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INTERNATIONAL ECONOMIC REVIEW 
Vol. 37, No. 2, May 1996 

ENDOGENOUS GROWTH IN MULTISECTOR 
RAMSEY MODELS* 

BY JIM DOLMAS1 

In this paper, I give sufficient conditions for the existence of endogenously 
growing optimal paths in a general multisector Ramsey model of optimal 
capital accumulation. The key assumption involves the existence of a positive 
vector of capital stocks which admits strictly positive consumption and expansi- 
bility in inverse proportion to the utility discount factor. If the technology set 
contains the ray through such a point, in addition to standard convexity and 
interiority assumptions, then optimal paths grow without bound from any 
strictly positive initial stocks. The result unifies a number of existing models in 
the growth theory literature. 

1. INTRODUCTION 

Within both capital theory and macroeconomics there has been a resurgence of 
interest in models of capital accumulation which display endogenous growth-mod- 
els without time-dependent technologies which nonetheless have the property that 
the optimal or equilibrium paths of capital and consumption which they generate 
grow without bound. It is thus surprising that little work has been done in 
establishing conditions which guarantee this property. A recent exception is Jones 
and Manuelli (1990), working in a variant of the standard one-sector Ramsey model 
of optimal growth. Earlier, Gale and Sutherland (1968) also proved a growth result 
for an undiscounted one-sector Ramsey model. By and large, though, this research 
program has been carried out in a series of particular examples with little suggestion 
of a general framework for achieving endogenous growth. This essay attempts to fill 
that gap, at least for models which may be cast in the convex Ramsey optimal 
growth framework.2 The results below provide sufficient conditions for the existence 
of endogenously growing optimal paths in a convex multisector Ramsey model of 
optimal capital accumulation, thus unifying a number of particular examples in the 
growth literature, as well as providing simple conditions for guaranteeing growth in 
more complex models. 

By way of motivation, consider the simplest of all endogenous growth models, the 
one-sector linear model, or A-k model, used by Rebelo (1991). There is a single, 
all-purpose consumption-investment good. An infinitely-lived representative con- 

* Manuscript received December 1993. 
l This paper is based on the second chapter of my Ph.D. thesis at the University of Rochester. 

The comments of John H. Boyd III, Lionel McKenzie, audiences at Rochester, Toronto and the 
1991 Midwest Mathematical Economics meetings, and anonymous referees are gratefully acknowl- 
edged. Any remaining errors are my own. 

2 See, for example, Barro and Sala-i-Martin (1992), Bond, Wang and Yip (1993), King and 
Rebelo (1991) for models of this sort. 
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sumer chooses paths of consumption and capital so as to maximize lifetime utility 

00 

E Vt-u(c,) 
t=1 

subject to the technological constraints ct + kt <Akt-1 for all t = 1, 2... given some 
ko > 0. Optimal paths grow without bound whenever 5A > 1. Growth of 
optimal-and in this case equilibrium-paths depends only on the utility discount 
factor and properties of the production function. The specific value of ko and the 
parameters of u, aside from the general requirement of concavity, are not relevant. 

Similar in structure, though somewhat more complicated, are Lucas's (1988) 
extension of the Uzawa (1965) model and King and Rebelo's (1990) two-sector 
model, the dynamics of which have recently been characterized by Caballe and 
Santos (1993) and Bond, Wang and Yip (1993). In both models, the consumer's 
preferences are the same as in the A-k model. On the production side, both have 
physical goods (consumption and physical capital) produced using physical capital 
and effective labor hours. Effective labor hours are simply raw labor hours multi- 
plied by a measure of skills, the stock of human capital. Human capital in turn is 
produced using either effective labor alone or effective labor and physical capital. In 
the Lucas-Uzawa model, the constraints are ct+kt<F(kt_1,ntht_1) and ht= 
G(etht--), where h denotes human capital, n labor hours allocated to physical 
goods production, and e labor hours allocated to human capital production. At each 
date, nt and et are constrained to sum up to the representative agent's endowment 
of time. In the King-Rebelo model, the human capital technology G also depends 
on kt-1, which is then divided between the two production processes. In both 
models, as in the simple A-k model, assumptions relating to the utility discount 
factor 8 and the properties of the production functions F and G suffice to 
guarantee growth.3 

Finally, Jones and Manuelli (1990), described in more detail in a later section, 
consider a convex one-sector model with one consumption-investment good and 
multiple capital stocks. Their explicit aim is to extend the A-k model to incorporate 
labor income, which is lacking in the linear case. Their production function exhibits 
diminishing returns, and hence positive labor income, at low levels of output, 
followed by constant returns asymptotically. Here again, a condition relating 8 and 
properties of the production function guarantees growth. 

All these models can be shown to possess a common structure, and to derive 
endogenous growth in a common manner. That the conditions guaranteeing growth 
are independent of the specific value of initial capital and the parameters of 
u-abstracting from the spillovers in Lucas's model-suggests a connection with 
results on the existence of steady states in bounded convex models. In particular, 
even in the most general convex multisector models, steady states arise through 

3Lucas (1988) includes an additional "spillover," or externality, term in the physical goods 
technology F, depending on the level of human capital h. This external effect is inessential to the 
derivation of endogenously growing paths, though it does divorce equilibria from optima in his 
model and yields a dependence of the equilibrium growth rate on parameters of u. 
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combining "expansibility" assumptions with a sufficient amount of "diminishing 
returns."4 

The standard pictures of the long-run supply and demand for capital which one 
derives in the one-sector case can provide some intuition here. The same may be 
used to show why 5A > 1 yields growth in the simple A-k model. The role of an 
expansibility assumption, 5f'(O) > 1 in the one-sector model with production func- 
tion f, is to guarantee that the technology is sufficiently productive at low levels of 
capital that the demand for capital lies initially above its long-run supply, which in 
the one-sector case is perfectly elastic at the rate of time preference. Expansibility 
assumptions thus involve only the utility discount factor and properties of the 
technology set. Diminishing returns, a property of the technology set alone, guaran- 
tees that eventually the demand curve for capital lies below the long-run supply 
curve. In the one-sector case, one typically assumes 5f'(k) < 1 for large enough 
values of k. The Inada-type condition f'( + oo) = 0 is an extreme version of this same 
assumption. If f' is continuous, and the usual Euler equations obtain, somewhere in 
between there must be a steady state. The condition 5A > 1 guarantees growth in 
the A-k model precisely because the demand curve for capital-perfectly elastic at 
capital's net marginal product A - 1-lies everywhere above the long-run supply 
curve for capital-perfectly elastic at the rate of time preference (1/8) - 1. The 
result in this paper shows that for a large class of multisector models, as in the 
particular examples mentioned above, the one-sector, A-k intuition carries through. 
If we bring in only half the ingredients for a steady state, maintaining expansibility 
while dispensing with diminishing returns, we achieve unbounded growth of optimal 
paths. In this light, the result may seem trivial, and perhaps it is. But relying on 
one-sector intuition does not make a proof, in the same way that the one-sector 
steady-state conditions (f'(O) > 1/8, f'( + oo) < 1/8 and f' continuous) do not 
prove that expansibility and diminishing returns guarantee the existence of steady 
states in more complicated models. Moreover, the one-sector conditions, whether 
with regard to steady states or growth, provide only a suggestion of what one must 
concretely assume in a model with multiple produced goods or costs of adjusting 
capital stocks or nondifferentiable technologies. A set of sufficient conditions for 
growth in a very general model of optimal capital accumulation may thus prove 
useful in applications, as in the construction of particular models. 

As will be seen below, a variety of particular models (including the ones cited 
above, as well as fixed-coefficient models, models with joint production, adjustment 
costs and, of course, differing numbers of consumption and capital goods) can fit 
within the framework of this paper. While the technology is described by a 
production correspondence and the necessary conditions are written in terms of 
supporting prices, they simply generalize the production functions and marginal 
conditions which characterize the differentiable models common in applications of 
growth theory. As noted above, the key conditions of the theorem have a simple 
interpretation in terms of the relationship between the long-run supply and demand 
curves for capital. I give several short examples of how the conditions may be 

4 See McKenzie (1986). 
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applied, as well as one extended example of a simple model which does not fit into 
the framework of previous results. 

The structure of the paper is as follows. In Section 2, I describe the model and 
give an overview of the main results. Section 3 contains results guaranteeing the 
existence of optimal paths, while Section 4 characterizes those optimal paths in 
terms of supporting prices and profit-maximization conditions. These necessary 
conditions are fundamental to the growth result, which shows that under certain 
monotonicity assumptions and a productivity assumption, the vector of marginal 
utilities of consumption along an optimal path from positive initial stocks must go to 
zero in the limit. The main theorem is proven in Section 5. 

In Section 6, I present an example of a model not encompassed by previous 
results, a one-sector Ramsey model with adjustment costs. The example shows how 
the results of the paper may be applied in practice. The Appendix contains proofs of 
the lemmata concerning existence of optimal paths and the necessary conditions for 
optimality. 

2. RESULTS 

The basic structure of the model is as follows. There are n consumption goods 
and m capital stocks at each date t = 1, 2,.... The capital stocks at the beginning of 
each period determine, via a production correspondence, the feasible combinations 
of consumption for that period and capital stocks for the subsequent period. Utility 
in each period is derived from consumption in that period, and lifetime utility over 
the infinite horizon is the discounted sum of one-period utilities. An optimal path of 
consumption is one which maximizes lifetime utility over the set of feasible con- 
sumption paths. 

Formally, the feasible set for the optimal growth problem is defined by a 
production correspondence 'F: Rm -> {subsets of Rnx Rm}, where (c, k')Ee @(k) has 
the interpretation that (c, k') is a feasible combination of current consumption and 
next-period's capital stocks given current-period capital stocks k. Call a path 
{ct, kt1}t=1 feasible from initial stocks k if (c, kt) e 'D(kt-1) for all t> 1, and 
ko = k. Let F(k) denote the set of paths of consumption {ct}t= 1 such that {c, kt -rt= 1 

is a feasible path from k for some path of capital {kt1-}t=7. 
Given a vector of initial capital stocks k E Rm, the Ramsey problem is to choose a 

path of consumption which maximizes lifetime utility over F(k). Lifetime utility is 
specified as 

00 

E 5tlu(ct), 
t=1 

where u: R n -> R U { - oo} is the 'felicity' or 'momentary utility' function, and 8 > 0 is 
the discount factor. 

Under standard continuity and compactness assumptions (A1-A3 below) there 
will exist a set K of initial capital stocks such that for any k E K an optimal path 
with Et t-1u(ct) > - oo exists. When momentary utility u is concave and the 
production correspondence FD has a convex graph with nonempty interior (A4-A5), 
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there will exist prices which support the optimal path in the sense that the optimal 
path is profit-maximizing at each date. These prices have the interpretation of 
marginal utilities of consumption and marginal values of capital. Given the profit- 
maximization conditions, we will show that if u and FD satisfy monotonicity assump- 
tions-u strictly increasing and FD nondecreasing (A6)-then the marginal utility of 
current consumption goes to zero along any optimal path whenever FD and 8 satisfy 
the following productivity assumption: 

(P). There exist c- >> 0 and k > 0 such that A(E, VIk) E FD(Ak) for every A > 0. 

Assumption (P) is a natural generalization of Jones and Manuelli's Condition G, 
which for their model guarantees unbounded growth of consumption. In a one-sec- 
tor model with a linear production function f(k) =Ak, (P) is equivalent to 8A > 1. 
We see below that when the model here, which encompasses Jones and Manuelli's, 
is specialized to their framework, Assumption (P) is actually weaker than their key 
condition G. 

Given the concavity and strict monotonicity of u, having the marginal utility of 
current consumption go to zero is tantamount to unbounded growth of consump- 
tion, that is, lim sup IcI I = + oo. Given that the technology is bounded at each date, 
given finite capital, the unbounded growth of consumption implies that capital 
stocks are growing without bound as well. 

3. EXISTENCE OF OPTIMAL PATHS 

The main results of the paper could be presented taking as given the existence of 
an optimal path. However, the conditions for existence of an optimal path and those 
for growth of an optimal path will often be in tension, in particular when u is 
unbounded above. Hence, it is worthwhile to present an existence result to clarify 
the nature of this tension. The result I present in this section is of the 'Weierstrass' 
variety, using the fact that an upper semicontinuous function on a compact set 
attains a maximum on that set. The method of proof adapts a partial summation 
technique exploited in Boyd (1990a). 

We wish to make assumptions on the primitives u, 8 and FD such that lifetime 
utility is upper semicontinuous and the set of feasible consumption paths is com- 
pact in some common topology. That topology will be the product topology5 on 
R x R~ix n . The following three assumptions are sufficient for this purpose. The 
first two pertain to the production correspondence FD and the felicity function u, 
respectively. 

Al. FD is a continuous, compact-valued correspondence, satisfying "free disposal," 
that is, if (c,k')E'F(k), then (j,k')Et (k) for all 0<c<c, 0<k' <k' and k k. 
There exist constants a, qr, 0 ? 0 and 1 2 1 such that (c, k') E 4?(k) implies Ic < 71 + 

OI1kHl and 1Ik'I <a + IS3kII. 

5 The product topology is the topology of pointwise convergence on the space of consumption 
paths. 
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A2. u: R+>R u {-oo} is upper semicontinuous with u(c) > - oo for c > 0. There 
are constants v, At and y, with A ? 0, such that u(c) < v + A I Ic II/y for every c e R . 

As shown in the Appendix, the last part of Al implies that if {c,}Y=1 is a feasible 
path of consumption from k, each c, resides in a compact subset of Rn. By 
Tychonoffs theorem, then, the feasible set F(k) is contained in a set which is 
compact in the product topology. Closure of F(k), which would then imply its 
compactness, follows easily from the first part of Al, which assumes that (F is 
continuous and compact-valued. 

The assumptions on u contained in A2, together with the following joint restric- 
tion on preferences and technology, will guarantee that lifetime utility Et 8t-lu(c,) 
is upper semicontinuous in the product topology on F(k). The Weierstrass theorem 
then yields the existence of an optimal path. 

A3. The constants /3 and y from Al and A2 and the discount factor 8 satisfy 
0 < 8 < 1 and 3'Y < 1. 

The first part of Assumption A3 is akin to the familiar condition of Brock and 
Gale (1969) relating the maximal growth rate of capital, the discount factor and the 
asymptotic curvature of the felicity function.6 The requirement that 8 < 1 is inessen- 
tial at this point, but would eventually be required if consumption is to grow without 
bound, and if we consider momentary utilities which are unbounded above.7 In the 
Appendix I prove: 

LEMMA 3.1. Let 'F, u and 8 satisfy A1-A 3. Then, there exists from any k E R+ a 
path {ct}t =1 e F(k) which attains 

sup( E t lu(ct): {ct}t)i1 EF(k)} 

Call this supremum V(k). The one problem which remains is that since u has 
been assumed to be an upper semicontinuous function taking values in R U { -o}, 

we may have V(k)= -?? for some values of k. Let K cR+ denote the set of k 
satisfying V(k)> - ??. Given free disposal, K will be nonempty when we make the 
productivity Assumption (P), which we employ below. To see this, let (P) hold, and 
suppose k is such that k 2 pk for some p > 0, where k is as defined in (P). Then, by 
free disposal, consumption every period of Ak is feasible, where ? >> 0 is as defined 

6 McFadden (1973) gives a thorough analysis of existence conditions of the 'Brock-Gale' sort for 
one-sector Ramsey models and for multisector models with 'input-output' technology sets of the 
form considered by von Neumann (1945), Malinvaud (1953), Gale (1967) and others. The sort of 
technologies common in the recent growth theory literature, which fit very neatly into the capital 
accumulation framework presented above, are often less easily put within the framework which 
McFadden analyzes. The adjustment-cost model considered in Section 6 below is one such example. 

7 Here, 8 > 1, f3 2 1 and 8f3y < 1 imply -y < 0. With a productive technology, 'upcounting' (setting 
8 > 1) is potentially permissible if u is bounded above, if sup{u(c)} = 0, and if consumption grows 
sufficiently fast. I discuss this possibility in Section 5. 
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in (P) and A is some positive real number. Thus, for all such values of k, (P) and the 
free disposal assumption imply 

V(k) 
> 

1(E - 00 

8 ~ ~ - 
In particular, int(R+) c K.8 

4. SUPPORTING PRICES 

We now proceed to characterize the optimal path in terms of necessary condi- 
tions. In standard fashion, the derivation of the necessary conditions here relies 
upon convexity and interiority assumptions which allow the use of certain results in 
convex optimization theory. 

Recall that the value function V: Rm -+ R U { - oo} has been defined as 

V(k) = sup{E 5 t1 u(ct): {ct}c10 EF(k)}, 

and K c Rm has been defined as the set of capital stocks for which V(k)> - oo. 
When u is concave and F(k) satisfies F(ak + (1 - a)k) D aF(k) + (1 - a)F(k) for 
all k, kE Rm and a E [0, 1], the value function must be concave as well. F in turn 
will have the desired property whenever the graph of the production correspondence, 

Gr() {(k, c, k') E RmXn RX Rm: (c, k') e (?(k)}, 

is convex. When Gr(FD) is convex, the convex combination of two feasible consump- 
tion paths is feasible by employing the convex combination of the associated capital 
paths. Hence I assume: 

A4. The function u is concave. Gr(FD) is convex. 

Note that when V is concave, the set K = {k: V(k) > - oo} is convex. It is also 
straightforward to show that V satisfies Bellman's equation: 

V(k) = sup{u(c) + 5V(k'): (c, k') e 4?(k)}. 

The derivation of the necessary conditions will rely heavily on the fact that 
V(kt-1) = u(ct) + 8V(kt) for all t along an optimal path. 

The supergradients of u and V will play the role of prices in our subsequent 
analysis. Formally, for a function f: R' -> R, w is a supergradient of f at a point x if 

8 Clearly, the existence of a constant, strictly positive path of consumption, which is implied by 
(P) and free disposal, is more than sufficient to give V(k)> - oo when u is unbounded below. 
For c eR+, consider u(c) = cV/y for y <0. A path (c,} with c = 0'-lc1 and 0<0<1 has 

Et 8t'-u(ct) > - provided O0Y < 1, even though c, -- 0 and u(ct) - -oo. If our concern were with 
less productive technologies, we would want to take this fact into account. 
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w e R' and f(x) + w(y - x) ?f(y) Vy eR'. Proper concave functions which are 
bounded below always have supergradients, which may be thought of as generalized 
derivatives. The set of supergradients of f at x is denoted df(x). If f'(x) exists, 
then df(x) = {f '(x)}. If A is a set in R', and x eA, the notation supp{A, x} denotes 
the support of A at x-i.e., the collection of all w with wu 2 wy for all y EA. We 
will use below (in Lemma 4.1) the following result from convex optimization theory. 

FACT (ABSTRACT KUHN-TUCKER THEOREM). Suppose f: R' -- R is concave and 
bounded below on a convex set D with nonempty interior. Then x* solves max{f(x): 
x E D} if and only if df(x*) n supp{D, x*} # O.' 

Let G denote the subset of R7 x R~ x Rm obtained by intersecting Gr(@D) with 
KxR+n x K. Note that, given our assumptions, Gr(@D) and K are both convex, so 
that G is convex as well. Looking ahead to applying the Kuhn-Tucker theorem, we 
also assume: 

A5. G has a nonempty interior. 

The main result for the theorems given in the next section is the following lemma, 
which establishes necessary conditions for optimality. The conditions should appear 
familiar; they can be interpreted either as a generalization of the duality-based 
necessary conditions from the reduced form models of the turnpike literature or as 
an analogy to the profit maximization conditions in Malinvaud-type models. The 
lemma shows that optimal paths from initial stocks which are interior to K are 
necessarily price supported in the sense that marginal utilities of consumption and 
marginal values of capital support the optimal choices of current capital, consump- 
tion and next-period's capital out of the set G at each date: 

LEMMA 4.1. Assume A1-A5, and let {ct, kt 1t= denote an optimal path from 
ko E int(K). Then, there are prices qt, pt}- I Yt= l with qt E d u(ct), t_- 1 e d V(kt- 1 ) and 
such that (-pt-1, qt, 8pt) supports G at (kt_1, ct. kt) at each t. 

The condition '( -Pt -1, qt, 8pt) supports G at (kt 1, ct. kd)' can be restated as 

qtct + 8ptkt -ptlkt-, 2 qtc + 8ptk' -pt-1k 

for all (k, c, k') E G. In other words, a firm with technology set given by G-pro- 
ducing consumption and capital, with capital as an input-would find the optimal 
path to be profit-maximizing if it faced the sequence of prices derived in the lemma. 

9 If x* maximizes f over all of X, then 0 E df(x*), by definition of df. The abstract Kuhn-Tucker 
theorem follows from noting that maximizing f over some constraint set D is the same thing as 
maximizing f + ID over all of X, where FD(x) = 0 if x E D and FD(x) =- o otherwise. Then, under 
the given assumptions, zero must be in the supergradient of (f + FD)(x*) at an optimal x*, which 
supergradient is in turn simply df(x*) + dFD(x*). But dFD(x*) is simply -supp{D, x*}. For results 
concerning supergradients, see Clarke (1983). 
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The proof of the lemma, given in the Appendix, proceeds inductively by showing 
that if a V is ever nonempty along an optimal path with k, E K for all t, then a V is 
nonempty thereafter, as is du. Further, the prices contained in the supergradients, 
appropriately discounted, support the optimal path in the sense described above. 
The condition kt E K for t = 1, 2,.. ., is a ready consequence of the assumption that 
ko e K, given that V satisfies Bellman's equation. To begin the induction, an appeal 
to standard results shows that if ko E int(K), we will have d V(ko) # 0. 

Note that since int(R+) c K when Assumption (P) is made, we will ultimately 
have supporting prices from any ko >> 0. 

5. ENDOGENOUS GROWTH 

We now combine the necessary conditions derived in the last section with 
monotonicity assumptions on u and (D and the productivity Assumption (P) regard- 
ing (D and 8. The monotonicity assumptions imply, and we will show, that the prices 
at each date are such that qt, the vector of consumption prices, is strictly positive, 
and Pt' the vector of capital values, is nonzero and weakly positive. The productivity 
assumption yields an even sharper restriction: along any optimal path which is 
price-supported, the qt's converge to zero. Combining this with the concavity and 
monotonicity of u yields the conclusion that the optimal path of consumption must 
grow without bound. The monotonicity assumption is: 

A6. F is non-decreasing (k 2 k implies ?(k) c ?(k)), and u is strictly increasing 
(cj > c implies u(cj) > u(c)). 

Recall that the productivity Assumption (P) is: 

(P). There are c- >> 0 and k > 0 with A(c, 8-'k) e ' (Ak) for all A ? 0. 

Another way of stating (P) is that Gr(@D) contains the ray through (k, c, 8 'k). 
Note that G contains this ray less the origin, since any positive scalar multiple of k 
is in the set K. 

The monotonicity assumption on (D implies that V is non-decreasing; hence, if 
p E aV(k), then p ? 0. Since u is strictly increasing, q E du(c) implies q >> 0. This 
implies that the sequence of prices {qt}t=1 from the previous lemma satisfies qt >> 0 
for all t. Combining this with the fact that G contains the ray through (k, c, -'k), 
the {pt}7=1 of Lemma 4.1 must in fact satisfy Pt # 0 for all t. To see this, suppose 
that Pt-i = 0 for some t. If the profit-maximization condition is to be satisfied at t, 
we must have 0 2qtc+ 5pt(6-I) -pt-1k=qtc+ptk. But, qt>> 0, PtO0, c >> 0 
and k > 0 together imply that qt E + ptk is strictly greater than zero, so the 
inequality cannot hold at t, in violation of the previous lemma. Hence, we must have 
Pt > 0 for all t. 

Some discussion of (P) is in order. Clearly, (P) is an assumption of some measure 
of constant returns to scale. Constant returns to scale implies that there are no 
essential fixed factors of production. In a model with primary resources such as 
labor and land, one would have to view those resources as being measured not in 
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terms of physical stocks, but rather in terms of the services which they provide. This 
is the standard view in human capital-based growth models in which hours of labor 
are in fixed supply, but the services of labor may be augmented by skill accumula- 
tion. 

(P) also implies that the 83 of Assumption Al can be no less than u-1, or 365 ? 1; 
in most particular examples, we will in fact have /3 > 1. Here, the tension between 
existence and growth of optimal paths becomes clear. If u is unbounded above, so 
that the y from A2 is positive, the dual requirements of 83Y8 < 1 and /3 > 1 can 
place tight restrictions on the primitives of the model, if one is to have both 
existence and growth. The simple one-sector model with f(k) = Ak, for A> 1, and 
u(c) = cy/y, for y ? 0, provides a good illustration of this tension. The conditions 
for existence and growth in this case are AM8 < 1 and 8A > 1. Optimal paths, when 
they exist, have a simple form; because of the homogeneity of utility and the 
linearity of the technology we must have k, = OAk,-1 and c, = (1 - 0)Ak,-1 for 
some 0 e (0, 1).1o In fact, from the Euler equations for the problem," one can show 
that 0= (A'8 )(1/1 "). The common growth factor shared by consumption and 
capital is then (8A)(11'/-", which is greater than one whenever 8A > 1. Momentary 
utility at date t along such a path will be proportional to [(8A)0/' - ')t- 1 discount- 
ing by 8`1 gives [(AX)(1/'- )]t-1, so the utility sum converges whenever AM8 < 1. 
For y E (0, 1), 8 < 1 is necessary for there to exist an A which meets both condi- 
tions; given 6 < 1 and y E (0,1), an interval of feasible A's exists, the size of which 
shrinks as either y or 8 approach one. It is in this case, with utility unbounded 
above, that the tension between existence and growth is most pronounced. For 
y < 0, so utility is bounded above but unbounded below, any A > 1/8 will meet 
both requirements if 8 < 1. This is not surprising since, when utility is unbounded 
below, a more productive technology enhances, rather than harms, the possibility for 
existence. 

As noted in Section 3, upcounting-having 6 > 1-is in fact possible when y < 0. 
If y < 0 and 8 > 1, the requirements for both existence and growth are met by any A 
with AY < 1/8, since AY < 1/8 < 1 implies A > 1 > 1/8. In this case, existence 
actually presupposes growth. If we think of (P) as a constraint on the primitives of 
the model, that constraint is slack in this case. 

Note, too, that (P) renders inadmissible for optimal growth considerations certain 
types of momentary utility functions. In particular, if u is homogenous of degree 
one, an optimum will fail to exist from strictly positive initial stocks. This follows 
from the fact that if k >> 0, then the path of consumption given by ct = A(1/8)tl5 
is feasible from k for some A > 0, because of free disposal. If u is homogeneous of 
degree one, u(ct) = (1/8)t-u(Ac), and E' 1 8t'1u(ct) diverges as T goes to infin- 
ity. In particular, linear or Cobb-Douglas felicities are ruled out. 

A simple multisector model illustrating (P) is the fixed coefficients model with 

D(k) = {(c,k') ERnXRm: Qc+Rk' <k), 

10 See Boyd (1990b). 
1 See Section 6, below. 
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where Q is an m X n nonnegative matrix and R is an m X m nonnegative matrix. 
The i, jth element of Q, qij, is the amount of capital good i needed at the outset 
of the period per unit of consumption good j produced within the period, while rij 
is the amount of the ith capital good required per unit of capital good j taken out of 
the period. A sufficient condition for a model with this FD to satisfy (P) is that the 
matrix (I - 6- 1R) have a strictly positive inverse. When n = m = 1 and Q = R = A - 1, 
FD reduces to the one-sector linear technology, and the condition that (I - 8- 1R) 
have a positive inverse becomes the condition 8A > 1. 

A simple consequence of our assumptions thus far is the nonexistence of a 
nonzero optimal steady state.12 

THEOREM 5.1. (Nonexistence of an optimal steady state.) Make, in addition to the 
assumptions of Lemma 4.1, AssumptionsA6 and (P). Then, the optimal growth model 
cannot have a nonzero optimal steady state. 

PROOF. Suppose that (k*, c*) is an optimal steady state. By Lemma 4.1, there is 
q* E du(c*) and p* E dV(k*) such that (-p*, q*, 8p*) supports G at (k*,c*, k*). 
Let (k, c-) be as in Assumption (P)-i.e., c- >> , k> O and A(k, c, 8alk) E 
Gr(4D) VA > 0. Thus, we must have 

q*c* + 8p*k* -p*k* >?(q*E + 8p*(8alk) -p*k) 

> Aq*c- 

for all A > 0. But q* > 0 since u is strictly increasing, so ? >> 0 implies 
q*ZF > 0-implying the above inequality cannot be maintained for all A > 0. [1 

It's interesting that the existence of a capital stock expansible by 8 -1, when taken 
in conjunction with the assumption of bounded feasible paths, is instrumental in 
proving the existence of an optimal steady state. Here, with boundedness relaxed, 
the expansible stock assumption is instrumental in proving the nonexistence of an 
optimal steady state.13 Theorem 5.1 also shows the sense in which the determinants 
of growth in this model are related to the determinants of a steady state in the 
standard neoclassical model with an essential fixed factor of production. Basically, 
the list of ingredients is the same except for the constant returns to scale with 
respect to the expansible stock. The intuitive picture is that of a demand curve for 
capital which lies everywhere above capital's long run supply curve, which is flat at 
the rate of time preference. The "expansibility" part of (P) puts the demand curve 
initially above the supply curve, just as in the basic neoclassical model, while the 
"constant returns to scale" part keeps it there. The lack of an intersection between 
the demand for capital and its long-run supply vitiates the possibility of an optimal 

12An optimal steady state in this context is a pair (k*, c*) such that the path {ct, kt-1t=1, where 
ct = c* and kt = k* Vt, is optimal from ko = k*. 

13 In the standard reduced-form model from the turnpike literature, where consumption is not 
explicitly introduced, the boundedness assumption typically takes the form: There are constants 
K > 0 and 0 < 1 such that if (k,-1, k,) is a feasible combination of current and next-period capital, 
then IIktII < Ollkt_1II whenever Ilk,-,11 2 K. 
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steady state and, as Theorem 5.2 shows, guarantees the endogenous growth of 
optimal paths. 

The next result shows that the marginal utilities of consumption along the optimal 
path-the prices qt-must go to zero as t goes to infinity. Given the concavity and 
monotonicity of utility, this is tantamount to the level of consumption going to 
infinity for some subset of the n consumption goods. Whether consumption of all n 
goods goes to infinity or not will depend on the specific assumptions made in a given 
model as regards the function u. It is conceivable that, given substitutabilities 
between goods, consumption of some goods may go to infinity while consumption of 
other goods remains bounded, perhaps even going to zero. A model that predicted 
eventual unbounded consumption of all goods would hardly be realistic if goods are 
distinguished with even moderate precision.'4 In more aggregative models it is 
perhaps reasonable to view all goods within a period as complements, in which case 
qt- 0 would imply cit - oo for all i = 1,2... n. Obviously, if u takes the form 
U(ct) = v1(c1,) + v2(c2d) + ... +vn(cnt), with each vi strictly increasing and concave, 
then qt -0 implies cit > oo for all i = 1, 2 ... n. 

THEOREM 5.2. Let {ct. kt 1}t= 1 denote an optimal path from initial stocks k >> 0, 
and let {qt, Pt- 1}t=1 be as derived in Lemma 4.1. Then lim qt = 0. 

PROOF. Since G contains the ray through (k, c, 8 'k) we must have 

0 2 qtc + 8p&(-1k) -pt-1k 

or 

0 2 qtc +ptk -pt-lk Vt. 

We've already noted that qt and c are both strictly positive, so qtZ > 0. Thus 

0 >ptk -pt-1k, 

or pt-1k > ptk for all t. Since Pt and k are both positive, ptk ? 0. Thus, {pt-1 k}yt 1 
is a decreasing sequence of real numbers, bounded below by zero-hence conver- 
gent, hence Cauchy. So, for any E > 0, there is a T with Iptk -pt-1kI < E whenever 
t ? T. Hence, 

0 ? qtZ +ptk -pt-1k 

2 qtc - Iptk -pt-kI 

> qtZc-e 

for all t ? T. In other words, for any E > 0, there is a T with E > qtZ > 0 for all t ? T. 
Since ? >? 0, the result in the statement of the theorem is immediate. E 

14 To borrow an example from Stokey (1988), one would not want consumption of both gruel and 
steak to grow without bound in a reasonable model. 
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In the case of a single consumption good, given the concavity and monotonicity of 
u, lim q= 0 is equivalent to lim sup c, = + oo. With more than one consumption 
good, the relationship between the asymptotic behavior of q, and that of c, will, as 
noted above, depend on aspects of utility such as the presence of complementarities 
or substitutabilities between goods within a given period. Nonetheless, consumption 
of some subset of the n consumption goods must grow without bound: 

COROLLARY 5.3. Let ct and qt be as in Theorem 5.2. The condition lim qt = 0 
implies lim sup lclt +oo. 

PROOF. Suppose that ct is bounded. Let c* = sup ct, which is then finite. By 
definition of qt 

u(ct) + qt(c- ct) 2 u(c) (V/c E- R) (V/t). 

In particular, u(ct) + qt(c* + e - ct) ? u(c* + e) where e = (1, 1,... 1). Rearranging, 
we obtain qt(c* + e) ? u(c* + e) - u(ct) + qtct. The right-hand side of this last 
inequality is bounded away from zero by a strictly positive number, since u is strictly 
increasing and c* ? ct Vt. But the condition lim qt = 0 implies there is eventually a t 
with qt(c* + e) less than any fixed positive number, an obvious contradiction. Thus 
Ct is not bounded, and lim sup lctl = + ooE 

As an example to illustrate the possibilities here, consider the felicity function 

U(Cl C2 1+c1 +C2 

This u is differentiable, with Du(c) = (17(1 + c1 + c2)2, 1/(1 + c1 + c2)2). Thus, if 
qt= Du(ct) goes to zero, we may conclude that either c1t has gone to infinity or c2t 
has gone to infinity, but not necessarily both c1t and c2t. On the other hand, if, for 
example, 

U(C1, C2) =1 2 

where a + b < 1, then Du(ct) going to zero is equivalent to both c1t and c2t going to 
infinity. 

What does Theorem 5.2 imply for the behavior of capital stocks along the optimal 
path? Clearly, since FD is compact-valued, unbounded growth of any subset of 
consumption goods can only occur if some subset of the capital stocks grows without 
bound as well. As with the consumption goods, more specific assumptions on the 
primitives u and FD would yield more precise implications for the behavior of capital 
along the optimal path. For example, in the fixed coefficients model described 
above, if u is separable across consumption goods, so cit -? oo for all i = 1, 2... n, 
and if each capital good is an input in the production of some consumption good, 
which means for each i e {1, 2... m} there is a j e {1, 2... n} with qij> 0, then 
kit -*oo for all i= 1,2...m. 
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Note that all that is essential to the proof of Theorem 5.2 is that the input-output 
combination (k, c, 8- 1k) earn a non-positive profit at the supporting prices. A 
simple technology (simple in an aesthetic sense) which accommodates this require- 
ment is that GrWC) contains a convex cone which contains (k,5,8 1k). This is 
substantially the assumption made by Jones and Manuelli (1990) in their variant of 
the one-sector model. 

A comparison with Jones and Manuelli's result is perhaps in order here. The 
model which Jones and Manuelli work with is a Ramsey model with multiple capital 
stocks, but a single produced consumption-investment good. Formally, if k E R7 is 
current capital, then current output is f(k) where f is assumed to satisfy the usual 
conditions of concavity, continuity and differentiability. The all-purpose produced 
good is divided between consumption, c, and next-period's capital, ET lki. For 
convenience, I've subsumed the depreciation of capital, which Jones and Manuelli 
keep explicit, into the definition of f. As the manner of investment makes clear, 
while there are many capital goods, all capital goods are perfect substitutes on the 
supply side. 

To guarantee growth of the optimal path, Jones and Manuelli assume first that 
there is a degree-one homogeneous, concave function h with f(k) 2 h(k) for all k. 
Further, they assume that there is a positive vector of capital stocks k such that if 
ki> 0, then 8hi(k)> 1, where 8 is the discount factor, and hi denotes the ith 
partial derivative of h. Under this assumption and standard convexity and continuity 
assumptions, they show that any optimal path must satisfy lim sup c, = + cc. 

We may show that our Assumption (P) is an implication of Jones and Manuelli's 
assumption. Suppose that h and k are as in Jones and Manuelli's assumption, that 
is, h is homogeneous of degree one, with h <f and 8hi(k)> 1 whenever ki> 0. 
Since h is degree-one homogeneous, Euler's theorem implies 8h(k) = 8i E hi(k)ki 
>E ik. Since f> h, we have 8f(k)> E7 1ki, or f(k)> E7 &8-ki. In other 
words, given initial capital k, it is feasible to produce next-period's capital in the 
amount 8 'k, and still have strictly positive consumption of c f(k) - 5i~k 8-'ki 
left over. Furthermore, since h is degree-one homogeneous, any scalar multiple of 
this plan is also feasible. 

6. A SIMPLE EXAMPLE 

In this section, I consider a simple one-sector Ramsey model with adjustment 
costs. I show how the results on the existence of optimal paths and the existence of 
endogenous growth can be applied in practice. Despite the model's simplicity, it is 
not encompassed by previous growth results such as Jones and Manuelli (1990). 

In this model, output is produced from capital according to a linear production 
function f(k) =Ak. Output is divided between consumption, c, and investment, i. 
Next period's stock of capital depends on current capital and the rate of investment, 
i/k. In particular, assume that k' = kg(i/k), where g is continuous, strictly increas- 
ing, concave and satisfies limbk - kg(i/k) = 0 for each i ? 0. The production corre- 
spondence (D is then given by 

?D(k)= {(c, k') E R2 c + i <Ak, k' = kg(i/k) for some i 2 0.). 
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On the preference side, assume for simplicity that u(c) = c'/-y, for y # 0, and 
e (0, 1). 
In order to check for the existence of optimal paths, it is enough to verify the last 

part of Al, that (c, k') E ?(k) implies c < q + Ok and k' < a + k for some 
a, 7,, 0 ? 0 and / 2 1, and the Brock-Gale condition, A3. Clearly FD satisfies the 
first part of Al-compactness, continuity and free disposal-and u obviously 
satisfies A2-upper semicontinuity on R+, boundedness below on int(R+) and 
u(c) < v + ,uc1y/y for constants v, ,u and y. 

From the definition of FD, for any kE R+ we must have 0 < c < Ak and 0 < k' < 
kg(Ak/k) = kg(A). Thus, 0 =A, 3 = max{g(A), 1} and any a, q ? 0 will meet the 
conditions of Al. If we also have 5,83 < 1 (A3), we may conclude that an optimal 
path exists from any k ?0, though when u is unbounded below, we may have 
V(k) = - ?o. However, just as with the more general analysis of Section 3, when (P) 
is assumed to hold we will have V(k) > - ?o from any k > 0. 

We now turn to the question of growth. Under what parameter restrictions will 
the optimal paths in this model display endogenous growth? Obviously, u and F 
satisfy all the basic continuity and convexity assumptions. Also, F is nondecreasing 
and u is strictly increasing, as required by A6. We need only verify the key 
Assumption (P). For (P), first note that F displays constant returns to scale. To see 
this, note that multiplying k by A > 0 multiplies feasible choices of consumption and 
investment by A as well. The feasible rates of investment i/k are unchanged. Since 
next-period's capital is linear in k given the rate of investment, feasible choices of 
next-period's capital scale by A as well. 

To check the rest of (P), note that what we want are a k > 0 and a c > 0 such that 
Ak 2 c + i and 8-'k = kg(i/k) for some i 2 0. This condition may be restated as: 
there exists a k> 0 such that 8g(i/k) = 1 and i/k<A for some i. Since g is 
continuous and strictly increasing, a sufficient condition is 8g(A) > 1, since we can 
then take k to be any positive number and set i = a(Ak) for a e (0,1). With 
8g(A) > 1, there will be an a < 1 such that 8g(aA) = 1 and c = (1 - a)Ak > 0. 
Since 8 < 1, we must have g(A) > 1. Thinking back to the discussion of existence, 
we then have g(A) = max{g(A), 1), and the Brock-Gale condition becomes 
8g(A)y < 1. 

We have an analogy to the simple one-sector linear model. There, growth was 
guaranteed by the restriction 8A > 1; assuming A > 1, the existence condition for 
that model would be 8Ay < 1. Both conditions can be recovered here by letting 
g(i/k) = i/k. We also can see again that the dual requirements of existence and 
growth can put fairly sharp restrictions on the primitives of the model. Here, 
feasible choices of 8, A, y and g( ) are circumscribed by the conditions 8g(A)7 < 1 
for existence, and 8g(A) > 1 for growth. 

One can see how growth is implied by the condition 8g(A) > 1 by considering the 
Euler equations which characterize the optimum for this model. For simplicity, let 
Zt denote the rate of investment at time t, so kt = kt g(zt). The Euler equations 
are: 

( A)( + gA(z ) (Vt). 
Ct I ~ t\ g'(zt+i) )+ 
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Despite the adjustment costs, the technology is still constant returns to scale. 
Couple this with homogeneous utility, and the optimal choices for consumption and 
next-period's capital must be linear in current capital, implying that investment is 
also linear in current capital.15 Thus, it = Okt, for some 0, and z; = 0 for all t. The 
Euler equations then reduce to: 

( c'+ = ) 8{g(6) +g'(0)(A - 0)}. 

Also, ct+ l/ct =ktkt- 1 = g(6). It's quite simple to see, given this expression for the 
Euler equation, that our condition 8g(A) > 1 generates growth. To see this, note 
that since g is concave, g(z) + g'(z)(i - z) ? g(i) for all z and i. In particular, 

g(6) +g'(0)(A - 0) ?g(A) 

which, from the Euler equation, implies 

C >+1 2g(A) > . 

Southern Methodist University, U.S.A. 

7. APPENDIX: PROOFS OF LEMMAS 3.1 AND 4.1 

7.1. Lemma 3.1. Let A1-A3 hold, and let b > f3 1 and such that b0 < 1. 
Since J3l8 < 1 by A3, such a b exists. Given Al, if {ct}t=1 is a feasible path of 
consumption, we must have 

1IctII < q + 0I kt,-1 

[ bt1 - I 1 

or 

ic110 ' n1 + Obt- 1 a + lkl 

since b > 1. This verifies the claim made in the text, that each ct along a feasible 
path resides in a compact subset of Rn. Analogously, each kt associated with a 
feasible path of consumption lies in a compact subset of R7. By Tychonoff s 
theorem, both F(k) and the set of associated capital paths lie in product-compact 
sets. That F(k) is closed in the product topology is then a simple consequence of 
the continuity and compact-valuedness of (. 

15 See Boyd (1990b). 
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What remains is to verify that lifetime utility is upper semicontinuous in the 
product topology on F(k). The steps we follow are a 'partial summation' technique, 
adapted from Boyd (1990a). From A2 and the previous inequality, we obtain 

u(c,) < v+ p7[) + Obt-'(a + 1IkII)] /y 

< v +M(by)t 1 

where M /-,r + 0(a + l1k I)]y/y. The last inequality relies on the assumptions 
71, 2 0 and b > > 1, and the fact that (r)W/y is an increasing function of r 2 0. 
For T = 1, 2,. .., consider the partial sums: 

T 

UT({ct17Il) = E at-1{u(ct) - P-M(by)t 1j. 
t=1 

Given that u is upper semicontinuous on R', each UT is upper semicontinuous in 
the product topology on F(k). Moreover, given that the terms in the summations 
are nonpositive, the UT's form a decreasing sequence, with infimum 

U.o({Ct~t=1)= E at lU(Ct) - 1 _ - ba 
t=1 -by 

since 8 < 1 and b0 < 1. As the infimum of any collection of upper semicontinuous 
functions is upper semicontinuous,16 we conclude that Et t-'u(ct) is upper semi- 
continuous in the product topology on F(k). The result in the lemma then follows 
by the Weierstrass theorem. C] 

Note from the above arguments that the part of A3 which assumes 8 < 1 can be 
relaxed to state: either 8 < 1 or v = 0. This accommodates upcounting, though, as 
noted in Section 3, upcounting, consumption growth and utility unbounded above 
are not consistent with existence. When utility is bounded above by zero, but 
unbounded below, existence under upcounting presupposes consumption growth. 

7.2. Lemma 4.1. Obviously, ko E K implies kt E K for every t along an 
optimal path, since V must satisfy Bellman's equation. Also, ko E int(K) implies 
a V(kO) = 0, since V is proper, concave and bounded below on a neighborhood of 
ko. The following steps set up an induction which, given a V(ko) =0, show that 
aV(kd) #0 for every t. 

Suppose that d V(kt-1) # 0 for some t > 1, and consider the function W defined 
on G = Gr(Q) n {K x Rn+ x K) as follows: 

W(k, c, k') = u(c) + 8V(k') -pt-1k 

16 See Berge (1963, chapter IV, ?8, Theorem 3). 
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where Pt- E d V(k,1). By definition of d V, we have: 

V(kt-) )-pt-lkt-, 2 V(k) -pt-l k Vk E- R+ . 

Since (ct, kt) along the optimal path attains the maximum on the right-hand side of 
Bellman's equation at each date, given kt-1, the left-hand side of the above 
inequality is simply W(kt 1, ct. kt). Meanwhile, by definition of V(k), the right-hand 
side exceeds u(c) + 8V(k') -pt1k for any (c, k') E- (k), for every k. In other 
words: 

V(k) - Pt- 1k 2 W(k, C, k') V(k, c, k') E- Gr((?), 

and in particular V(k, c, k') E G. Combining these inequalities, we have: 

W(kt-lC~t 2 W VC ) V(k, c, V) e- G. 

Since kT E K at all dates T along an optimal path, (kt1, ct. kt) E G, and the above 
inequality may be stated as: (kt-1, ct, kt) maximizes W over G. The function W is 
concave, and G is convex with nonempty interior. By the abstract Kuhn-Tucker 
theorem, a necessary condition for this maximization is that d W(kt1, ct, kt) have a 
nonempty intersection with supp{G,(kt1,ct,kt))}. But dW(kt1l,ct,kt) is clearly 
{-Pt-i} X du(ct) X &9V(kt). In other words, for some qt e du(cd) and Pt e aV(kt), 
we have (-Pt-, qt, 8Pt) supporting G at (kt_1, ct kt). The price vector Pt may be 
used to repeat this argument for the subsequent period. O 
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