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This paper Integrates Yaari’s dual theory of choice under uncertamty into a multiperiod context 
and examines its imphcations for the equity premium puzzle. An Important property of these 
preferences IS that of ‘tirst-order risk aversion’ which implies. in our model. that the risk 
premium for a small gamble is proportronal to the standard deviation rather than the variance. 
Since the standard devration of the growth rate m aggregate consumptron is considerably larger 
than Its varrance, the model can generate both a small rusk-free rate and a moderate equity 
premmm. 

1. Introduction 

It is common practice in macroeconomics and finance to employ a repre- 
sentative agent model in order to organize aggregate data on consumption 
and asset returns. Because of the smoothness of aggregate consumption data 
for the U.S., the way in which the agent’s risk preferences evaluate small 
gambles about certainty is critical for providing a good fit to the data. On the 
other hand, the plausibility of utility specifications is often evaluated infor- 
mally on the basis of their evaluation of moderate or large gambles derived 
from thought experiments or ‘real world’ risks. Thus it is desirable to have a 
functional form for risk preferences which can model plausible risk attitudes 
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over a broad range of gamble sizes. The common constant-relative-risk-averse, 
expected utility function fails in this respect, as pointed out by Kandel and 
Stambaugh (19891, for example. In this paper we describe an alternative 
nonexpected utility functional form for risk preferences that is better able to 
satisfy the above desideratum, while retaining the constancy of the degree of 
relative risk aversion and the tractability which that constancy affords. Then 
we examine the extent to which the new functional form helps to resolve the 
equity premium puzzle posed by Mehra and Prescott (19851. 

Mehra and Prescott argue that the representative agent, expected additive 
utility model, sensibly restricted, cannot account for both the 0.8 percent 
average real return on debt and the nearly 7.0 percent average real return on 
equity that the U.S. data show for the 1889-1978 period. The qualification 
‘sensibly restricted’ is essential for the existence of a puzzle. For example, as 
the authors describe (p. 154), with a sufficiently large degree of relative risk 
aversion ‘virtually any pair of average equity and risk-free returns can be 
obtained by making small changes in the process on consumption’. In related 
modelling exercises, a number of authors have shown that with a degree of 
relative risk aversion in the 20-30 range, the representative agent model 
performs fairly well [see, for example, Grossman, Melino, and Shiller (19871, 
Kandel and Stambaugh (19891, and Cecchetti and Mark (199011. On the other 
hand, as shown by Kocherlakota (19881, allowing negative time preference 
aIso helps the model to match the above historical averages. To some extent 
what is ‘sensible’ or ‘plausible’ is subject to personal judgement, though as 
advocated by Mehra and Prescott, evidence from other areas can and should 
be brought to bear upon the choice of parameter values. In this paper we 
maintain the common assumption of positive discounting of the future, an 
assumption which needs no defense here. Our specification of risk prefer- 
ences, which is where we deviate from the standard model, is appealing on 
two grounds. First, as previously described, for the same parameter values, 
our specification implies a degree of risk aversion for a broad range of 
gambles that is plausible on introspective grounds. Second, our model of risk 
preferences can explain evidence, such as Allais-type behavior, which contra- 
dicts expected utility theory, thereby providing a uniting framework for 
organizing observations of individual behavior in the laboratory and data on 
aggregate market behavior. 

Following Epstein and Zin (19891 and Weil (19901, we assume that in- 
tertemporal utility is recursive thus permitting the notions of risk aversion 
and intertemporal substitutability to be partially disentangled [see also 
Epstein (1988)]. Roughly speaking, recursive utility specifications have two 
components, corresponding to certainty preferences (substitution) and risk 
preferences, respectively. An integral part of our model is the assumption 
that risk preferences exhibit ‘first-order’ risk aversion in the sense recently 
defined by Segal and Spivak (1990). In an expected utility model of choice 
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amongst monetary gambles, the risk premium for small risks about certainty 
is proportional to the variance of the gamble, at least if the von 
Neumann-Morgenstern index is twice differentiable. That is because, as 
Pratt (1964. p. 1261 notes, to the first-order, utility is linear and thus the risk 
premium is determined by second-order terms. Correspondingly, we think of 
this case as one of ‘second-order’ risk aversion. On the other hand, if the risk 
premium is proportional to the standard deviation of the gamble, then we 
speak of ‘first-order’ risk aversion. Given the smoothness of consumption 
data, the standard deviation of the consumption growth rate is considerably 
larger than its variance. Therefore, the role played by first-order risk aversion 
in generating a sizeable equity premium is intuitive. A nonexpected utility 
theory of risk preference which exhibits first-order risk aversion and which 
we adopt here is rank-dependent expected utility, where the rank ordering of 
outcomes plays a critical role. A special case that is useful below is Yaari’s 
(19871 dual theory of choice. The rank-dependent theory has respectable 
theoretical credentials [for axiomatizations see Quiggin (19821, Yaari (19871, 
and Segal (198911 and some empirical support (see section 41. 

We conclude this introduction by adding to the papers already cited a 
number of other relevant studies of the equity premium puzzle and related 
asset pricing issues. Reitz (1988) posits the possibility of disasters with small 
but positive probabilities. [See Mehra and Prescott (1988) for a discussion.] 
Constantinides (1990) ‘resolves’ the puzzle by means of a habit-formation 
specification but only by assuming negative time preference. Weil (1989) 
adopts a recursive intertemporal utility specification in which risk preferences 
exhibit second-order risk aversion. He argues that the separation of substitu- 
tion from risk aversion does not improve upon the performance of the 
Mehra-Prescott model [see also Kocherlakota (199011. Weil shows that the 
risk premium increases as the elasticity of substitution falls (independently of 
risk aversion), but with the adverse consequence of inflating the risk-free 
rate, e.g., 1.31% premium with a 21.68% risk-free rate. On the other hand, 
with risk preferences that exhibit first-order risk aversion, we show that a 
modest risk premium, e.g., 1.6%, is compatible with a risk-free rate on the 
order of 2.6%. Finally, Epstein and Zin (1990) estimate the Euler equations 
implied by the same parametric specification employed by Weil. Using U.S. 
aggregate monthly data on consumption and asset returns, they find some 
support for the general utility specifications while the data generally reject 
the standard intertemporally additive expected utility function. However, the 
general equilibrium interrelations between consumption and asset returns, 
which are implied by the theory and which are central to the present study, 
are not tested there. 

The paper proceeds as follows: Section 2 describes the asset-pricing model 
with recursive utility and general risk preferences. Next rank-dependent 
preferences and first-order risk aversion are defined and discussed. In section 
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4 we discuss the plausibility of our utility specification and its calibration. 
Finally, a number of numerical simulations are described in section 5. 
Concluding remarks are offered in section 6. 

2. Asset pricing with recursive utility’ 

A representative agent consumes a single perishable consumption good in 
each period. In period t, current consumption c, is known with certainty but 
future consumption levels are generally uncertain. The intertemporal utility 
functional is recursive in the sense that the utility U,, derived from consump- 
tion in period t and beyond, satisfies the recursive relation 

(/, = W(c,,p,), t 2 0, (1) 

where ~~ = .<ot+ ,) is the certainty equivalent of random future utility tit+, 
and W is called an aggregator. The latter aggregates current consumption c, 
with a certainty equivalent index of future consumption in order to determine 
current utility I?~,. 

We restrict W to have the CES form 

W(c, z) = (CP + pz”p. O#p<l, o<p<1. (2) 

Then the utility of deterministic consumption paths is given by the CES 
intertemporal utility function 

having elasticity of substitution (1 - PI-‘. 
The functional k assigns a certainty equivalent to any real-valued random 

variable and is the risk preference function referred to in the introduction. 
For example, in EZ (1990) and in Weil (1989, 1990) the following specifica- 
tion is considered: 

P(G+J = 
(E,Lj,‘;,)‘-, O#a<l, 

ew(E, log(q+,)), a =O, 
(3) 

where E, is the expectation conditional on period-f information. Mehra and 
Prescott (1985) further impose LY = p, which leads to the standard intertem- 

‘For the details which support the discussion in this sectlon, the reader is referred to Epstein 
and Zin (1989). Those authors are henceforth EZ. 
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poral expected utility function 

if p # 0. Alternative specifications will be adopted below. In all cases, it is 
assumed that p reflects constant relatil’e risk arlersion, i.e., 

Pwn =&-4-Q, VA >o. (4) 

The function p embodies the agent’s risk aversion in the following sense: the 
intertemporal preference ordering represented by U becomes more risk- 
averse if p is held fixed and p becomes more risk-averse as a functional of 
real-valued random variables or associated distribution functions. 

The agent’s economic environment is identical to that in Mehra and 
Prescott (1985) and similar to that in Lucas (1978). In particular, the 
endowment process {Y,}: is such that growth rates x,, , =yf+,/y, follow a 
first-order Markov process. The ex-dividend price of the single equity asset 
may be described by the time-invariant and positive function p(x,, y,). In 
light of the homogeneity of preferences it follows that price is linearly 
homogeneous in current output, i.e., 

p(x,p)=p(x,l)Y~p(x)Y. (5) 

Denote by M,, , the return to equity, and therefore to the market, over the 
interval from t to t + 1, i.e., 

M E 
P(X 

ftl 

,+I-?‘r+,) +yr+, ‘x,+, (P(x,+,) + 1). 
PC x, 3 Yt ) P(x,) 

(6) 

In equilibrium, the agent maximizes utility, markets clear, and price 
expectations are fulfilled. Thus [from EZ (1989, eq. (5.9))], 

where we have made explicit the conditioning information 1, = (x,, y,). If we 
substitute (6) and apply (4), we obtain immediately the following recursive 
relation which must be satisfied by any equilibrium price function: 

P(x,) =PYP(~t+,wl+,~ + l)‘/‘IZt). t 20. (7) 

Note that when p is defined by (3) with (Y = p, (7) reduces to the familiar 

JMon- C 
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recursive relation in Mehra and Prescott (1985). In general, (6) and (71 
determine the return to equity in this economy. 

To determine the risk-free return rf (whose time dependence is suppressed 
in this notation) implied by our model, add a risk-free asset to the choice set 
of the individual. From EZ (1989, eq. (5.10)1, the individual’s portfolio choice 
is determined by solving 

(8) 

Of course, a denotes the proportion of savings invested in equity. The 
risk-free return rf is fixed by the requirements that at an optimum of (8) 
a * = 1 and the constraint a I 1 should not be binding. 

A useful special case of the model is one where growth rates are i.i.d. In 
that case, P is constant and, therefore by (6), M,, ,/xt+, = K is also 
constant. Given the homogeneity of I_L, this constant can be factored out of 
(8) and we conclude that (8) can be replaced by the following myopic 
portfolio choice problem with risk preferences corresponding to I_L: 

(9) 

Conditioning information and the time subscript have been deleted since h;I, 
is i.i.d. In addition. (6) and (71 imply that 

In particular, the constant of proportionality K between the market return 
h;I and the consumption growth rate 2 is 

K=p-‘/P(i). (11) 

The conditions for existence of an equilibrium are readily derived in the 
i.i.d. case. A positive price, P, solving (7) exists if and only if 

p/_Lq i) < 1. (12) 

In the non-i.i.d. experiments of section 5 we prove existence of a positive 
solution to (7) by direct computation.’ 

‘A sufficient condition for the existence of such a PC.) is that Ppp(,?,+, 1 I,) < 1 for all t 2 0. 
If /* 1s given by (3) and a =p and If a finite-state Markov chain 1s assumed for X,, then this 
imphes the condition for equihbrium given by Mehra and Prescott (p, 151). 
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3. Risk preferences 

In this section we consider functional forms for the risk preference or 
certainty-equivalent function p and then relate the specifications to the 
notion of first-order risk aversion. The functional forms are all consistent 
with monotonicity (in the sense of first-degree stochastic dominance), risk 
aversion (in the sense of aversion to mean-preserving spreads), and constant 
relative risk aversion [in the sense of (411. They also satisfy the normalization 

p(x) =x, x > 0, (I31 

where x’ in p(x) refers to the random variable that equals x with certainty. 
It suffices for our purposes to consider only random variables X having 

finitely many positive distinct outcomes, x,, . . . , x,,, with associated probabili- 
ties pr.. . . , p,,. The following specification corresponds to Yaari’s (19871 dual 
theory of choice: 

(14) 

if xl <x2< ... <x,,. The function g: [0, 11 + [O, 11 is onto, strictly increas- 
ing, and concave. If g is linear, then ~~fX.1 is simply the expected value of X. 
But if g is strictly concave, then p*u exhibits strict risk aversion [Yaari 

( 198611. 
The nature of py is further clarified by looking at binary gambles. Then 

P*y(-Cl =g(p,)x, +(I -dP,)ht x, <x,. (15) 

Under the above assumptions for g, g(p, 1 >p, if the degenerate case of 
linear g is excluded. Thus the inferior outcome X, is given more weight in 
(15) than in the computation of Ex. Consequently, pcLy(i_) < E.?, which is a 
form of risk aversion. If p, is fixed, py defines indifference curves in 
outcome space. A typical indifference curve is given by the piecewise linear 
curve in fig. 1. 

A generalization of pLy in which the piecewise linearity is eliminated is 
provided by rank-dependent expected utility theory, according to which 

(1’5) 

where 19 is a continuous, strictly increasing, and concave function on the 
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positive reaI line.” To ensure the homogeneity (4), we also assume that 

l ,I”“-- I 
-, o+cuc1, 

L’(X) = Ly ( 17) 
tlog(x), ff =o. 

If a = 1, prd specializes to kY. On the other hand, if g(p) =p, the expected 
utility certainty-equivalent (3) is obtained. 

A typica indifference curve of pL,d is shown in fig. 1. Piecewise linearity is 
eliminated (if (Y f 11, but there is still, significantly for our purposes, a kink at 
the certainty line. The presence of the kink corresponds to the fact that 
neither one-sided marginal rate of substitution at certainty equals the ratio of 

‘Unless otherwise specified the rank ordering x, <x2 < . I <;x,, IS assumed. For the ax- 
iomatic underpinnings of pLrd. see Quiggin (1986) and Segal (1989). For properties. such as risk 
aversion, see Chew, Karni, and Safra (1987). 
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probabilities. This is in contrast to an expected utility model with a differen- 
tiable von Neumann-Morgenstern utility index, where indifference curves 
and the lines of constant expected value are mutually tangent at certainty. As 
a consequence, the first-order term in the Taylor-series expansion of the risk 
premium vanishes and for small risks the risk premium is proportional to the 
variance of the gamble [Pratt (1964)]. In such a case we say that preferences 
exhibit second-order risk aversion. 

In contrast, in a model such as (16)~(17), the risk premium for a binary 
gamble is proportional to the standard deviation, rather than the variance of 
the gamble. To see this, fix p, and let the outcomes X, <x2 of the binary 
gamble i vary near certainty. Then 

p,Ji) =Ex-ka+o(a), ( 18) 

where u denotes the standard deviation of .G and 

k = (g( P,> -P,VPf”U -P,Y. (19) 

If the risk premium r satisfies 

/-4-f:) =/_L(EX -r), 

it follows that 

7r=ka+o(a). (20) 

When k > 0, which is true in any rank-dependent model except the ‘degener- 
ate’ expected utility special case, we refer to first-order risk alvrsion. [See 
Segal and Spivak (1990) for a definition and analysis in the context of general 
probability distributions.] 

For small risks, u is much larger than u’. Thus the potential usefulness of 
first-order risk aversion for rationalizing a sizeable equity premium is evident. 
We conjecture that any theory of risk preferences which implies indifference 
curves of the sort in fig. 1 would produce comparable numerical results 
regarding the equity premium. This is readily verified for the Chew (1989) 
and Gul (1988) risk preferences, which are axiomatically distinct from the 
specifications described above but which also exhibit first-order risk aversion. 

Of course, kinked indifference curves can appear also in expected utility 
theory. Consider the general (i.e., nonhomogeneous) expected utility model: 

p(i) =u+(Eu(.?)). 
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If u is not differentiable at a point 2, then the indifference curve through z 
will resemble that in fig. 1 and (20) will apply for gambles having expected 
value X. But this can happen only rarely since any increasing and concave 
function u can fail to be differentiable at most at a countable number of 

points. In contrast, for ~~~ the indifference curve in fig. 1 is representative of 
all indifference curves and (20) holds for all binary gambles. 

4. Calibration of preferences 

Intertemporal utility of the representative agent has the recursive structure 
(11, where the aggregator W has the CES form (2) and the risk preference 
function is prd. For the parameters of W, p, and p, we consider a standard 
range of values. 

We need to select a functional form for g and a parameter (Y for I’ defined 
in (17). For g we adopt the functional form 

g(P) =PYr (21) 

where 0 < y i 1 is a parameter. When y = 1 in (21), g(p) =p and pLr,, is the 
expected utility certainty equivalent defined in (3). The corresponding in- 
tertemporal utility function is that explored by EZ (1989, 1990) and Weil 
(1989, 1990). If further (Y = p, then the standard intertemporal expected 
utility model (e.g., Mehra and Prescott) is implied. Weil (1989) has shown 
that allowing CY #p, while maintaining y = 1, does not substantially improve 
the explanation of the equity premium. We attribute this finding to the fact 
that as long as y = 1 and regardless of whether or not cy = p, risk preferences 
exhibit only second-order risk aversion. 

On the other hand, if y < 1, there is first-order risk aversion with the 
coefficient li in (18)~(20) given by 

k = (py -p)/p’/‘( 1 -p)“‘. 

Since k is decreasing in y, we see that a smaller y implies greater aversion to 
small risks. [In fact, it implies increased aversion to all risks; see Chew, Karni, 
and Safra (1987I.l The numerical value of y is obviously of critical impor- 
tance. 

It is natural to enquire whether there exists empirical support for first-order 
risk aversion in general, or for y < 1 in our particular specification. It is 
shown in EZ (1989) that the agent’s preference functional p defines attitudes 
towards timeless gambles, i.e., those which are resolved before further 
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consumption takes place. Since the bulk of the behavioral/experimental 
evidence regarding individual choice under uncertainty is based on choices 
amongst timeless gambles, that evidence can be brought to bear upon the 
nature of CL. For a survey of the evidence we have in mind see Machina 
(1982), who argues that widespread and systematic violations of expected 
utility are indicated. Segal (1987a, b) has shown that the rank-dependent 
model (16), with the functional form (21) for g, can explain the Allais and 
Ellsberg paradoxes if (and only if> y < 1. In particular, the Mehra and 
Prescott specification (y = 1 and LY = p) is irzcompatible with such evidence. 

Segal and Spivak (1990) describe some behavioral distinctions between 
first- and second-order risk aversion. Only in the latter case is it true that any 
actuarially favorable bet would be accepted at some sufficiently small scale. 
Two related behavioral observations that would support first-order risk 
aversion are: (i) specialization in the safe asset in a two-asset portfolio choice 
in spite of a positive expected excess return to the risky asset and (ii> demand 
for full insurance (zero deductible) given positive but small marginal loading. 
Borch (1974, pp. 27-28) claims that there is empirical support for (ii). It is 
widely thought that the degree of portfolio diversification falls short of that 
predicted by the standard expected utility portfolio choice model; but admit- 
tedly, transactions costs, rather than misspecified preferences, could be the 
explanation. 

Even if it is admitted that y < 1, a magnitude for y must still be selected. 
Before addressing that problem we consider briefly z’ and its parameter cy 
[eq. (1711. As fig. 1 reveals, regardless of the choice of (Y, the corresponding 
P,.~ agrees with py (linear z’, cy = 1) to the first-order near-certainty, i.e., the 
respective indifference curves are tangent to one another on either side of 
the certainty line. Consequently, since our numerical simulations involve only 
small gambles about certainty, the choice of L’ is of little consequence for 
those simulations and we adopt Yaari’s specification L’(X) =x. 

The expected utility model has been thoroughly studied and applied and 
there exists a tradition concerning what constitutes a plausible value for the 
(constant) degree of relative risk aversion, namely that it be no greater than 
10. In contrast, the preference specification adopted here is much less 
familiar and it is not immediately clear what constitutes a plausible magni- 
tude for y. To shed some light on the magnitude of y we compare F,,, now 
denoted PG. and the expected utility function (31, denoted kz,, in the 
following way: For any binary gamble with m = Ei, X, <x,, and p, =p, 
write 

x,=m- 
1 -p ‘1’ 

i-1 P l 1 
l/2 

ff, 
P 

x,=mi- - 
l-p (73 

(23) 

where u is the standard deviation of .?. By homogeneity (4), we can 
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normalize by the mean and thus restrict attention to gambles with unit mean. 
For fixed p, the gamble is completely specified by s = a/m, the coefficient of 
variation, which we use as a measure of the riskiness of i. For simplicity, 
therefore, we may write ~(~1 instead of ~(2). where 2 is defined in (33) with 
(m,a) = (1, S) and where the dependence upon p is suppressed in the 
notation. 

By the nature of first-order risk aversion, if y < 1, then ~Lyy is more 
risk-averse than p_t%, for gambles concentrated near certainty, for any cy, i.e., 

pLyy( S) <&Z”(s) for s near 0. 

On the other hand, the inequality is reversed for su~ciently large s. More- 
over, there is a unique critical coefficient of variation s*(y, CX) at which 
comparative degrees of risk aversion reverse, where 

If s*(y, cr) = S, then pu’y and ,LL”,, exhibit comparable degrees of risk aversion 
for binary gambles having coefficient of variation near S. 



L.C. Epstein and S.E. Zm, ‘Fmt-order’ risk aL’emon 399 

Table 1 

Risk averslon comparison: coefficient of variation. s*(y. (u).” 

a 

P Y 0 -1 7 -3 -4 -9 -20 

0.50 0.50 0.71 0.41 0 29 0 21 0.18 0.09 0.04 
0.75 0.37 0.19 0 13 0.10 0.08 0.03 0.02 
0.90 0.14 0.07 0.05 0 04 0.03 0.01 0.01 

0.25 0.50 0.5 1 0.35 (1.X 0.20 0 17 0.09 0.04 
0.75 0.33 0.1’) 0.13 0. IO 0.08 0.04 0.0’ 
0.90 0.15 0.0X 0.05 0.04 0.03 0 01 0.01 

“s*(y,a) is the coefficient of varratlon that equates the certainty equivalent associated with 
Yaarl preferences with risk aversmn parameter y and expected utility preferences with risk 
aversion parameter (Y. The probablhty of state one IS given by p. 

The above procedure is illustrated in fig. 2. Note that the curve for kyU falls 
as y falls toward zero and similarly for pz, as (Y falls. Also included in this 
figure is the curve for PL:;~ defined by (161 and (171. It lies everywhere below 
the curve for k; and is tangent to it at s = 0. which has the implication noted 
earlier that in our model with small risks, the Yaari certainty equivalent and 
the rank-dependent certainty equivalent yield similar numerical results. 

Table 1 presents values of s” for a number of (y, (Y) pairs and, respectively, 
for symmetric bets (p = +I and for bets having p = f. For symmetric gam- 
bles, the specification of pLy corresponding to y = 4 is comparable to an 
expected utility ordering with relative risk aversion coefficient of 10 for 
gambles having a/m near 0.09. Thus a nontrivial degree of aversion towards 
a small amount of risk near certainty is compatible with a degree of aversion 
to moderate risks that lies within the range considered by Mehra and 
Prescott. We will shortly have reason to consider also the rank-dependent 
specification having y = i and CY = $ (rather than (Y = 1 as in py). Thus for 
completeness we note here that this kcL,,, function produces a certainty-equiv- 
alent value equal to that implied by the above borderline specification of 
Mehra and Prescott for symmetric gambles having coefficient of variation 
equal to 0.095. 

For a concrete example, table 2 provides. for five different specifications of 
risk preferences and for a range of alternative values of E, the willingness to 
pay to avoid a symmetric gamble with outcomes +E given wealth equal to 
75,000. (Alternatively, think of 75,000 as annual income and and fe as 
perturbations to that income.) The first three columns extend the calculations 
reported in Kandel and Stambaugh (1989) and substantiate their argument 
that for the commonly used expected utility functional form it seems possible 
to construct a gamble that makes any degree of relative risk aversion appear 
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Table 2 

Some ~wililngness-to-pay’ calculations.” 
~. 

Rusk preferences 
- 

cL:u FL%” II:,, Plc IL?hU 
E (LX= -1) (a= -9) tcu = -29) (y = i, ty = ;,a = f) 

250 0.83 4.17 12.48 103.55 10364 
2.500 83.33 410.34 1.091.17 I,03553 1,044.19 

25.000 8.333.33 21.008.72 73,790.52 10.355.34 11.262.27 
40,000 21,333.33 37,198.OO 39.153.37 16.56854 19037.86 
50,000 33,333.33 47.998.5 1 49.39526 20,710.68 24,815.13 
60,000 48,000 00 58.799.10 59637.36 24.852.YI 31.323.84 
74.oM) 73.013.33 73.919‘94 73.97581 30,65 1.80 43,809.83 

“Entries give the wilhngness to pay to avoid a gamble with equally likely outcomes -tt, given 
initral wealth equal to 75,000. Thus, for each p and F, the appropriate entry is 75,000 -p(X), 
where .C equals 75,000 t P wtth probabtlity i. 

unreasonable on introspective grounds. For example, if relative risk aversion 
is 2, the individual would pay ‘only’ 0.83 to avoid the smallest gamble and 
‘only’ 83.33 to avoid the gamble with F = 2,500. Note that the latter gamble 
has a coefficient of variation roughly equal to that of the U.S. per capita 
consumption growth rate series used by Mehra and Prescott (1985) and in 
section 5 below. If relative risk aversion equals 30, the willingness to pay rises 
to 12.48 for the small gamble. But then the individual would pay 23,790.52 to 
avoid the gamble having E = 25,000. 

The functional form p;Ly implies reasonable risk attitudes for a broader 
range of gamble sizes, though the willingness to pay seems too large for the 
smallest gamble and too small for the largest gamble. The former problem 
can be ameliorated by taking y close to 1. The latter problem is due to the 
piecewise linearity of the indifference curves of the Yaari functional and is 
ameliorated by considering the rank-dependent form with CY # 1 in (17). For 
example, if cx = 0.75 (and y = OS), then ~~~ implies much more reasonable 
levels for willingness to pay to avoid large gambles. Moreover, the change 
from LU = 1 to cz = 0.75 is of little consequence for the evaluation of the 
gamble having E = 2,500 which, as noted, is the gamble size that corresponds 
most closely to the equity premium puzzle. This supports our contention, 
which we noted earlier but which bears repetition, that virtually the identical 
numerical results for the model economy of section 5 would be obtained if 
*cL’y were replaced by I_LL:~~ and a! = 0.75. The significance of this observation 
is that the levels of the risk-free rate and the equity premium obtained below 
are compatible with plausible risk attitudes over a very broad range of 
gamble sizes as demonstrated in the final column of table 2.’ 

4We chose to formulate the analysts of section 5 m terms of ,u~ rather than pLrd because the 
former delivers some elegant and intuitive closed-form expressrons. See particularly (26) below. 
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5. The equity premium 

5.1. I.i.d. consumption growth” 

Consider first the following simple endowment process: growth rates ,i! are 
i.i.d. and can assume the symmetric values Ei - 8 and E.? + E. Typically, 
these states occur with equal probability, although we will consider some 
asymmetric distributions. As in Mehra and Prescott, we choose these states 
to approximately match the first two sample moments of aggregate U.S. data, 
i.e.. E,i? = 1.018 and F = (varn’)“’ = u = 0.036. We also consider experiments 
with roughly double the variance. i.e., u = 0.051. 

Adopt the Yaari risk preference function p*u in which case (9) simplifies to 
the linear problem 

max ap(ti) + (1 -a)~~. 
OSUSl 

(9’) 

We conclude that 

rf=p(ii). 

Since k = ZG, where K is given by (1 l), it follows that 

(25) 

(26) 

Relation (26) is very intuitive and provides considerable insight into the 
workings of our model economy. For example, it resolves the ‘risk-free rate 
puzzle’ emphasized by Weil(1989). If consumption grows on average, say, 2% 
per year and consumption is not very substitutable over time (as much of the 

‘Kocherlakota (1990) has observed that in an 1.i.d world It is imposstble to distmguish 
empirically between the standard expected intertemporal utility model and recurstve intertempo- 
ral utihty. Stmilarly, risk preferences are not recoverable from observations of equihbrium prtces 
in an 1.t.d. economy. On first reflection, therefore, one might question how we can hope to 
improve upon the Mehra and Prescott analysts, at least in the context of an i.i.d. economy 
However, as was discussed in the introduction, the reasonableness of the utility specification IS 
an integral part of the puzzle posed by Mehra and Prescott. While an expected uttlity 
specification with negative time preference and/or very large degree of relattve risk aversion 
may be able to match the data as well as or even more closely than our model. such a 
specification 1s widely perceived with misgivings for reasons that were m part descrtbed above. 
The plausibility of our utihty spectfication was argued in section 4. 

Of course. the question of whether or not alternative utility functions are empirically 
distingutshable, given observations from a single dynamic equilibrtum. is important m deciding 
on the broader usefulness of new models of preference. Lest the reader be mtsled by this 
reference to Kocherlakota’s observatton. we refer the reader to EZ (1990) where the expected 
utility and recurstve intertemporal utility models are distingmshed econometrically, and to Wang 
(1990) who shows that genertcally in the space of economies the Kocherlakota observation fads: 
that is, the i.i.d. case is very special rather than representative These issues are dtscussed more 
fully in Epstem (1990). 
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empirical literature suggests), then how can the equilibrium real interest rate 
be small? Short of assuming negative time preference, expected utility 
models have a great deal of difficulty dealing with this question. On the other 
hand, (26) shows that since, in our model, it is the certainty equivalent of 
consumption growth that determines the equilibrium level of the risk-free 
rate, use of simple averages for gaining intuition about the relationship 
between consumption, the real interest rate, and the elasticity of intertempo- 
ral substitution, may be misleading. However, the basic intuition about 
consumption and interest rates that is derived from deterministic models 
holds in our model, provided appropriate certainty equivalents are computed. 
Preferences that exhibit first-order risk aversion yield a certainty equivalent 
of consumption growth that is significantly smaller than its mean. If this 
certainty-equivalent growth rate is near one, then a moderate level of the 
risk-free rate is implied for a range of values for p. This consequence of (26) 
is central to the ability of this model to generate both a low risk-free rate and 
a nontrivial equity premium without resorting to negative time preference. 

The equity premium Ehj - T, can be computed from (26) and (10) once 
parameter values are selected. For example, if -y = ‘5. then p(X) = 1.003 for 
the symmetric case with CT = 0.036. If further. p = - 1.0 and p = (1.02)-‘, 
then ff = 1.026 and E$ - rf = 0.016. Note that, as anticipated, the certainty 
equivalent of consumption growth is substantially smaller than the mean in 
this case. Table 3 summarizes the results for a number of i.i.d. experiments. 
The preference parameters, y and p, vary across experiments as do the 
parameters of the consumption growth process. It is interesting to note 
the effect increasing the negative skewness (lowering the probability of the 
unfavorable state, p = f), while holding the standard deviation fixed at 0.036, 
has on the certainty equivalent associated with y = 4: it falls below one. 
Therefore, by (26), for this certainty equivalent, the level of the risk-free rate 
is increasing in the elasticity of intertemporal substitution. In contrast to the 
results in Weil (19891, a smaller elasticity, in this case, generates a smaller 
risk-free rate. This reduction in the level of the risk-free rate, however, does 
not imply a reduction in the equity premium. For example, when y = + and 
p = - 1, the risk-free rate is 1.4% and the equity premium is 2.1%. Lowering 
p to -4 results in a risk-free rate of 0.6% with an equity premium that is still 
2.1%. 

In the sense of the last section, our risk preference specification with 
y = 0.5 is comparable to a degree of relative risk aversion equal to 10 given 
the usual expected utility specification for risk preferences. Thus compare 
our results with for y = 0.5 with those implied by the Kreps-Porteus model 
used in Weil (19891, fixing the coefficient of relative risk aversion at 10. If the 
elasticity of intertemporal substitution is equal to 0.5 (p = - l), then the 
risk-free rate equals 3.8% and the equity premium is 1.3% (in the symmetric 
case with /3 = (1.02)-r and u = 0.036). Lowering the substitution elasticity to 
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Table 3 

Equilibrium returns and equity premia (1.i.d. consumption growth).” 

P P 

-1 0.50 

0.25 

-4 0.50 

0 25 

9 0.50 

0.25 

I7 

0.036 

0.036 

0.036 

0.036 

Y 

0.50 
0.75 
0.90 

0.50 
0.75 
0.90 

0.50 
0.75 
0.90 

0.50 
0.75 
0.90 

0.50 
0 75 
O.YO 

0.50 
0.75 
0.90 

0.50 
0.75 
0.90 

0.50 
0.75 
0.90 

0.50 
0.75 
O.YO 

0.50 
0.75 
O.YO 

0.50 
0.75 
O.YO 

0.50 
0 75 
0 90 

E(M) 

1.042 
1.050 
1.054 

1.035 
1.047 
1.053 

1.035 
1.038 
1.054 

1.027 
1.044 
1.053 

1.051 
1.086 
I.104 

1.026 
1.074 
1.099 

1.027 
1.078 
1.10’ 

_h 

1 063 
1.096 

1.068 
1.148 
1 lY2 

_h 

I.119 
1.180 

_ ‘) 

1.12’) 
1.186 

_h 

1.094 
1.173 

Sd(M) 

0.037 
0.037 
0.037 

0.051 
0.052 
0.053 

0.021 
0.037 
0.037 

0.051 
0.052 
0.053 

0.037 
0.038 
0.03’) 

0.05 1 
0.054 
0.055 

0.036 
0.038 
0.03’) 

_h 

0.053 
0.055 

0.038 
0 04 1 
0.042 
_h 

0.056 
0.059 

_h 

0.039 
0.042 

_h 

0.055 
0.059 

/ rf E(M)-r, 

1.026 0.016 
1.043 0.007 
1.053 0.002 

1.014 
1.037 
1.049 

0.021 
0.010 
0.004 

1.014 
1.039 
1.051 

0.021 
0.009 
0.003 

0.997 
1.032 
1.048 

0.030 
0.012 
0.005 

1.036 
1.078 
1.101 

1.004 
1.063 
1.095 

0.015 
0.008 
0.003 

0.022 
0.011 
0.004 

1.006 0.021 
1 069 0.009 
1 098 0.004 

_h _h 

1.050 0.013 
1.091 0.005 

1.052 0.016 
1.140 0.006 
1 189 0.003 

_h _h 

1.109 0.010 
1.176 0.004 

_h _h 

1 1’0 0.009 
1.183 0.003 

_h _h 

1.081 0.013 
1.168 0.005 

403 

“The random endowment growth follows a two-state Markov process with states m - (p/Cl - 

P)) ‘J”(r and m + ((1 -p)/p)“‘o, where p is the unconditional probabihty of state 1, m is the 
uncondmonal mean. and (T IS the unconditional standard deviatton. The discount factor for 
preferences, p. is set to (1.02)-’ and the autocorrelatton coeffictent coefficient, 0, IS set equal to 
zero, i.e., these are all i.i.d. expertments. 

hNo equihbrium extsts for these parameter values. 
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0.2 (p = - 4) results in a risk-free rate of 7.5% and an equity premium that is 
still approximately 1.3%. Finally, lowering the substitution elasticity to 0.1 
(p = -9) reduces this model to the Mehra-Prescott expected utility model 
and results in a risk-free rate of 14.0% and an unchanged equity premium of 
approximately 1.3%.6 For the asymetric distribution, the level of the risk-free 
rate is slightly smaller and the equity premium is slightly larger. Therefore, 
comparable models with only second-order risk aversion consistently gener- 
ate high levels of returns and do not typically predict a large equity premium 
for these experiments. 

5.2. Autocorrelated consumption growth 

More generally, we consider serially dependent, two-state Markov pro- 
cesses for endowment growth with transition probabilities given by 

p,,=Prob[x,=x, lx,_, =x,1. 

Further, without loss of generality in the two-state economy, we parameterize 
the serial dependence with the autocorrelation parameter 6’ such that 

PL, =p,(l - 0) +6,,0, -1<e<1, 

where p, is the unconditional (or equilibrium) probability of being in state j 
and 6,, = 1 for i = j and is zero otherwise. The two states are determined as 
in eq. (23) for given values for the mean, m, the standard deviation, u, and 
the probability of the first state, p, for the unconditional distribution of the 
endowment growth process. 

Table 4 presents means and standard deviations for equilibrium equity and 
bond returns computed for a variety of endowment processes and values of 
the preference parameters. The persistence parameter is varied across simu- 
lations to allow for both negative (0 = -0.2) and positive (0 = 0.2) serial 
dependence. The risk-preference parameter, y, is chosen to be 0.5, 0.75, or 
0.9 with 0.5 being the most risk-averse and 0.9 the least risk-averse. The 
simulation results in table 4 relate to a symmetric unconditional distribution 
( p, =p2 = p = +) with unconditional mean and variance of 1.018 and 0.036, 
respectively. The substitution parameter, p, is chosen to be - 1, - 4, or - 9 
corresponding to intertemporal substitution elasticities in consumption of 0.5, 
0.2, and 0.1, respectively. The rate of time preference is fixed at 0.02 so that 

‘Weil (1988) shows that if (one plus) the equity premmm is defined as the ratio of the gross 
equity return to the gross bond return. the elastictty of intertemporal substitution has no effect 
on the premtum m the 1.t.d. economy. Since we have defined the premium as the dtfference in 
the returns. thts elastictty can have an effect on the premmm, though this effect is negligible for 
the typtcal 1.t.d. experiment. 
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Table 4 

Equilibrium returns and equity premia (autocorrelated consumption growth).d 

405 

P Y 0 E(M) Sd(M) Etr,) Sd( rf ) ECM-r,) Sd(M - rr) 

-1 0.50 - 0.2 1.044 0.043 1.027 0.010 0.017 0.041 
0.2 1.039 0.033 1.027 0.011 0 012 0.030 

0.75 - 0.2 1.051 0.044 1.043 0.013 0.008 0.042 
0.2 1.039 0.032 1.044 0 013 0.005 0.029 

0 90 -02 1.055 0.045 1.051 0.014 0.004 0.042 
02 1.054 0 032 1.052 0.014 0.002 0.028 

-4 0.50 - 0.2 1.060 0.062 1.037 0.026 0.023 0.055 
0.2 1.043 0.030 1.038 0.027 0.005 0.012 

0.75 -0.2 1.091 0.070 1.078 0.034 0.013 0.060 
0.2 1.082 0.035 1.080 0.034 0.002 0.007 

0.90 - 0.2 1.107 0.072 1.101 0.038 0.006 0.062 
0.2 1.103 0.038 1.103 0.038 0.000 0.005 

-9 0.50 - 0.2 1.089 0.09x 1.054 0.053 0.036 0.078 
0 2 1 050 0.055 1.050 0.054 0.000 0.017 

0.75 - 0.7 1.162 0.117 1.131 0.072 0.021 0.090 
0.3 1 141 0.078 1 141 0.074 0.000 0.0’9 

0.90 - 0.2 I.200 0.125 1.189 0.08 1 0011 0.094 
0.2 1 192 0 088 1.192 0.081 0 000 0.033 

“Random consumptton growth follows a two-state Markov process wtth states WI - (p/Cl - 
p))’ ‘V and m +((l -p)/p)“‘rr. where p IS the unconditional probabdity of state 1. m IS the 
uncondittonal mean, c is the unconditronal standard deviatton, and 0 IS the autocorrelation 
coefficient. The parameters p. m. and rr are set at 0.5. 1.01X, and 0.036, respecttvely. and the 
discount factor for preferences. p. is set at (1.07)- ‘. 

the discount factor, /3, is approximately equal to 0.98. The largest average 
equity premium generated by the simulations in table 4 is 3.5% (when 
y = 0.5, p = -9, 8 = -0.2) and the smallest is 0.0% (when p = -9, 0 = 0.2). 
The typical premium, however, is between 1% and 2% so that the i.i.d. 
examples above are fairly representative. 

The following patterns emerge upon examination of these tables: The 
average premium on equity gets larger (i) as the agent becomes more 
risk-averse, (ii) as the endowment growth process gets more negatively 
autocorrelated, (iii) as the distribution for endowment growth becomes more 
skewed, (iv) as the variance of the endowment growth becomes larger, (v) as 
substitutability decreases when endowment growth is negatively autocorre- 
lated, and (vi) as substitutability increases when the endowment growth is 
positively autocorrelated. 

The model also tends to underpredict the second moments of equity return 
data. The largest standard deviation for the equity return in table 4 is 12.5%, 
which is smaller than the 16.5% reported in Mehra and Prescott for historical 



406 L.G Epteirz and SE. Zm ‘First-order’ risk awnon 

data. The largest standard error for the risk-free bond is 8.1%, which is 
larger than the historical estimate of 5.7%. The largest equity premium is not 
necessarily associated with the largest standard deviations for returns. The 
experiment that generates the largest premium generates a standard devia- 
tion for equity returns of 9.8% and a standard deviation for bond returns of 
5.3%. The model, therefore, is unable to account for all of the variance in 
stock returns but does account for most of the variance in bond returns. 

6. Conclusion 

We have explored whether the specification of first-order risk aversion for 
risk preferences can help to resolve the equity premium puzzle posed by 
Mehra and Prescott (1985). Our findings indicate that we can account for a 
low risk-free rate and an average equity premium of roughly 2%. This is in 
contrast to the historical average risk premium of 6.2% and the largest 
premium obtainable by Mehra and Prescott of 0.35%. Thus our utility 
specification can only partially resolve the puzzle. That it cannot resolve the 
puzzle completely, we find neither surprising nor discouraging. We expect 
that features of real economies that have frequently been mentioned, such as 
money and incomplete markets, will be required for a complete resolution. 
But this paper does provide some reason to believe that first-order risk 
aversion may be part of such a complete explanation. 
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