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E C O N O M E T R I C A 
VOLUME 44 September, 1976 NUMBER 5 

TURNPIKE THEORY 

BY LIONEL W. MCKENZIEI 

Support prices are derived for weakly maximal paths in an optimal growth model which 
is time dependent but without uncertainty. The notion of "reachable" stocks and paths 
is defined and used to derive turnpike theorems by the value loss method. The proofs do 
not depend on the presence of optimal balanced paths nor on the usual transversality 
conditions. The theorems are extended to the classical model which has a non-trivial 
von Neumann facet. 

A TURNPIKE THEOREM was first proposed, at least in a way that came to wide 
attention, by Dorfman, Samuelson, and Solow in their famous Chapter 12 of 
Linear Programming and Economic Analysis [11], entitled "Efficient Programs of 
Capital Accumulation." This was in the context of a von Neumann model in 
which labor is treated as an intermediate product. I would like to quote the critical 
passage: 

"Thus in this unexpected way, we have found a real normative significance for steady 
growth-not steady growth in general, but maximal von Neumann growth. It is, in a sense, 
the single most effective way for the system to grow, so that if we are planning long-run 
growth, no matter where we start, and where we desire to end up, it will pay in the inter- 
mediate stages to get into a growth phase of this kind. It is exactly like a turnpike paralleled 
by a network of minor roads. There is a fastest route between any two points; and if the 
origin and destination are close together and far from the turnpike, the best route may not 
touch the turnpike. But if origin and destination are far enough apart, it will always pay 
to get on to the turnpike and cover distance at the best rate of travel, even if this means 
adding a little mileage at either end. The best intermediate capital configuration is one 
which will grow most rapidly, even if it is not the desired one, it is temporarily optimal" 
[11, p. 331]. 

It is due to this reference, I believe, that theorems on asymptotic properties of 
efficient, or optimal., paths of capital accumulation came to be known as "turnpike 
theorems." 

For a long time the theory continued to be developed for the von Neumann 
model, in the strict sense of a model in which consumption appears as a necessary 
input to processes of production. In order to discuss efficient accumulation an 
objective must be introduced and in such a model the natural objective is to 
maximize the level of terminal stocks in some sense. The objective chosen by 
Dorfman, Samuelson, and Solow was to maximize the distance from the origin of 
the terminal stocks along a prescribed ray. The original proofs they used were 
only valid in a neighborhood of the turnpike. Also their arguments were incomplete 
and a slip occurred at one place. 

l This paper is a revision of my Fisher-Schultz lecture to the European Meeting of the Econometric 
Society in Grenoble, France, in September, 1974. In preparing my lecture I benefited from a Guggen- 
heim Fellowship and a Fellowship in the Center for Advanced Study in the Behavioral Sciences for 
1973-1974. In the period of revision I benefited from participation in the 1975 summer seminar on 
the Structure of Dynamical Systems Arising in Economics and the Social Sciences sponsored by the 
Mathematical Social Science Board. I particularly appreciate the assistance of William Brock, David 
Cass, Jose Scheinkman, and Karl Shell. 
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The first complete proofs were provided by McKenzie [27], Morishima [31], 
and Radner [35]. McKenzie and.Morishima proved global turnpike theorems in 
a simple Leontief-type model of accumulation, while Radner proved it in a model 
where all goods must be jointly produced at the turnpike. The Radner theorem 
was later strengthened by Nikaido [34] so that the periods near the turnpike are 
consecutive. As it turned out, it was Radner's method which led to a general style 
of proof, provided by McKenzie [26] and Tsukui [44] in the context of a Leontief 
model with durable capital goods and alternative processes in each industry. 
Also, a complete proof of the local theorem with many goods and differentiable 
production functions was given by McKenzie [25]. 

This development was severely criticized for its choice of objective and for its 
treatment of all goods as producible. One response was that the problem is so 
closely allied to the interesting case of maximizing consumption in the same 
production model that it seemed likely the theory would eventually prove useful 
for a multi-sector version of the traditional Ramsey problem too. This, indeed, 
did occur. For the one good Ramsey model, asymptotic theorems had been 
proved by Ramsey [36] and, more recently, by Cass [9], Koopmans [19], and 
Malinvaud [23]. Samuelson and Solow [41] sketched an extension of Ramsey's 
analysis to many capital goods. In these problems the objective adopted was the 
maximization of a utility sum over time, where utility is derived from current 
consumption and production is constrained by an exogenous labor supply. The 
first rigorous turnpike theorem for an economy with more than one sector was 
proved by Atsumi [2] in a two-good model using the method that Radner had 
introduced for the terminal objective in the von Neumann model. Independently, 
Romanovsky [39] in the Soviet Union solved a closely analogous problem in a 
dynamic programming format. Atsumi's method was extended to general multi- 
sector models by Gale [14], McKenzie [28], and Tsukui [45]. I should add that a 
significant role was played in this development by the Rochester Conference on 
Mathematical Models of Economic Growth held in the summer of 1964 under 
my direction with the support of the Social Science Research Council, and by a 
similar conference in the summer of 1965 at the Center for Advanced Study in the 
Behavioral Sciences under the direction of Kenneth Arrow with the support of 
the Mathematical Social Science Board. Finally, some results have been obtained 
by Atsumi [3] in a model which is intermediate between that of von Neumann and 
Ramsey, where labor is not a constraint, and the objective is to maximize a dis- 
counted sum of utility over time. 

The results that have been listed all concern optimizing models, or efficient 
models, which require perfect foresight. There are also descriptive models in 
which optimization is replaced by ad hoc rules that govern the allocation of goods 
between consumption and accumulation, such as a constant savings ratio. How- 
ever, we will not be concerned here with this large, and somewhat inconclusive, 
literature. For surveys you may consult Hahn and Matthews [15] and Burmeister 
and Dobell [8]. 

Until recently the matter stood thus for multi-sector models. There were global 
turnpike results for von Neumann models and Ramsey models where utility was 
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undiscounted and for the special case of a Leontief-type model without scarce 
labor and with discounted utility. There were also local results for discounted 
utility with scarce labor by Levhari and Leviatan [20], but there were no global 
results for perhaps the most relevant case for decision making, the maximization 
of a discounted sum of utility over time with scarce labor. However, in the past 
two years the situation has changed significatitly. First, Scheinkman [42] proved 
in a differentiable model that under the conditions leading to a global turnpike 
without discounting there will be a turnpike result when the discount factor is 
sufficiently near one. His theorem suffered somewhat from the lack of a criterion 
to indicate when the discount factor was sufficiently near one. Then Rockafellar 
[38] and Cass and Shell [10] provided criteria which can be interpreted in terms 
of the degree of concavity of the utility function. The'proof of Cass and Shell, in 
effect, generalizes t-he method used by Radner in the von Neumann model. Next, 
Brock and Scheinkman [7] proved a closely related result in a differentiable model 
with continuous time in which the condition on the discount factor took an 
especially clear, local form. A careful analysis of the local problem has been 
provided by Magill [22]. Finally, Araujo and Scheinkman [1] have proved a 
turnpike theorem in a differentiable discounted model using a dominant diagonal 
condition which does not translate directly into the degree of concavity or the 
size of the discount factor. My own contribution to the recent development is a 
somewhat different order of proof, dispensing with the transversality condition, 
for the result of Cass and Shell, generalized to the case of a nonstationary utility 
function. In the preparation for this extension I derive prices to support simul- 
taneously weakly maximal programs and their value functions. I must add the 
caution that this summary of the development of the turnpike theory in opti- 
mizing models is very cursory. In particular, we have omitted the literature that 
is now developing rapidly on models with stochastic utility and production. 

1. KINDS OF TURNPIKES 

The first turnpike theorem due to Dorfman, Samuelson, and Solow [11], was 
concerned with a finite accumulation path that swung toward an efficient balanced 
path in the middle phase of its history. In this paper I will be concerned with 
multi-sector Ramsey models, but there is a turnpike theorem in these models of 
the same kind. There is an assigned terminal capital stock and the objective is to 
maximize the sum of utility over the finite accumulation period. Then we show 
that if the accumulation period is long enough the optimal path will stay most of 
the time within an assigned small neighborhood of an infinite path that is optimal 
(using the term "optimal" vaguely at present). This kind of turnpike is illustrated 
in Figure 1, where the infinite path is balanced. 

It should be mentioned that the use'of a balanced path as the turnpike is in- 
cidental to the stationarity of the model. The real ground for the result is the 
tendency for finite optimal paths to bunch together in the middle time, and this 
tendency is preserved even in models which are time-dependent. Some theorems 
in a nonstationary context are proved by Keeler [18] for a simple Leontief model 
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FIGURE 1.-The middle turnpike. 
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FIGURE 2.-The early turnpike. 
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FIGuRE 3.-The late turnpike. 

with a terminal objective and by McKenzie in the multi-sector Ramsey model [30]. 
The second kind of turnpike theorem also concerns finite optimal paths but it 

compares them with an infinite path that is price-supported and starts from the 
same initial stocks. It asserts that a sufficiently long finite path will hug the infinite 
optimal path in its initial phase whatever terminal stocks are assigned. A strong 
theorem of this type was found by B3rock in the one-sector case [51, and a multi- 
sector theorem was given by McKenzie [30]. A turnpike theorem of the first kind 
will usually imply a theorem of the second kind, but there are other cases as well. 
The second kind of turnpike is illustrated in Figure 2. 

The third kind of turnpike deals with infinite paths that are optimal. It is the 
basic result that optimal paths converge to each other in appropriate circum- 
stances. However, in stationary models it is convenient to describe this situation 
as convergence of infinite optimal paths to the optimal balanced path. Gale -[14] 
and McKenzie [28] gave theorems of this kind. The critical property of optimal 
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balanced paths in these models is that they can be supported by prices. This fact 
may be used to prove that infinite optimal paths exist from any initial stocks. The 
crucial role of price-supported paths for proofs of existence might be guessed from 
the early existence proof of C. C. von Weizsacker [46] for one-sector Ramsey 
models. It was shown in a general setting by McKenzie [30]. The third kind of 
turnpike is illustrated in Figure 3. 

It should be noted that in the first kind of turnpike theorem, as well as in the 
third kind, the converging paths may start from different initial capital stocks, 
while in the second kind of turnpike the converging paths must have the same 
initial stocks. Moreover, the finite paths in the first two cases show their turnpike 
tendencies independently of the assigned terminal stocks. However, the features 
of the model that allow the turnpike results to be reached are quite similar for the 
three cases, so their differences are sometimes a matter of form rather than 
substance. 

It is worthwhile describing the practical utility of the three kinds of turnpike 
theorem. If the initial steps of a finite program of length T that is optimal must lie 
near the initial steps of the infinite optimal program from the same starting point, 
even though the target capital stock in period T ranges over a wide set of pos- 
sibilities, it will not be necessary to know much about tastes and technology in 
periods beyond' T in order to approximate an optimal program in the first period. 
Our models have a Markov property. The significance of facts beyond period T is 
fully allowed for in the choice of capital stocks for that period. To the degree that 
T period stocks can vary without substantial effect on choices in the first period, 
knowledge of tastes and technology beyond T is not needed. 

On the other hand, if the capital stocks of finite optimal programs of length 
T must lie near together in period X < T for widely differing initial and terminal 
stocks, it becomes possible to plan for an infinite program that is approximately 
optimal by aiming at the stock of period z for whatever program of the set is 
easiest to compute. Once more, it is not necessary to know tastes and technology 
beyond T and, in addition, planning can be concentrated on the first -X periods. 
This assumes, of course, that the T period stock of the infinite optimal program 
belongs to the set of terminal stocks for which the theorem holds, and that an 
infinite optimal program exists. 

Finally, the convergence to one another of the infinite optimal paths from 
different initial stocks means that infinite optimal paths may be approximated 
by computing finite optimal paths with the stock of any (within limits) optimal 
path in some period T as the target. This is useful if the infinite optimal path from 
a particular initial stock is easy to compute. 

2. THE GENERAL MODEL 

I will begin by describing a general model of which the models we will later use 
are special cases. In Ramsey fashion I will assume that the past influences the 
future only through the quantities of certain state variables at a point of time which 
we will identify with capital stocks. Then we suppose that the objective is given in 
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the form of a sum of periodwise utilities that depend on events within the period, 
but in reduced form may be expressed as functions of initial and terminal stocks 
of the period. When our interest is an asymptotic property of the path of capital 
stocks, there is no need to show how utility. depends on production and con- 
sumption during the period, for it is a necessary condition of an optimal program 
that these be chosen so that utility is maximized given the initial and terminal 
stocks of capital. Thus the significant choice from the viewpoint of the inter- 
temporal maximization problem is the choice of terminal stocks given initial 
stocks. This fixes the contribution of the period to the optimal program. 

The utility function may be allowed to depend on time where the dependence 
reflects changing technology, changing tastes, changing environment (so far as 
this is independent of path), and changing size and composition of population. 
Sometimes the effects of population size are recognized by using capital stocks per 
person as the arguments of the utility function. The utility function may also 
express a relative disinterest in the future. The changes must be thought of as 
foreseen and incorporated into a social evaluation function. I will not discuss the 
stochastic problem, except to remark that a turnpike theorem increases the interest 
of a model with certainty even if the world is known to be uncertain. If paths bunch 
together in the near future, it may not be necessary to know much about tastes 
and technology in the distant future. 

Formally, let u,(x, y) be a function to the real line, defined on a set D, contained 
in the nonnegative orthant of Et -1 x Et, an nt 1 nt dimensional Euclidean space. 
The vector x 0 0 lies in Et_ 1, and its components represent quantities of capital 
goods existing at time t - 1. The vector y , 0 lies in Et and its components 
represent quantities of capital goods existing at time t. Then ut(x, y) represents the 
maximum utility realizable in the period from t - 1 to t when x is the initial capital 
stock and y is the terminal capital stock. Capital goods may be broadly construed 
to include a wide set of state variables, such as elements of pollution in the environ- 
ment, properties and skills of the population, and remaining deposits of ex- 
haustible natural resources. Thus we will describe a rather general nonlinear 
optimization problem in discrete time. The formalism and also the methods of 
proof are close to those which were pioneered by Romanovsky [39], but which 
unfortunately went unnoticed in the West. 

We will say that a sequence of capital stocks {kt}, t E I, where I is a set of con- 
secutive integers, is a path of accumulation if (kt 1, kt) E Dt when t - 1 and t are 
in I. Then a path of accumulation isfeasible if it meets the assigned conditions on 
initial and terminal stocks. When the horizon is finite, an x, y will be assigned 
and a feasible path of length s must satisfy kto = x, kt5 = Y, where I = {to , ts}. 
When the horizon is infinite, the terminal requirement must be omitted. 

3. SUPPORT PRICES 

Turnpike profiles are characteristic of paths of accumulation that have certain 
optimal properties, that is, paths of accumulation which are feasible and in some 
sense maximize utility over finite or infinite horizons. Treat initial capital stocks 
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as inputs and terminal capital stocks and utility for the period as outputs. Let 
the price of utility be one. Then associated with optimal paths under certain 
assumptions there are prices for the capital stocks at which input-output com- 
binations along the optimal path achieve maximum value in each period for capital 
stock vectors in Dt. These prices also support the future utility sum in a similar 
way. The turnpike theorems will be proved by use of the support prices. 

We will find price supports for optimal paths by a method due originally to 
Weitzman [471 and modified by McKenzie [30]. When feasible paths are infinite, 
the utility sum 'Tu,(kt-, k) may diverge as T -* oo. Thus, a straightforward 
definition of optimality is not available. Let {kt}, t = 0, 1,.. ., be an infinite path 
from ko = x. Then (kt, kt? 1) e Dt+1 for all t. If {kJl is a second path from x at 
time 0, let us say that {kt} catches up to {k'} if 

T 

lim sup (ut(k_ -i, k) -ut(kt -1, kt)) i 0 

as T oo. On the other hand, let us say that {k'} overtakes {kt} if 
T 

lim infE (ut(k 1, k) -ut(kt- 1, kt)) ; 8 

for some e > 0 as T -* oo. An optimal path is a feasible path that catches up to 
every other feasible path from the same initial stocks. A weakly maximal path is 
a feasible path which is not overtaken by any other feasible path from the same 
initial stocks. This view of optimality was first proposed by von Weizsacker [46] 
and later refined by Gale [14] and Brock [4]. 

In order to avoid trivial cases we make the following assumption: 

ASSUMPTION 1: For any given t and 4 < oo, there is 4 < oo such that Ixi < 
implies ut(x, y) < 4 and lYI < (. 

We consider the weakly maximal path {kt}, t = 0, 1,..., from ko = x. The 
addition of a constant pt to the utility function ut(x, y) has no effect on the op- 
timality of a path. Then, by Assumption 1, we are free to choose ut(x, y) so that 
ut(kt- 1, kt) = 0 for all t. Let St be the set of paths {h}, r = t, t + 1,..., such that 

zt+ 1 u(h 1, h.) converges to a finite limit as T -* c). Define the value function 
Vt(x) = SUp (limTa, ooT 1 u(h.1, h)) over all {h.} E St with ht = x. Vt(x) is defined 
for x from which there is a path {h.} E St with ht = x. Vt is allowed to take the value 
oo. Clearly the given path {kt}. is an element of So and 41u(kt -1, kt) = 0 for all T. 
Then t(kt) = 0 for all t since by weak maximality there cannot be a path in St 
starting from kt whose finite utility sums exceed a positive 8 for all large T, since 
this provides a path that overtakes {kt}. 

The derivation of support prices requires the following further assumption: 

ASSUMPTION 2: The utility functions ut(x, y) are concave and closed for all t. 
The set Dt is convex. 
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For u,(x, y) to be closed means if (xS, y') -* (x, y) as s -+ co, s = 1, 2,..., where 
(x, y) lies on the boundary of Dt, then ut(xs, ys) - u,(x, y) if (x, y) e D, and 

ut(xs, yS) -_ - oo otherwise. 

Assumption 2 implies that V,(x) is a concave function. Note that VW(x) is well 
defined for any x from which the path {k,} can be reached by a path {k'} where 
k x and k' = k+ n Let Kt be the set over which Vt is well defined. Kt is con- 
vex from the concavity of u, and the convexity of D, for T ; t. Then if 5- is in the 
relative interior of Kt, I?(5X) < Xo implies that VI(x) is finite valued over K, from 
the concavity of 1/;. Also, if Vt(x) < oo and y can be reached from x at time t + n, 

Vt+ n(y) is finite, since the intervening u, are finite over D, for each r. Let Pt be the 
set of y such that (x, y) E Dt for some x. Pt is convex from the convexity of Dt. 
Let F, be the smallest flat in Et that contains P, and Kt. Given initial stocks 5-, 
we make the following assumption: 

ASSUMPTION 3: 5- E relative interior Ko and; for t ; 1, interior Pt n Kt # 0 
relative to Ft. 

Let us call {kt} a relative interior path if ko is in the relative interior of Ko and 
kt E interior P, n Kt relative to F, for t > 0. Then Assumption 3 is equivalent to 
the existence of a relative interior path from x. Since xZ E relative interior K0, 
given any x E Ko, there is x' such that 5- = cx + (1 - a)x' with 0 < a < 1 and 
x' E Ko. Then, from concavity of ut and VO(5) = 0, it follows that V0(x) < so for 
xeK0. But Vt(x) < oo and (x,y)eDt+1 implies Vt+1(y) < oo. Since, by Assump- 
tion 3, y may be chosen in the interior of Pt + 1 r Kt + 1 relative to Ft, and thus in 
the relative interior of Kt + I, Vt+ 1(x) < oo for all x E Kt + 1 as before. Thus we may 
treat Vt as finite valued in the subsequent argument. The first part of Assumption 3 
may be weakened if we exclude goods from Eo that are not initially held. We may 
also confine attention in subsequent periods to goods that can be produced on 
feasible paths from Ko. In any case, Assumption 3 depends on the particular 
optimal path both by way of the initial stocks and from the definition of Kt which 
is relative to the normalization of ut. 

Observe that {h,}eS if and only if (ht,ht+1)eD, and (ht+1,ht+2,...)eSI+1, 
since membership in St only depends on the limiting behavior of the path. Thus 
the principle of optimality holds and 

(1) Vt(x) = sup(ut+i(x,y) + Vt+I(y)) 

over all y such that (x, y) E Dt and y E K?+ 1. Let Fo be the smallest flat in Eo that 
contains Ko. Make the induction assumption that there exists pt e Ft, where 
t ; 0, such that 

(2) Vt(kt) - ptkt - Vt(x) -ptx 

over all xeK,. Since the sup in (1) is attained at y = kt+1 for x = kt by the 
assumption that {kt} is weakly maximal, we may substitute in (2) to obtain 

(3) ut+l(kt,kt+1) + Vt+l(kt+ 1) - p,kt ut+1(x,y) + V t+1(y) - ptx, 
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for all (x, y) e Dt+ 1 with y e Kt+ 1. Denote the left side of (3) by v, 1- Then 

(4) Vt+- Ut+l(X,y) + ptX i Vt+?(Y). 

We define two sets for each t j 0, 

A = {(w, y)ly v Pt+ 1 and w > vt+ 1 - Ut+ 1(x, y) + ptx for all x 

with (x, y) e Dt+ 1} 

and 

B = {(w, y)ly e Kt+ 1 and w 4 Vt + 1 (y) 

By Assumption 3 Pt + 1 r- Kt + 1 # 0. Thus A and B are not empty. A and B are 
disjoint by the inequality (4). They are also convex. Thus A and B may be separated 
by a hyperplane contained in R x Et+1 defined by a vector (7r, - pt + 1), whose 
inner product is not constant over R x Ft+1. Then 7rw - Pt+iY > 7rw' - Pt+iY' 
for all (w, y) e A and (w', y') e B. From (4) and the definitions of w, w', and vt + 1 
this implies 

(5) 2t{ut+ 1(kt, kt+ 1) + Vt+ 1(kt+ 1) - ptkt-ut+ 1(x,y) + ptx} - Pt+ Y 

; 7VtT+1(y') - Pt +Y, 

for any (x, y) such that (x, y) e Dt and any y' e Kt + 1. Put x = kt, y = kt + 1 and 
(5) becomes 

(6) gVt+K1(kt+1) - pt+lkt+ 1-7t+1(y)-Pt+lY, 

for all y' e Kt + 1. Put y' = k, + 1 and we obtain 

(7) {ut+ 1(kt, kt+ 1) - ptkt} + pt+ 1kt1 r{u+ 1(x, y) - ptX} + Pt+ 1Y, 

for all (x,y)eDt. If ir = 0, (6) and (7) together would imply p +1kt+1 = pt+ y 
over a set W equal to all y e Kt + 1 such that there is x and (x, y) e Dt +1. Since 
(7r, p +1) does not have a constant inner product over R x Ft+,, this equality is 
impossible if W contains an open set relative to Ft+ 1. However, y e Pt + 1 implies 
there is x for which (x, y) e Dt + 1. Thus W is equal to Pt + 1 r) Kt + 1 which has an 
interior relative to F,+ 1 by Assumption 3. Then we may set ir = 1. 

The induction is begun by supporting the value function VO(y) at x over Ko in 
the smallest flat Fo containing Ko. The concavity of VO(y) implies there is 
(7r, po) # 0 such that po c Fo and 

(8) 7rV(x) - poX 5 7rV(x) - pox, 

for all x e Ko. If 7r = 0, po(5 - x) i 0 for all x e Ko. Since x e interior Ko relative 
to Fo, the inequality (8) is impossible, and 7r # 0. We may choose r = 1. 

Under some additional assumptions the capital value ptkt along a weakly 
maximal path will be bounded. From (6), we obtain Vt(kt) -ptkt Vt(x) - ptx 
for any x e K,. Put x = cak, for 1 - 8 < a < 1 + 8. Suppose there is 8 > 0 such 
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that ockt E Kt for a in this range. Then 

(9) (1 -Lc)ptkt X Vt(kt) - Vt(okt). 

However, Vt(kt) = 0 for all t. Thus if V,(ockt) is bounded over large t, ptk, will be 
bounded above. Weitzman assumes that 7' a,(k,_1' k,) exists when the zero of 
the utility function is selected so that at(0, 0) = 0 for all t. Of course, this requires 
(0,0) e Dt. In this case, our normalization gives t(0) = - 1 iit(kt1, kt), so 
1t(0) -* 0 as t -+ oo. Then, using o = 0, (9) implies ptkt -* 0, as t oo. A less extreme 
assumption which will obtain the same end is that V4t(kt) 0 as t -o o for a 
near enough to 1. This may be expected to hold when ut(x, y) = btu(x, y) for some 
3 with 0 < 3 < 1, that is, ut is a stationary utility function discounted at a positive 
rate. 

We have proved a price support lemma for weakly maximal paths: 

LEMMA 1: Let {kt}, t = 0, 1, ..., ko = x, be a weakly maximal path of accumu- 
lation. If Assumptions 1, 2, and 3 are met, there exists a sequence of price vectors 
pt 1 Ft, pt Ft = O, tO0, 1,. .., which satisfy 

(10) Vt(kt) -ptkt k Vt(y) - PtY, for all y e Kt, 

(11) ut+1(kt,kt+i) + pt+1kt41 - ptkt ; ut+1(x,y) + pt +y - ptx, 

for all (x,y)eDt+1. 

On reflection it will be clear that the argument leading to price supports for an 
infinite optimal path can be adapted to the finite case as well, indeed, with fewer 
complications since the finite feasible paths always have finite utility sums. More- 
over, price supports can be found for infinite feasible paths whose finite subpaths 
are optimal by taking limits on the prices supporting initial segments of the 
infinite path as their lengths go to infinity. This requires that one bound the 
prices in each period, perhaps, by means of a feasible set of outputs attainable in 
that period which has an interior in Ft. This was the general method introduced 
by Malinvaud [24]. However, there seems no way to arrive at bounds on the 
asymptotic values of the capital stocks unless the prices support a value function 
such as Vt(x), and this method of derivation of the prices does not provide such 
an implication. 

The existence of bounds on capital values, so-called transversality conditions, 
has been a basic requirement of turnpike theorems in the past (see McKenzie [30], 
for example), but we will find in the sequel that what is needed is only that the 
value function exist and satisfy certain bounds. This will suffice to bound the 
difference in capital values which is critical in the arguments. 

4. AN INSIGNIFICANT FUTURE 

Oddly enough, the turnpike theorem of the second kind, where the approxi- 
mation to the optimal path occurs in the early periods of accumulation, can best 
be proved under conditions that are most difficult for the proof of the other two 
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kinds of theorem. This is where the distant future is insignificant for the utility 
sum. However, the second kind of theorem reaches strong conclusions on the 
basis of rather weak assumptions. As we have already seen it has an interest for 
the planner that compares favorably with the interest of other kinds of turnpike 
theorem. 

A crucial role in the proof of our theorems will be played by the notion of a 
reachable stock or a reachable path. A path {k,} is said to be reachable from a given 
capital stock y at time t if there is a path {kr}, T = t,.. ., t + n, for some n, where 
k= y and k'+ = + n. We say that a capital stock y is reachable from a path 
{k,} if for any t during the path there is a path {k'}, T = t, ... , t + n, for some n, 
where k' = kt and k'+, = y, and moreover Et+ 

n u,(k_ -1' kr) > U. It is understood 
that n may depend on t while U is independent of t. We say that a, path {k'} is 
reachable from a path {k,} if for any t during the second path there is a path {k'}, 
T = t,.. . , t + n, for some n, where k' = kt and kt'+n = k+n, and Eti+ n u(k- 1' k') 
> U. Again n depends on t but U does not. A stronger notion is uniform reach- 
ability where n may also be chosen independently of t. We also speak of free 
reachability if U may be chosen to depend on t so that U -O 0 as t -* oo. 

The idea of reachability is natural in the turnpike context since there must 
be paths which approximate or attain capital stock objectives in some fashion if 
turnpikes are to be possible. In the earlier literature with constant tastes and 
technology the appropriate reachability was guaranteed by special assumptions 
on the technology, such as the existence of a capital stock that can be expanded 
in every component (see Gale [14] and McKenzie [28], for example). For variable 
models the assumption will be made directly. 

In order to prove our turnpike theorem, we will need to strengthen the con- 
cavity assumption (Assumption 2). We assume the following: 

ASSUMPTION 4: The utilityfunction ut(x, y) is strictly concave and closed. 

By use of Assumption 4 we can prove a preliminary lemma due to Radner [35] 
and applied to Ramsey problems by Atsumi [2]. First we define the notion of 
value loss. Given (x, y) E Dt, let (p, q) satisfy 

(12) ut(x, y) + qy - px = ut(z, w) + qw - pz + bt(z, w), 

for any (z, w) e Dt, where bt(z, w) ; 0. 

Thus (p, q) are support prices for (x, y) in the tth period. Then bt(z, w) is the value 
loss associated with (z, w). We have the following lemma: 

LEMMA 2: If ut satisfies Assumption 4, given (x, y) E Dt and (p, q) satisfying (12), 
there is 5 > 0 such that Iz - xl > E implies bt(z, w) > b for any (z, w) E Dt. 

If this lemma were false, there would bQ a sequence (zi, wi) such that lz1 - xl > E 
and bt(z1, wi) -O 0. First, we note that by the concavity of ut the value loss bt is 
falling as we move toward (x, y) along the line segment from (z, w). Thus it is just 
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as well to put Izi - xi = ? for all i. Then w' is bounded, and the sequence (z', wi) 
has a point of accumulation (z, wv) for which ,(Z5, ivW) = 0 by continuity of u,. 
But then by strict concavity of ut, 5, < 0 would have to hold at points inter- 
mediate between (x, y) and (z, w), in violation of (12). This proves the lemma. 

We want to compare an infinite path from x at time 0 that is weakly maximal 
with a finite optimal path from x~ that achieves a fixed objective 

- 
at time T > 0. 

We will examine these paths in the early periods as T -* oo. Consider a finite 
optimal path {k,} where ko = x and kT = y. Suppose that y is freely reachable 
from the weakly maximal path {k,}. The definition of optimality implies, for 
{kT} a path from kT, to5, 

T T-n T 

(13) Zut(kt-1,kt) Y E ut(kt-1,kt) + T T), 
1 1 T-n+1 

for T > n. On the other hand, if we use the definition of bt+ 1, relative to (kt, k,+ 1) 
and (Pt, Pt+ 1) in (11), we obtain from Lemma 1, 

(14) ut+1(kt,kt+1) + pt+lkt+l - ptkt = ut+1(kt,kt+1) + pt+1kt+? 

-Ptkt + 6t+1(kt1kt+J). 

Then summing (14) from t = 0 to t = T - 1 gives 

T T 

(15) ut(kt 1, kt) = Zut(kt -1, kt) + po(ko - ko) + PT(kT-5) 
1 1 

T 

- Zt(kt- 1D kt) 
1 

Noting that ko = ko and substituting (13) in (15), we obtain 

T T 

(16) Zbt(kt1,kt) 4 E (ut - uT) + PT(kT -) 
1 T-n+ 1 

Put ut(kt-1, kt) 0 for all t. Since y5 is freely reachable from {kt}, the paths 
{kfT} may be chosen so that IT 1(Ut-uf) < U1(T) where n depends on T and 
U1(T) -* 0 as T -* oo. Moreover, (10) implies that PT(kTA -) X VT(kT) -VT(Y) 
Since utility is normalized on {kt}, VT(kT) = 0. Then the definition of VT implies 
VT(kT) W fT+I ut (kt-1, kt) for any choice of a path {kt} with kT = kT and 
kT+n = kT+n. If we assume that {kt} is freely reachable from y, the paths {kfT} 
may be chosen so that VT(Y) ; U2(T) where U2(T) - 0 as T -+ oo. Substituting 
these results in (16) gives ElT6t(kt - , kkt) - U1(T) -U2(T) where the right- 
hand side converges to 0 as T -s oo. 

By the assumption of strict concavity (Assumption 4) and Lemma 2, Ikt - ktI > 
s > 0 implies there is b(t) > 0 such that bt(kt, kt+ 1) > b(t). Thus max Ikt - ktI > ? 
for 1 i t i TI implies 2' bt(kt -, kt) > 3 = min b(t) over 2 4 t 4 T I. But there 
is T2 such that T z2 T implies ET bt(kt -1, kt) - 3. This means that Ikt - ktl 
must hold for t i r, when T ; T2. We have proved the following theorem: 
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THEOREM 1: Let {k,} be a weakly maximal- path. Suppose Assumptions 1, 3, 
and 4 are met. Let - be a stock vector that is freely reachable from {k,} and from 
which {k,} is freely reachable. For any E > 0 and any T1 there is T2 such that if {k,}, 
t O,... , T T T2 ko = ko, kT = y, is an optimal path, then Ik - kJ < E for 
t i z1T. 

An example of a utility function that satisfies the conditions of Theorem 1 is a 
stationary current utility function that is strictly concave where the objective is to 
maximize a utility sum discounted at a positive rate, that is, 

T T 

Eu,(kt, kt) = Eptu(ki, k,) 
1 1 

for 0 < p < 1. Say that a stock x is expansible if there is (x, y) in the domain D 
of u such that y > x. Assumefree disposal, that is, x' ; x, y' X y, implies (x', y') E D 
and u(x', y') , u(x, y). In this model there is an optimal stationary path, k, = k, if 
there is an expansible stock x; see Sutherland [43]. Suppose that k is expansible 
and 

- 
is expansible. Then, in particular, Theorem 1 holds for the optimal stationary 

path and this y. 
We may derive additional optimality properties for a weakly maximal path 

under the assumptions of Theorem 1. Let {k'} be any path with ko = ko that {k,} 
does not overtake, that is, lim sup (u - u,) ; 0. Replacing kt by k' in (14) and 
summing, we obtain 

T T 

(17) E(u,(k'- 1,k) - ut(k_1, k)) = pT(kT-k' bt(k'- 1, k 
1 1 

Assume that {kt} is freely reachable from any path from ko that it does not overtake. 
Then PT(kT - k) -VT(k+) 0 as T -c. Thus (17) implies 

T 

lim sup (ut - ut) o 0, 

and {kt} must catch up to any path. This means {kt} is optimal. Our result is the 
following proposition: 

PROPOSITION 1: Let {kt} be a weakly maximal path and let Assumptions 1, 3, 
and 4 hold. Suppose {kt} is freely reachable from any path from ko that it does not 
overtake. Then {kt} is optimal. 

5. UNIFORMLY CONCAVE UTILITY 

We next prove a turnpike theorem of the first kind where finite optimal paths 
that are sufficiently long spend most of the time near a weakly maximal path. 
The crucial fact that underlies the turnpike property is uniform concavity of the 
utility functions. As a consequence, paths that do not converge to the turnpike 
suffer value losses that are unbounded as the length of the paths increases. 
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According to Lemma 2, if u, is strictly concave its graph may be supported at 
any point (x, y) of its domain of definition D, by prices (p, q} such that Iz - xl > 
? > 0 implies 3,(z, w) > 3 for some 3 > 0. The value loss 3,(z, w) is defined by (12). 
Uniform concavity requires, in addition, that 3 may be chosen independently of 
(x, y) E Dt and of t. In the case of u,(x, y) = ptu(x, y), where u(x, y) is strictly concave 
this condition fails for 0 < p < 1 since the corresponding value loss can be given 
the form pt3(z, w) which converges to 0 as t -* to. Thus in a quasi-stationary 
model (ut = ptu) it is necessary to choose p .: 1 to apply the results of this section. 
As we will see, p > 1 must also be excluded. We assume the following: 

ASSUMPTION 5: The utilityfunctions {ut} are uniformly concave, that is, the 3 of 
Lemma 2 may be chosen independently of (x, y) and t. 

Uniform concavity is a condition analogous to the assumptions made by C. C. 
von Weizsaicker [46] and used to prove the existence of an optimal path of ac- 
cumulation in a one-sector model. It is used in a more general context by McKenzie 
[28]. With Assumption 5 it is possible to estabtish a turnpike theorem for a wide 
class of finite optimal paths. 

Let {kt}, t = 0, 1,..., be a weakly maximal path. Assume Assumptions 1, 3, 
and 5 are valid. Let x be a vector of capital stocks at t = 0 from which {kt} is 
reachable. Let y be a vector of capital stocks from which {kt} is uniformly reach- 
able, and which is uniformly reachable from {kt}, that is, from any T A 0 there is 
a path departing from k, and arriving at y after n periods with a utility sum over 
these periods bounded below by a number U. We recall that n and U are in- 
dependent of the choice of T. These reachability assumptions can be met in a 
quasi-stationary model where p : 1, only if p -. 1, since p > 1 implies U must 
become infinite with t. Also utility is normalized so that ut(kt- 1, kt) = 0 along 
{kt}. 

Consider any finite optimal path {kt}, starting with 5x at t = 0 and terminating 
with y at t = T. Suppose {kt} is reachable from x at t = 0 in n1 periods and 

- 
is 

uniformly reachable from {kt} in n2 periods. Choose T > n1 + n2. Let {kt}, 
t=0,..., T, satisfy, k' = x, k' = kt for n1 t T-n2, and k = . The 
existence of such a path is guaranteed by the reachability assumptions. Write u' 
for ut(k - 1, k'). The definition of optimality implies that 

T ni T-n2 T 

(18) EZut(kt- 1, kt) Y u' + E ut(kt_ 1, kt) + ut. 
1 1 n1+1 T-n2+ 1 

On the other hand, Lemma I implies that {ptj, t = 0, 1,.. ., exist that satisfy (14) 
for the present paths {kt} and {kt}, with bt+1(kt, kt+ ) , 0. Summing as before 
gives 

T T T 

(19) 3 ut(kt- 1, kt) = ut(kt 1, kt) + po(x - ko) + PT(kT -5Y) - Zt(kt1, kt). 
1 1 1 
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Substituting (18) in (19), putting ITUt = U1, T-n, 1U = U2, and using 
ut(kt- 1, kt) = 0, we obtain 

T 

(20) E bt(k kt1,k) X po(5x - ko) + PT(kT- y) - U1 - U2. 

Since {kt} is reachable from y, y- E Kt and we may apply (10) of Lemma 1. Noting 
that Vt(k,) = 0 for all t, we have PT(kT -) X - VT(-). By uniform reachability of 
{kt} from y, there exists a path from y with utility sum bounded below by U. Thus 
VT(Y), which is the supremum of utility sums over infinite paths from 

- 
at T, is 

bounded below by U, or PT(kT - y) -U. This shows that the right-hand side 
of (20) is bounded above independently of T, or IT bt(kt- 1, kt) g M. 

On the other hand, by uniform concavity there is 5 > 0 such that 3t + = 

bt + I(kt 11 kt) > whenever Ikt - ktl > s. Since bt ; 0 for all t, 1 bt < M places 
the upper bound M/b in the number of times that Ik, - ktl > e can occur. We have 
proved the next theorem: 

THEOREM 2: Let {kt}, t = 0, 1,..., be a weakly maximal path. Suppose Assump- 
tions 1, 3, and 5 are satisfied. Let 5x be a stock vector at t = 0 from which {kt} is 
reachable. Let y be a stock vector that is uniformly reachable from {kt} and from 
which {k,} is uniformly reachable. Then for any ? > 0 there is N(e) such that a 
finite path {kt} with ko = x and kT = y must satisfy 1kt - ktl < efor all except, at 
most, N(e) values of t. N(E) is independent of T 

We may also prove in a similar manner and on similar assumptions a turnpike 
theorem of the third kind. Suppose {kt}, t = 0, 1,. ., is a second weakly maximal 
path and assume that {kt} is uniformly reachable from {ktj. Construct the com- 
parison path {k'}, ko = ko, k' = kt for t R n. Applying the definition of weakly 
maximal to {kt}, 

T 

(21) lim infZ(u- iut) X 0, as T-* oo, 

where u' = ut(k'- 1, k') and it = ut(kt -1, kt). On the other hand, summing (15) for 
{kt gives, using ut = 0 for all t and 3t = kjk_ 1,kt) 

.T T 

(22) Y iat = po(ko - ko) + PT(kT -tkT) 
1 1 

and, deriving U from uniform reachability, 
T n 

(23) Eu= u' ; U. 
1 1 

Substituting (22) and (23) in (21) gives 

(24) lim inf U - po(ko - ko) - PT(kT- kT) + , 0, 
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as T oo. Since {k,} is an infinite path, kT eKT. Thus (10) applies and 
PT(kT - kT) - VT(kT) 4 -U, so (24) becomes 

T 

(25) lim inf 3,< -2U - p0(k0 - k0), T-* oX. 
1 

Then 3t W 0 implies 3t 0, and by uniform concavity kt -* kt. We have the fol- 
lowing theorem: 

THEOREM 3: Let {kt}, {kt}, t = 0, 1,... , be weakly maximal paths. Suppose 
Assumptions 1 and 5 are satisfied, and Assumption 3 holds for {kt}. Assume that 
{ktj is uniformly reachable from {kt}. Then kt -kt as t -* oo. 

We may use an argument like that for Proposition I to prove a similar optimality 
result here. Suppose {kt} is weakly maximal and {kJ}, t = 0, 1,..., is any other 
path with k' = ko that satisfies lim sup IT (u - ut) W 0. This means that {kt} does 
not overtake {k'}. Assume that {kt} is uniformly reachable from any path that it 
fails to overtake. Replacing kt by k' in (14) and summing we have 

T T 

(26) Z(Ut - Ut) = PT(kT - k) ET, 
1 1 

where bt = bt(k' 1, k') relative to a price sequence {ptj supporting {kt}. Under the 
hypothesis of Theorem 3, {ptj can be found from Lemma 1. Also from Lemma 1 
and uniform reachability PT(kT - k) - V(k4) -U for some number U. 
Since {kt} does not overtake {kJ}, (26) implies that bt - 0, so k- kt as t -* oo. 
Now add the assumption that {Pt} is bounded, and lim sup IT (u/-ut) - 0 
follows. Thus for any {kJ} with k' = ko we have lim sup IT (u - ut) i 0. Thus 
{kt} catches up to {k'}. Since {kt} catches up to any path from ko that if fails to 
overtake, it is optimal. 

PROPOSITION 2: Assume that {kt}, t = 0, 1,..., is a weakly maximal path and 
Assumptions 1, 3, and 5 hold. Assume that {kt} is uniformly reachable from any 
path from ko that it does not overtake, and that it is supported by a bounded price 
sequence {ptj. Then {kt} is optimal. 

6. WEAKLY MAXIMAL PATHS 

From Theorem 3 we know that two weakly maximal paths will converge under 
the assumption of uniformly concave utility if one of them is uniformly reachable 
from the other. However, we have noted that uniform concavity does not apply 
to the stationary utility function subject to discounting which is the basis for many 
frequently used models. However, recent work of Cass and Shell [10] and Rocka- 
fellar [38] has shown a way to weaken the demand for uniformity by putting a 
lower bound, in effect, on the degree of concavity. The nature of this bound has 
been explored further by Brock and Scheinkman [6 and 7] for the case of dif- 
ferentiable utility. 
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The Cass-Shell argument is made in the framework of Hamiltonian theory as 
developed by Rockafellar [37]. We will derive our results using the method of our 
earlier arguments, a method which may be referred to as "value loss". This 
approach is mentioned briefly in the Cass-Shell paper, but it is not carried out 
there. The new move that permits assumptions to be weakened is simply to sum 
the value losses 6,(k'- 1, k') and 6'(k, k,) of two weakly maximal paths, the loss 
along each path evaluated at the price supports of the other. This provides a 
Liapounov function, and summing the inequalities (10) derived froin supports of 
the value functions provides an upper bound to the Liapounov function. 

Let us consider two paths {kt} and {k'}, t = 0, 19..., that are weakly maximal 
among paths from ko and k', respectively. Adopting Assumptions 1 and 4, and 3 
for each path, price supports {pt} and {p} are provided by Lemma 1. We will say 
that two paths commute if each is uniformly reachable from the other. Note that 
if Assumption 3 is satisfied for one of a pair of commuting paths, it is. satisfied for 
the other. The definition of the value losses and formula (11) provide symmetrical 
expressions from the viewpoint of the two paths, 

(27) ut(kt 1, kt) + ptkt - pt l kt - = Ut(k> -, kt) + ptk - - pt1k- + bt, 

(28) ut(kt 1, kt) + ptkt - p kt 1 = uj(kt- 1, k) + ptk' - p k'- -t 

In these formulae, 5t = bt(k- 1, k9), and 5' = 65(kt1, kt). The prices, the validity of 
formula (11), and thus the size of value losses do not depend on the normal- 
ization of ut. Subtracting (28) from (27) gives 

(29) (P- pt)(k - kt) - (Pt- - pt-1)(k-1 - kt1) = at + 5. 

Note that the utilities that featured in previous value loss formulae cancel out. 
Let Lp(t) = (p - pt)(k - kt). In order for Lp(t) to serve as a Liapounov function it 
is necessary that Lp(t) be bounded and uniformly increasing for Ik - ktl > E > 0. 
The latter condition is certainly provided if the utility functions are uniformly 
concave. (This means, of course, that assumptions are not weakened.) 

In order to bound Lp(t), assume that the two paths commute. Let VT be the value 
function when the origin of utility is assigned so that ut(kt -1, kt) = 0, and Vt 
correspondingly for u'(k1, k') = 0. Since the paths commute, Vt(k) and V'(kt) 
are well defined and finite. By (10) we have 

(30) Vt(kt) -ptkt Vt(k') -p,k' 
(31) V'(kt) - pkt V'(k) - p'k. 

The shift of normalization implies. that ut(k - 1, k') - u(kt 1, kt), and therefore 
Vt(k) = - V(kt). Subtracting (31) from (30), and using Vt(kt) = 0, V'(k') = 0, gives 

(32) (p -pt)(k'-kt) - 0. 

In other words, Lp(t) is bounded above by zero, and the conditions for it to serve 
as a Liapounov function are met. This Liapounov function was first applied to a 
stationary model by Samuelson [41] in dealing with a local problem. Of course, 
so far we have not advanced beyond Theorem 3. 
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In the case of a stationary utility function with discounting, where u, = ptu for 
0 < p < 1, the condition of uniform concavity over time can be restored by 
replacing u, with u, = p -tut = u. Cass and Shell showed that one could define a 
current value Liapounov function in terms of a price support of u that might be, 
effective. Brock and Scheinkman [6] gave a sufficient condition on the degree of 
concavity of u in the differentiable case to insure that the Liapounov function 
works. This suggests that we seek positive numbers pt such that it =H1 P-p 1ut are 
uniformly concave. 

Define a current value Liapounov function by L,(t) = i1' p7 1LP(t). We may 
write (29) as 

(33) Lp(t) - Lp(t - 1) = bt + .t 

Multiply (33) through by rltl pr1. Put pr = 1/(1 + rj) and /3f = nItl p, and simplify 
to give 

(34) Lc(t) - Lc(t - 1) -rtLc(t - 1) > fl(bt + at)- 

Note that /37 1(5t + 5t) + rtLc(t - 1) W 0 implies Lc(t) B Lc(t - 1). /3, is the dis- 
count factor that converts t-period current prices int'o t-period present prices, as 
realized at time zero. Thus 13 1 - o with t if r, > E > 0 for all T. We will use the 
following concavity assumption: 

ASSUMPTION 6: For any E > 0, there is 5 > 0 such that Ix' - xl > E implies 
/37 

1(bt 
+ 5t) + rtLc(t - 1) > 5, independently of t, where bt and 5' are derived 

from a support of ut at (x, y) and (x', y'), respectively, and bt = bt(x', y'), 5' = t(x, y). 

When rt = 0 for all t, Assumption 6 reduces to Assumption 5. Moreover, if the 
utility functions 13' ut are uniformly concave, it may be expected that Assumption 6 
will continue to hold if rt is near enough to zero for all t. 

Let {kt} and {kJ} be weakly maximal paths for t = 0, 1,.... Let u, be a normal- 
ization of utility so that ut(kt kt) = 0 for all t W 1, and let u' be a normalization 
satisfying u'(k1-, k') = 0 for all t W 1. Note that 'Tu,+ 1(k, k'+) convergent as 
T - oo implies that the limit of this sum is Vt(k') and, mutatis'mutandis, for V'(kt). 
Otherwise there would be a path with a convergent utility sum whose limit lay 
closer to Vt(k'), and this path would overtake {k'} in contradiction to weak maxi- 
mality. From (32) we have Lp(t) X 0. Thus Lc(t) = FIIt pr 'Lp(t) 4 0, or the current 
Liapounov function is also bounded above. On the other hand, if Assumption 6 
holds, Ik - ktl > E > 0 for an infinite number of periods implies Lc(t) is not 
bounded above. Thus Ik' - ktl 0, as t -* oo. We have proved the following,: 

THEOREM 4: Let {kt}, {kJ}, t = 0, 1, ... , be weakly maximal paths that commute. 
Assume Assumptions 1, 2, and 3 are met. If discountfactors /3, can be chosen so that 
Assumption 6 holds, then Ik' - kj -- 0 as t -* oo. 

We are able to use Lemma 1 to obtain the price sequences {ptj and {p} that 
are needed to state Assumption 6. We may note that since the paths commute, 
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the sets Kt are the same for the two paths so that Assumption 3 is satisfied for 
both paths if it is satisfied for either. Also value losses will only be needed in the 
proof for weakly maximal paths. This means that Ft can be taken as the smallest 
flat containing Kt, for capital stocks in Pt and not in Kt cannot appear on a weakly 
maximal path and so are irrelevant for value loss calculations. Then the interiority 
assumption (Assumption 3) is much weaker. Finally, the assumption that the 
paths commute can be replaced by the assumption that X1 ut(k'_ 1, k') converges 
to a finite limit as t -- oo, when u,(kt- 1, kt) = 0 for all t. 

The situation is simplest for application of Theorem 4 in the model with a 
present utility that equals a discounted stationary current utility, ut(x, y) = 

ptu(x, y), where 0 < p < 1. It is obvious for bounded current utilities that I' ut 
will converge. However, it is a common assumption in these models that sustainable 
stocks (all x such that there is y > x and (x, y) E D), and thus current utilities, are 
bounded above. If the utility function u(x, y) is also bounded below on D, or if ko 
is expansible, the convergence of Xf ut along weakly maximal paths follows. 
Assume free disposal. Assume that an expansible stock exists. Let 

W = {y'y > y' > x} 

for x expansible and (x, y) E D. Then W c P (the set of outputs) and W c K (the 
set of inputs that start infinite paths with finite utility sums). Thus the second part 
of Assumption 2 is satisfied. Then ko, ko E interior K completes Assumption 2. If 
Assumption 6 also holds, Theorem 4 may be applied to derive convergence of kt 
and k' as t -+ oo. However, under fairly weak conditions when p is near one 
Assumption 6 may be shown to hold. Brock and Scheinkman [6] treat the dif- 
ferentiable case. 

Consider (27) for the utility function ut = ptu. Multiplying through by p-t 

gives 

(35) u + p-tptkt -p-tpt-lkt_ = u' + p-tptk - p-tpt_1k'_ + p-tbt, 

or, putting qt = p - tpt, we have 

(36) u + qtk - p 
'qtlkt-1 

= u' + qtk -p-1qt_jk>_j + p-tbt. 

Then (29) becomes 

(37) (q - qt)(k - kt) - p '(q._1- qt1)(k_1 - t_1) = P t(t + 6t). 

If we assume the concavity of u is uniform over D, Ikt-1 - kt- 1 > - > 0 implies 
there is 6 > 0 such that p -tbt > 6. Thus the right-hand side of (37) is larger than 6. 
If we assume further that capital values are bounded over t , 0, it follows that p 
may be chosen near enough to one, so that 

(38) (q -qt)(k - kt) - (q1- qt-1)(kt' -1k-1) > /2 

holds when Ik - ktl > -. The key to this argument is the boundedness of the 
capital values for p near one, independently of p. The condition p-tbt > 6 is 
independent of p from uniform concavity, since uniform concavity provides the 
inequality for (qt - 1, qt) as a support of u. Brock and Scheinkman assumed that the 
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paths are contained in a compact set D' in the interior of D. In that case the 
boundedness condition is immediate. We may state our result as the following 
proposition: 

PROPOSITION 3: Assume uniform concavity of u. Let {k,}, {k'} be weakly maximal 
paths for the utility functions ptu, t = 1, 2, .... Let {ptj, {p'} be corresponding 
sequences of support prices. Then if kt, kt, p - tpt, p - tp; are bounded with respect 
to t. Assumption 6 holds for these paths for p sufficiently near one. 

Under certain additional assumptions, principally free disposal and bounded- 
ness of sustainable stocks (y > x and (x, y) - D implies lxl < C), it may be shown 
that an optimal stationary path exists [43]. Then under the assumption of Theorem 
4, all weakly maximal paths will converge to the optimal stationary path. Indeed, 
the weakly maximal paths will be optimal paths. This is the traditional context in 
which Ramsey turnpike theorems have been proved. 

7. THE VON NEUMANN FACET 

All of our turnpike arguments have used value losses as Liapounov functions. 
The sum of the shortfalls of the values of input-output combinations along an 
alternative path from these values along a given weakly maximal path is bounded 
using assumptions of reachability and the optimality properties of the alternative 
path. The bound forces the paths together to reduce the shortfall toward zero. 
However, simple concavity of the utility function does not imply such a strong 
condition. That is to say, bt(z, w) = 0 in (12) does not imply z = x on the assump- 
tion that ut is concave, although if ut is strictly concave, (z, w) = (x, y) is implied. 
The facet notion was introduced in McKenzie [26] for a generalized Leontief 
model with terminal objective. It was extended by Makarov [21] to a von Neumann 
model with terminal objective. Also see Drandakis [12]. The idea is implicit in 
Romanovsky [39] in a context like the present, but the facet definition was formally 
adapted to the multi-sector Ramsey problem by McKenzie [28]. 

Assume that the "extensive" model has neo-classical production functions 
without net joint products. (If (x, y) is an input-output vector for the jth industry, 
for i =# j, xi : yi and if xi > 0, xi > yi.) Let output be divided between consumption 
and terminal stocks and utility be a strictly concave function of consumption. 
Then the "reduced" model cannot have a strictly concave utility function in terms 
of initial and terminal stocks. A flat piece of the graph of ut(x, y) will be generated 
by all the variations in activity levels which are consistent with the consumption 
vector that underlies a particular value of ut(x, y). The corresponding variations 
of input and output will be absorbed by changes in the arguments x and y of ut 
without a change in utility level. If the technology is also irreducible in the sense 
that n activities must be used to obtain y ; x for (x, y) E Dt, the dimension of the 
flat pieces of the graph of ut cannot fall below n - 1 when stocks are being 
maintained. 
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We will define Nt(p, q) as the set of triples (ut, x, y) such that u, = u,(x, y) and 
6,(x, y) = 0 when the price supports are (p, q). Then concavity of u, implies that 
N,(p, q) is a closed, convex subset of the graph of u,. If {k,}, t = 0, 1, 2, .. ., is a 
path supported in the sense of Lemma 1 by {p,j, we call the set N,(p,_ 1, p,) the 
von Neumann facet for this path in the tth period. This sequence of facets is the 
general turnpike provided by value loss arguments. Let 

d((z, w), N,) = min I(z, w) - (x, y)l 

for (x, y) E N,. In order to derive the turnpike results in terms of von Neumann 
facets we may replace Lemma 2 by the following lemma: 

LEMMA 3: Let ut satisfy Assumptions 1 and 2. Let (p, q) be support prices for 
(x, y) E Dt in the sense of (12). Let Nt(p, q) be a facet of the graph of ut. For any 
'1 > 0, E > 0 there is ( > 0 such that Izl < j and (z,w)eDt implies bt(z,w) > ( for 
d((z, w), Nt) > c. 

The proof comes from considering a sequence (z8, w') that violates the conclusion, 
that is, lz8l < il, d((zs, ws), Nt) > c, but bt(zs, ws) < bs where bs -+ 0. Using Assump- 
tion 1, there are convergent subsequences whose limits (z, w) and x- would satisfy 
6(z, w) = 0, z1 il, and d((z, w), Nt) ; &. However 6(z-, w) = 0 implies (z, w-) E Nt, 
so we have arrived at a contradiction that proves the lemma. 

It is not unreasonable, in the light of bounded labor services, to suppose the 
relevant facets to be bounded. Suppose, in fact, that Nt is uniformly bounded for 
t r 1; then Lemma 3 inay be applied uniformly, that is, il, c, and ( may be selected 
independently of t. Then a turnpike result corresponding to Theorem 2 may be 
proved. In this theorem convergence of finite optimal paths is to the sequence of 
facets {Nt} rather than to the sequence of capital stocks {kt}, where (kt 1, kt) E Nt 
in each period. Of course, if strict concavity should hold, Nt = (kt_ 1, kt). Similarly, 
the conclusion of Theorem 1, that a long finite optimal path begins with initial 
input-outputs kt near the initial input-outputs kt of an infinite price-supported 
path that starts from the same initial input ko = ko, is replaced by the condition 
that (kt, kt 1) lies near Nt for small' values of t. The conclusion of Theorem 3 is 
changed in a similar way so that convergence to facets replaces convergence to 
paths. 

However, this is not the end of the story. Depending on the character of the 
facets it may be that paths which remain close to a sequence of facets for a long 
time must approach each other. This can be studied most effectively for quasi- 
stationary models (ut = ptu, p < 1) where one price-supported path is an optimal 
stationary path so that the facet sequence is Nt = N* for all t. Choose points in 
the facet N* that (linearly) span the facet N*, say (ui, xi, yA), i = 1, . . . , r, where 
the dimension of N* is r - 1 i 2n. Then a point on N* satisfies 

(u, x, y) = E i(ui, xi yi) 
1 

for some real numbers ai X1 ci = 1. If {kt} is a path on N*, we have (kt 1, kt) = 
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X' ai(x', yi) and (kt, kt+ 1) = 1 at + 1(xi yi), or ,j1 cIyi = x + Ix. Suppose for 
simplicity that r = n + 1 and A and B are square matrices with, columns 

(Xi) and (i) 

respectively. Then for each t : 0, the equation Boat = Aoct+1 must be satisfied for 
some vectors c.t if (kt- 1, kt) lies on N*. If A is nonsingular, this may be written 

(39) t+ 1 = A-lBat. 

Now suppose A - 1B has only one characteristic root A with absolute value one 
and this root is simple. Then A = 1, since a* must solve (1), where 

Z ai*(i y') = k* 
1 

the capital stock vector of the optimal stationary path. If we make the assumption 
described earlier of bounded sustainable stocks, lktl is bounded by a number C. 
Then for any path {kt} on N*, kt -+ k* must hold. This is easily seen if the character- 
istic roots Ai, i = 1, . . . , r, are all simple, so the characteristic vectors span the 
complexification of the r-dimensional Euclidean space (see Hirsh and Smale [16, 
pp. 64-65]). Then kt = Er aiciz' where z' is the characteristic vector associated with 
Ai and oi is a given number, possibly complex. If lAil > 1, oi = 0 must hold, or else 
the path is unbounded as t -+ oo. If lAil < 1, X -+ O as t-+ oo. Thus k -?alz' = 

axk*, where )1 = 1. We will presently see by an extension of this argument that 
the same convergence property will hold for any path that converges to N*. Thus 
we return to path convergence once more. 

The conditions needed for convergence of {kt} to k* when optimal stationary 
states exist and the conditions of our theorems are less stringent than a require- 
ment of nonsingularity of A would suggest. Indeed, it would seem that this result 
for quasi-stationary models would fail only in a set of models of "measure 
zero". Gale [13, Theorem 5] shows that it will always be possible to express k* 
as a convex combination of no more than n + 1 processes. Moreover, small 
perturbations of the model will eliminate characteristic roots-of absolute value 
one except for the root one which is present by construction. Morishima [32, Ch. 
10 and 13] has a careful analysis of the case of a unique stationary state for a 
polyhedral model. 

Let us say that the technology of the von Neumann facet N* is regular if, for 
any e > 0, there is T such that every solution at of the difference equation Ast + 1 = 
Boat = kt+ 1 for which (kt, kt+ 1) E N* for t 3 0, satisfies Ik1 - k*1 < s for all t > T. 
This type of formulation was introduced by Inada [17] and developed by McKenzie 
[29]. Also see Movshovich [33]. Suppose that a bounded path {kt} converges to 
N*. We may then show that {kt} also converges to k* if N* is regular, or else 
we will reach a contradiction. Choose a sequence of neighborhoods Us of 
N* defined by Us = {(x, y)ld((x, y), N*) < es > 0} where ss -+ 0, and a sequence 
of times ts such that (k1, kt +1) E Us for t ; ts. Since {k,} is bounded, the sequence 
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of paths {k'}, - = 0, 1,..., where k1 = k?,,,, will have a subsequence con- 
verging to a path {k'}, where (k1, k11) E N* for all - : 0. But if {k,} does not 
converge to k*, for any number n the paths {k1} may be chosen so that Ik'?n - k*I > 
E > 0 for all s, where n may be any number greater than or equal to zero inde- 
pendently of &. This implies that there exist paths beginning at time t = 0 on N* 
that lie outside an s-neighborhood of k* at time t = T where T may be chosen 
arbitrarily large. This contradicts the regularity of N*. Thus we may state a final 
result from the turnpike literature. 

PROPOSITION 4: If a path {k,} in a quasi-stationary model, satisfying Assumption 
2, and boundedness of sustainable stocks, converges to the von Neumann facet 
N* and the technology of N* is regular, then kt -* k* where k* is the capital stock 
vector of the unique optimal stationary path. 

The facet N* where A is nonsingular and A - 'B has a unique characteristic root 
with absolute value one, which is simple and equal to one, gives a particular case of 
this proposition. A condition which is equivalent to the regularity condition of 
Proposition 4 is that the optimal stationary path is unique and there are no cyclic 
paths with constant amplitude [28]. 

The University of Rochester 

Manuscript received March, 1976. 
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