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Bewley considers a dynamic general equilibrium model with heterogeneous consumers. Assum- 
ing that the future is sufficiently important, he shows that an equilibrium path converges to a 
limit which depends upon initial conditions. This study shows that the limit lies near the 
stationary state independent of initial conditions. This state is the economy’s so-called turnpike 
~ a turnpike is usually considered to be independent of initial conditions. An equilibrium path 
exists only if consumers discount future utilities. Despite this myopia of consumers, dynamic 
equilibria turn out to be almost Pareto efficient with respect to the non-myopic preferences 
defined by consumers’ periodwise utility functions. 

1. Introduction 

In his seminal paper, Bewley (1982) applies capital theory to general 

equilibrium theory. He considers a model with infinitely many periods and 
perfect future markets where transactions are taking place among infinitely 
lived heterogeneous agents who discount the future. He shows that a 
dynamic general equilibrium (GE) path in this decentralized market model 
converges as time passes, if the future is sufficiently important. As he points 
out in the introduction of his paper, the limit of an equilibrium path depends 
upon initial conditions. In contrast, in the traditional turnpike theorems it is 

shown that there is a path (turnpike) with the following two characteristics 
[McKenzie (1976)]: 

(1) any optimal paths stay within a small neighborhood of the turnpike 
almost all the time, 

(2) the turnpike is independent of initial conditions (and terminal conditions 

if a finite time horizon model is considered). 

Since the result of Bewley lacks the second characteristic above, it is weaker 
than the traditional theorems. 

*This is based upon part of Chapter 3 of my dissertation submitted to the University of 
Rochester. I would like to thank my advisers, Professors R. Jones and L. McKenzie for their 
encouragement. When writing the chapter, I was especially indebted to Professor McKenzie for 
his guidance. Also I would like to thank C. Bates, W. Brock, J. Friedman, and P. Weller for 
comments. 
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The first result of this study is that the dynamic GE model also has a 
turnpike with both characteristics (1) and (2). We will show that for any 
initial condition and any positive E, there is a period such that an 
equilibrium path satisfying the initial condition stays within the E- 

neighborhood of the turnpike after the period, as long as the future is 
sufficiently important. The allocation which is repeated every period on the 
turnpike is characterized as the equilibrium of an ordinary static general 
equilibrium model. This model is independent of initial conditions and has 
the single period technology and utility functions upon which the dynamic GE 

model is based [see Bewley (1982, eq. (1.18))]. The intuitive reason for 
our turnpike theorem is the following: If the future becomes more and more 
important, the temporary component of each consumer’s wealth, or the value 
of his initial capital, becomes negligible since the permanent component of 

his wealth, or the present value of the stream of his primary good 
endowments over the future, becomes closer and closer to infinity. Thus, the 
role of an initial allocation of capital in determining an equilibrium also 

becomes negligible. 
The second result of this study is related to efficiency. In order to define an 

equilibrium path, we assume that a consumer, say, consumer i has the 

preference relation which is represented by the discounted sum of his utility 
functions, I,“= lpf~i(X,), where 0 < p < 1. An equilibrium path is, therefore, 
Pareto efficient with respect to their preference relations which reflect the 

future discounting. It is often considered, however, that discounting the 
future should be attributed to the myopia of consumers, which is undesirable. 

Thus, it is worthwhile evaluating an equilibrium path with respect to 
preference relations which do not reflect their myopia but are based upon 
their tastes. For this purpose, we consider the following preference relation. 

That is, a consumption path {xi} is preferred to another path {xt} if 
limsup,,,~~=l(~i(~t)-ui(~~))<O. W e call this preference relation a non- 
myopic preference. It is shown that an equilibrium path is almost Pareto 
efficient with respect to non-myopic preferences in spite of the myopia of 
consumers. As a direct corollary of this result, it is shown that the turnpike is 

Pareto efficient with respect to non-myopic preferences. 
Our turnpike theorem has two important implications which Bewley’s 

theorem does not have. First, it provides a simple test of the market 
imperfection of an economy which does not have perfect future markets. 
Second, the turnpike theorem provides a dynamic foundation for static GE 
models. 

We do not claim that our dynamic GE model is realistic. The model is 
useful, however, as a standard with which more realistic models of intertem- 
poral allocation can be compared. Since our markets are purely perfect, the 
efficiency, which we consider for a dynamic GE path, is that with respect to 
one of the strictest standards. If one has to deal with an economy with 
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imperfect future markets in reality, he may test the degree of market 

imperfection by comparing an intertemporal allocation in such a model with 
a dynamic GE path. An explanation along a similar line is often accepted as 
a reason why we study sophisticated GE models. If one, however, intends to 
use our dynamic GE model to test market imperfection, one has to face an 
extremely difficult computational problem specific to our model: first, solving 
an infinite dimensional optimization problem for each agent and for each 
sequence of prices from the present to the future and, second, finding a 
solution to the resulting infinite dimensional simultaneous equation system of 
excess demand functions. This computational procedure suggests that even if 

solutions are obtained, they are at best approximations. Our turnpike 
theorem provides us with a test of the degree of market imperfection where 
we may avoid this difficult computational problem. That is, we may consider 
that an intertemporal allocation in an economy with imperfect future 

markets is almost efficient (is not efficient) if it is close to (is far away from) 
the turnpike. Since the turnpike approximates GE paths, this test provides an 
approximated result. 

Static GE models are used in many fields of applied economic theory. An 
equilibrium in such a model is considered to abstract a state after every 
possible adjustment is completed. This intuitive explanation is given frequ- 
ently in basic textbooks in answering the question of why we study static GE 
models. Moreover, in order to explain this intuition rigorously, many 

adjustment processes, including the tatonnement, have been considered. 
However, such a process is based upon a descriptive adjustment mechanism 

(such as that of the tatonnement) and almost always, if not always, 
completely ignores the intertemporal decision making of economic agents. In 
contrast, we consider a model where intertemporal optimization behaviors 
play a central role. Our result shows that the long-run state of our dynamic 
GE model is approximately characterized by an equilibrium in an ordinary 
static GE model which is independent of initial conditions. Analysing a static 
GE model may therefore be considered to be studying the long-run state of a 
dynamic economy where each agent optimizes intertemporally with perfect 
foresight. (Of course, this is not true in a strict sense unless assumptions such 
as ours are satisfied.) This shows that the optimization behaviors of agents 
alone can give a rationale to static GE models where heterogenous con- 
sumers are considered. 

This study is based upon the dynamic GE model of Yano (1984), where 
results similar to the Bewley’s are shown under a set of weaker assumptions. 
The main results of this study, however, also hold in Bewley’s framework. 

Mathematical Notation. Before we start describing our model, some math- 
ematical notation should be clarified. RJ is the Cartesian product of J real 
lines; R< is its non-negative orthant; 1.1 is the Euclidian norm on RJ. A 
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sequence in RJ is denoted as 5. For a vector x,x 2 0 means that Xj 2 0 for all 
j;x>>O that xj >O for all j;x>O that x%0 and x#O. x’ is the characteristic 
function from the set of all subsets of f to RJ; i.e., for ;1 cf, 11; = I if Jo ;1 

and =0 ifj$A. For aeRJ and XcRJ, a+X={a+x:x~X}. 

2. Model 

(I). The time horizon of the economy is infinite. 

(2) Commodities. At each period t’= 1,2,. . . , there are J commodities. J= 

{1,2,..., J>. The commodity space is RJ. P= (1,. . the of pro- 
ducible goods and U={jEJ:j$P} is the set of primary 
goods. ei is the set of consumption goods of consumer i. 

(3) Commodity space. For XER~, we define xPeRJ as follows. xT=xj if jeP 
and xj’ = 0, otherwise. Let RP = {xr E RJ: x E RJ} and Rc = {x’ E RP: x E R: >. In 
the same way, we define x0, R”, xc’ and so on. 

(4) Technology. A social production set, I: relates capital input of the 
previous period to a production activity of the present period. Y is a closed 

convex cone in RP x RJ. ( - k, y) E Y means that if k 2 0 was kept as capital at 
the end of the previous period, then the producible goods ~‘20 can be 
produced in the present period by using the primary goods y” 5 0. Note that 

yp+yo=y. 

(5) Consumers. There are I consumers each of whom lives over the time 
horizon. Let T= { 1,. . . , I}. In each period t = 1,. . ., consumer i has a 

consumption set Xi, a subset of RJ. XEX’ means that he can supply primary 
goods x0 50 and consume ~‘20. At initial period 0, he has the initial stock 
r&, ERT. He has a concave utility function ui: X’-+R. 

(6) Production path and consumption path. A production path (-k, y) is a 
pair of sequences in RJ x RJ such that k = {k,, k,, . . .} y= {yi, y,, . .J and 
(-k,_l,y,)EY for all t=l,2 ,.... A consumption path for”consumer i,x, is a 
sequence in such 5 = {x1, x2,. .}, x, E for t 2 1. 

(7) Feasible allocation and feasible path. The word ‘allocation’ often refers to 
a single period allocation of commodities, while an allocation of commodities 
over the time horizon is called an allocation path. A bundle e=(( -k, y), 
x1 x’) is called an allocation path if (-_k, y) is a production path and >i _ >...,, 
is a consumption path of consumer i for i=“1,. . . ,I. An allocation path, e, 
is feasible from an initial stock k, if y, - k, =xf= 1 xf , t 2 1, and if k, = k 
[Malinvaud (1953)]. 
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(8) Adequacy. An initial allocation of capital, (rc& _ . . , I&) E R$ x . . . x RT, is 
said to be adequate [see Bewley (1972, 1982)] if it satisfies the following: 

(a) There are s>O,jECi, and ~‘EX’, i=l,...,I, such that %‘+Ex(-I’)=~~-Ic~ 
for some ( - icb, yi) E I: 

(b) There are E and XEX such that ~+e~~=y-rc, for some (-l~~,y)~ Y 
where IC~=~!=~ I&. 

(a) means that each consumer can reproduce his own initial stocks with some 
surplus of a desired good. (b) means that the society can reproduce its own 
initial stocks with some surplus of every good. Similar assumptions are 
commonly used in equilibrium theory [see McKenzie (1959), Debreu (1959), 
and Bewley (1972, 1982)] in order to ensure that everybody has positive 
income. (b) implies expansibility of initial stocks, which is commonly 
assumed in capital theory [see Gale (1967), Brock (1970), Scheinkman (1976), 
and McKenzie (1979)J 

(9) Discounted utility sum. Each consumer discounts future utilities by a 
discount factor p. Cz r $u’(x,) is consumer i’s objective function.’ Since, by 
Assumptions (A.6) and (A.8) below, we may normalize utility functions so 
that u’(x)LOfor all XEX’, i=l,..., I, this infinite sum is well defined. 

(IO) Price, budget and demand. A price path p= {p,,, pl,. . .} is a sequence of 
present value prices in R:. Consumer i’s tot;1 net spending cannot exceed 
the value of his initial stock, 

f PtXt = P&l and x,eXi, tz1. 
1=1 

(11) Competitive equilibrium path. Given an initial allocation of capital, 

(4 * 1.3 Kh), t&‘), p(P)) = (( -k(P), y(P))> X’(P), . . . > X’(P), &P)) 

is a competitive equilibrium path with the discount factor p if it satisfies: 

(i) cy”= 0 [p,(p)1 < cc and p,(p) > 0 for all t. 
(ii) Utility maximization. xi(p) maximizes cg 1 p%I’(xJ subject to 

fl P,(P)% 5 PO(P)& and x, E Xi, t 2 1, where 

tzl P,(P)+(P) =P,(P)& 

‘All consumers have the same discount factor. This is justified by the fact that less patient 
consumers eventually consume nothing in the sufficiently far future [Ramsey (1928), Rader 
(1971), Becker (1980), and Bewley (1982)]. 
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(iii) Profit maximization. 

0 = If (Pt(P)Yt(P) - Pt - 1wt - l(P)), 
t=1 

forall(-k,-,,y,)ET:t~l,and(-k,_,(p),y,(p))EI: tll. 
(iv) Market clearing. 

y,(p) -k(p) = i$l xf(d, ~2 1 and k,(p) = i$l 6. 

(12) Marginal utility of income. Since each consumer maximizes his utility 
sum under his budget constraint, by the Kuhn-Tucker-Uzawa theorem 
[Takayama (1974, p. 48)] we may find the set of his marginal utilities of 
income at the equilibrium path as follows: 

~~~rpfui(xt)-*li z p,(p)x, for all x,EX’,tZl . 

1=1 1 

We call an element of F(&~),p(p)) consumer i’s marginal utility of income at 

(e(p), P(P)). Y(P) = (Y’(P), . . .Y y’(p)) with y’(p) E T’@(p), p(p)) for all i is called a 
margi;al-utility-of-income vector of the equilibrium p”ath, (&I), p(p)); they are 

expressed as (e(p), E(P): Y(P)). 

(13) Social weEfare function. A social welfare function is defined as 

yi: 2 xi=xandxiEXiforalli 
i=l 

Under our assumptions, we may prove that W(x, y) is continuous in x and y. 

(14) Long-run equilibrium. A pair of an allocation and a current price, 
(e”,qP)=((-kp,yP), x’P,...,xrP,qP)EYxX1x ... xX’xR$ is a long run 
equilibrium of a competitive equilibrium path, (&),&I)), with the discount 
factor p, if it satisfies: 

(i) qp>O. 
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(ii) xp maximizes W(x, y(p)) subject to qpx s(p-’ - 1) qPkP and x E X. where 
xP=~=~x~P and X=xf=,X’. 

(iii) O=qP(yP-P-lkp)~qP(y-p-lk) for all (-k,y)E Y 
(iv) yp - kP = xp. 

(v) W(xP, Y(P)) =I;= 1 ~‘wp)/Y’w 

64 Y’(P) E WA p(P)).’ 

Note that a long-run equilibrium (eP,qP) depends upon initial allocations of 

capital of (e(p), P(P)) since Y(P) depends upon (E(P), P(P)). 

(1.5) Normalization of prices. For an equilibrium path and its marginal- 

utility-of-income vector ($I), p(p): y(p)), we normalize the equilibrium price 

path p(p) so that If= I y’(p) = 1. By the Kuhn-Tucker-Uzawa theorem, the 
social”welfare maximization condition, (14.ii), implies that there is CI > 0 such 
that W(xp,y(p))--qPxpz W(x,y(p))--qpx for all XEX. We normalize qp so 
that CI= 1. Then, 

(i) W(x”, y(p)) - qpxp 2 W(x, y(p)) - qpx for all x E X. 

(16) Equilibrium pair. rep =(&I), p(p), ep, qp: y(p)) is called an equilibrium pair 
with an initial allocation of capital if (g(p),p(p)) is a competitive equilibrium 

path from the initial allocation, if y(p) E T(g&),~$p)), and if (eP, q”) is a long- 

run equilibrium of (e(p),p(p)). 

(17) Ramsey point and a limit pair. A pair of an allocation and a price with 
a marginal-utility-of-income vector, (e*, q*: y(p)), is a Ramsey point associated 
with a given initial allocation of capital if there is a sequence of equilibrium 

pairs, (n”>= {G,), P(P,), ePn, qpn:y(p,))), with A-* 1 such that ($P,),P(P,)) is 

an equilibrium paIh from the initial allocation for all n and that 

(ePn, qp”: y(p,)) converges to (e*, q*: y*). Moreover, if (&,),p(p,J) also con- 
verges to (e(l),p( 1)) pointwise, we say that rcpn converges “to a limit pair 
x1 = (e( l), p(l), e*l q*: I)*). e*(q*) is called a Ramsey allocation (price). (e(l), p( 1)) 
is called a” pseudo-equilibrium path, since a competitive equilibrium pat”h is 
defined for the case where the future is discounted. 

(18) McKenzie equilibrium. Define the stationary net production set Z’ as 

follows: Z’ = {z E RJ: z = y - k, ( - k, y) E Y}. A pair of an allocation and a price, 
(e*,q*)=((-k*,y*), x1* ,..., XI*, * q ), is called a McKenzie equilibrium if it 
s:j t isfies: 

(i) y*>O. 

‘This characterization is an extension of that of a quasi-stationary optimal path in capital 
theory [see Sutherland (1970), Peleg and Ryder (1974), McKenzie (1979), and Bewley (1982)]. 
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(ii) xi* maximizes ui(x) subject to q*x SO. 
(iii) 0 = q*z* 2 q*z for all Z1 where z* = y* - k* E Z’. 
(iv) z*=Cfzlxi*. 

We call (e*,q*) a McKenzie equilibrium since this type of general equili- 
brium model is studied by McKenzie (1959,198l). We will show that if the 
McKenzie equilibrium is uniquely determined, it is the turnpike. It charac- 
terizes the following stationary state. The present prices of future goods, q*, 
are equal to those of present goods. Each consumer repeats activity xi*, 
i=l ,. . . ,I, maximizing his utility in each period by spending as much as he 
earns q x * i* = 0 Producers choose capital input in a period and output and . 
primary-good input in the next period facing price q* in both periods; 
q*y* - q*k* = 0 since Y is a cone. The demand meets the supply every period; 
y*-k*=~f~,x’*. 

(19) Non-myopic Pareto ejkiency. It is said that consumer i strongly 
(weakly) prefers a consumption path 3’ to another path x with respect to a 
non-myopic preference if lim supr+_, CT= i (u’(x,) - ui(x;)) < 0( 5 O).3 A feasible 
allocation path e = (( - ,k, y), x1,. . . , $) from k is said to be Pareto efficient 
with respect to non-myo$c preferences if it satisfies the following. If for an 
allocation path e’ =(( -_k’, y’), x’l,. . . , &I), $i is weakly preferred to $ with 
respect to a non-myopic preference for all i and strongly preferred for at least 
one i, then e’ is not feasible from k. A feasible allocation path e from k is said 
to be s-almost Pareto efficient with respect to non-myopic preferences if there 
is a feasible allocation path e’ from k such that e’ is Pareto efficient with 
respect to non-myopic preferences and that le, - e;l <E for all t 2 0. 

3. Assumptions and results 

3.1. Assumptions 

Assumptions (A.l)<A.18) below are assumed in Yano (1984) in order to 
prove the Liapounov stability for a long run equilibrium (see Proposition 1 
in section 4). They are weaker than the assumptions made by Bewley (1982) 
in a few respects. Readers are referred to Yano (1984) for detailed 
discussions on the assumptions. We assume 

(Ad). P#&o#4, and Puo=.i. 

(A.2). Y is a closed convex cone in RP x RJ with the vertex at zero. 

(A.3). ( -k, y) E Y implies k 2 0 and y” 5 0. 

% the literature of capital theory, x’ is said to catch up to x if 3’ is weakly preferred to 5 
with respect to a non-myopic preference [see von Weizslcker (1963 Atsumi (1963, Gale (1967) 
and Brock (1970)]. 
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(A.4). Necessity of primary goods. ( -k, y) E Y and yP > 0 imply that y” < 0. 

(A.5). Free disposal. (-k, y) E Y and (-k’, y’) s( - k, y) with k’E RP, imply 
that ( -k’, y’) E I: 

(A.@. There is ai E RCi, i = 1,. . . , I, such that Xi = u’ + RCi, air20 and 
Uios0.9 

(A.0 u’:X’ +R is concave and continuous. 

(A.??). c’ #c#I, i= 1 ,..., 1. For any a>O, u’(x+cY~~~~)>u~(x) ifjEC’. 

(A.9). CnP#4 where C=U!=,Ci. 

(AJO). All consumers have a common discount factor O<p < 1. 

(A.11). Non-triviality of long run equilibrium allocation, There are E> 0 and 
/3 > 0 such that for any long-run equilibrium allocation with b sp < 1, ep = 
(( - kP, y”), xlP,. . . , xIp), it holds that IxPp( ZE where xP =I!= 1 xip. 

(A.12). Sufficiency of long-run equilibrium consumption. For any long-run 
equilibrium with b sp < 1, there is 0< Cr < 1 such that Es ct < 1 implies 
CtX iPP+~iPo~Xi, i=l,..., I. 

(A.13). Substitutability. Let (-k, k’+x) E I: XEX and k’ ERP,. For any s’>O, 
there is E > 0 such that lx’1 2 E’ implies ( -k, k’ + 8~’ +x0) E Y 

(A.24). Uniformly bounded marginal productivity of capital. Let (-k, y) and 
(-k’, y’) be on the boundary of I: If for some long-run equilibrium capital 
stock, ke, with p sp < 1, Ik- kPI <E and Ik’- kPI <E, and if k’z k, ~“2 yp and 
y’O=yO, then there is q>O such that ly’P-yPI~nJk’-kl. 

(A.15). Around the set of all Ramsey points, Y is a strictly convex cone and 
ui is strictly concave.4 

Under Assumptions (A.l)-(A.15) we may prove that there is 0 <p < 1 such 
that for any adequate initial allocation of capital and for any p such that 
ps;p < 1, there is an equilibrium pair [see Yano (1984)]. 

In addition to these assumptions we assume 

(a.2). The production set Y can be expressed as a continuous production 
function f:RP xRJ+R such that f( -k, y)sO if and only if (-k, y)~ Y 

4Y is said to be a strictly convex cone around the set of all Ramsey points if and only if there 
is F> 0 such that, for any Ramsey allocation (( -k*, y*), x1*, , x’*), I( -k’, y’) -( - k*, y*)l <E, 
I(-k”,y”-(-k*,y*)l -CC, (-k’,y’)~X (-k”,y”)~K and (-k’,y’)#b(-k”,y”) for any fi?O imply 
that E( -k’, y’) + (1 - a)( - k”, y”) E interior Y, 0 <a < 1. Also ui is said to be strictly concave around 
the set of all Ramsey points if and only if there is E>O such that, for any Ramsey allocation 
((-k*,y*), xl*>..., x1*), lx’-x’*(<E, ~x”-x’*~<~,x’~X~,x”~xi, and x’#x” imply that u’(ax’+ 
(1-a)x”)>ctu’(x’)+(l+cc)u’(x”),O<a<l. 
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Moreover, f has continuous first partial derivatives at the production vector 
(-k*, y*) of Ramsey allocation (( -k*, y*), x1*, . . . , XI*). 

(a.2). There is at least one BET such that for any Ramsey allocation 

((-k*, y*), x1*, . . . , xr*), the consumption vector xi* lies in the interior of X’ 

and ui has continuous first partial derivatives at xi*. 

Assumption (a.1) implies that the boundary of Y is smooth around the 

production vectors of Ramsey allocations. Assumption (a.2) is implied by the 
more basic assumption that there is a consumer whose indifference curves do 
not intersect the boundary of his consumption set and are smooth. 

3.2. Results 

We will prove the following theorems: 

Theorem I. A Ramsey point is a McKenzie equilibrium 

Theorem 2. Turnpike theorem. Suppose that the single-period general equili- 
brium model (18.i)glg.iv) has the unique McKenzie equilibrium, (e*,q*). Then 
(e*,q*) is independent of initial allocations of capital. Moreover, for any ade- 
quate initial allocation of capital and for any E > 0 there is 0 <p’ < 1 such that 
the following holds. There is T 2 1 such that if@(p), p(p)) is an equilibrium path 
from the initial allocution and if p’sp<l, (er(P)-e*I<s and lqr(p)-q*l<s 
for all t >= T where qt(p) =p-*pt(p). 

Theorem 2 implies that the allocation path (e*, g*) = {(e:,q:)} such that 
(e:,q:)=(e*,q*) for all t is the turnpike of our economy. The theorem does 
not imply that (e,(p), qt(p)) converges to (e*,q*), but implies only that it 
converges to a small neighborhood of (e*,q*). This type of a turnpike 
theorem is called a neighborhood turnpike theorem [McKenzie (1979)]. 

Theorem 3. For any equilibrium allocation path e(p) from a given adequate 
initial allocation of capital and for any E > 0, there is 0< p’ < 1 such that the 

following holds: p’sp< 1 implies that e(p) is s-almost Pareto efficient with 
respect to non-myopic preferences. 

Corollary I. The allocation path, e*, of the turnpike is Pareto eficient with 
respect to non-myopic preferences. 

4. Proofs of theorems 

Here, we will prove the theorems above. Let p be as in section 3. For each 
pair of an adequate initial allocation of capital and a discount factor p such 
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that psp < 1, there may be multiple equilibrium. Take an adequate initial 
allocation, (K& . . . , ~6). For this initial allocation and for each discount 
factor p such that p sp < 1, we select an equilibrium pair and denote 

it as +‘=($A P(P), ep, qP9 CY(P)), e(p) = {e,(p)), e,(p)=((-kk,- r(p), Y,(P)), 

x:(P), . ‘. 3 x:(P)), p”(P) = {Pt(P,>, and eP=(( - kP, y”), xlp,. . . , x’“). Moreover, let 
c&) = pefpt(p). We will first prove Theorem 1. 

Proof of Theorem I. Take a Ramsey point (e*,q*: y(l)) to which a sequence 
(ePn, q? y(p,)) converges. In the next section, we will prove: 

Lemma 1. There are p > 0, /?’ > 0, and 0 < p’ < 1 such that p’s p < 1 implies 
the following. le,(p)l <B for all t 2 1, lqt(p)I < /3 for all t, leP[ -C/I, B’< [qpI < /?, and 
y’(p) 2 /?for all i. 

Lemma 1 implies that there is a subsequence of pn, call it p,, again, 

such that rcpn converges to rrl = (e( l), p( l), e*, q*: y( 1)). Denote e( 1) = {el( l)}, 

e,(l)=((-k,-,(l), y,(l)). ~:(l),...,%lk p(l)={p,U)}, and e*“=((-k*,y*), 
X1* ,...,x’*). 

Since qj’+q* #O by Lemma 1, (18.i) holds by (14.i). Since qp”+q* #O and 
( - kPn, yPn)+( - k*, y*), (14.iii) implies (18.iii) and (14.iv) implies (18.iv). Note 

that (15.i) implies ui(xip)-yi(p)qpxipzui(x)-yi(p)qpx for all XEX’, for all i. 
Thus, since xlP* +x1*, @‘“+.1*#0, and y’(p,)+y’(l), we have ni(xi*) 

-?(l)q *xi* >ui(x) -yi(l)q*x, for all XEX’. Thus, if we prove q*x’* =0 for 

all i, (18.ii) nolds. Therefore, in order to prove the theorem, it suffices to 
show q*x’* =0 for all i. 

We will use the following lemma (see the next section for a proof). 

Lemma 2. For any E>O there are O<p’< 1 and Tz 1 such that p’spll 
implies (e,(p) - eP( <E and (qt(p) - qp( < E for all t 2 ?: 

Define 1, = {iE E q*x’* > 0} and r_ = {iE in q*x’* CO}. By the definition of 

r+ we may choose E>O and 6 >O such that [q-q*1 ~6 and lx-xi*1 ~6 imply 
qxz&E/2 for all iei,. Since (eP”,qpn)+(e*,q*), there is N’ such that Iqp”- 
q*l<6/2 and (xip” -x’*l<6/2 for all n?N’ and all iE1 Since ~“41, by 

Lemma 2 there is NZN’ and T such that Iqt(pn)-qp”( <J/2 and Ixf(p”) - 
xip”I <6/2 for all nz N and all t 2 7: Thus, since, for all nz N and 

tZI+&“)-q*l<~ and (xf(p”)-xi*l<6, the definition of 6 implies 
q,(p”)xf(p”) 2 42 for all i E i+ . Therefore, by using a similar method for i E i- , 
we may establish that there are N and 7’ such that i~i, (iEr_) implies 
q,(p”)xf(p”) > 0 ( < 0) for all n 2 N and t 2 T. 

In order to show the theorem, it suffices to show that i+ = i_ =@ 
Suppose i, #Ca. Let i E i, and T and N be as above. Lemma 1 implies that 
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IP,(P”)~ and IxfW)I are uniformly bounded with respect to t and n. Thus, 
consumer i’s budget equation implies that there is /?>O such that 

N 

for all nz N. Since p,(p”)xf(p”) 20 for all nz N and t 1 T by the choice of N 
and T, Fatou’s lemma [Rudin (1976)] implies 

(ii) 

Since p,(p”)xf(p”)+p,( l)xf( 1) 20, eqs. (i) and (ii) imply 

(iii) 05 2 P,(l)4lEP. 
t=T 

Since p,( l)xf( 1) 2 0 for all t 2 IT: inequality (iii) implies 

(iv> P,(lMlW 

as t + co. In the next section, we will prove 

Lemma 3. e,(l)-+e* and p,(l)+q* as t-+co. 

By (iv) and Lemma 3, pt(l)xf(l)+q*x’* =O. This contradicts that i ET,. 
Thus, T+ = 4. Since I_ =c$ can be shown in the same way, Theorem 1 is 
proved. 

We now prove Theorem 2. 

Proof of Theorem 2. By Theorem 1 and the hypothesis of Theorem 2 that 
there is the unique McKenzie equilibrium (e*,q*), the Ramsey point is also 
unique. Since the system (18.i)-(18.iv) is independent of initial allocations of 
capital, so is (e*,q*). Therefore, by the definition of a Ramsey point, for 
any E > 0 there is 0 <p” < 1 such that p” 5p < 1 implies leP-e*l <.s/2 and 

l@p;;;l < 42 f or any equilibrium pair with any adequate initial allocation of 

For equilibrium pairs (g(p), p(p), eP, q? y(p)) with a given adequate initial 
allocation, choose p” 5 p’ < 1 and T 2 1 so that p’ 5 p < 1 and t 2 T imply 

l&4 - eP( < s/2 and ICAP) - Q’I< 42, w ere h qt(p)=p-fpt(p). Since p’sp<l 
and t 2 1 imply that le,(p) - e*l <E and lqt(p) - q*l < E, Theorem 2 is proved. 

We now prove Theorem 3. 
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Proof of Theorem 3. Suppose e(p”) and ep” of equilibrium pair +‘” with a 

given adequate (~6, . . ., K’,) converge to e(l) and e*, respectively, of its limit 

pair, 7~~. We first show that I converges to e( 1) uniformly with respect to t. 
Choose E > 0 arbitrarily. Sine ep”+e*, there is N > 0 such that lePn - e*l < 43 

for all 12 2 N. By Lemmas 2 and 3 above, there are T > 0 and N’ 2 N 

such that le,(l) -e*l <c/3 and le,(p,) -ePnl <c/3 for all t 2 T and nz N’. Then 
for all t 2 T and n 2 N’, we have that le,(p,) -e,( 1)15 /e,(p) -ePnl + lePn -e*l + 
le* -e,(l)1 <E. Since e(p,)+,(l), pointwise, we may choose N”z N’ such that 

le,(p,) -e,(l)1 <E for all c 5 T and nl N”. Thus since we have that lg(p,) - 
e(l)l, <E for all nz N” , e(p,) converges to e(l), uniformly. 

In order to complete the proof, suppose that e(l) is not Pareto efficient 
with respect to non-myopic preferences. Then there is a feasible allocation 
path e’ = (( -k’, y’), x’l, . . . , x”) from Cf= 1 ICY such that lim sup,, n CT= 1 
(u’(xf(1)) -u’(x:‘)jgO for all i with strict inequality for some i, where $( 1) is 
of e( 1). Let y( 1) be of limit pair x1. Then, it holds, 

6) O<i$l&l,inf i (~~(x;~)-~~(xf(l))), 
+oo t=1 

Slimsup i (w(x:,~(l))-W(x,(l),~(l))), 
r*m t=1 

where xi =c!= lx;i. This contradicts the following lemma (see the next 

section for a proof). 

Lemma 4. Pseudo-equilibrium path e(l) of limit pair I? is (overtaking) optimal 

with respect to { W(x, y( 1))) where y( 1) is of 72; i.e., for any feasible path e from 

the initial allocation of e(l), lim sup,, m Et’= 1 (W(x,, y( 1)) - W(x,( l), y( 1))) 50, 
where x,=~f=,xf,~,(1)=~f=~~f(1), xi is ofe, and x’(l) is ofg(l). 

This completes the proof of Theorem 3. 

Corollary 1 may be proved in the same way. We therefore omit a proof. 

Remark I. Theorem 3 and Corollary 1 can be established without assuming 
Assumptions (a.1) and (a.2). These assumptions are used only to establish 
Lemmas 2 and 3. In the proof of Theorem 3, we may use Sublemmas 7 and 
9 in the next section, which do not require (a.1) and (a.2), instead of Lemmas 
2 and 3. 
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Remark 2. Another preference relation for a consumer who does not 
discount the future may be considered by using weak maximality [Brock 
(1970)]. That is, a path x’ may be said to be strongly (weakly) preferred to 
another path x if lim inf,, ,cT= 1 (u’(x,) - u’(x;)) < 0( 5 0). The definition of 
Pareto efficiency may be based upon this preference. Unfortunately, however, 
Pareto efficiency of a pseudo-equilibrium path cannot be shown under this 

definition; although the first inequality of (i) holds for ‘limsup’ instead of 
‘lim inf’, the second inequality does not hold in the case of ‘lim sup’. 

This fact is due to the difference in ‘strength’ of these two preference 

orderings. If a sequence (~4;) of utilities is strongly preferred to {u,} in the 
‘lim sup’ sense, then there is some T such that c:= i ur<C:= 1 u: for all tz T 

There may not be such T even if {u;} is strongly preferred to {at} in the 
‘lim inf’ sense. It merely implies that I:= ru, < I:= iu: for infinitely many t. 
Thus, the ‘lim sup’ preference has ‘stronger’ implications than the ‘liminf 

one. 

5. Proof of lemmas 

Lemmas 1 and 4 can be proved without using Assumptions (a.1) and (a.2). 
Let np and the variables associated with rep be as in the first paragraph of the 
previous section. We first prove Lemma 1. 

To begin with, we may prove the following sublemma [for a proof see 

Yano (1984, Lemmas 3, 4, 6, and 7)]. 

Sublemma 1. There are /3>0, p’>O, and 0~6 < 1 such that bsp -C 1 implies 
the following. le,(p)l < /? for all t 2 0, lePl < 8, p < (qpI< fi, and y’(p) 2 /Y for all i. 

For each p such that b 5 p < 1, we define 

0) 4’ = Wxp, Y(P)) - qpxp - ( WX,(P), Y(P)) - qpxtbN - qp(yr(d -p- lk - I(P)), 

where 6 is as in Sublemma 1 and x,(p) =xf= 1 xi(p). By (1Aiii) and (15.i), 
d; 2 0 for all p and t. Moreover, define &’ = 1; ip’d;,,. Since, by Sublemma 

1, d; is bounded uniformly in p and t, /if’ is well defined and n:, 20 for all t 
and p such that jj 5 p < 1. By definition, c 5 p < 1 implies 

(ii) d;=p-‘/I;_, -/I;, 

for all t. We may prove the following [see Yano (1984), Lemma 11 for a proofl. 
proof]. 

Sublemma 2. A$ is bounded uniformly in p such that c sp < 1, where p” is as 
in Sublemma 1. 

Moreover. we have 
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Sublemma 3. There are c >O, E’ > 0, and p1 such-that p” Q, -=c 1 and that 
p 1 5 p < 1 and 0 <E < E’ jmply the following. There are 2 E X and ( - kP(&), E) E Y 
such that j? = 2 + kP + cxp and 2’ = xpo, 
xp is as in section 3. 

where k;(s) = max { 0, kj - E} for all j and 

ProoJ This can be proved by a method similar to that which proves 
Lemma 12 in Yano (1984). 

The inequality defining T’@(p), p(p)) in (12) readily implies 

(iii) P’U’(Xf (P)) - Y’(P)P,(P)-+(P) 2 plui(x) - Y’(P)P,(P)& 

for all x E X, all t 2 1, all i, all p such that p 5 p < 1. Thus, by the definition of 
the social welfare function in (13) and the normalizations of prices in (15), 
(iii) implies 

(iv) P’ W(X,(P), V(P)) -P,(P)%(P) 2 of Wx, Y(P)) - P,(P)X? 

for all x E X, all t, and all p such that fi 5 p < 1. Moreover, (11 .iii) implies 

(v) 0 =P,(P)Y,(P) -or - ,(p)k, - I(P) 2 P,(P)Y - pt - ,(p)k, 

for all (-k,y) E I: all t2 1, and all p such that fiip< 1. Substituting 

xp=& 1 xip and (- kP, y”) for x and (-k, y) in inequalities (iv) and (v), 
respectively, and adding the two inequalities, we have 

(vi) z=tI PV%(P),Y(P))- WC@>Y(P))) ZP,- ,(P)(k, - 1(P) - @‘) 

for all tl0 and p such that p”zp<l. 

Define the projection of Y to RJ as Y,, or Y, = {ye RJ: ( -k, y) E Y for some 
k). Then, we may prove 

Sublemma 4. X n Y, has a non-empty interior. 

Proof: This may be proved by the method similar to that used to prove 
Lemma 5 of Yano (1984). 

Note that qt(p) = p -‘p,(p). We will prove 

Sublemma 5. 1. Ik, - I(P) - kP1 <E’, there is fl> 0 such that p1 5 p < 1 implies 
)qt(p)( 5 /?, where E’ and PI are as in Sublemma 3. 

ProojI By (vi), for any t2 1 and p such that $5~ < 1, we have q,(p)(k,(p) 
- kP) 5 - Cr”= ,p*( W(xp) - Wfx f +,(P))) = #VW L W -J’ 5 @(k,(p) - W, where 

W(x) = W(x,y(p)), where the equality follows from the definitions of A; and 
A:, and where the last inequality follows since AyzO. Therefore, by 
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Sublemma 1, q,(p)(k,(p) -k”) is b ounded from above uniformly in t 2 0 and p 

such that p”sp<l. 
If Ik,_Jp)-kPj5E’, by Sublemma 3, there is c >O such that, for any 

pisp<l, there are (-k,_,(p),y’)EY, ~‘EX and y’=x’+kP+cXP. Then, by 

(iv) and (v), for any p1 zZp < 1, we have I%(P)) +&MP) 2 IQ’) +%(P) 
(kP + cx’). Thus, since q@)(k,(p) - kP-cxP) 2 W(x’) - W(x,(p)), Sublemma 1 
implies q,(p)(k,(p) - kp- cxp) is uniformly bounded from below. 

Thus we have some F >O such that for any p1 5 p < 1, 

(vii) -B’ 5 q,(p)(‘&) - kP - cx’) < q,(p)(Q) - kP) < B’. 

Suppose that Id(p)I is not uniformly bounded for t and p. Then, by 

Sublemma 1 we may choose {p,, t.} with p1 5p, < 1 and t,ZO such that 

P~+P, k,“+’ kP”-+kP, )qp,(pJ/ -+a and q~(~,)l)q~(~J/+~. Note cb’>O. But 
by (vii) c4’xp=0, a contradiction. Thus lqf’(p)I is uniformly bounded. 

Suppose that (q&r)\ IS not uniformly bounded in p and t. Then, by Sub- 

lemma 1, we may choose {p,, t,,) with p1 5p, < 1 and t, 20 such that pn+p. 

( -k,” IhA y,,(~,,)b( -k’- lr Y’), k,hJ+K xr,(~n)+x’, qr,(pJl(q&.)(+ > 0 

and lqr.(Pn)l+K. Since q!(p) is uniformly bounded, +=$O. Therefore, by (iv) 

and (v), we have 

(viii) @x’ = @x’O 5 I$% for all VEX, 

4°y’=40y’o&40y for all (-k,y)E x or for all YE Y,. 

The second inequality follows since q,(p)(k,(p) - k) =q&)(k,(p) -k) is uni- 

formly bounded by the first part of this proof. Since, by the market clearing 
condition, y,(p) -k,(p) =x,(p), we have 

(ix) y’0 = $0. 

Since, by Sublemma 4, X n Yp has a non-empty interior, (ix) contradicts 
(viii). This completes the proof. 

Define XF = {(x1,. . . , xT)EXT:(-k,pI,yt)EY, x,=y,-k,, t=l,...,?; ko=rco, 
and k,=O}, where XT is the Cartesian product of T X’s. We may prove 

Sublemma 6. XT n XT has a non-empty interior. 

Proof. Due to Lemma 5 of Yano (1984). 

We may prove: 

Sublemma 7. For each E >O, there are 0 < p' < 1 and T2 1 such that p’s p < 1 
implies le,(p) - ePl < E .for all t 2 T 
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ProoJ: By Theorem 3 of Yano (1984). 

We now prove Lemma 1. 

Proof of Lemma 1. By Sublemma 1, it suffices to show that there are /I>0 

and 0 <p’ < 1 such that p’sp < 1 implies l&)1 < /? for all t 20. Let E’ and p1 
be as in Sublemma 3. By Sublemma 7, we may choose p’2p2 and Tz 1 such 
that I&I) -P <E’ for all tz T - 1 and all p such that p’sp < 1. Then, by 

Sublemma 5, l&)1 b IS ounded uniformly in t 2 T and p such that p’ 5 p < 1. 

Thus, it sufticies to show that Ip,(p)l is bounded uniformly in p such that 

p’5pp<l for tsT-1. By (iv), we have 

(4 ~P’U.(x,(P))-~p~(P)x,(p)~Fy’W(x,)-~p,(P)x,, 

for all (x,,...,x,)~Xx ... x X, where W(x) = W(x,y(p)). Also by (v), we have 
that 

(xi) P,(P)Y,(P) +$P,(P)x,(P) zPAP)yr+$P,(P)x,, 

for all (-/c_~,~,)EY and x,=y,-~,EX for t=1,...,7; with /c,=K, and 

k,=O. Suppose that Ip,(p)( is not uniformly bounded in t = 1,. . . , T - 1 and p 

such that p’ 5 p < 1. Then we may find a sequence (p,} with p’ 5 pI1 < 1 such 

that MP,), . . . , x~(PJ)+A.. . &) that (PAPA.. . ,PAPJ)/CT IP,(P,)~ 

+($I,..., &)>O and that CTlp,(p,)I *co. Then, by (x), we have that 

for all (x,,...,x,)EXx ... x X. Since p,(p,) is uniformly bounded, &=O. 

Thus, by (xi), we have 

for all (-k,_,,y,)~Y and x,=y,-~,EX, t=l,...,T, with k,=~, and k,=O. 

Since, by Sublemma 6, XT n X,T has a non-empty interior, (xii) and (xiii) lead 

an obvious contradiction. 
By (v), p,(p)~,,=p~(p)y~(p). Since pi(p) and y,(p) are uniformly bounded, 

pj,,(p) is uniformly bounded for j such that “jo#O. Moreover, we may set 
pjO(p) = 0 if ~~~ = 0. Thus, Lemma 1 is proved. 

Let fi be as in Sublemma 1. We may prove: 

Sublemma 8. There is p2 such that j? 5 pz < 1 and that for each E >O the 
211y8ing holds: There is 6 > 0 such that pz 5 p < 1 and le,(p) -epl > E imply 

: . 
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Proof: See the proof of Lemma 8 of Yano (1984). 

By Lemma 1, we may choose a limit pair rcl such that there is a sequence 
{p,} such that ~“-1 and that rcPn converges to rc’, where nPn, n = 1,2,. . . , are 
those chosen at the beginning of this section. Denote rrl =(&), p(l) 

e*, 4*: Y(L)), e(l) = {et(l)>, e,(l) =(( -k, - r(l)~,(l)), x:(l), . . . ,x:(l)), p(l) = {P,(~)>, 
e*=((-k*,y*), x1* , . . . , XI*). We will prove: 

Sublemma 9. e,(l)+e* as t-co. 

Proof Since et(Pn)+et(l),ePn+e*, and y(p,)+y(l) as p,-+l, the definition of 
A; implies that A; converges to some non-negative, say, A: for all t. 
Therefore, by Sublemma 8, for any E > 0 there is 6 > 0 such that le,( 1) - e*l > E 

implies A: >6. By Sublemma 2, we have a subsequence of (p,}, call it {p,,] 
again, such that A$ converges. Denote the limit as A:. Since Ap+A,*, eq. (ii) 
implies that, by induction, &‘“+A: for all t. Note that since A? 2 0, A: 2 0. 

Then, by (ii), /it*_ 1 -A: = A: for all t. Thus, since A: 2 0 for all t, 

for all T Suppose that there is E > 0 such that [e,(l) -e*l > E for infinitely 
many t’s. Then, as is noted above, A: >6 for some 6>0 for infinitely many 
t’s. Since A: 20 for all t, this implies CT= 1 A:+oo, which contradicts (xiv). 
Thus, e,(l)+e*. This completes the proof. 

We now prove Lemma 4. 

Proof of Lemma 4. Take a feasible allocation path from xi K& where 

(&. . ., rc’,) is the initial allocation of capital chosen above. Denote this path 

as e=((-,k,y),x’,..., x’), (-_k, 2) = {(-k, 1, y,)>, and 5’ = (xf}, i = 1,. . . , I. Let 
x,(l)=xixf(l) and x,=xixf. Without loss of generality, we may assume 
y, -k, =x, for all t 2 1. Since rcPn converges to rcl, inequalities (iv) and (v) imply 

(xiv) w(x,( 1)) - ~,(l)x,(l) 2 W(x,) - P,( 1)x,, and 

(xv) O=P,(l)y,(l)-p,-,(l)k,-,(1)~p,(l)y,--p,-,(l)k,-,, 

where W(x) = W(x, y( 1)). Define 6, = W(x,( 1)) - pt( 1)x,( 1) - ( W(x,) - pt( 1)x,) + 

p,(l)y,(l)-_p,-,(l)k,-,(l)-(p,(l)y,-_p,-,(l)k,-,)). Then, by (xiv) and (xv), 
~$20 for all tz 1. Note, by Sublemma 9, e,(l)-+e*. Thus, by a method similar 
to that used to prove Sublemma 8, we may find T 11 such that the following 
holds. For any E >0 there is 6 >0 such that [e,(l) -e,( > E and t 2 T imply 
6, > 6. Note k,( 1) = IC~( = xi I&), y, -k,= xt, and y,( 1) - k,( 1) =x,(l), where the 

last inequality follows since, by (1 l.iv), y,(p,) - k,(p,) = x,(p,). Therefore, the 
definition of 6, implies 
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(xvi) ~~1(~(x*)-%(l)))=~r(l)(k~(l)-kr)-~~16,. 

If PT(l)(kT(l)-kT)+O as T+co, (xvi) implies ~,“=l(W(x,)-W(x,(l))= 
-cgl ~$20. If p,(l)(kdl)-k,)+O, [e,(l)-e,1>3 for some s>O for infinitely 
many t’s Then, as noted above, 6, >6 for some 6 >O for infinitely many t’s. 

Then, ~j’=16t-+c0 as t-+c~. By Sublemma 1, I~r(l)( and Ik,(l)l are bounded 
uniformly in 7: Moreover, we may prove that any feasible path {e,} is 

bounded uniformly in t [see Yano (1984), Lemma 31. Thus, since 
~r( l)(k,(l) - kT) is bounded uniformly in 7; and since ~~=r C?+GO, (xvi) 
implies CT= 1 ( W(x,) - W(x,( 1))) + - cc. This proves Lemma 4. 

Lemmas 2 and 3 require Assumptions (a.1) and (a.2), and are extensions of 
Sublemmas 7 and 9. Whereas the stability of only allocation paths is shown 

in the sublemmas, the lemmas assert that of price paths as well. Since 
Assumptions (a.1) and (a.2) simply require that the indifference surfaces of a 

consumer and the boundary of the production set are smooth, we may prove 
Lemmas 2 and 3 by routine methods. Proofs are therefore omitted. 
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