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1. Introduction

In the contemporary revival of the theory of economic growth, the implica-
tions of capital accumulation and population growth have been investigated
by several authors, for example, [17,18). However, technical change has been
introduced into these models by means of a continuous secular shift in the
aggregate production function—the rate and nature of which are exogenous
to the policy variables of the model.

In two models, however, the rate of technical change is related to economic
variables. The first is a model introduced by Kaldor in a series of papers
[8, 9, 10]. Kaldor posits a positive relation (the technical progress function)
between relative changes in per capita productivity and relative changes in
gross investment. The technical progress function is an eclectic amalgam of
basic technical and institutional forces in a free-enterprise economy. Kaldor
takes the Schumpeterian view that the creation of new ideas largely occurs at
an autonomous rate but that the implementation of these new techniques by
entrepreneurs can be explained by economic phenomena. Obviously, if the
implementation of a new technique requires new capital equipment, as
opposed to mere organizational change, increased productivity can be

! Preparation of an earlier draft of this essay was supported in part by the National
Science Foundation under Grant GS-420 to the University of Chicago. K. J. Arrow,
D. Cass, L. Hurwicz, and H. Uzawa contributed valuable comments and criticism.
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transmitted only through new gross investment. In addition, Kaldor argues
that for a capitalist economy the higher the relative rate of gross investment the
higher is the degree of ““technical dynamism.” Technical dynamism is a mass
measure of entrepreneurial psychology including the readiness to adopt new
methods of production.

In the second model with endogenous technical change [3], Arrow con-
centrates upon the relation between learning and experience. Economic
learning results in higher productivity; and cumulative gross investment is
the measure of such economic experience. Therefore, in refining the technical
progress function, Arrow explicitly postulates that per capita productivity is
determined by accumulated gross investment. In this model, then, the pro-
duction of new technical knowledge (invention) and the transmission and
application of that knowledge (innovation) are treated as by-products in the
production and adoption of new capital goods.

While it is doubtlessly true that technical change is related to gross invest-
ment both as a by-product of capital-goods production and as a vehicle for
embodying new techniques in new capital equipment, it is also true that the
rate of production of technical knowledge can be increased by increasing the
allocation of economic resources explicitly devoted to inventive activity. In
fact, much attention has been focused recently upon the economic aspects
of invention or the process of creation of new technical knowledge.?

At least two peculiar properties of technical knowledge require special
study. First, technical knowledge can be used by many economic units without
altering its character. Thus, for the economy in which technical knowledge is
a commodity, the basic premises of classical welfare economics are violated,
and the optimality of the competitive mechanism is not assured. Typically,
technical knowledge is very durable and the cost of transmission is small in
comparison to the cost of production. Second, at least on the microeconomic
level, the inventive process is characterized by extreme riskiness.

2. The Model

It has been argued that for an organized economy increases in technical
knowledge are fundamentally related to the amount of resources devoted to
inventive activity. In order to study the role of invention in economic growth,
the model economy is divided into two sectors: a productive sector and an
inventive sector.®

The homogeneous output of the productive sector Y,(t) is dependent upon

2 Cf. [12], especially Arrow’s contribution on pp. 609-625.

3 This model is a two-sector extension of the one-sector model treated in {16]. In [16]
I restricted myself to the special case where the production possibility frontier is a plane
surface in the nonnegative orthant of the consumption-investment-invention space.
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the amount of c#pital Ky(z) and labor L,(t) currently devoted to that sector
and upon the current level of technical knowledge A(t).* Thus

Yo(t) = O,[Kx(t), Lo(1), A(D)]. ‘ ¢))

The output of the productive sector either can be consumed or can be added
to the existing capital stock. If capital is subject to evaporative decay at the
given technical rate p > 0, then

K@) = s(t) Yo(t) — pK(2), )]

where K(t) is the current level of the capital stock, and 0 < s(t) < 1 is the
fraction of the productive output saved (and invested) at time ¢.
Abstracting from problems posed by uncertainty in aggregative invention,
a deterministic relationship between the output of the inventive (or research)
sector Y,(t) and the resources currently devoted to that sector is posited:

Yy(t) = O:[K,(1), Ly(1), A(D)]. (©)

Of course, if A(t) is interpreted as the current level of the stock of ““social
capital,” then ¥,(z) is current output of social capital. The stock of technical
knowledge is considered to be subject to some rate p > O of instantaneous
decay,

A(t) = Yi(1) — pA(r). : @)

For the case of positive p, Equation 4 should be understood as a long-run
approximation to processes not explicitly treated in this model. For example,
decay in technical knowledge is observed because of imperfect transmission
of technical information from one generation of the labor force to the next.

It is assumed that the production functions defined in Equations I and 3
exhibit neoclassical constant returns to scale in capital and labor. That is,
given A,

AY; = ®,(\K, AL, ) forK,L,=0,A>0; j=1,2.

In particular, assume that the production relations are multiplicative and of
the homogeneous form

YI = AF}(KI’ Li) = (DI(K!’ Lh A) fOI‘j = 1: 2, (5)
so that F,(-) is positively linear-homogeneous in K; and L,.5 Define L(t) to

4 Increases in efficiency are shared by all vintages of capital and labor; the embodiment
problem is ignored.

8 Thus, if F,(-) is concave and increasing, ®,(-) is an increasing semistrictly, quasi-
concave function that is positively homogeneous of second degree. The specification of
the production function given in Equation 5 is not crucial for the treatment of long-
run behavior developed in section 5. However, specification of Equation 5 does
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be the labor force inelastically offered for employment at time . For an
allocation of resources to be feasible at time ¢, it is required that

K@) + Ki(t) < K(t)
where K (1), Kx(t), Ly(t), La(t) = 0. ()
Ly(t) + Lu(t) < L(2)

3. A Decentralized Economy

It is assumed that the productive sector is composed of many individual
firms. The level of technical knowledge enters the firms’ production functions
as a pure public good of production. Hence, the competitive price of the
output of the research sector is zero. This suggests the desirability of inter-
vention in the market process.

Historically, intervention in behalf of inventive activity has taken two basic
forms: first, the establishment of a legal device, the patent, designed to bestow
property rights on certain of the outputs of the inventive process. The second
form of intervention is that of direct nonmarket support of research and
development. Universities have long played such a role in Western economies.
In the United States, the Department of Agriculture has undertaken research
activities since its inception. The Department of Commerce has initiated
industrial research programs modeled after the agricultural research stations.
The Department of Defense often uses the device of contracting research to
private enterprises on a cost-plus-fixed-fee basis.

In the model decentralized economy, the rewards to capital and labor are
paid in units of the output of the productive sector. The only form of inter-
vention in the market process is an excise tax rate, 0 < a < 1, imposed upon
the output of the productive sector. The revenue from the tax oY, is used for
payment to the factors employed in the inventive sector. The research manager
is assumed to maximize output of the inventive sector subject to this budget
constraint.

Profits (after taxes) for the productive sector are

(1 - G)Yz - WLz - rKa,

where w is the wage rate of labor, and r is the rental rate of capital. If the
individual production functions are identical and linear-homogeneous in
capital and labor, then the result of the profit-maximization hypothesis is that

allow a simple aggregation in the productive sector that is congenial to the competitive
hypothesis:

Y. = ; Y= A ‘ze(Kz', Ly,

where, for example, K, is the quantity of capital employed by the ith firm.
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oF, _ -
aKz - l -

Yy __w
L, - T—«

"with equality if Fo(Kj, Lg) > 0. @)

To maximize output in the inventive sector, consider the Lagrangian form:
Yl + e(aYQ -_ WL]_ -— rK]_),
when 8 > 0 is a Lagrange multiplier. The conditions for maximization are

ov;
2K,

ov,
oL,

< 6r
with equality if F,(K;, L,) > 0. 8)
< 6w

Notice that if w is defined to be the wage-rentals ratio (w/r), then if
F’(Kj, L’) > 0,

- (212 .
= (aF,/aK, forj=1,2.
Define the usual per capita quantities:
K
k=1
and
K, Y L,

b=1h w=pr 4=F frj=L2

The conditions for static equilibrium reduce to

wly + rgly = (1 — &)y, ' ®

wl + rkyl; = ay,, : (10)

y; = Afik)l,  forj = 1,2, where f{k,)) = Fi(k,, 1), (11)
L+l=1, (12

ki, + koly = K, 13)

w=7f:4((’7‘c%—k, forj=1,2. (14)

Also assume that for each j, the function fi(k;) is twice continuously
differentiable for all k,, and

Sik) >0, fi'(ky >0, fi'(k) <0 for0 < k; < o0;
f(0) =0, f{o) =00, (15)
i) = 0, f/(0)=0.
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Then, the implicit relations k,(w) are well defined because

dey _ L o o102 (16)

do ~ fik)f(k)
Adding Equation 9 to Equation 10 and substituting in Equation 11,
Al fo(ks) = w + rk.
But solving Equations 12 and 13 for /; yields

wrk = (kl'c;__—%)"f“(k”)'

However, from Equations 9 and 11,

_ wH Tk,
f2(k2) = (1 — a)A
Thus

_ (wtrk\(k — ki
w+rk_(1—a)(kz—k1)
Dividing by r yields ,
_ w+k2 k-kl .
w+k—(1—°‘)(k2"k1)

LetZ=k+wandZ, =k; + wforj=1,2.

Z(w) = ZaZy where 0 < « < 1. a7

eZ; + (1 — 0)Z,

The right-hand side of Equation 17 takes all positive values and has a deriva-
tive everywhere greater than unity. Here Z'(w) is identically unity, and hence,
for given positive k, Equation 17 is uniquely solvable for w, and the greater
the value of k, the greater the equilibrium value of w.®

Manipulation of Equation 17 yields theorems in comparative statics. For
example, if the productive sector is always more (less) capital intensive than
the inventive sector, (1) the higher the wage-rentals ratio, the higher (lower)
is the equilibrium level of output of the inventive sector; (2) the higher the
excise tax rate «, the higher (lower) is the wage-rentals ratio w.

4. Static Efficiency and Optimal Taxation

Suppose that at a given moment in time the central planning board desires
to maximize the expression
Y; + AY, (18)

¢ My Equation 17 is formally equivalent to Equation 23 in [19]. Thus determination
of static equilibrium in the model just outlined is equivalent to determination of static
equilibrium in [19] with my excise tax rate playing the same role as Uzawa’s average
propensity to save.
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subject to the resource constraint of Inequalities 6. Here A is the social demand
price of inventive output in terms of productive output.” By Conditions 15,
maximization of Expression 18 requires full employment of resources; that
is, Inequalities 6 must hold with equality. The maximum is achieved when
K, =K, L, =L, or when K; = K, L, = L, or by solving the system

Y, ,oY, _

ﬁ(;—)‘—a_l(—l’ K1+K2—K, (19)
oY, oY, _

oL, = A aLl’ Li+Ly,=1L.

Oniki and Uzawa [13] show that if the production functions satisfy
Conditions 15, then there exist positive finite prices A and A, with 0 < X <
A < oo, such that for A < ), maximization of Expression 18 requires special-
ization to production, and for A > A, maximization of Expression 18 requires
specialization to invention. For A < X < A, first-order conditions of Equa-
tions 19 apply. By varying A we obtain optimal outputs

Y, =Y:i(2) and Y, = Y,(}),

7 Suppose, for example, that the criterion of the planning board is to maximize the
integral of discounted per capita consumption over some planning period T > 0,

[T = AP, Loeo+o* ar,

where $§ is the (constant) social discount rate, subject to initial conditions and terminal
requirements. It is necessary for intertemporal optimality that the imputed value of
gross national product

[AQ ~ )+ gs]Ys + vY,

be maximized at every point in time. Here ¢ is the social demand price of investment
and v is the social demand price of invention. Thus for Expression 18,

v
A= 0O=95+g

Determination of the optimal trajectories for g(f), v(1), s(¢), and thus A(t), follows from
the techniques of [14], and a treatment of the case where k;(w) = ka(w) for all positive
w appears in [16). In [16] the maximand was assumed to be a strictly concave function
of per capita consumption and the production function was assumed to be strictly
concave in its arguments. Under such conditions a long-run turnpike is found where
A, k, g, and v are stationary and the net (of depreciation) socially valued marginal
product of capital is equal to the net socially valued marginal product of technical
knowledge. In the partially controlled economy, if long-run capital formation is lower
(higher) than called for in the fully controlled economy, then long-run inventive activity
should be higher (lower) in the partially controlled economy. It should be remarked
that quasi-concavity of the @,(-) is not enough to ensure that Pontryagin’s necessary
conditions are sufficient. In fact, for ®,(+) quasi-concave but not concave, I have found
clearly nonoptimal programs satisfying the necessary conditions.
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as nondecreasing and nonincreasing (respectively) upper-semicontinuous
correspondences in A.®
This is shown by simple construction. Choose social demand price At
such that
Yate Y (AY) and Y,!e Yy(AY).

Also choose social demand price A% such that
Y.2e Y (M%) and Y, %€ Yy(A%).
Since Expression 18 is to be maximized,

Yol +AY,t 2 Y2 + A'Y 2, (20)
and
Yo' + A%Y, !

IA

Y,2 + A2Y,2. 1)
Subtracting Inequality 21 from 20 yields

(A =AY, - Y3 =0,
which can be written as

AY,

.. AY,
2y 20, and similarly 2 < 0, (22)

where A is the finite difference operator.
Notice that for 0 < « < 1, the system of Equations 7 and 8 reduces to
the system of Equations 19 when

1

A=-0(—1—;-—aj,

23)
that is, if the social demand price of inventive output is equal to the implicit
(supply) valuation of inventive output. If Equation 23 holds, factor payments
in the inventive sector are

oY,
oL,

oY,

A(l — a)Ll + A(l _ a)Kl a_K“—'
1

When the inventive sector equates factor payments to revenues

@ _ AL,(9Y,/0L,) + AK\(0Y,/OK;)

1 Rl ¢ 4 Ya
But by Euler’s theorem
e _AY(0)
1—a Y,(N 24)

For 0 < « < 1, the left-hand side of Equation 24 is a strictly increasing
function of « with range (0, 0). For A < A < A, the right-hand side of

8 Cf. p. 17 in [5].
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Equation 24 is a nondecreasing correspondence of A with range (0, o). Given
« € (0, 1), Equation 24 is solvable for A € (4, A).

Thus for any tax rate 0 < a < 1, the decentralized economy is efficient.
The trivial case « = 0 corresponds to maximization of Expression 18 for the
case A < A. For « = 1, allocation of resources between the two sectors is not
uniquely determined.

Next define the implicit (supply) price of invention by

_ ffalo@] _ 1 .
ple) Fele@] ~ 0 =9 forO0<a< 1. 25)

But notice by Equation 17,
lim kjfw(e)] = k, lin} ky[w(@)] =k,
a=0 a—

and thus
lim p(e) = A, lim p(e) = A.
a=1

a0

Logarithmic differentiation of Equation 25 yields

ldp 1 1 5
;a—l;—k1+w—k2+w<0 aSk2<k1,

and differentiation of Equation 17 yields
e 1/z) - (1/Z,)

g0 - >0
oe  (@Z,[Z,) + [(1 — 9)Z,[Z%] — (1/Z2%) =
Thus

as kg z kl'

a—p>0 © for0 <« < 1.
du

Hence, given the social demand price for inventive output in terms of pro-
ductive output, A < X < A, the optimum excise tax rate 0 < « < 1 can be
determined by solving Equation 24. For A < A, optimality requires that in the
decentralized economy the excise tax rate be set equal to zero. For A > A,
optimality requires the economy to be centralized with all factors of pro-
duction to be allocated to the research manager.

5. Long-Run Behavior of the Economy with Constant Rates of Savings and
Taxation

Consider the stylized Western economy in - which static equilibrium is
determined by Equations 9 through 14. Assume that the excise tax rate o
and the savings fraction s are institutionally given and fixed through time
with 0 < « < 1 and 0 < s < 1. Capital accumulation is determined by
Equation 2 and the change over time of the stock of technical knowledge
proceeds in accordance with Equation 4. In order to simplify the analysis,
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assume that the working population is stationary so that we can set L = 1
without loss in generality. Initial endowments of resources A4(0), K(0), and
L(0) = 1 are given.

Rewriting Equation 2 in per capita terms yields

k = sAl, fik;) — pk. (26)
The capital stock is stationary (k = 0) if and only if

pk
A=—. 27
o) @D
Equation 27 defines a curve in the positive quadrant of the k — A4 plane.®
Rewriting Equation 4 yields

A = Al fi(k)) — p @28)

With 4 > 0, the stock of technical knowledge is stationary only if the stock
of physical capital is such that

Lfitk) =p 29

is satisfied. By Equations 15 the left-hand side of Equation 29 tends to zero
as k tends to zero. Assume, for example, that the left-hand side of Equation
29 is an analytic function of k and tends to infinity as k tends to infinity.
Then there exists 0 < £ < oo such that

LAtk) >p fork > k.

By a classic theorem of analytic function theory,'° solutions to Equation 29
cannot be dense. Therefore by the Bolzano-Weierstrass theorem, the
number of distinct solutions to Equation 29 is finite and odd.

The phase diagram (Figure 1) depicts the long-run behavior of the system
of differential Equations 26 and 28 for the case when there are exactly three
solutions k*, k**, k*** to Equation 29. Let

0 < k* < k** < k*** < 0.

There are then exactly three equilibrium points. The points (k*, 4*) and

9 In fact, if the elasticity of substitution between capital and labor is never less than
unity in the inventive sector or if invention is always more capital intensive than produc-
tion, then

CZT Y PR ) R
dk ya® ’

The proof of this proposition is in the appendix to this essay.
19 Here /, f; is assumed to be an analytic function of k and the constant p is a trivial
analvtic function of & Hence, if /, £ equals » on a set that has an accumulation point

X =0 s
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A
A=0 A=0 A=0
A<O A>0 A<O A>0
\/ k>o
ha — k=0
o k<0
k

k** ksuuf

x
*

FiGURE 1. Multiple equilibriums.

(k***, A***) are saddle points.** Locally, the point (k**, A**) is either stable

or (by the Poincaré-Bendixon theorem) there exists a limit cycle forming a

periodic orbit about (k**, A**). The limit cycle case is illustrated in Figure 1.
The case where

dy:
v e 0 fork>0 (30)

is of special interest.? If Inequality 30 holds, the solution to Equation 29
is unique, and therefore there is a unique equilibrium for the system of
differential Equations 26 and 28. This case is illustrated in the phase diagram
of Figure 2. The unique equilibrium (k*, 4*)is a saddle point. Thus the k-4
plane is divided by a “razor’s edge.” For initial endowments of physical
capital and technical knowledge below this line, the economy ‘““decays.” For
initial endowments above this line, the economy *explodes.” In the general
case, there exists the possibility that the economy tends to a technological
trap or periodic orbit,!® for example, the point (k**, A**) in Figure 1.

11 Remembering that f;(+) is twice continuously differentiable.

12 A sufficient condition for Inequality 30 to hold is (1) invention is always more
capital intensive than production, or (2) the elasticity of substitution in production is
never less than unity. Again, the proof of this proposition appears in the appendix to this
essay.

13 [n the recent literature of economic growth theory it is usual to examine a model for
global stability. It has been found for certain models that their ultimate long-run behavior
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A
A=0
A<O|A>0
\\/
k>0
k=0
" k<O
———— e
/"\
k

k*

FIGURE 2. Unique equilibriums.

6. Concluding Comments

The model just discussed focuses upon the role of invention in economic
growth. In order to simplify the analysis, certain important phenomena are
ignored. Among other things, the effects of a growing labor force and the
process of transmission of knowledge within the economy are ignored. None-
theless, the model is sufficiently rich at least to suggest explanations for some
economic problems.

The post-World War II experience of Germany and Japan provides an
instructive example from recent economic history. It could be argued that
although large amounts of their physical capital were destroyed during the

is independent of initial endowments. See, e.g., {17] and [19]. While such stability (if it
exists) is certainly an interesting property of any model, it should not be considered an
essential property for a growth model. In fact, Maruyama [11] argues just the opposite:
that social systems are basically morphogenetic rather than morphostatic. The notion
and the usefulness of the concept of stability in the engineering sciences is treated in [4].
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war, their stocks of technical knowledge remained large enough with respect
to the remaining stocks of physical capital to ensure the sustenance of
explosive growth.'* Thus the war-torn economies staged * miraculous”
recoveries while certain nonbelligerent but impoverished economies remained
impoverished.

This example raises an important question: Why do not technically back-
ward economies freely adopt the techniques developed in the advanced
economies? A certain amount of such “copying” does occur, but, contrary
to the model presented here, in real life endowments of productive factors
are not homogeneous, and knowledge that is useful to one country may not
be useful for production in another country. Even then, transmission of
technical information (education, innovation, and so on) is certainly not a
costless activity. The role of transmission of technical information in the
process of economic development is a topic that is worthy of further
investigation.

APPENDIX: COMPARATIVE STATICS FOR THE
TWO-SECTOR MODEL

In this appendix, certain simple propositions in comparative statics are
developed for the two-sector model. I was led to the study of these proposi-
tions because of their relevance to the direction and stability of long-run
growth in the model of inventive activity and capital accumulation. These
propositions are of some independent interest and therefore a separate
treatment is warranted.!®

Consider the miniature two-sector Walrasian equilibrium system given by
Equations 9 through 14. Using the supply price p defined in Equation 25,
gross national income per capita y is given by

Yy =y + pn. (A.)

Demand for output can be rewritten as
Py = ey. (A2)

14 My colleague P. N, Rosenstein-Rodan stresses also the importance in the recovery
process of the remaining stocks of physical social capital. He has told me that because
of exceptional circumstances the Neapolitan sewers were devastated by Allied bombing.
This, he argues, was sufficient to cause Naples to require enormous outside aid in order
to “get back on its feet.”

18 The pioneer work in two-sector comparative statics seems to be that of Rybczynski
[15] whose analysis is in terms of the Samuelson-Stolper box diagram. I am indebted to
J. Wise for the reference to Rybczynski's note.
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Setting A = 1 for convenience, and combining Equations A.1 and A.2 with
Equation 11 yields the basic equation

=) 50 = (6= 7 e

Logarithmically differentiating both sides of Equation A.3 with respect to k,
yields the total derivative

k2 - k1
L -  (A%)
dk f’l‘z(f_n_f_z+;) +&(L_f_1+__1_)
do \fy fo ka—k] do\fi £’ k-k
Because of Equations 14 and 16, Equation A.4 can be rewritten as
do _
dk
ky — ki
& — k(s — 5 _
(_i_k_z[ k+ o ]+£11c_,[ k+ o ]+[ ky — k, ]
dw (kg — k)ks + w) dw {(k — ki)(k, + ) (ks + o)k, + )
(A.5)

For k, # k # k,, the numerator and the denominator of the right-hand
side of Equation A.S are seen to agree in sign, and therefore (dw/dk) > 0 for
0 < k < oo. This is the proposition (Uzawa) that if the demand for output
is such that the marginal propensity to consume equals the average propensity
to consume, then the higher the endowment of a factor of production, the lower
is the equilibrium level of the relative reward to that factor. Also given
0 < k < oo, the equilibrium value of w is uniquely determined.

Next, observe the direct effect of differing factor endowments upon the
equilibrium composition of output. From Equation 11,

oy _ —filky)
s _ _fuks) o
ok ky — ky

The partial derivatives in Equations A.6 are independent of demand, and thus
we have the proposition (Rybczynski): If the rates of substitution in production
are fixed, that is, (dw/dk) = 0, then the higher the endowment of a
factor of production, the higher (lower) is the equilibrium level of production of
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Logarithmic differentiation of Equation 11 yields

Ldy bl Kok ) e[ etu ],
Ve do = dw e = B T T e Ta T o =Ry 20 AD

as k, 2 k 2 k,. Similarly (1/y,)(dy,/dw) S Oask, 2 k 2 k;.

Since (dw/dk) > 0, we have for the system of Equations 9 through 14 that
the direct effect (Equation A.6) of varying factor endowment upon equilibrium
levels of output is opposite in sign to the indirect effect (Equation A.7).

The total effect is the sum of the direct effect and the indirect effect:

dyy _ o0, dyydo
dk ~ ok " dw dk’
(A.8)
dry _ vy, dyade
dk ~ ok " dw dk

Because of Equations A.6 and A.7, the first of Equations A.8 can be rewrit-

ten as )
dy, _ (21 ( N
W-Wl—ﬂ, (A9)

where N is defined by

N_dw (kz—k1)+dw k2"'k1 k1+w >0, (AIO)

and D is defined by

D =

dw \k, — k, do \ky — k;)\ky + @
: (A.11)
okl ) [(5 L) dhy S ),
ky — ky S f2] dw fil do
Applying Equations 14 and 16 to Equation A.11 gives
- (tok) oS (fazp)kte)
do \kq — k, dow \kg — k;/J\k; + @
(A.12)
+ k — k)ky — k) [ 1 1+ (dkg/dw)] >0
ke — ky ki + o ke + w ’

Consider the case where k, > k > k,. From Equations A.6 we have
(3y,/2k) > 0 and therefore (dy,/dk) > 0 if and only if D > N. Examine the
right-hand sides of Equations A.10 and A.12. The first terms are identical;
for k > k, the second term in Equation A.12 is greater than the second
term in Equation A.10. For k; > k,, the third term in Equation A.12 is
positive. Hence, when k; > k > ky, then D > N > 0or0 < (N/D) < 1.
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For the two-sector economy (Equations 9 through 14), the higher the
endowment of a factor of production, the higher is the equilibrium level of output
of the commodity using relatively much of that factor.

Consider the reverse factor-intensity case, k; > k > k,. Here (dy,/dk) is
positive if and only if (D — N) < 0, or subtracting Equation A.10 from
Equation A.11,

k — kl)‘-g% (f’" - f—’) - fg% [(k’ “flk)fl' + & "f:‘,l)f"] <0. (A13)

R fa
Multiplying both sides of Inequality A.13 by (w/k,k;) and substituting from
Equations 14 and 16 yields

(k — ky)oy (-w_)(k - kl) (ks — K)o, (_(:,_) (k - kl)
e+ o) T \tk)\GFe) Tk x e - Gk \e e (A.14)

where o; (j = 1, 2) is the elasticity of substitution between factors in the jth
sector. This basic property of production functions was introduced by Hicks
and refined by Allen.'® The elasticity of substitution can be written as

ow) = %‘fd—’z forj=1,2.

Rearranging Inequality A.14 gives

e ek klkat o)k = Koy
2 kl + w wkg + klkz kg(kl + w)(k - kl)

(A.15)

From Inequality A.15 a simple sufficient condition for (dy,/dk) to be positive
is that o, > 1. Thus, if the elasticity of substitution in the production of
commodity two (one) is greater than or equal to unity, then the higher the
endowment of either factor of production, the higher is the equilibrium level of
output of commodity one (two).

It is instructive to study the special case where the production functions
(Equations 1 and 3) are linear in logarithms. For this case, we can write

Silky) = ky° where0 <a < 1,

(A.16)
Salks) = kgt where0 < b < 1,
Applying Equation 14 to Equations A.16 yields
aw bw
ky = T— and ky; = =% (A.17)

18 Cf, pp. 117, 245 in [6], pp. 341-343 in [2], and {7].
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Substituting Equations A.16 and A.17 in Equation A.3 yields

ol — @) + (1 — o)1 = b)
- [ S EE ]k. (A.18)

From Equations A.17 and A.13,
ky =7k and k; = yik,
where y, > 0 and y; > 0 are constants fixed upon specification of the

parameters e, a, b. Notice also that

kz—k _)’2—1

I = =
! ke — ky Yz — "1

and
k—kx _ 1—"}’1'

1= —_
2 ky — ky Y2 — N

Therefore 0 < /; <1 and 0 < /; < 1 are, in the Cobb-Douglas case, fixed
constants. Hence if production satisfies Equations 11 through 14 and Equa-
tions A.16, and if demand satisfies Equations A.1 and A.2, then (dy,/dk) and
(dy./dk) are positive for all k > 0.

In the study of the model of inventive activity and capital accumulation,'”
one is interested in the sign of an expression that is equivalent to

d
ys — k dlkn, (A.19)
which can be rewritten as '
Sa(ka) _
——————D(k2 ~ %) (kN — kD), (A.20)

where by Equation 14, N is given by

_ dk, k1+w(k—k, &(kg—k)
N_dw(kww) kz—kl\)’fdw k) >0 forkark ki

and where D > 0 is defined by Equation A.11.
Form the expression

_ k=ki fdka[, _ . _ k(ks — ki) | ki(ks — k)
kﬁ—le_k_——n_kl dw[k kl k,+w + k2+w]
dkl k2 - k _ _ kl(k — kl)
+ el - v - (A-20)
L fatks = B) _ kuthka = ),
k; + @ k, + w

17 Cf.,, e.g., p. 76 of the text.
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The right-hand side of Equation A.21 can be rewritten as

(k — ki)ks — k) [dkz (k - kl)(l ky )

k2_k1 d_wkg—k —k2+w

(A.22)

dk, ky I 1
+-d_w( _k1+w)+k1(k2+w_k1+w)]'
Notice that for the case k; > k > k,, Expression A.22 is negative. Therefore,
if ky > k > k,, then Expressions A.19 and A.20 are positive.

For the reverse case k; > k > k,;, Expression A.22 tells us that kN > kD
if and only if

‘_”_‘zk"_kl(_f’_ &( @ ) kylka — ky)
dw (kz — k) ko + w) + dw k+to > O + w)(k,, + w) (A.23)

Dividing Inequality A.23 by k,k, yields

k2 kl (k i kl)(kl + w) k2

ito hte WG-k)\orae ko A2

Therefore, a simple sufficient condition for Expression A.19 to be positive
isfork, > kyora; > 1.

g, >
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