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We investigate the ability of a representative agent model with time-separable utility to explain the
first and second moments of the nisk-free rate and the return to equity. We generalize the standard
calibration methodology by accounting for the uncertainty in both the sample moments to be
explained and the estimated parameiers to which the model is calibrated. We find that the first
moments of the data can be matched for a wide range of preference parameter values but the model
is unable to generate both first and second moments of returns that are statistically close to those m
the sample.

1. Introduction

A primary goal of financial economists is to understand the dynamics of asset
price movements. Recent research has focused on measuring and explaining
both the degree of serial correlation and the size and variation of asset returns.
In an earlier paper, Cecchetti, Lam, and Mark (1990), we studied the first of
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these issues.! Here, we examine the second. We show that a representative agent
model based on Lucas (1978) calibrated to historical consumption and dividend
growth jointly can explain the first but not the second moments of the equity
premium and the risk-free rate found in the data.

The empirical issues that concern the work here were first discussed by Mehra
and Prescott (1985). They show that for plausible values of the discount factor
and the coefficient of relative risk aversion, a simple representative agent model
that is calibrated to certain features of historical consumption data implies
values of the equity premium that are ‘too low’ together with values of the
risk-free that are ‘too high’. The difficulty that Mehra and Prescott found in
using a frictionless, pure exchange Arrow—Debreu economy to match the first
moments of the equity premium and the risk-free rate is what has come to be
known as the ‘equity premium puzzle'.

This paper has two features that distinguish it from previous studies of equity
returns.? First, we explicitly separate consumption from dividends. It is common
in the literature to set consumption and dividends equal, and then calibrate the
model to estimates of a univariate consumption process. But this practice
ignores the fact that equities are actually levered claims to firms' production.
Recently, both Kandel and Stambaugh (1990a, 1990b, 1991) and Benninga and
Protopapadakis (1990) report success in matching the first and second moments
of returns data using models with leverage. Those papers treat the leverage ratio
— the ratio of debt to the market value of the firm — as a free parameter.® These
authors are implicitly allowing the share of dividends to consumption to vary in
order to match the moments of returns. But the data provide a precise guide as
to what that share should be. The payments to equity holders represent only
a very small fraction of total consumption — during the twentieth century total
dividends have averaged between 3% and 5% of aggregate consumption. When
this ratio is imposed. the model cannot fully explain the data.

The second salient feature of this paper is that we develop a testing framework
to measure the ability of the model to match the data. This addresses a common

'"That paper shows how the negative serial correlation in asset returns found in sample is
consistent with-the equilibrium model described in section 2 below.

2Numerous solutions have been proposed to this puzzle A partial hist includes Mankiw’s (1986)
suggestion that the high nisk premium is the consequence of nondiversifiable risk. Reitz’s (1988)
examination of big crashes, Nason's (1988) study of the consequences of assuming that consumption
has some lower bound, Abel's (1988) work on heterogeneous beliefs, Weil’s (1989) and Epstein and
Zin's (1990) use of nonexpected utility, Constantinides’ (1988) and Abel’s (1990) models based on
habit formation, Labadie’s (1989) monetary model, and Mankiw and Zeldes’ (1991) separation of
stockholders from nonstockholders.

3In their original paper, Mehra and Prescott (1985) do note that equity 1s the residual claim to
output after labor has been paid. but in contrast to Benninga and Protopapadakis (1990), they find
that 1t does not help in generating a large equity premium Brainard and Summers (1990), who also
examine the impact of bonds, claim that the Mehra and Prescott analysis 1s misleading
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problem in the calibration literature. Previous authors generally fail to
provide a well-articulated criterion for evaluating the models they examine. To
understand the problem, let ¢ be a vector of sample moments and u(8; ¢) be
the corresponding implied moments from a completely specified economic
model with parameter vectors 6, representing technology, and ¢, representing
tastes. Inspired first by Kydland and Prescott (1982) and then Mehra and
Prescott (1985), recent asset pricing and business cycle research has explored
various parameterizations in an attempt to set [ — u{6: ¢)] = 0. In this
calibration method, the parameters of the technology, 8, are estimated in order
to conform to certain features of the actual economic environment. The investi-
gator then searches over ‘plausible’ values of the preference parameters, ¢, in an
attempt to find implied moments of the economic model that are ‘close’ to the
sample moments. But this ignores two sources of uncertainty. Since Y is an
estimator for the moments of interest and 6 is set equal to 8y, an estimator of the
parameters of the technology, the comparison can be thought of as testing to see
if the difference between two jointly distributed random variables is zero.

By explicitly accounting for uncertainty that arises from the fact that yr and
@1 are estimated, we can calculate the distribution of [y — u(6, ¢)], condi-
tional on a particular choice of ¢, the taste parameters. This allows us to
formulate a test statistic and apply standard inference procedures to evaluate the
fit of the model.*

Our starting point is an equilibrium asset pricing model based on Lucas
(1978), generalized to incorporate nontraded assets. We make assumptions
about preferences and the stochastic process governing endowments that yield
a closed form solution for asset prices. The utility function is time-separable and
in the constant relative risk aversion class, while the endowment obeys a form of
Hamilton’s (1989) Markov-switching model.

We go on to assume that dividends represent the flow that accrues to the
owner of the equity, and that these are discounted by the intertemporal marginal
rate of substitution defined over consumption. This approach mirrors reality
exactly in that equity prices are based solely on the flow that accrues to their
owner.

This bivariate model requires that we estimate a stochastic process for
consumption and dividend growth rates jointly. We then calibrate the model by
setting the parameters of the endowment process equal to estimates of the
Markov-switching model using annual observations on U.S. real consumption

*In a recent paper, Hansen and Jagannathan (1990) suggest an alternative method for evaluating
whether an asset pricing model 1s capable of matching the unconditional moments of the data. They
examine the abihty of various preference specifications to generate intertemporal marginal rates of
substitution that match those implied by asset returns data. They find that time-separable utility
functions require substantial curvature to meet their criterion. See section S below for a more
detailed comparison of our results with those of Hansen and Jagannathan.
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and dividend growth from 1892 to 1987. We proceed to examine the ability of
the bivariate consumption-dividends model to explain the equity premium
puzzle, ie., the first moments of the equity premium and the risk-free rate. As
first suggested by Constantinides (1990), we also study the ability of the models
to match the covariance matrix of the returns data. While leverage allows us to
match the mean equity premium and risk-free rate fairly easily, we find that our
attempt to match the second moments fails.

The remainder of this paper is organized into five parts. Section 2
describes the asset pricing model and derives the closed form solution for
asset prices for the bivariate consumption—dividends model, assuming that
endowment growth follows the Markov—switching process. In section 3 we
report estimates of the parameters of the processes constructed using Hansen’s
(1982) Generalized Method of Moments (GMM) procedure. Section 4 dis-
cusses the methodology for evaluating the performance of the models. Section 5
examines the ability of the bivariate consumption—dividends model to match
the first moments of the equity premium and the risk-free rate alone, as well
as the first and second moments of the returns data together. Section 6
contains concluding remarks.

2. The model

This section presents the model of asset pricing we use and derives the
solution for returns. We consider a variant of the Lucas model in which a
single nonstoreable consumption good is made available through an
exogenous endowment process.” Throughout, we assume that the endow-
ment can be described by the Markov-switching model first introduced
by Hamilton (1989).

We begin by assuming that the consumption good is generated by two
distinct processes. Call the first process dividends, and let the claim to dividends
be called equity. The price of equity is determined in a competitive market. The
claim to the second process, which can be thought of as labor income, is not
traded. Total consumption in any period is the sum of dividends and labor
income. The economy is populated by a large number of identical individuals
who are aggregated into a representative agent. This model is presented in
section 2.1. Sections 2.2 and 2.3 describe the stochastic model for the endowment
and an explicit solution for returns.

3The model presented here generalizes our earher results presented 1n Cecchetti, Lam, and Mark
(1990) We follow the standard practice of the aggregate asset pricing literature and study an
endowment economy. Since we are unconcerned with consumption decisions themselves, this makes
little difference. In principle. we could specify a production economy and derive the stochastic
process for technology that would be required to yield the consumption process we assume. All that
is important for our work is that the consumption process fits the data.
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2.1. Bivariate consumption—dividends: The investors

We begin with the first-order conditions for the generalized Lucas economy
in which consumption and dividends are not necessarily equal. These are

UCis1) e
Pf=ﬂE:{Wg;[Pt+1+Dz+1]}’ (1
pr_ g, U Cie) o
ST Uy
where
Pt = real price of the traded asset, or equity
P! = real price of the risk-free asset,
C, = per capita real consumption,
D, = dividend from owning one unit of equity,
U’ = marginal utility of the representative agent,
B = subjective discount factor, 0 < f8, and
E, = mathematical expectation conditional on information at time t.
Let preferences be given by
i
u(c) =1 ()
where 0 <y < oo is the coefficient of relative risk aversion.
Now substitute (3) into (1) and (2) to obtain
PiC7 = BE1C1_+Y1(P$+1 + Divy) 4
Cvr )’
P5=E,ﬁ( él > : (%)

We note here that in the empirical computations below f is allowed to exceed
unity. Kocherlakota (1990a) has shown that a unique solution to the asset
pricing problem exists in economies where the discount factor is greater
than one.®

%There are a number of ways to understand values of f§ that are greater than one. For example, 1t
can be thought of as a simple, but crude, way of approximating habit formation behavior of the type
described 1n Constantinides (1990) and Abel (1990). In their models, marginal utility is an increasing
function of the level of past consumption. This implies behavior similar to that implied by a discount
factor greater than one.
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2.2. The endowment process

We assume that consumption and dividends are governed by a bivariate
version of Hamiltons (1989) Markov-switching model.” Qur earlier paper
[Cecchetti, Lam, and Mark (1990)] demonstrates the empirical usefulness of the
Markov-switching process for modeling consumption and dividend growth. In
particular, we showed that this model is able to characterize the significant
negative skewness and excess kurtosis found in the consumption and dividend
growth data. Furthermore, the Markov-switching model admits a closed form
solution to the asset pricing problem.

Let ¢, =InC, and d, =InD,. We assume that {¢,, d,} is governed by the
following bivariate random walk with two-state Markov drift:

eN_ (e, (%), (% ef
(d,>‘<d,1>+(as>+<wi>s'+<ef>’ ©

&\ . .. . . .
where < d) is 1i.d. normal with mean zero and covariance matrix
8!

2
Ocd Od

0 or 1 with transition probabilities

)
al o , .
z = < ¢ Cd), and S, is a Markov random variable that takes on values of

i

Pr[S,=1|S,-; = 1] =p.
Pr(S,=0IS,_,=1]=1—p,

M
Pri§, =1iS-1 =0]=1—q.

Pr[S, =0[|$,-, =0] =g

The model of the endowment process requires estimation of nine parameters:
(5, 25, 25, 24, p, 4. 02. 03 6.4).°

As a normalization, we restrict the x,’s to be negative. Consequently the
economy will be in a good state when S, = 0 and in a bad state when §, = 1. The

"We model consumption, rather than labor income, jointly with dividends to maintain tractability
of the model We note that this formulation places implicit restrictions on the production technology
that we do not ivestigate. See footnote 2 above.

8The fact that both consumption and dividend growth have normally distributed innovations
implies that the difference between their levels, (C, — D,), can take on a negative value with nonzero
probability. But, because consumption 1s nearly 20 times the size of dividends in the data, the
probability that the model will ever imply a negative value for labor income is vanishingly small,
even though oj 1s nearly 10 times ¢ (See table 1 for details.) As a result, we 1ignore this potential
complication n the presentation below.
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parameter g is the probability of remaining in the good state next period given
that the economy is currently in the good state, while p is the probability of
remaining in the bad state given that the economy is currently in the bad state.
The transition probabilities between the two states are (1 — g) and (1 — p).

The Markov components of the dividend and consumption processes are
assumed to be perfectly correlated, and so dividends and consumption are in the
good or the bad state simultaneously. The mean consumption and dividend
growth rates are o and of in the good state and («§ + ) and («§ + «f) in the
bad state.

The bivariate Markov-switching model generalizes the Markov-growth pro-
cess of Mehra and Prescott in three ways. First, consumption and dividends are
modeled jointly. Second, the continuous random variable ¢ is included. Third,
the transition matrix in (7) is permitted to be asymmetrical. We obtain the
Mehra and Prescott endowment process by setting C = D, p =g, and 2 = 0.

2.3. The solution for returns

Assuming that consumption and dividends follow the bivariate process given
by (6) and (7), we obtain the closed form solution for the price of a share of equity
and the price of the risk-free asset by the method of undetermined coefficients.’
Conjecture the following solution:

P = p(S,)D,. (8)

The problem is to verify that (8) solves (4) and to find the function p(S,). To do
this, first substitute (8) into (4) to obtain

p(S)D,C7 = BEC1 D [p(Si+1) + 1. 9
Next, write (6) in levels,
Cray | _ C,e'a‘:ﬂtznlw?.. . 10)
Dr+1 Dlelan+1, i1 T )

Now substitute (10) into (9) and note that & and ¢ are iid. normal with
covariance matrix X to obtain

pS) = Pelsh i riet e I Qb S (S, ) + 1] (1)

9The technique presented here can also be used to obtain a solution for the general case in which
the endowment follows an n-state Markov-switching process in the mean, the variance, or both.
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Because S, can take on only two values, 0 or 1, (11) is a system of two linear
equations in p(0) and p(1). Solving these two equations yields

1—(p+q—D&f

p(0) = —— P -
1= Bpd, + @)+ B d(p+q—1)

1, (12)

l—(p+q—1f
L — Blpds + @) + F*a,(p+q—1)

pll)y = -1, (13)

where

B’ — b’e[ﬂ. S RGT = 20+ ad)]

4L
[

=€’

=

This establishes that (8) is the solution to (4).*°
The price of the risk-free asset is obtained using (6) and (7) to evaluate (5).
That is,
Pi= et (S, (14)

where @(0) = ¢ + (1 — q)e ~"*and ¢(1) = pe =" + (1 — p). The implied rates of
return to holding the equity and risk-free assets from date ¢ to ¢t + 1 are

_ P+ Dy

szRe(Sr+1~Sr~€f+1)—T“l
/)(St+l)+1 (x 44 o2is )
— ex(,+r,., 21800 1~ (15)
p(S:)
1
szRf(S,)=—f— 1. (16)

P

t

Next, integrate 7, ; out of the expression for the equity return to obtain

S 1 d 1 2 d Q¢
Re(S,H.S,)=p—(—l+l—)i—e""+i“”"5“"— L (17)
p(S;)

'9The solution for the equity price can also be obtained by iterating the stochastic difference
equation (8) forward and exploiting results 1n Hamulton (1989) to evaluate the resulting geometric
series. The conditions required for this series to converge also guarantee that p(S,) 1s nonnegative.
The nonnegativity of p(S;) 1s always imposed in the empirical work that follows.
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Finally, the implied means of the risky and the risk-free rates of return are
computed by summing over the probabilities:

4 =E[R(S;+1, 8]

1 1
= Y Y Pr(Sie1 =8+118 = 5)Pr(S, = s)R°(s041,5,),  (18)
$t+1=0 5:=0
1
pf = E[RYS)]= Y Pr(S, = 5,)R'(s,), (19)

5=0

where Pr(S; = s,) is the unconditional probability that S, = s,. For the good
state, s, = 0, this is Pr(S, = 0) = (1 — p)/(2 — p — q). The unconditional prob-
ability of a bad state is Pr(S;,=1)=1—-Pr(S,=0)=(1 — ¢)/2 — p — g).
The expected equity premium follows as
pP =t — . (20)

In order to compute the implied covariance of the premium and the risk-free
rate, first use (15) and (16) to define

R} = R?(8;+1. S, fe1) = R(Si1, S, 604 1) — Rf(sz)- (21)
Next, integrate &, ; out of (21) to obtain the equivalent of (17),
RP = RP(§,41,8:).

Using these, we can write the covariance matrix of the equity premium and the
risk-free rate:

Rp 1 1
Var( t>= z z Pr(S,+, :St+1|St=St)Pr(St=st)9

Rf st+1=0 5.=0
[(R? — uP)*dF(efey) (RP — puP)(RT — uf)] )
(RP — pP)(Rf — pf)  (Rf— pfy? ’

where F(gf,,) is the cumulative normal distribution function, with mean zero
and variance o2.

3. Estimation of the endowment process

The next step in deducing the behavior of the joint equity premium-risk-free
rate process (RF, Rf) implied by the model of section 2 is to estimate the
parameters of the stochastic process for the endowment.

JMon - B
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Estimates are computed by Hansen’s (1982) Generalized Method of Moments
(GMM), using annual data on real dividend growth for the Standard and Poor’s
index, and real per capita consumption growth, together with the returns
reported in table 2 of section 5 below.!! The moments used in the GMM
procedure were chosen to match the maximum likelihood estimates of the
bivariate consumption-dividends Markov-switching model as closely as pos-
sible.!? The appendix describes the moment conditions used for the estimation
and the criterion for their choice.

All the data sources are described in detail in the data appendix to Cecchetti,
Lam, and Mark (1990). Briefly, the dividends data are the nominal figures from
Campbell and Shiller (1987), deflated by the annual average CPI from Wilson
and Jones (1988).!* The real consumption series begins with the Kendrick data
in 1889, reported in Balke and Gordon (1986), and continues in 1929 with the
NIPA series for real personal consumption expenditure.!* The consumption
data are divided by population estimates from the Historical Statistics of the
United States and the Economic Report of the President to obtain per capita
observations.!?

The results are reported in table 1. In addition to the estimates of the
Markov-switching model reported in the first column of the table, we include
estimates of two nested alternatives: a random walk, where ¢ =1, p = 0 and
of = of =0; and a Mehra—Prescott style model, estimated by matching the
means and variances of consumption and dividend growth, and the first-order
autocorrelation of consumption growth, where ¢? = 63 = g4 = 0 and p = ¢.'¢
Standard errors for these Mehra—Prescott style estimates are obtained by GMM
on the exactly identified model.

In our earlier paper we provide a number of tests that demonstrate the
statistical superiority of the asymmetric Markov-switching model over alterna-

!By using data on the S&P index we are assuming that the growth in S&P dividends, as well as
the total return to holding the index, accurately mirrors the behavior of economy-wide dividend
growth and equity returns

2[deally we would prefer to estimate all of the parameters of the endowment and the moments of
returns jointly using a maximum likelihood procedure. But this would require that we evaluate the
likelihood for returns, and force the economic model to match all the aspects of the returns data.
There is no point to pursuing this strategy, as it is unlikely that our simple model can explain all
aspects of the data.

13The method and deflator were chosen so that our results in table 2 match the values in Mehra
and Prescott’s table 1 as closely as possible.
14None of the results reported 1n sections 3, 4, and 5 are changed in any noticeable way if the total

consumption series is replaced by consumption of nondurables and services alone as used by
Grossman and Shiller (1981).

!5Since the Mehra—Prescott process requires matching a first-order autocorrelation of consump-
tion growth. we estimate all the models over the period 1892 to 1987,

16The estimation of the Mehra—-Prescott model uses the procedure suggested on page 154 of their
paper.
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Table 1

GMM estimates of the bivariate Markov-switching model, 1892-1987 (asymptotic t-ratios in
parentheses).

Bivariate consumption—dividends

Markov- Random Mehra-
switching walk Prescott
q 0.9604 1.0 0.4723
(20.49) (5.62)
|4 0.0994 - 0.4723
(0.60) (5.62)
o 0.0218 0.0183 0.0206
(6.06) 4.93) (7.53)
of — 0.0832 - — 0.0908
(3.19) (5 70)
od 0.0255 0.0118 0.1334
(1.69) (0.93) (7.13)
o —0.3208 - —0.2431
(4.99) (729)
a, —0.0333 0.0372 0.0
(8.67) (9.08)
ay 01030 0.1216 0.0
(5.00) (7.29)
O 02732 0.443 0.0
(1.53) (4.49)
Pris=1) 0.0425 0.0 0.50

tives of the type considered here. Briefly, we first estimate the Markov-switching
model and the random walk model by maximum likelihood and construct
a likelihood ratio test. The result allows us to reject the random walk model in
favor of the Markov-switching model at the 1% level or better.!” Furthermore,
it is clear from the size of the estimates of the components of X, as well as the fact
that p is significantly smaller than g, that the Markov-switching model domi-
nates the Mehra—Prescott style estimates. Finally, we prefer the Markov-switch-
ing model because of its ability to produce the negative serial correlation in
equity returns discussed at length in our earlier paper.

7As noted in Cecchetti, Lam, and Mark (1990), the Markov-switching model is not identified
under the null hypothesis that the random walk is correct. Nevertheless, Monte Carlo experiments
demonstrated that the critical values for the pseudo-likelthood ratio test were close to those of
a chi-squared distribution with degrees of freedom slightly larger than the maximum number of
constraints one could possibly count. For the bivariate consumption—dividends model considered
here, twice the difference in the log-likelihood 1s 20.58. This is beyond the 99.5 percent critical value
for a x2, a very conservative standard considering that the test has at most 4 constraints.
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For the purposes of computing the equity premium, an important thing to
notice is the size of the drop in consumption and dividends in the bad state, the
(%o + o3 )’s. During a boom, the growth rates of dividends and consumption are
estimated to be 2.6 percent and 2.2 percent, respectively. But in a downturn these
fall to —29.5 percent for dividends and —6.2 percent for consumption. In the
bad state, dividends crash. As one would expect, consumption is quite a bit
smoother.

To help understand the implications of these estimates, notice that the
unconditional probability of a crash is Pr(S,=1)=(l —¢gq)/2—-p—9q) =
0.043, and so we expect real dividends to fall by 30 percent in approxi-
mately 4 of the 96 years of the sample. While this may seem surprising, it is
consistent with the historical experience. The model estimates imply that,
given that the economy is in the bad state (S, = 1), the asymptotic 95 percent
confidence interval for the growth in real dividends is (—0.50, — 0.09). The
same confidence interval for the good state (S, = 0) is (0.23. —0.18). Con-
sequently, if dividends fall by 20 percent or more, we can be fairly certain
that S, = 1. Of the 96 years in our sample, 6 meet this criterion — real
dividends fell by more than 20 percent.'®

We note that the GMM criterion function for the bivariate Markov-
switching model is flat for variations in p, the probability of remaining in a
crash state given that the economy is currently in that state. This is not
surprising considering the asymmetric behavior of dividends over the
business cycle. Downturns tend to be short-lived, lasting 4 to 6 quarters.
This makes it difficult to obtain a good estimate of p using annual
observations.

4. A generalized calibration methodology

In this section we generalize the standard calibration methodology to incor-
porate statistical inference. Calibration, as it is usually practiced, seeks a param-
eterization of the model for which the implied moments exactly match the
sample moments. Two sources of uncertainty are ignored by the standard
procedure, however.!®

The first source involves the uncertainty in the sample moment vector, {/, as
an estimator of the population moment vector, ¥, since

STWr —¥) 2 N©, Q). (23)

'¥Real aggregate dividends fell by more than 30 percent during 3 years, from 20 to 30 percent in
3 years, and by 10 to 20 percent 1n 8§ years.

9Gregory and Smith (1988) address some of these 1ssues using a Monte Carlo methodology.
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The second source of uncertainty arises from the dependence of the implied
moments on parameters that are estimated. Consequently, the vector of
moments implied by the model is itself stochastic. Specifically, let u be the
vector of moments implied by the model and let 8 be the GMM estimator of
the parameter vector. In the bivariate consumption-dividends model of
section 2, 0 = (x5, ob. o5, ad, p, q, 02, 62 6.4). Thus,

JTOr —8) L N, Q). (24)

Taking a first-order Taylor series expansion of u about 6 and using (24),
we obtain

ST B,7) — u(0; B. 1] 2 N[0, ,(8. 1)1, (25)
where Q,(f. y) = (0u/00) Q2y(0p/00). From (23) and (25), it follows that
ST [r — 9] — [uOr; B.7) — w8; B, 11 2 N[0, QB 1] (26)

where

Op
o

QUB.7) = Qy + QulBy) — T{ E[(87 — )Wy —¥)]

0
+ ELOr — ¥)(0r — 9)’]%}.

We can now test the hypothesis that the implied moments match the population
moments, i.e., Hy: = u(8; B, 7). Consider the statistic

H =TWr—p@r: .12 B Yr — uOr: B )] @27

Note that ¥ consistently estimates the population moments i both under
the null hypothesis, Hy: ¢ = u(8; B, y), as well as under the alternative,
H.: ¢ # p(0; B, y). On the other hand, the implied moment vector u(6+; g3, 7)
consistently estimates the population moments only when Hg is true. Thus
under the null, # ~ y&,, where k is the dimensionality of y. Accordingly, we can
use the test static, #, to test the model for a given (f, y) pair.

The following sections use J# to examine two cases of interest. First we study
the standard equity premium puzzle and ask whether the model is capable of
matching the means, uP and uf. We then proceed to examine the ability of the
model to match both the first and the second moments of the equity premium
and the risk-free rate.
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We adopt a two-step testing framework to obtain an interval estimate
for (B,y) based on matching several carefully selected moments of the
returns data. Our approach contrasts with that of Lee and Ingram (1991)
and Burnside (1990), who estimate § and y using unconditional moment restric-
tions of the data. Both of these authors propose estimation methods that can
be thought of as minimizing a quantity like J in order to obtain estimates
of f and y. While we report the (3, y} pair that minimizes J# in section 5 below,
we note a problem that would arise if this estimate were to be computed using
standard minimization techniques and applying asymptotic theory. In par-
ticular, the asymptotic normality of the estimator from such a procedure puts
positive probability on values of (f,y) that violate the transversality con-
dition of the model in section 2.2° Alternatively, we could simply add the
moments of returns that we want the model to match to the list used in the
GMM estimation of the technological parameters reported in table 1 above
and estimate f and 7 jointly with 8. In addition to the technical problem
resulting from the transversality condition, such an estimation procedure
has a conceptual difficulty that arises from our interpretation of the exercise.
We see our goal as asking whether, given the technology, there exist taste
parameters capable of matching the returns data. This dictates that we
proceed in two steps, first estimating the parameters of the endowment
process, and then computing a confidence bound for the taste parameters
— f and 7.

5. Matching the moments

5.1. First moments: The equity premium puc:zle

Let Y be the two-dimensional vector of the sample means of the equity
premium and the risk-free rate. Label these sample moments 5 and y%,
so Yr = Y2y, This section examines the extent to which the model
matches Y. Previous work has shown that the Lucas model with iso-¢lastic
utility, calibrated to the U.S. economy, is not capable of matching the average
equity return and risk-free rate simultaneously. Generally, the model implies
an equity return that appears ‘too small’ and a risk-free rate that is ‘too large’.
But the sense in which the model has failed is vague because the metric
employed by the standard procedure to evaluate the model has not been well
defined.

201n principle it is possible to reformulate the test statistic J# to account for the transversality
condition, which we can write as a set of inequality constraints on p(0) and p(1) 1n egs. (12) and (13).
Unfortunately, the statistical theory for such a test has only been developed for a specific set of
circumstances, not including the one examined here. See, for example Wolak (1991) and Goureroux,
Holly, and Monfort (1982).
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Table 2

First and second moments of asset prices: the data, 1892-1987 (robust standard errors in
parentheses).”

Mean Std. dev.
Risk-free rate [y'. o"(T)] 1.19 5.27
(0.81) (0.74)
Equity premium [w‘;. a®(T)] 663 19.02
(1.78) (1.73)
Correlation [p (T)] —0.04
0.12)

2Estimates are computed using Hansen’s (1982) Generalized Method of the Moments, simul-
taneously with the bivariate Markov-switching model for consumption and dividends reported 1n
the first column of table 1. See the appendix for details.

The data this section attempts to match are presented in the first column of
table 2.2! Over the historical period 1892-1987, the premium on equities and
relatively risk-free short-term debt has averaged 6.63 percent and 1.19 percent,
respectively.2? The uncertainty in this sample mean vector is highlighted in fig. 1,
where the 95 percent confidence ellipse about y is plotted.?® If we ignore param-
eter uncertainty, any vector of means [ ¢P(6; 8, v), u(6; B, v)] implied by the model
of section 2 that falls within the ellipse will not be rejected by the data at the
S percent level. The “x’in fig. 1 marks the sample value . The ‘A’ marks a rep-
resentative model value, [P(07; B = 0.98, y = 23.0), uf(0; B = 0.98, y = 23.0)].

Fig. 2 summarizes tests of the model at the 5 percent level, taking into account
the uncertainty in both the sample moments and the implied moments. This figure
displays the contour obtained by searching over admissible (f, y) pairs that yield
values of the 5 -statistic that are less than or equal to the 5 percent critical value
of the X(ZZ) distribution. For a given value of y above 11, the upper limit on j is the
boundary of the admissible parameter space. That is, larger values of § result in
explosive behavior of the stochastic difference equation (4).

21Again, see the appendix to Cecchetti, Lam, and Mark (1990) for details on the sources of the
data. The real risk-free rate 1s computed using one-year U.S. Treasury note yields, or the equivalent,
and realized CPI inflation. The equity return is computed from data supplied by Campbell and
Shuller (1987).

22We note that over the 1871-1987 sample period, the average equity premium is only 5.92
percent, while the mean risk-free rate is 2.11 percent. Furthermore, Seigel (1992) shows that adding
more nineteenth century data continues to raise the risk-free rate and lower the equity premium.
Using data from 1800 to 1990, he reports an average equity premium of only 4.64 percent and an
average risk-free rate of 3.13 percent. While the model would be able to match these moments more
casily, the GMM procedure requires that we have data for returns, dividends, and consumption over
the same sample period. The lack of consumption data prior to 1889 precludes our use of the earher
returns data.

23Details concerning the estimation of the relevant covariance matrices are deferred to the
appendix.
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Fig. 1. 95 percent confidence ellipse for the mean equity premium and risk-free rate.
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The figure is partitioned into four quadrants. The lower left quadrant in which
B < 1.0and y < 10.0 is the subset of the parameter space searched by Mehra and
Prescott. As can be seen, the upper corner of this region is not rejected at the
5 percent level. In fact, we find that values such as (f = 0.999, y = 8.0) and
(B = 0.968, y = 9.9) are within the 95 percent confidence region.

If one is willing to accept values of y in excess of 10, there is a large class of
models that is not rejected at the 5 percent level. There is a clear trade-off in that
low values of y require high values of f to match the data. The reason for this is
related to the principal difficulty in matching the first moments, which has been
that the implied risk-free rates is ‘too high’ given the implied equity return. As
can be seen from eqs. (14) and (16), larger values of § work to lower the implied
risk-free rate, ameliorating this problem.

The figure also plots the (8, ) pair that minimizes the value of the test statistic
# . This minimum value, # = 0.01, occurs at (f = 0.832, y = 28.85) and is very
close to the upper boundary of the region.?* In the region above the upper line
plotted in fig. 2 the transversality condition for the asset pricing model is
violated — these values of § and 7 imply a negative value for p(S,) in (8) and hence
for prices. The location of the minimum makes clear that any estimator for f# and
y computed by minimizing # would not be asymptotically normal.?3

We have completed the task set forth by Mehra and Prescott: to match the
sample means of the risk-free return and the equity premium with the Lucas
model. We now address the ability of the model to match the covariance matrix
of returns in addition to their means.

5.2. Matching first and second moments

Let ¢, be the five-dimensional vector consisting of the first and second
moments of returns: the two means (Y5y%), the standard deviations
[0,(T), o¢(T)], and the correlation p,(T). This section examines the ability of
the model to simultaneously match these five moments of the joint equity
premium and the risk-free rate process. The sample standard deviations and
correlation are presented in table 2.

24These results are similar in spirit to those in Kocherlakota (1990b), Hansen and Jagannathan
(1991), and Kandel and Stambaugh (1990b) Kocherlakota finds that for § = 1139 and y = 13.7
a model calibrated to univariate consumption (with consumption set equal to dividends) 1s capable
of generating mean equity premium and risk-free rates that are close to the sample values. Hansen
and Jagannathan also find that with CRRA preferences, a high coefficient of relative rnisk aversion 1s
required to generate intertemporal marginal rates of substitution with sufficient vanability to be
consistent with returns data. To match the mean of the risk-free rate and the equity premium,
together with the variance of the equity premium, Kandel and Stambaugh require f = 0.9973 and
y =155

25In addition to the problem associated with the transversality condition, any attempt to estimate
B and 7 by minimizing . will result in very large standard errors. This is a consequence of the fact

that for a given value of ; decreasing f§ results 1n very small changes in the value of #. For example,
at (f = 1.0,y = 23.0), # is below 0.03.
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We report the implied first and second moments from our model for a variety of
parameter values in the top panel of table 3. As is apparent from the table, the
Markov-switching model is not capable of matching the five first and second
moments of the risk-free rate and the equity premium. Restricting f to be greater
than 0.7, the minimum value for s (5) is 23.24 and occurs at (f = 0.70, y = 29.00).

The failure of the Markov-switching model to match the first and second
moments is a consequence of the correlation of the moments with each other. In
fact, it is possible to find values of § and y for which five univariate tests all fail to
reject that the model and the data are the same. For example, at (§ = 1.04,
v = 20) the highest t-ratio is 1.42 (in absolute value) for the standard deviation of
the equity premium — the remaining four ¢-ratios are all below 0.10. Neverthe-
less, for this parameterization J# (5) is 26.71, which has a p-value of 0.00006. This
(B, v) pair is rejected by our joint test because the deviations of all five moments
from the sample values are negative, while several elements in the covariance
matrix are large and negative.?®

The Markov-switching model nests the pure Markov-endowment model of
Mehra and Prescott, as well as the geometric random walk. The middle and
bottom panels of table 3 display the implied moments from these models. The
random walk model is clearly unacceptable since it implies a nonstochastic
risk-free rate. But the Mehra—Prescott style model is capable of matching the
five moments when f exceeds 1, and y ranges from roughly 5.5 to 23. The reason
for the success of this model, and the failure of the Markov-switching model is
evident from the estimates in table 1. The Mehra—Prescott style model assumes
that p = ¢, and then matches the first-order sample autocorrelation of consump-
tion growth, which is negative in annual data. The result is an estimate of
p = q = 0.47, and the implication that the economy crashes with probability
0.50. This makes equities very risky, raising the level and variance of the equity

2¢We conjecture that # (5) has poor small-sample properties, and so the evidence against the
model may be overstated. For example, we have examined the distribution of # (5) using the
following Monte Carlo experiment, with 1000 replications: (1) choose values for the taste parameters
B and 7: (2) using the Markov-switching mode! and the parameter values 1n table 1, draw a sequence
of consumption and dividends; (3) using the model, the sequence of consumption and dividends. and
the values of f and y, generate a sequence of returns, (4) compute estimates of the moments and the
technology parameters using GMM as described 1n the appendix; (5) compute #'(5). We find that
for (# = 0.999,7 = 9.9) the small-sample p-value for # (5) = 42.71, the value from the data, is 0.0480.
We have repeated this experiment for (8 = 0.8, y = 5.0) and find that the small-sample distribution
of #(5) is nearly unchanged. We note that there 1s a conceptual problem with our experiments as
a result of the fact that they include tnals with estimates of technology parameters which imply
violation of the transversality condition. When this occurs, the test statistic #(5) is difficult to
interpret. For the experiments we have performed, this problem is relatively minor. It occurs in 10.4
percent of the trials for (f = 0.999, 7 = 9.9) and in 2.8 percent of the trials when (f = 0.8, y = 5.0).
Unfortunately, the frequency of this problem increases with § and y, and will arise in roughly 50
percent of the Monte Carlo trals for (f. ) pairs near the upper boundary of the confidence region in
fig. 2. Because of this problem, we think a more thorough investigation of the sampling properties of
H#'(5) will not be useful
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Table 3

First and second moments of asset returns: model values using bivariate consumption—dividends
processes (model implied standard errors are in parentheses).*

Risk-free Equity
p ¥y rate premium Correlation H(2) H(5)

Markov-switching model

0999 99 11.65 242 —0.02 5.02 4271
(1.53) (1311)

1098 9.9 1.58 219 —0.02 6.33 3232
(1.39) (11.90)

1.056 15.0 502 352 —0.03 1.17 29.68
(2.52) (12.11)

1.039 20.0 121 412 —0.02 0.11 26.72
(3.68) (1131

0.825 290 0.80 1.28 0.02 0.02 2496
(6.20) (10.62)

Random walk model

0.999 9.9 12.11 225 0.00 565 —
{0.00) (13.95)

1.098 99 200 205 0.00 6.56 —
(0.00) (12.69)

1.056 15.0 6.64 3.26 0.00 246 —
{0.00) (13.41)

1.039 200 5.23 431 0.00 1.07 —
{000 (13.36)

0.825 29.0 15.16 6.89 0.00 0.43 -
(0.00) {14.89)

Mehra—Prescott model

0.999 99 12.32 5.46 0.01 4.06 2139
(2.20) (15 51)

1.098 9.9 2.20 501 001 0.61 378
(2.00) (1423)

1.056 15.0 753 8.19 0.01 0.60 11.50
(3.02) (16.18)

1.039 200 7.74 10.94 0.04 0.59 18.17
3.77) (17.33)

0.825 290 25.86 1693 0.06 1.30 46.79
(5.53) (2137)

2 (2) tests for two means and . (5) tests for all five moments. The 5 percent critical value for the
xi2 18 5.99, for the y&, it is 11.07. For the random walk model, both the correlation and J# (5) cannot
be computed since Rf 1s nonstochastic.
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premium. Both the historical record and the estimates of the Markov-switching
model suggest that this is not a very good characterization of the consumption
and dividends data. The estimates of the Markov-switching model show that p is
likely to be substantially smaller than ¢, and so the crashes should occur much
less than one-half of the time. Furthermore, the Mehra—Prescott style estimates
imply that dividends should fall by more than 10 percent in roughly half the
years of the sample. In fact. dividends fell by 10 percent in only 14 of the 96 years
we examine.

Our results are in contrast with those of both Kandel and Stambaugh (1991)
and Hansen and Jagannathan (1991). Using the standard calibration procedure,
a four-state discrete Markov process for consumption growth, assuming that
firms issue both debt and equity, and allowing leverage to be a free parameter,
Kandel and Stambaugh are able to match both the means and standard
deviations of the equity premium and the risk-free rate. Our failure to match
the second moments is largely a consequence of our specification of leverage.
With time-separable utility — the case that is closest to ours — Kandel and
Stambaugh’s success comes with a degree of leverage equal to 0.44. But, given
the percentage of dividends in consumption, this is far too low. Also, we note
that Kandel and Stambaugh’s interest is in matching point estimates of the
moments, while we concentrate on inference.

The differences between our results and those of Hansen and Jagannathan
(1991) are more subtle. For a given mean intertemporal marginal rate of substitu-
tion (/MRS), they represent the admissible I MRS volatility as a function of the
first and second moments of returns data. Admissibility is determined by the
unconditional Euler equations, and the result is a bound on the standard devia-
tion of the IMRS. Hansen and Jagannathan go on to find that a very high value of
the CRRA coefficient 7 is required to meet the restrictions implied by the bound.
In a separate paper, Cecchetti, Lam, and Mark (1992), we develop and implement
statistical tests of these lower bound restrictions. We conclude that the availability
of relatively short time series of consumption data undermines the ability of tests
that use the restrictions implied by the volatility bound to discriminate among
different utility functions. Using the same data as that employed here, we find that
there is a broad set of models that are able to meet the volatility bound. For
example, with g = 0.99, values of y > 10 are not rejected at the 5 percent level
using the Hansen and Jagannathan framework. But just because a model meets
the volatility bound does not imply it matches the moments of returns data. In
fact, using a fully articulated model of asset pricing we find that the unconditional
first and second moments used here are a more stringent test of a model's ability
to mimic the characteristics of asset price data.

Finally, we note the similarity between our results in table 3 and those
reported originally by Grossman and Shiller (1981). They conclude that the high
sample variance of equity returns poses quite a challenge for asset pricing
models. This accords with our main conclusion that the model of section 2 is
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rejected because of its inability to match simultaneously the relatively low
standard deviation of the risk-free rate and the relatively high standard of the
equity premium.?’

6. Conclusion

This paper addresses two issues central to the literature in calibration and
aggregate asset pricing. First, we develop a testing framework for rigorously
evaluating the ability of an economic model to match specific sample moments
of the historical data. Second, we examine the ability of a model in which
dividends explicitly represent the flow that accrues to the owner of the equity,
and they are discounted by the intertemporal marginal rate of substitution
defined over consumption, to solve the equity premium puzzle.

Using a methodology that combines the features of model calibration and
classical statistical inference, we conclude that the original Mehra—Prescott form
of the equity premium puzzie, based solely on first moments, does not present
a challenge for a simple general equilibrium Lucas asset pricing model.?® But
when the endowment is forced to conform closely to the data, as it is in the
Markov-switching model, and leverage is forced to imply that the dividend flow
match what we actually observe, then the model cannot match the first and
second moments taken together.

Appendix

Here we describe the procedure we use to obtain the GMM estimator of the
parameters of the endowment process, 1, the sample moments, ¥+, and the
estimate of their asymptotic covariance matrix.

Let {x,] be a vector-valued sequence of observations on stock and bond
returns and consumption and dividend growth rates. Let A’ = (¢, ') denote the
parameter vector whose true value is Ay = (Yg, 6o). Finally, let f(x,, 1) be the
vector of moment conditions used in the estimation of E f(x,, o) = 0. To
construct f(x,, 4), we stack moment conditions used to compute the sample
moments of returns with those for estimating the endowment process param-
eters. That is,

(A1)

Fx iy = [fl(xulﬂ)]

fZ (xt’ 6)

271t has been suggested to us that this similarity could be a result of the fact that we both study
second moments and asymptotic normality is typically a much better small-sample approximation
for first moments than it is for second moments. Flavin (1983) reports evidence that tests of the
Grossman and Shiller type are often severely biased toward rejection in small samples. Our Monte
Carlo experiments indicate a similar bias See footnote 26 above.

28As we demonstrate in our earlier paper, Cecchett, Lam, and Mark (1990). this model 1s capable
of matching the serial correlation in equity returns.
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When both the first and second moments of returns are required,

Fpa — ¢p
Froao— 'l/f
flx, @)= — Py — ap . (A.2)
(rfz ¢f)2 - J
[(rp.t —yP) {re., lﬁ ]/(Opaf — Ppr

where r,, and r, , are the observations in the data at time ¢ for the risk premium
and the risk-free rate. When we require only the first moments of returns, we use
only the first two elements of (A.2).

Sf2(x,, 0) 1s a vector of the deviations of the observations from their means as
implied by either Hamilton’s Markov-switching model, the Mehra—Prescott
style Markov model, or the geometric random walk model. Let x., and
x4, denote the consumption and dividend growth rate at data r. We use the
following moments:

Morkov-switching model — 10 moments:
E(x) ). i=123 k=cd,
E(xi,xd.,_l)a
E(e,xi,)  j=1.2
E(x. X4,-1)

Mehra—Prescott style model — 5 moments:
E(x] ,). j=12, k=cd,
E(xXXe 1)

Random walk model — 5 moments:

E(x{ ), j=1,2. k=c¢d,
E(x :x4.)

In order to construct the GMM estimator, let

—_—

||M-.;

dgr f(xu A
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T
Z f(xh }')f(xh ’1),9

1 iy
WT.j =?‘v Z fxt’ f(xt+_/7 3

WT = WT.O + Z Wj,m[WT,j + W,T.j]’

J=1

T
D, = Z f(xn '1)

The GMM estimator, A7, minimizes the quadratic criterion function
o) =grWr'gr, (A.3)

and the asymptotic covariance matrix of A, is consistently estimated by
1 i =1 -1
?[DT wrlDe]170, (A4)

where W is the Newey and West (1987) estimator of the spectral density matrix
of f(x;,/A) at frequency zero. We set m = 3, which conforms to Newey and
West’s T1/* rule. We obtain estimates of the covariance matrices Qy, 2, and
Q¢ from the relevant blocks of (A.4).

While the selection of any particular set of moment conditions for estimation
using the GMM procedure is necessarily arbitrary, it is immaterial asymp-
totically under the null that the model is correctly specified. But in any finite
sample, different estimates will emerge when different moment conditions are
used.

The moment conditions that we included in f, related to the parameters of
the Markov-switching model, were chosen using two criteria. First, that the
number of moments conditions should be relatively small, and second, that the
estimates lie close to the maximum likelihood estimates.

It is not possible to use a Hausman test to assess whether the GMM estimates
lie close to the maximum likelihood estimates, since both estimators may be
inconsistent under the alternative. Instead, we perform a Wald test by assuming
that one set of estimates is a vector of constants. Let 6,, and X, ,, be the
maximum likelihood estimator of the endowment process parameter vector and
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its asymptotic covariance matrix. Suppose we view 81 as a vector of constants and
construct a Wald test for the hypothesis that 8, = 8;. That is, we compute the
Wald statistic T(0 — 07) 2, 31(8 — 07). Setting 6 to the estimates obtained
from the GMM procedure, the Wald statistic is 14.91 (p-value = 0.09).

Alternatively, we can use the estimate of the asymptotic covariance matrix of
the GMM estimator to compute the Wald statistic and view 0,, as a vector of
constants. In this case, the Wald statistic is 16.92 (p-value = 0.05).

Finally, we mention that Hansen'’s test of the overidentifying restrictions does
not indicate much evidence against the Markov-switching model. His J-statistic
{J = Td(iy)] is 0.007 (p-value = 0.93).
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