Since when the first version of this paper was circulated 
other authors have been able to derive indeterminacy results in models of 
growth and externalities due to human or physical capital, most notably Benhabib 
and Farmer (1993), Benhabib and Perli (1993), and Xies (1993), and in dynamic 
models of monopolistic competition, Gali (1993). 

In any case, even in our simpler world the comforting results of the one-sec- 
tor framework are turned upside-down. For the two-sector model we present 
examples of indeterminate equilibria that are derived from very standard utility 
and production functions. Furthermore, in the case of unbounded growth, the 
same examples can exhibit indeterminate and perpetually oscillating (i.e. chaotic) 
asymptotic growth rates for a certain set of parameters. Quite naturally an issue 
of "realism" can be made with regard to the parameter values at which these 
more complicated phenomena arise. While they do not appear as far away from 
reality as those previously encountered in the optimal growth brand of the 
chaotic dynamics literature, they do rely on particularly strong externalities. For 
this reason and for the lack of reliable empirical evidence about the external 
effects consistent with this type of technology, we refrain from speculating on 
the positive implications of our findings. 

As we mentioned before, the issue of indeterminacy had already been tackled 
for the bounded version of the one-sector growth model, e.g., Kehoe-Levine- 
Romer (1991), Kehoe (1991), and Spear (1991). In all three papers a one-sector 
growth model is studied,. the difference lying in the type of external effect 
considered. The first specifies the individual production function as f(x, C), 
where C is the aggregate consumption level and x is the individual stock of 
capital. They show by means of an example that such an economy has a locally 
stable steady state around which equilibria are therefore indeterminate. Kehoe 
(1991), on the other hand, presents an example in which the production 
function is f(x, K) but where the externality from K is negative: he shows that 
a continuum of equilibria converging to a stationary state exists at appropriate 
parameter values. In the paper by Spear a third type of external effect is 
introduced: the production function is written as f(x, K'), where K' is tomor- 
row's aggregate capital stock which is assumed to have a positive effect on 
today's productivity. In this case the author derives a set of sufficient conditions 
under which stationary sunspot equilibria exist in a neighborhood of a stationary 
state. 
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This paper contains two more sections and the conclusions. The next one 
briefly summarizes the situation in the case of bounded accumulation paths, 
whereas Section 3 will discuss more extensively the models of perpetual growth. 

2. BOUNDED GROWTH 

We use this section to introduce the formal models and to provide a brief 
review of the bounded case. As we mentioned in the introduction the fact that 
indeterminacy cannot arise around a stationary state of a one-sector model with 
positive externalities, seems to be already a kind of "folk theorem." Therefore 
we avoid dwelling with it for too long, and concentrate instead on a simple 
example showing how easily indeterminacy arises in the bounded two-sector 
model. For a more extended discussion of these issues, as well as for the proofs 
of the statements reported here, the reader should consult the original working 
paper version of this article (Boldrin-Rustichini (1991)). 

2.1. The One-Sector Model 

The economy is composed of a continuum of identical agents indexed by 
i E [0,1]. There is only one good which is used both as consumption and capital 
input. Each consumer i is infinitely lived and owns a firm and an initial stock of 
capital x4. Given a sequence {k,}Y=o of aggregate capital stocks he chooses the 
consumption stream {c'}0=o and the capital stocks' sequence {x'}t=o that maxi- 
mize his total discounted utility. 

Each consumer owns a firm, with production function G(x1, k, 1) depending 
on the private amount of capital stock xi, the aggregate capital stock k = JJlxdi, 
and labor 1. The latter is inelastically supplied by the consumers and will be 
normalized to one. Except for the external factor, k, the production function G 
is standard. Denote with 0 < A < 1 the capital depreciation rate. We define f: 
912 -R 91+ as f(xi, k) = G(xi, k, 1) + (1 - pt)x1. For the purposes of this section 
the aggregate production function F(x) = f(x, x) is also restricted to impede 
persistent growth. 

ASSUMPTION 2.1: The utility function u: 91 + -> 91 is C2, increasing, and strictly 
concave. The discount factor 8 is in (0, 1). 

ASSUMPTION 2.2: G: 91 3 -> 91+ is of class C2. For any given k > 0 it exhibits 
the following properties: 

(i) G(Ax', k, Al) = AG(xW, k, 1), VA > 0; 
(ii) G(-, k, * ) is increasing and concave; 

(iii) G11(, k, 1) < 0 for all l and k > 0. 

ASSUMPTION 2.3: The production function F(x) = f(x, x) has the properties: 
(i) There exists an x > 0 such that F(x) > x for 0 < x < x and F(x) < x for 

x >x. 
(ii) The partial derivative f1 satisfies: f1(x, x-) < 1 and limx 0 f1(x, x)> 1/> . 
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Without loss of generality, we can assume for the remainder of this section 
that xo E [0, x]. Equilibria will then be sequences {x,}0=o that, given a sequence 

{k,}t0=, solve the "parametric" programming problem: 

00 

(P) max Eu(f(xt,kt) -xti),6t} subject to 
t =O 

0 <xt+I <f(xt, kt) 

together with the "fixed point problem" xt({kt}t=0) = kt for all t. In other words 
a sequence {xt}t=o is an equilibrium for our economy if and only if it satisfies 

(EE) u'(f(xt,xt) -xt+1) =8u'(f(xt+1,xt+1) -xt+2)fl(xt+l,xt+1), 

and 

(TC) lim Stxtu'(f(xt,xt) -xt+i)fl(xt,xt) = 0. 
t -34 0 

The reader is invited to consult Kehoe-Levine-Romer (1991) for additional 
details. Before proceeding with our analysis we need to make precise our notion 
of indeterminacy. Intuitively we say that an equilibrium is indeterminate when 
there exists a whole interval of equilibrium paths starting off from its same 
initial condition. This, indeed, is the only way in which local uniqueness may fail 
to exist for an economy such as the one we study: once two initial conditions 
(say xo and x1) are given, the dynamical system (EE) uniquely defines the rest 
of the equilibrium trajectory. 

DEFINITION 2.1: Let {xt}t=o denote an equilibrium for an economy with initial 
condition xo = ko. We say that it is an indeterminate equilibrium if for every 
E > 0 there exists another sequence {yt}t=0, with 0 < I1y - x1 l < E and yo = x = 

ko, which is also an equilibrium. 

We have not yet specified the sign of the external effect. Kehoe (1991) shows 
that indeterminacy arises when negative external effects are present. Here we 
stress that when the externality is positive, equilibria converging to a stationary 
state are locally unique. Furthermore there exists a simple restriction on the 
technology which assures monotone convergence to a unique stationary state. 

THEOREM 2.1: Assume f2(x, x) > 0 holds. Then under Assumptions 2.1, 2.2, 
and 2.3: 

(i) all equilibria converging to a stationary solution of (EE) are locally unique; 
(ii) when the private return on capital fl(x, x) is a nonincreasing function of the 

capital stock, all interior equilibria are monotone increasing and unique. More- 
over, there exists a unique value x* E (0, x) such that if xo < x* then {xt}t=o 

satisfies x Xt?+1<x* and if x0 > x* then {xt0t =o satisfies x* xt+1 <Xt for 
every t. 
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PROOF: The first statement can be verified by linearizing the (EE) around a 
steady state to verify that at least one of the eigenvalues will always be larger 
than one (in modulus) as long as the externality is positive. To prove statement 
(ii) we need only to show that all equilibria are monotone. We will articulate the 
proof in a lemmata. 

LEMMA 1: If Xtx* then Ct >Ct1 and if x >x* then ct < c- (strict 
inequality in x implies strict inequality in c). 

PROOF: If xt A x*, 5f1(xt, xt) > 1 will hold, which implies u'(ct-)/u'(ct) = 

8fl(xt, xt) > 1 and so c, > c 1 because u is concave. Similarly when x, >xKX 

LEMMA 2: If xt Ax*, then xt+,1 >xt 

PROOF: Lemma 1 already implies ct>ctc1. Assume that xt+1<xt. Then 
(EE) implies 

U (ct-l) U'(ct)fi(xt, xt) 

( )~ u U(ct) U (ct+X1t(Xt+P Xt+l) 

We will show that a contradiction with (*) arises. To do this, notice first that 
xt+1 <xt implies ct+1 < ct. In fact, if ct+1 > ct and xt+1 <xt <x*, then xt+2 - 

F(xt+1) - ct+ < F(xt) - ct =xt+1 and so xt+2<x*, which implies (by Lemma 
1) that ct+2>Ct+l, This in turn gives xt+3=F(xt+2)<F(xt+,)-ct+,=Xt+2- 
By iteration the sequence {x,+1} satisfies x + <x+_ 1< * for all i > 1 and 
the sequence {ctei} % satisfies c > c1 > 0 for all i>1. Let x<x*- 
limiO. xt+j and c c=imiO,ct+i. Then c->O, and Zc is finite because x<x* 
implies f(x, x) is bounded. Hence, u'(c) E (0, oo) and Sf1(x, x) 1 has to hold, 
which contradicts x < x*. So xt I < xt implies ct+ 1 < ct. 

Now recall that ft is nonincreasing and u' is decreasing; then x 1 x 
implies 

U'(ct)fi(xt, xt) < u'(ct)fi(xt+,, Xt+J) < U (ct+l)fl(xt+ls xt+l)S 

which contradicts (*). Therefore, xt A x * implies x,+ > xt. 

LEMMA 3: If xt < x*, then xt <xt +1 <x*. 

PROOF: Only the part x +1 x* needs to be proved. Again, pretend xt+1 > 
x*. Then (by Lemma 1) ct+1 < ct will hold and xt+2 = F(xt+1) - ct+,1 > F(xt) - 

ct xt+1 and, as in Lemma 2, iterations will give two sequences, {xt i,cti} -0 
with xt+i+1, xt+i >x* and ct+i < ct+i+1 Once again set limi,0xt+i =X >x* 
and limi1 ct+i = c. If c > 0, then u'(c) is finite and fl(X, x~)=1 has to 
hold, which contradicts x > x*. If c=0 and u'(c) is not finite then, for i 
large enough, fl(xt+i, Xt+d) < y < 1 must hold. Hence, u'(ct+i+1) = 

[1f1(xti+1, xt+i+1)]-'u'(ctz+) > (Sy)-1u'(ct+d), which implies u'(ct+i) > 
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(6y)-'u (for some constant u and i large). The latter gives 

lmO tfi(xt, xt) WUVOCt > litoYXl(xt, xt)(^Y) U -+ 

This contradicts (TC) and proves the Lemma. 

LEMMA 4: If xt >x*, then xt >xt i>x*. 

PROOF: One needs only to replicate the proofs to Lemmata 1-3, with the 
appropriate changes in the inequalities. Now Lemmata 3 and 4, together with 
our initial observation about the eigenvalues of the linearized Euler Equation 
are equivalent to the second statement of Theorem 2.1. Q.E.D. 

The restriction on the behavior of the private return on capital is necessary to 
deliver the result. One can in fact show that cycles emerge when the positive 
external effect is strong enough to make the private return on investments 
fi(x, x) an increasing function of the capital stock. One such example can be 
found in Boldrin-Rustichini (1991). 

2.2. The Two-Sector Model 

In this subsection we make the assumption that consumption and capital are 
different commodities produced by different combinations of labor and capital. 
We will show that this is enough to generate robust examples of indeterminate 
equilibria. 

We retain here the market and demographic structures used before. On the 
production side there are two sectors; within each sector firms are identical and 
each consumer owns the same initial amount ko of capital stock and supplies a 
fixed unitary amount of labor in each period. Capital can be freely shifted from 
one sector to the other at the beginning of each production period. There is an 
external effect in production, which may affect either one or both production 
processes. Such external effect comes from the aggregate stock of capital and 
can be given any of the many interpretations found in the recent literature. 

Let the production function of a typical firm in either sector be denoted as 
F1(x , It, kt), with i = 1 for consumption and i = 2 for investment. We assume 
that, given the aggregate stock of capital kt, both F1(, , k)'s satisfy Assump- 
tion 2.2. Assuming that markets are fully competitive in every other respect one 
can define the Production Possibility Frontier (PPF) faced by a representative 
individual as 

T(xt, xt+1, kt) = maxF'(xt , tl, kt) subject to 
x1,ltl 

x,+1 SF2(xt,lkt) + (1 -A)Xt, 

4 xt,t'Xt 
Xt Xt <X 
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where x t denotes the private and kt the aggregate stock of capital. The 
parameter u e [0, 1] is the capital depreciation factor and one is the total 
amount of labor available to an individual in each period. 

Now denote with u(c) the representative individual utility function and with 
V(x,x',k) the composition u(T(x,x',k)). Then, as in the one sector model 
above, interior equilibria can be characterized by means of a variational equa- 
tion (EE) and a transversality condition (TC). In the notation just introduced 
they are 

(EE) V2(xt,xt+l, xt) + 8Vl(xt+l, xt+2,x1t+) = 0 

and 

(TC) lim 8txtVl(xt, xt+1, xt) = 0 
t-o00 

respectively. Linearization of (EE) around a steady state x* gives the character- 
istic equation 

V22 Vll + V13 1 V23 
(2.1) A2 +A(817+ 1V }+( -T+8J7- = 0 

where it should be understood that the functions Vij, i, j = 1, 2,3 are evaluated 
at the steady state. Our contention is that there exists an admissible set of 
parameter values at which both roots of (2.1) are inside the unit circle. In such 
circumstances equilibria are indeterminate, as x0 near x* implies that for all xl 
in an E-ball around x0 the path (x0, xl,...) is an equilibrium converging to x*. 
The necessary and sufficient conditions for both roots of a quadratic equation of 
the type A2 + a,A + a2 = 0 to be inside the unit circle are 

(1 - a2) > 0; (1 + a, + a2) > 0; (1-a + a2) > O. 

For equation (2.1) they translate into: 

1 V23 
-+ <1< 

1 1723 +1722 Vll +V13 
(2.2) 1+-+ + >0; 8 81721 V21 

1 V23 - V22 Vl1 + V13>0 

8 a8121 81721 

A careful examination of (2.2) shows that, contrary to the one-sector model, 
there exists economic conditions under which the three inequalities are simulta- 
neously satisfied. In fact if V12 and V23 have opposite signs, the first condition 
can be obtained. Of the other two, only one is really binding; notice also that 
whatever sign a, may have, its magnitude can be made quite small by forcing 
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V1l and V13 to cancel each other. More precisely our economy has to display 
these three properties: 

(i) a steady state value such that the consumption sector has a higher 
capital-labor ratio than the investment sector (T12 < 0) and a relatively inelastic 
marginal utility of consumption (V12 = u'T12 + u"T2T1 < 0); 

(ii) a positive externality that also reduces the cost (in utils) of producing 
additional capital stock (V23 = u'T13 + u"T2T3 > 0); 

(iii) an external effect that increases the marginal value of the current stock of 
capital together with a moderately concave utility function (V13 = u'T13 + 

u"T1T3 > 0). - 

None of these conditions appear economically unreasonable and they are not 
difficult to formalize. The example we provide next is just the simplest we could 
come up with. Other, more "realistic" ones, can be derived from more elabo- 
rated and better specified two-sector economies. 

EXAMPLE 2.1: Begin by choosing a linear utility function u(c) = c, so that 
V(x, x', k) = T(x, x', k). The same results would carry through with, say, a CES 
utility function, only the algebra would be messier. The output of the consump- 
tion good is given by c = (l1)a(xl)a- and output of the investment good is 
given by y = min (12, x2/y}, with a, y E (0, 1). The aggregate stock of capital k 
also has the effect of increasing the efficiency level of the otherwise exogenous 
unitary labor supply. In other words the external effect is assumed to be 
observationally equivalent to labor-augmenting technological progress. Denot- 
ing with lt the total number of efficiency units of labor at time t, we represent 
the externality as It = kr7. The allocational constraint is then 1 +172 lt, for 
each t. To simplify further we will also assume instantaneous depreciation. The 
PPF for the representative agent is then given by 

T(x, x', k) = (k` -x')a(x -x' . 

Equilibria are those sequences {xt}t=0 that, given a sequence {kt}t=o, solve the 
following parametric programming problem: 

00 

(2.3) max E St(k17 _Xt+l)a(Xt_yXt+J)I a subject to 
t=O 

0<xt?i?min(k1, ?} 
( y) 

and that also satisfy xt = kt for all t = 0,1,2.... 
The unique interior steady state solution to (2.3) is computed by solving the 

equation T2(x*, x*, x*) + 8T1(x*, x*, x*) = 0, which gives 

*8 - 
y-)(1 

- a) 
1 

/1-1} 
r* = 

( 
- 

y)(1 -a) +al1- y)I 
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Some tedious but nevertheless straightforward algebra will now prove the 
following theorem. 

THEOREM 2.2: There exists an open set of values in the parameter space 
(a, 8, -q, y), such that the equilibria of the growth model (2.3) are indeterminate. 

PROOF: In light of the previous discussion it suffices to show the existence of 
some combinations of parameters at which the inequalities (2.3) are satisfied. 
The constants a1 and a2 can be computed as 

Z~i-1- y 77(x*)'7-lz-' 
8 + -1 z ly 

a2 

where 

z - 1 

It is then a simple numerical matter to verify that, for example, in a neighbor- 
hood of the parameter values a = .5, 8 = .5, - = .5, and y - .2, the inequalities 
(2.2) are all satisfied. The statement then follows from the continuity of the 
functions in (2.2). Q.E.D. 

3. UNBOUNDED GROWTH 

In this section we show that parallel conclusions hold also in the presence of 
persistent growth. More precisely we will prove that in the one-sector model, 
under reasonable hypotheses, equilibria are unique in the following sense: given 
a "large enough" initial condition xo0 there exists at most one sequence {xI} = 
satisfying (EE) and (TC). Also, the asymptotic growth rate is unique: all 
equilibrium sequences must eventually grow at the same speed. Models in which 
the asymptotic growth rate is not bounded and in which the stock of capital 
grows infinitely big infinitely fast are not captured by our analysis. For the case 
of two sectors we show, by means of another example, that indeterminate 
growth paths cannot be ruled out even under very restrictive conditions. 

3.1. The One-Sector Model 

Assumptions 2.1 and 2.2 are maintained and only positive external effects will 
be considered. Our argument will proceed along these steps: first we show that 
(under only the extra assumptions required to guarantee unbounded accumula- 
tion) equilibrium orbits are locally unstable, thereby preventing nearby equilib- 
ria from merging into each other asymptotically. Then we introduce a set of 
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additional assumptions about the curvature of the utility and production func- 
tions. This allows us to prove that when a constant growth rate exists it is 
uniquely and dynamically unstable, thereby implying the existence of at most 
one equilibrium path growing asymptotically at a constant rate. 

We begin by assuming that the external effect is positive and that unbounded 
growth at a bounded rate is feasible: 

ASSUMPTION 3.1: The aggregate production function F(x) =f(x, x) satisfies: 
* f2(x,x)>0; 
* liminfx +j[F(x)-x]>0; 
* lim infX +,f1(x,x)>s-1; 
* lim x +0 F(x)/x = L < + oo. 

One can verify that the last three parts of Assumption 3.1 together with strict 
concavity of the utility function imply that equilibrium consumption sequences 
are monotone increasing. This, together with feasibility considerations also 
implies that the capital stock sequence is monotone increasing along an equilib- 
rium trajectory. Notice also that the third part of Assumption 3.1 effectively 
bounds the capital growth rate by L and, for x large, it implies F(x) = Lx + g(x) 
with limX 0 g(x)/x =0. 

To build up some intuition on why orbits satisfying (EE) cannot converge to 
each other, pick one of them {x,}r 0 and compute the linear approximation to 
(EE) in a neighborhood of such an orbit. The associated Jacobian matrix is time 
dependent and with some algebra one can check that its two real roots, at any 
regular point of the trajectory {x,}r0, are given by small perturbations of the 
following expressions: 

I U"(ct) u'(ctf+) A2 

The latter are exact when xt and ct are large enough. By Assumption 3.1 and 
the hypothesis that the external effect is positive, A2> 1 for all t A simple 
application of well known results from dynamical systems (see, e,g., Irwin (1980, 
page 114)) implies that trajectories are locally unstable at least along one 
direction. 

To derive a formal proof of our claim we need some additional notation and a 
couple of extra hypotheses on the asymptotic behavior of the utility and 
production functions. In (EE) write xt x, xt+1=Atx, xt+2=At+1Atx, to 
obtain a parameterized implicit function 

(EE) r(x, At, At+1) = 1-u'(F(x) -Atx) 

+Su'(F(Atx) -At+1A,x)f(AtxAtx) =0. 

For all finite values of x, strict concavity of u guarantees the existence of a 
continuous function 06 K:1 + 91 Ji mapping the current growth rate of capital At 
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into At+1, the growth rate in the subsequent period, and satisfying 

(3.1) q+(x, A, Ox(A)) = 0. 

In general the map Ox depends on the value of x, the current stock of capital, 
and the latter changes in each period. We are therefore facing a sequence of 
such maps Ox. On the other hand, we are interested only in the behavior of Ox at 
"large" values of x. One then needs to study the properties of the function 

(3.2) O.(A) = lim Ox(A), 
x - 00 

over the interval [1, L] for some 1 > 0. 
To carry this out we need the following assumption. 

ASSUMPTION 3.2: The private rate of return is eventually decreasing in the 
capital stock, i.e. there exists an xc such that for all x >Kx, wr(x) =f1(x, x) is a 
nonincreasing function. 

ASSUMPTION 3.3: Given c and c' > 0 define 

u"(c) u'(c') 
u(c, c') =u"(c') *u'(c) 

Then 

c' 
c' >c implies o ( c, c') -. 

ASSUMPTION 3.4: Given two pairs (c, c') and (c, c') E 2, if u (c)/u (c') > 

u'(j)/u'(j'), then o(c, c') > (-g, c'). 

Assumption 3.2 prevents the private rate of return from continuously oscillat- 
ing between a lower and an upper bound. This condition is necessary for the 
existence of a constant growth rate equilibrium. Along such equilibrium the 
stock of capital and the level of consumption must be growing at the same 
constant rate: this follows from Assumption 3.1 on the asymptotic linearity of 
the production function. Assumption 3.3 requires the utility function to display 
a nonincreasing elasticity of substitution in consumption. Uniqueness of the 
constant growth rate is mostly a consequence of this condition. Assumption 3.4 
is a technical regularity restriction, satisfied by most of the commonly adopted 
utility functions. Its purpose is to guarantee that the asymptotic function O. is 
well behaved. 
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LEMMA 3.1: Let {xt}t=o be an equilibrium sequence with initial condition 
x 0 >X. Then for some 0 <1 < 1, the sequence of functions Ox: [1, L] ->[O,L] 
defined in (3.1) is a monotone increasing sequence of continuous and monotone 
increasing functions. Furthermore the limit function 00(A) defined in (3.2) exists 
and has the following properties: 

(i) It is Lipschitz continuous, monotone increasing and concave over the 
interval [1, L]. 

(ii) There exist at most two fixed points of O.; call them 1 < A1 < A2 < L. 
(iii) The smallest fixed point is dynamically unstable while the other is stable. 

PROOF: The properties of Ox for x finite can be derived by repeatedly 
applying the implicit function theorem to equation (3.1) and noticing that xt > x 
must hold for t sufficiently large. To derive the properties of O. compute the 
slope of Ox(A) at two different values A <A, for given x. The difference 
ox(A) - O(A) reduces to 

[cr(c, c') -o.(8, j')] + [OX(A) -o(A)] + r(x) 

where the pairs (c, c') and (c, c') are associated respectively with the trajectory 
departing from Ax and the trajectory departing from Ax, and r(x) is a term 
which, because of Assumption 3.2, becomes negligible when x is large. As Ox is 
increasing the second term is positive and the first is made nonnegative by 
Assumption 3.4. This implies that 0x(A) is concave for x large enough. The 
sequence O0t(A) is uniformly bounded for all A e [1, L] so it will converge 
pointwise. A standard theorem in convex analysis (see Rockafellar (1970, page 
90)) guarantees the convergence is uniform and the limit function OO, is there- 
fore continuous and monotone increasing. It is also concave and therefore 
Lipschitzian. The existence of, at most, two fixed points and their instability/ 
stability then follow. With "dynamically stable/unstable" we mean that the 
slope of OO. measured at A2 is less than one whereas it is larger than one at A1. 

Q.E.D. 

It is useful and of some interest to compare the properties of the functions Ox 
and O., with the corresponding functions for the optimal growth problem, 
defined as the maximization in (P) taken over the sequences {xt, kt}t_o, such 
that xt = kt for all t. We denote by Ox and 0,, these functions. Assume the 
optimal growth problem is well defined (i.e. concave). Then its Euler Equation 
is going to be similar to (EE), but with f1(xt+1, xt+1) replaced by f1(xt+1, xt+1) 
+ f2(xt+1, xt+)4 Assumption 3.1 then implies that for all the values of A 
satisfying F(Ax) - dO(A)Ax > 0, the inequalities 

ox(A) < OJ( A), 0O( A) < 0OO( A) 

will hold. Furthermore properties (i), (ii), and (iii) of Lemma 3.1 extend to the 
functions Ox and 6O.. 
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THEOREM 3.1: Let Assumptions 2.1, 2.2 and 3.1-3.4 be satisfied. 
(a) Given any initial condition xo > X if an equilibrium exists it is unique. 
(b) Along such equilibrium the growth rate of the capital stock A x, I/xt 

satisfies At+ 1 < At and converges to a constant growth rate A* = lim, Al(x), 
where the latter is the smaller fixed point of the map OX(A). 

(c) The equilibrium growth rate decreases as the capital stock increases. 

PROOF. Take an arbitrary initial condition x >xTc and assume {xI}t=1 and 
(Yt}t=1 are two distinct equilibria departing from it, Then A'3 x1/xo *Y /Yo 
Ay. To fix ideas set Ay > Ao. Then the sequence {yt}t=1 will dominate {xt,t1_ 
coordinatewise and it follows from the previous Lemma that AtY > Ax must hold 
for all t > 0. Inspection of the first order conditions then yields cx > cY for all 
t > 0. Now consider the consumer optimization problem when the given aggre- 
gate sequence is {yt}t-o: he can (for example) pick {xtrtjO (which is feasible) and 
obtain in each period a consumption level ct =f(xt, yt) -xt+1 > c > cty. The 
sequence (ytjt 1 therefore cannot be an equilibrium. This proves (a). To prove 
(b) notice that the equilibrium growth rate sequence must be decreasing 
because if it were increasing even only for one period it would have to be 
increasing forever. Under our assumptions this would yield a sequence {At}to0 
converging either to the highest fixed point of 0. or to infinity, and therefore 
induce a consumption sequence which would be suboptimal. The equilibrium 
sequence of growth rates then must converge to A* "from below," i.e. along a 
trajectory such that each pair (At, At? l) belongs to that portion of the graph of 
6x, which is below the diagonal. The latter proves (c). Q.E.D. 

The reader should notice that we always assume an equilibrium exists: this is 
because existence depends on the fact that the chosen parameter values satisfy 
the transversality condition over and above the recursive equation (EE). We 
should also add that part (a) of the theorem could be proved directly by showing 
that all those paths that converge to the "high steady state" of 00 violate the 
transversality condition: this can be accomplished by comparing their asymptotic 
behavior to that of paths driven by the "optimal" map 0O,. we mentioned before. 

A few examples should facilitate intuition. In the first one Assumption 3.3 is 
satisfied as an equality for all consumption levels. The convergence to the 
asymptotic function O, is therefore instantaneous. In the second example, the 
same condition is satisfied as a strict inequality and the process of convergence 
is instead asymptotic. Finally the third example is meant to illustrate how a 
utility function which violates Assumption 3.3 would destroy our result. 

EXAMPLE 3.1: Let u(c) = cl-/(1 -y), f(x, k)=ax $ bxakl- with a, b > 0, 
a e (0, 1). It is immediate to verify that when 3(a + ab) > 1 all of our assump- 
tions hold. The asymptotic function 0,0. in this case can be computed directly and 

,~~~~~~~~~~ cA 
is given by- 

(3.3) 0(A) =L - [8(a + ab)]1L -1 A A 
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The two asymptotic roots are therefore 

Al = [8(a + ab)]l/, 
{A2= L =a +b. 

Here two different cases are still possible: 
Case 1: A1 < L; then no equilibrium exists that satisfies our hypotheses, 

because both growth rates conflict with the transversality condition. 
Case 2: A1 <A2; then there is a unique equilibrium growth path if the 

transversality condition is satisfied. The latter requires 8(a + ab)' -y < 1. In 
these circumstances it is easy to verify that the asymptotic map (3.3) is unstable 
at the fixed point A1. 

EXAMPLE 3.2: Let the utility function be u(c) =-exp (-c) and take a 
general production function. The Euler Equation +i(x, At, At+1) = 0 becomes 

(3.4) exp [ -(F(x)-Aktx)] = 5 exp [(F(Aktx) -AtAt+1x)] f1(Atx, Atx) X 

which can be reduced to 

(3.5) F(x)-F(Atx) + AtAt+lx-Atx + k(x, At) = O 

where k(x, At) = log (5f1(Atx, Atx)). Dividing both sides of (3.5) by x and 
rearranging we have 

OX(A) - F(Ax) -F(x) +1 k(x, A) 
Ax Ax Ax 

which satisfies all the properties listed in Lemma 3.1. Taking limits as x -boo 

one finally obtains the asymptotic function O., which is 

L 
Go(A) =L - - +1. 

A 

The unique asymptotic equilibrium growth rate is therefore A* = 1 to which the 
economy converges as the stock of capital goes to infinity. Note that the 
asymptotic Euler Equation is not verified as an equality here, at least as long as 
5ir(x) > 1 holds. The equilibrium sequence is one along which capital stock and 
consumption grow unbounded at a decreasing rate and become constant only 
"at infinity." 

EXAMPLE 3.3: Again we need not restrict the production function to any 
particular form. Assume the marginal utility of consumption is given by u'(c) = 

1/log(c + 1). The latter does not satisfy Assumption 3.3. 
By rearranging the Euler Equation for finite values of x one obtains 

(3.6) O (A) - F(Ax) [F(x) -Ax]8f1(Ax'Ax) 
Ax Ax 
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By inspection one will observe that the sequence of functions generated by (3.6) 
converges in the limit to a discontinuous function equal to - cc for A < L and to 
+ Xc for A > L. The growth rate A = L is a fixed point of such a function but it is 
not an equilibrium for obvious reasons. Therefore there is no asymptotic 
equilibrium satisfying Theorem 3.1. 

3.2. The Two-Sector Model 

As mentioned in the introduction indeterminacy is also possible for the 
two-sector model in the presence of endogenous growth. Again we will be 
satisfied by making our point with a very simple, almost trivial, example. 

To better illustrate the equilibrium behavior in the presence of externalities 
we begin this subsection with a brief analysis of the standard case. Once again 
there are two goods: a consumption good produced with a Cobb-Douglas 
technology c = (x1)a(ll)l -a, and an investment good produced with a linear 
one, i = bx2. The aggregate capital stock x, induces the constraint xt > x1t + x2t, 
and evolves according to the law of motion xt+1 = (1 - ,t)xt + it. We introduce 
a few innocuous simplifications: the utility function is linear and the exogenous 
labor supply 1 is set equal to one in every period. 

One can write the PPF as T(x, x') = (yx - ax')a, with y = 1 + (1 - u)/b > 1, 
and a = 1/b. The Euler Equation associated to this simple optimization prob- 
lem can be easily manipulated to yield a one dimensional map from current to 
future growth rates of the stock of capital: 

(3.7) A+1 = (At) = 0 + (50)1/1 - _ 0(80)1/1 --aA 

where 0 = b + (1 - ,u) > 1 is necessary to make persistent growth feasible. The 
function T has two fixed points, 

A1 = , and A2 = (80)t/t 

The first root, A1 = 0, should be ruled out as a possible equilibrium with 
constant growth as consumption is forever zero along such an accumulation 
path. For the second root to be an equilibrium we need to verify that the 
transversality condition is satisfied. At A2, (TC) requires 8oa < 1. The latter 
inequality also guarantees that A2 < A1 and that A2 is an unstable fixed point 
of r. 

As we should have expected, in an optimal growth model without any external 
effect if an equilibrium with persistent growth exists it is also determinate. 

We shall now proceed to modify this model by appending an external effect to 
the production function of the consumption good. Set c = k7(x1)a. Then the 
PPF faced by a representative consumer-producer becomes 

(3.8) ct = k7(yxt - axt+1) 

where, as usual, kt denotes the aggregate capital stock which is treated 
parametrically by the representative agent. Given a {kt}t=o equilibria are se- 
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quences {x,}%=o solving 
co 

(3.9) max E kq(yxt - axt+D)a68t subject to 
t=O 

0 <xt+1 < oxt 
and satisfying xt = kt for all t. 

As in the previous treatment of the one-sector model we restrict ourselves to 
the study of sequences with bounded growth rates. In this example it is always 
true that 

limsup t + <O. 
t000 t 

The functional forms have been chosen to guarantee that the Euler Equation 
associated to (3.9) can be written in the form qi(x, At, At+1) = 0 and that by 
simple manipulation a map r(At) = At + 1 can be derived that satisfies 
+i(x, A, r(A)) independently of x. The latter is 

(3.10) At+, = r(At)- -(6 / aA6(0 -At) 
where f3 = (a + - - 1)/(1 - a). Given an initial condition A0> 0 every uni- 
formly bounded trajectory of the dynamical system T is candidate to be an 
equilibrium. In order to be one it has to satisfy the appropriate transversality 
condition. Among the bounded trajectories a special role is played by the fixed 
points and the closed orbits of T, and our analysis will concentrate on them. 
Nevertheless, as we will briefly point out later, there are other more compli- 
cated orbits of T that also satisfy (3.10) and therefore are equilibria. Some of 
them can be chaotic. 

Along a balanced growth path with constant growth rate equal to A the 
transversality condition reads as 

(3.11) lim ay3tx97+1(yxt - axt+)a-1 = lim const * (Aa+ 7)t = o. 
t-000 

To prove our claim we only need to show that there exists a fixed point of r 
that satisfies (3.11) and is asymptotically stable for the dynamics At+1 = r(Ad. 
This is spelled out in our last theorem. Generally, though, indeterminacy can 
also arise in the following more complicated fashion: there exists a subset 
A c [0, 0], which is an attractor for At+ 1 = i-(At) and which contains a more than 
countable number of points. As the analysis of this case would lead us astray, we 
prefer to bypass it here. We refer the reader to Boldrin and Persico (1993) for a 
more detailed study. 

THEOREM 3.2: In the model of growth with externalities described by the 
programming problem (3.9), equilibria are indeterminate when the following re- 
strictions are satisfied: 

*a + 7> 1, 
S80< 1 <80a+21 

*A2 > 0-1/3. 
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Then A2 = (60)/(1 -a -7) is the only constant growth rate that satisfies the 
transversality condition. It is also asymptotically stable under iterations of (3.10). 

PROOF: Derivation of (3.10) from (EE) is a simple matter of algebra. Similarly 
it is straightforward to verify that when a + -q = 1 the function r has only one 
fixed point equal to 0. When a + 77 0 1, r has the two fixed points A1 = 0, 
A2 = (60)l/(l-a-71). The transversality condition reduces to 8Ai +77 < 1. The case 
a + '7 < 1 is similar to the model without externality. It is easy to see that the 
root A2 is the unique equilibrium and that it is unstable. 

The case a + 'q > 1 requires a few extra computations. Here f3 > 0, so that 
r(0) = 0 > 1, r() = 0, and r'(A) = (50)'/(l-a)AP(l - 1(0 - A)). This implies, in 
particular that r'(A1) > 0 whereas r'(A2) may be of either sign. The condition 
80a+71 > 1 guarantees at once that A1 > A2, and that A2 satisfies the transversalW 
ity condition. To check that A2 is stable one has only to notice that T has a 
minimum at A* = 0 - 1/13 and that our last condition is equivalent to Ae < A2. 

Q.E.D. 

The form of indeterminacy described in our theorem is the familiar one in 
which for a given initial condition xo there exists an open interval of values of 
x1 that are all consistent with equilibrium. These distinct trajectories grow 
asymptotically at a common rate A2 but need to converge to each other, i.e. they 
typically grow "parallel" forever. It is difficult to say if the parameter values at 
which this phenomenon occurs may be considered "realistic" or otherwise, 
mainly because the model we are using is rather simplified. To get an idea of 
the range of values involved we provide a rough parameterization of our model. 
Choose a depreciation rate of about 10% and a capital/output ratio around 3.4 
in the investment sector to obtain a value of 0 equal to 1.2. With a relatively low 
discount factor, say 8 = .80, one needs a = .5, q = 1 to bring A2 around the 
"credible" value of 1.08. Then, as can be easily verified, the stability condition is 
also satisfied and equilibria are indeed indeterminate. Everything clearly relies 
on the magnitude of the externalities, a matter about which very little empirical 
evidence is available. 

The indeterminate and chaotic equilibria we mentioned above arise at about 
the same parameter values when A2 < -1/13. r(A) is then a nonmonotone 
mapping of the interval [0, 01 into itself for which both stationary states A1 and 
A2 are dynamically unstable. 

One final comment on the interpretation to be given to the last theorem and 
to the case of "chaotic indeterminacy" we just outlined: According to this model 
two countries that start from the same initial stock and follow different equilib- 
ria from then on will display a common average growth rate only in the long run. 
Their capital stocks may therefore be persistently different (because differen-t 
values of x1 were chosen) and we may well observe their relative economic 
conditions becoming increasingly different. In other words models of the type 
discussed here may not only account for the fact that certain countries never 
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catch-up with the leader, but also for the more disturbing phenomenon that 
countries which started out from almost similar conditions a century ago, have 
been growing very differently since then. In particular one can think of examples 
in which a small difference in the choice of x1 (given a common xo) will induce 
two diverging sequences of capital stocks, growing at a common rate only in the 
distant future. 

4. CONCLUSIONS 

We have studied the determinacy of competitive equilibrium in infinite 
horizon models of capital accumulation with productive externalities. 

In the standard one-sector model we have proved that equilibria converging 
to a steady state are always locally unique and that unbounded equilibria 
converging to a stationary growth rate are also locally unique under reasonably 
mild conditions. 

We have also addressed the problem of indeterminacy within the context of a 
two-sector growth model again in the presence of an aggregate externality. In 
this case indeterminacy of equilibrium seems to be always possible and indeed 
appears quite easily even in the simplest models. For very standard functional 
forms of the utility and production functions and for parameter values that 
appear altogether not unreasonable there exists a continuum of distinct equilib- 
ria departing from a common initial stock of capital and either converging to the 
same steady state or growing asymptotically at a common rate. 

The practical implications of these results cannot be fully evaluated given the 
simplified models adopted here. Further research along these lines should 
clarify if the phenomenon we have pointed out is robust with regards to a 
number of empirically relevant perturbations of the stylized models we have 
studied. From the point of view of the theory of economic development an 
important extension is to models with more than one stock of capital (physical 
and human) and to models of technological change and/or industrialization. 
From the point of view of business cycle theory one would be curious as to what 
implications an endogenous labor supply and more realistic production func- 
tions would have on the model's predictions about the interplay between 
endogenous growth and endogenous oscillations. From a general perspective it 
seems that the study of multisector growth models with external effects is a 
promising avenue for the long overdue reconciliation between the theory of 
economic growth and the theory of the business cycle. 
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