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VOTING BEHAVIOR AND INFORMATION AGGREGATION 
IN ELECTIONS WITH PRIVATE INFORMATION 

BY TIMOTHY FEDDERSEN AND WOLFGANG PESENDORFER' 

We analyze two-candidate elections in which voters are uncertain about the realization 
of a state variable that affects the utility of all voters. Each voter has noisy private 
information about the state variable. We show that the fraction of voters whose vote 
depends on their private information goes to zero as the size of the electorate goes to 
infinity. Nevertheless, elections fully aggregate information in the sense that the chosen 
candidate would not change if all private information were common knowledge. Equilib- 
rium voting behavior is to a large extent determined by the electoral rule, i.e., if a 
candidate is required to get at least x percent of the vote in order to win the election, 
then in equilibrium this candidate gets very close to x percent of the vote with probability 
close to one. Finally, if the distribution from which preferences are drawn is uncertain, 
then elections will generally not satisfy full information equivalence and the fraction of 
voters who take informative action does not converge to zero. 

KEYWORDS: Voting, elections, information aggregation. 

1. INTRODUCTION 

A STRONG ARGUMENT FOR ELECTIONS is that society may be collectively better 
informed about the relative quality of a set of alternatives than any individual. 
Elections provide a mechanism for aggregating private information, ensuring a 
better collective decision. This idea inspired some of the earliest mathematical 
models of voting in elections and dates back at least to Condorcet.2 The set of 
environments in which elections might usefully aggregate private information 
about the relative quality of a pair of alternatives goes well beyond the jury 
setting that was the focus of Condorcet's work. In most elections voters have 
common values with respect to some characteristic of the alternatives and are 
privately informed about this characteristic. Consider the following examples: 

(i) An election is held to decide whether or not to increase funding for a local 
public good. Voters have different valuations for the public good and are 
uncertain about the cost or the quality of the proposed plan. One particular 
example is referenda on school funding. While voters' willingness to spend 
money on schools differs, all agree that better student performance is prefer- 
able. There is uncertainty about the degree to which increased spending trans- 
lates into student performance. 

(ii) Voters must decide between an incumbent and a challenger. Voters' 
preferences have both a private and a common value component. The private 

1 We wish to thank Eddie Dekel, Drew Fudenberg, Okan Yilankaya, the editor and three 
anonymous referees for helpful comments. Pesendorfer gratefully acknowledges support from NSF 
Grant SBR-9409180. 

2 For a discussion of Condorcet's Jury Theorem and extensions see Ladha (1992), Miller (1986), 
and Young (1988). 
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value component is voter preferences over the candidates' ideological positions. 
A common value component is the "character" of the candidates. Candidates 
with good character can be relied upon to stick closely to their announced 
positions while those with poor character cannot. Risk averse voters all prefer a 
candidate with better character. Voters are differentially informed about the 
record of each candidate and therefore possess private information.3 

(iii) Voters in Presidential primaries are concerned not only about the policy 
positions of the competing candidates but also about each competitor's probabil- 
ity of winning the general election. All the primary voters prefer any of the 
candidates running in the primary to any of the candidates from the other party. 
Voters possess private information about the candidates' electability.4 

The traditional approach to the question of how well elections aggregate 
information assumes that voters have identical preferences and behave 
"naively,"5 i.e., each voter behaves as if her choice alone determines the 
outcome. However, naive voting is not generally an equilibrium of the corre- 
sponding voting game.6 Voters face a decision problem that is similar to the 
problem facing bidders in a common value auction. In both elections and 
auctions an agent's action affects her payoff only in very particular circum- 
stances. As is well known, bidders in a common value auction must condition 
their belief about the value of the object on the event that their bid is the 
highest. Similarly, voters must condition their beliefs about the quality of the 
alternatives on the event that one vote can change the election outcome, i.e., a 
vote is pivotal. The following example illustrates the problem. 

A community must vote on a proposal to increase school funding. There are 
two equally likely states of the world: the proposal works (w) (e.g., it improves 
test scores, reduces dropout rates, etc.) or it does not (nw). Everyone in the 
community favors the proposal in state w and is opposed otherwise. None of the 
voters knows the state of the world but each voter gets one of two signals: in 
state w every voter gets the signal w with probability 0.6. In state nw every voter 
gets the signal nw with probability 0.6. The proposal passes if at least 2/3 vote 
in favor. Suppose all voters vote "naively," i.e., in favor if they receive signal w 

3In the literature on macroeconomic performance and elections, competence is frequently 
introduced as a common value component of voter preferences. See, for example, Alesina, Lon- 
dregan, and Rosenthal (1993), Persson and Tabellini (1990), Rogoff (1990). 

4 The fact that voters' decisions about which candidate to support are influenced by how they 
believe others assess the candidates is known as the "bandwagon effect": candidates who are seen 
winning early primaries gain support in later primaries (see, for example, Bartels (1988)). The 
bandwagon effect is often thought to be a feature of preferences: voters like to support winning 
candidates just as sports fans enjoy rooting for winning teams. In contrast, we are suggesting that the 
phenomenon is due to voters learning about the relative merits of the candidates. The bandwagon 
effect is prima facie evidence that electoral results reveal useful information to voters. 

5See Ladha (1992), Miller (1986), and Young (1988). See Austen-Smith and Banks (1996), 
Myerson (1994b), and Klevorick et al. (1984) for exceptions to the assumption of naive voting. 

6Austen-Smith and Banks (1996) and Feddersen and Pesendorfer (1995). 
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and opposed otherwise. Then in a large election, whenever a vote is pivotal (i.e., 
2/3 of the voters have voted for the proposal), the state is almost certainly w 
and everyone should vote in favor!7 

As in the above example, we consider a population of voters that uses an 
election to choose one of two alternatives (labeled Q and A). In contrast to the 
above example, we allow voters to have different preferences over the two 
alternatives. Each voter's payoff depends on her preference type, on a state of 
nature, and on the winning alternative. Preference types are drawn indepen- 
dently from a given distribution whereas the state of nature is common for all 
voters. Voters know their own preference types but are uncertain about the 
state of nature. Every voter receives a signal that provides information about the 
realization of the state of nature. Voting is costless and voters can either vote 
for Q or for A. Alternative Q wins if the fraction of voters voting for it is at 
least q. We analyze the voting equilibria of this game (symmetric Nash equilibria 
in which voters do not use weakly dominated strategies). 

In a voting equilibrium preference types can be divided into three groups: 
those types who always vote for Q, those who always vote for A, and those who 
change their vote depending on their private signal. We say the latter types take 
informative action. 

Our first three results analyze voting behavior and information aggregation in 
relatively simple environments in which voters are uncertain about a one-dimen- 
sional state variable. 

Theorem 1 demonstrates the inherent tension between information aggrega- 
tion and informative voting. We show that the fraction of voters who take 
informative action goes to zero as the size of the electorate goes to infinity. The 
result that almost no voters take informative action in large elections would 
seem to put into grave doubt the supposed utility of elections as information 
aggregation devices. Our next two results show that this is not the case. 

Theorem 2 shows that for a wide variety of preference distributions large 
elections are almost always very close. Theorem 3 shows that elections satisfy 
full information equivalence: with probability arbitrarily close to one, the alterna- 
tive that would have been chosen if all the private information were common 
knowledge is selected. This result may appear paradoxical in light of our first 
result. While the fraction of the electorate's signals revealed in equilibrium goes 
to zero, the number of voters who reveal their signal goes to infinity so that in 
the limit all information is revealed. Theorem 2 guarantees that the election will 
be decided by those taking informative action, and thus, large elections effec- 
tively aggregate private information. 

7 It should be clear that this example does not depend on the fact that we chose a 2/3 rule rather 
than simple majority rule. It could easily be modified to show that naive voting is generally not a best 
response to a population voting naively also in the case of simple majority rule. 
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We use a series of examples to illustrate the effect of relaxing our key 
assumptions. We also illustrate in Section 5.1 that, in contrast to strategic voting, 
naive voting typically fails to lead to full information equivalence. 

Our last result examines the implications of more complicated information 
environments. We demonstrate that if there is additional uncertainty about the 
distribution of preferences, then elections will generally not satisfy full informa- 
tion equivalence and the fraction of voters who take informative action does not 
converge to zero. The degree to which the election fails to meet the full 
information equivalence requirement is parameterized by the level of uncer- 
tainty about the distribution of preferences. When this uncertainty is small, the 
election mechanism almost satisfies full information equivalence. 

Our approach is related in some respects to the approach taken by Lohmann 
(1993) and Austen-Smith (1990). Lohmann uses a similar framework to analyze 
the effects of private information on costly participation in political protest 
movements while Austen-Smith examines the incentives for strategic voting in 
small two-alternative elections. Neither Lohmann nor Austen-Smith considered 
the asymptotic properties of their models. Our results are also related to the 
literature on information aggregation in auctions: Milgrom (1979), Wilson 
(1977), and Pesendorfer and Swinkels (1995). In another related paper Palfrey 
(1985) analyzes information aggregation in a Cournot model. 

2. THE MODEL 

We analyze a two alternative election. Alternatives are denoted by j E {Q, A}. 
There are n + 1 voters indexed by i E {1,..., n + 11. A voter's utility depends on 
a preference parameter x E [-1, 1] = X, the chosen alternative j, and the state 
s E [0, 1]. We denote by u(j, s, x) the utility function of voters. Let 

(1) v(s, x) u(A, s, x) - u(Q, s, x) 

denote the utility difference of a voter type x between alternative A and 
alternative Q in state s. 

Each voter knows her preference type but is uncertain about the realization 
of the state. By G(s) we denote the probability distribution that describes the 
prior beliefs about the state s. Each voter receives a signal 0r EC {1, . .. , M} - X 

from an information service k E {1,..., K}. We assume that conditional on state 
s being realized, the signal that voter i receives is independent of the signal that 
voter j receives. Thus we can define the function Pk(U Is) which denotes the 
probability that a voter receives signal o- if s E [0,1] is realized and the voter is 
served by information service k. 

A voter's type is characterized by a preference parameter and an information 
service. Let T [-1,1] x {i, ..., K} denote the type space. Let F be a probabil- 
ity distribution over T, where F(x, k) denotes the probability that the type is in 
the set [-1, x] x k. Let Fx(x) = EK 1 F(x, k). The assumption of K informa- 
tion services allows us to introduce correlation between access to information 
services and preference types. 
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Nature selects the electorate by choosing n + 1 voter types independently 
according to the probability distribution F. Each voter knows her own type but 
is uncertain about the other voters' types. The distribution F is common 
knowledge. 

A voter can choose Q or A. Let 0 < q < 1 be a fixed parameter. If the number 
of voters who choose Q is larger than or equal to (n + 1) q, then Q is the 
outcome. Otherwise, A is the outcome. 

We make the following assumptions: 

ASSUMPTION 1: v(x, s) is continuous and increasing with Iv(x, s) - v(x, s')I > 
KI s-s'l and Iv(x,s)-v(x',s)I2KIx-x'l for some K>0. Moreover, v(-1,s) 
<0, v(1,s)>0 for alls. 

ASSUMPTION 2: G has a density g and there is an a > 0 such that 1/a > g(s) > a 
for all s e [0, 1]. 

ASSUMPTION 3: F(x, k) is continuously differentiable in x and f(x, k) denotes the 
derivative. There is an a > 0 such that Ek= 1 f(x, k) > a for all x E X. 

ASSUMPTION 4 (Monotone Likelihood Ratio Property): If cu > u' and s > s', 
then Pk(' I s')Pk(o( I s) >Pk(o I S')Pk(' I S) for all k. 

ASSUMPTION 5 (Limited Information): There is an a > 0 such that Pk( I s) > a 

for all (k, s). 

ASSUMPTION 6: nq is an integer. 

Assumption 1 says that the utility difference between alternative A and 
alternative Q is continuous and strictly increasing in x and s. Furthermore, 
voters with preference parameters at the boundary of X prefer one of two 
alternatives irrespective of the state s. 

Assumption 2 ensures that every state is in the support of the prior and the 
relative likelihood of any pair of states g(s)/g(s') is bounded above and below. 
Assumption 3 implies that every preference type is in the support of Fx. 

Assumption 4 says that the signal satisfies the monotone likelihood ratio 
property (MLRP). One implication is that for s' > s, Pk(. I S') first order stochas- 
tically dominates Pk(- I S) (Witt (1980)).8 In addition, a higher signal indicates to 
the voter that a higher state should be expected for any prior. More precisely, 
for a' > o- the distribution over states conditional on cr' first order stochasti- 
cally dominates the probability distribution over states conditional on o- 
(Milgrom (1981)). 

8Note that since Pk(' I S') first order stochastically dominates Pk( I S) for s' > s, it follows that 
pk(1 I S) is nonincreasing in s and pk(M I s) is nondecreasing in s. 
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Assumption 5 says that a voter cannot exclude any state if she receives a 
particular signal. Assumption 6 is purely for notational convenience.9 

3. STRATEGIES AND EQUILIBRIUM 

A pure strategy for voter i, 7ij, is a measurable function from her type and her 
signal to a vote choice, i.e., 7i : T X - -* {Q, Al and a mixed strategy, 7-i, is a 
measurable function from a voter's type and her signal to the probability of 
voting for candidate Q, i.e., vi: T x X -* [0,1]. 

We define a voting equilibrium - * to be a symmetric Nash equilibrium in 
which no voter uses a weakly dominated strategy. 

The only time a voter can influence the outcome of the election is if a vote is 
pivotal, i.e., exactly qn of the other n voters voted for Q. A voter will choose Q 
if, conditional on a vote being pivotal, the expected payoff of alternative Q is 
larger than the expected payoff of alternative A. 

Given a symmetric strategy profile i- we can compute the probability that a 
vote is pivotal as a function of the state s. Let 

K M 

(2) t(sv 7T) = E E, pk('J- I s)| 1(x, k, cr )f(x, k) dx 
k=1 1 X 

denote the probability that a randomly selected voter votes for Q in state s. Let 
piv denote the event that a vote is pivotal. The probability that a vote is pivotal 
in state s is given by 

(3) Pr( piv Is7T)=(qn ) 7,T ) 1-(, r)) 

When 1 > t(s, -7) > 0 for all s, then Pr(piv I s, ii) > 0 for all s, and therefore, the 
probability distribution over states conditional on being pivotal is given by 

(4) f3(s Ipiv, Tr) = Pr(piv I s, r)g(s) 
fol Pr(piv I w, -r) g (w) dw~ 

Similarly, the probability distribution over states conditional on being pivotal 
and observing signal cr from service k is given by 

(5) 8(s Ipiv, T, a, k) = 
PrpivIS 

I(sTIpi )pS( I s). 
Jf Pr(piv I w, 77)pk(cr I)dg(w) dw 

18(S IPiV, I )PJ(S I S) 

fOl 1 (W piv PX IT)Pk (:J I W) dw 

Let E(v(x, s) Ipiv, x, a, k) denote the expectation of v(x, s) with respect to 
,8(t lpiv, T, ,, k). Since the signal satisfies the MLRP, 83C Ipiv,Fr, u, k) first 

9 The only change in the analysis when nq is not an integer is that the expression nq must be 
replaced with "largest integer that is smaller or equal to nq." 
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order stochastically dominates 38( ipiv,r, o-C', k) for o-->o-' (see Milgrom 
(1981)), and hence E(v(x, s) Ipiv, -T, o-, k) is nondecreasing in o-. 

A strategy is characterized by cutpoints if for every information service and 
every signal there is a cutpoint xk such that the voter chooses Q whenever the 
preference type is smaller than xk and A otherwise. If the cutpoints xk are 
nonincreasing in o-, then we say that the strategy can be characterized by 
ordered cutpoints. 

DEFINITION 1: A strategy T is characterized by ordered cutpoints if for every 
information service k there are cutpoints (Xk)C .. M with the property that 
1>Xk ...Xk > -1 and T(x, k, v) = 1 for x <xk, (x, k, ov) = 0 for x>xk 

Observe that if a strategy is characterized by ordered cutpoints, then voters of 
type (x, k) with x <xk vote for candidate Q irrespective of their private signal. 
Similarly, voter types (x, k) with x >xk vote for candidate A irrespective of 
their private signal. Voter types (x, k) with x E (xk, Xk) change their vote 
depending on the signal they receive. We say such types take informative action. 

PROPOSITION 1: Suppose Assumptions 1-6 hold. Then there exists a voting 
equilibrium -7*. Every voting equilibrium 

- * is characterized by ordered cutpoints 
(4) such that E(v(x1, s) Ipiv, o,, k) = 0 for all ( , k). Moreover, t(s, v *) is 
nonincreasing in s with 0 < t(s, v *) < 1 for all s. 

PROOF: See Appendix. 

The fact that voting equilibrium can be characterized by ordered cutpoints 
follows from the fact that E(v(x, s) Ipiv, -, o-, k) is strictly increasing in x 
(Assumption 1) and nondecreasing in o- (Assumption 4). The cutpoints allow us 
to simplify (2) to 

K M 

(6) t(s,' *) = , E pk(Of Is)F(x,,k). 
k=1 o=1 

The final part of Proposition 1 now follows since Pk( I S') first order stochasti- 
cally dominates Pk( I S) for s' > s and F(x4k, k) is nonincreasing in cr. 

4. VOTING EQUILIBRIA IN LARGE ELECTIONS 

In this section we analyze the limiting properties of a sequence of elections 
with n voters, where n -* oo. Along any such sequence only the number of voters 
changes while the information structure, the payoffs, and all other parameters 
stay fixed. In the following we superscript our notation with n to indicate that 
we are working with elements of a sequence. We assume that for each element 
of the sequence qn is an integer (Assumption 6). As before, this assumption is 
made for convenience only. 
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4.1. Large Elections and Informative Action 

In this section we show that informative action by the electorate creates an 
incentive for individual voters not to vote informatively. This leads to the central 
result in this section: in a voting equilibrium with a large number of voters only 
a vanishing fraction of the electorate takes informative action. 

We assume that the probability of receiving signal o- in state s is a continuous 
function of s. 

ASSUMPTION 7: Pk(o- I s) is continuous in s for all k and for all o-. 

Assumption 7 implies that for any symmetric strategy profile, 7T t(s, 7T) iS 
continuous. For the remainder of the paper we will assume that Assumption 7 
holds. In Example 2 we demonstrate how the following results (in particular 
Theorem 1) fail if Assumption 7 is violated. 

As we argued above, voters must evaluate candidates in the event a vote is 
pivotal. In the following we characterize the probability distribution over states 
conditional on the event that a vote is pivotal. We define S f7l ) as the set of 
states for which the expected vote share of alternative Q is within 'q of the vote 
share of the state that minimizes It(s, tf) - qI. More precisely, 

(7) S7( )q =T E[,]:I(,Tr - -ql < min It(s, 7T - -ql + qB 

If there is a state for which t(s, tf) = q, then S 
'q 

7) simply denotes the set of 
states for which the expected vote share of alternative Q is within 'q of q. 
Lemma 1 demonstrates that for large n, conditional on a vote being pivotal, the 
probability distribution over states must be concentrated on those states which 
generate an expected vote share closest to q. 

LEMMA 1: Suppose Assumptions 1-7 hold. Consider a sequence of strat- 
egy profiles, (7n) such that t(s, f) is continuous, nonincreasing and 0 < 

t < 1. For any q > 0, S 
'q 

7T is an interval of states with the property that 
(ln 1(s 

I 
piDV T - n 1. 

PROOF: See Appendix. 

To get an intuition for Lemma 1 observe that the number of votes for Q 
follows a binomial distribution with parameter t(s, tn), where t(s, vfn) is nonin- 
creasing in the state. If a vote is pivotal, then qn voters out of a population of 
size n have voted for Q. Thus, if q E [t(1, en) t(0, f)] and n is large, then the 
beliefs about the parameter t(s, 1f) conditional on a vote being pivotal must be 
concentrated around q. This implies that the beliefs about the state conditional 
on a vote being pivotal must be concentrated around those states that produce a 
value for t(s, f) closest to q. If there is no state such that t(s, t)=q the 
beliefs must be concentrated around those states where t(s,) - q is mini- 
mized. 
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Fix a symmetric strategy profile 7r. Consider a subset of states S c [0,1] with 
the property that conditional on a vote being pivotal the state is in S with 
probability 1. If Pk(0 I s) is constant on the set S for all signals cr, then the 
information service k does not discriminate between the states in S. Since the 
state is in S whenever a vote is pivotal, information service k is redundant. Now 
consider a sequence of symmetric strategy profiles. We say service k is asymptot- 
ically redundant if it is redundant in the limit. The following definition makes 
(his prccisc. 

DEFINITION 2: Fix a sequence of symmetric strategy profiles (ln)* Informa- 
tion service k is asymptotically redundant if for every E > 0 there is a sequence of 
sets (Se), with S' c [0, 1] for all n, such that fSn /3(s Ipiv, #-7T) ds -* 1 and 
IPk(Un I s) -Pk(o" I s')I < e for any s, s' E S n and for all cr. 

In Lemma 2 we assume that the expected fraction of voters who receive their 
signal from service k and vote informatively is bounded away from zero. We 
demonstrate that this implies that information service k is asymptotically 
redundant. 

LEMMA 2: Suppose Assumptions 1-7 hold. Consider a sequence of symmetric 
strategy profiles, 

- 
T', that can be characterized by ordered cutpoints with the prop- 

erty that for some k and some 8 > 0, F(xk n, k) - F(xk, n k) > 8 for all n. Then 
k is asymptotically redundant. In particular, there is a constant c < oo such that 
Ipk(Or I s)-pk(Or Is)I < T)c for any s, s' E S, (7r) and for all u. 

PROOF: See Appendix. 

To provide an intuition for Lemma 2, first note that, by Assumption 7, 
t(s I Trn) is continuous. Since 7T nis characterized by ordered cutpoints, t(s I 7ln) 

is nonincreasing in s and 0 < t(s I 77n) < 1. Therefore, we can apply Lemma 1 to 
conclude that fs,(Wn) f8(s Ipiv, Trn) -* 1 for every rj > 0. It is therefore sufficient 
to show that there is a constant c < oc such that Ipk(ols) -pk(r Is')l < 7Wc for 
any s, s' E STT0n) and for all signals (r. 

Suppose there are only two signals, o- = 1,2. Now consider a pair of states, 
s, s' E S7,(Tn), with s' > s. By the MLRP pk(' I s) ?pk(1 I s'). Recall that all the 
voters with preference types in the interval (Xk'n, X4k,n) choose Q if they receive 
signal 1 and A if they receive signal 2. By assumption F(Xk n, k) - F(xk n, k) > 8, 
and thus, the expected fraction of voters who choose Q decreases by at least 
86 (pk(' I s) -pk( I s')) between s and s'. Since the decrease in the expected 
vote share must be less than 2ij, it follows that pk(1 Is) -pk( Is') must be less 
than 2-j/8 which establishes the Lemma. 

In Lemma 3 we consider a sequence of voting equilibria that have the 
property that information service k is asymptotically redundant. Under this 
hypothesis we show that the strategy of voters who receive their information 
from service k is almost independent of the signal they receive. More precisely, 
we show that X4' xkn - 0. 
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LEMMA 3: Suppose Assumption 1 holds. Consider a sequence of voting equilibria 
T* n) and assume that information service k is asymptotically redundant. Then, the 

cutpoints corresponding to T * satisfy X 'n - -0.> o. 

PROOF: See Appendix. 

To get an intuition for Lemma 3, observe that by the definition of asymptotic 
redundance, we find a sequence of subsets of states with the property that 
Pr(s E S' Ipiv, -7i) -> 1 and that the signals from service k discriminate very 
little between the states in S' if E is small. Therefore, the expected payoff 
difference between voting for Q and A, conditional on a vote being pivotal, is 
almost independent of the signal from service k. By Assumption 1, v(x, s) is 
strictly increasing in x at a rate larger than K. As a consequence, there is at 
most a small interval of preference types x with the feature that the voter 
prefers alternative Q for one signal and alternative A for another signal. 
Therefore, the range of preference parameters for which a voter takes informa- 
tive action must be small if E is small, and the Lemma follows. 

Theorem 1 says that the expected fraction of voters who take informative 
action in equilibrium must converge to zero. Furthermore, because every prefer- 
ence type is served by some information service (Assumption 3), the cutpoints of 
at least one information service must converge. 

THEOREM 1: Suppose Assumptions (1)-(7) hold. Let (7*f) be a sequence of 
voting equilibria, and let (Xk4n) be the corresponding cutpoints. Then for all k, 
F(X kn, k) - F(Xk,n, k) -0> O and for some k, xkn -_xk n -> . 

The proof of Theorem 1 is straightforward. Suppose, contrary to Theorem 1, 
that the expected fraction of voters who receive their information from service k 
and take informative action is bounded away from zero. Then, Lemma 2 implies 
that k is asymptotically redundant and so Lemma 3 implies that the cutpoints 
for service k must converge. But then the expected fraction of voters who 
receive their information from service k and take informative action converges 
to zero, establishing a contradiction. 

PROOF: By Proposition 1, in any voting equilibrium the cutpoints are ordered 
for all k, and hence, the first hypothesis of Lemma 3 is satisfied. Also note that 
F does not have any mass points. Lemmas 2 and 3 imply that in any voting 
equilibrium F(x( j, k) - F(xm n, k) -> 0. This follows since by Lemma 2, if 
F(Xk, n, k) - F(xk, n k) stays bounded away from zero along some subsequence, 
then information service k is asymptotically redundant. Lemma 3 then implies 
that Xk,n'l 4n -_ X0 which in turn implies that F(Xk, n k) - F(xk, n k) -O0, 
resulting in a contradiction. 

To prove the final part of Theorem 1 let X*n satisfy 

E(v(x*n, s) Ipiv) = 0. 
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Note that Xk,' <X*f <Xk4' for all k. By Assumption 3 there is a k' such that 
f(x*n, k ) ? a/K. We will show that x' -k'nxk n- O. Suppose x4 'n-Xk ,n2> 

> 0 for all n. Continuity of f(, k') then implies that F(Xk" , k ') - F(xk', n k') 
2 iq > 0 for some i > 0 which yields the desired contradiction. Q.E.D. 

4.2. Voting Behavior and Full Information Equivalence 

In this section we show the following results: Theorem 2 demonstrates that in 
equilibrium large elections must be very close, i.e., the fraction of the electorate 
that supports alternative Q must be very close to the critical fraction q. 
Theorem 3 demonstrates that elections effectively aggregate information. More 
precisely, we show that large elections almost always choose the alternative that 
would have been chosen if the state variable were common knowledge. In order 
to show these results, we require two preliminary lemmas. 

Lemma 4 provides the converse of Lemma 3. It says that if the cutpoints of an 
information service converge, then the information service must be asymptoti- 
cally redundant. 

LEMMA 4: Suppose Assumptions 1-7 hold. Consider a sequence of voting 
equilibria (r *n) and the corresponding cutpoints (x/' ). If' X'- --*0 o for some 
k, then k is asymptotically redundant. 

PROOF: See Appendix. 

As an intuition, observe that if the cutpoints for information service k 
converge to one point, it must be that the expected utility difference between 
the alternatives, conditional on a vote being pivotal, changes very little as the 
voter's signal changes. This can only be the case if the signal adds very little 
information once a voter conditions on being pivotal. Hence, information service 
k is redundant. 

The following results use the strict monotone likelihood ratio property 
(SMLRP). The SMLRP implies that sampling many signals from any informa- 
tion service makes it possible to determine the state with great accuracy. 

ASSUMPTION 8 (Strict Monotone Likelihood Ratio Property): For all k, 

Pk(M IS) 

Pk(1 Is) 

is strictly increasing in s and Pk( o- I s) satisfies MLRP. 

Assumption 8 implies that every information service discriminates between 
any pair of states. This assumption excludes a situation (as in Example 3 below) 
in which some preference types have access to an informative information 
service that satisfies the Strict Monotone Likelihood Ratio Property (SMLRP) 
while others do not. 
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Lemma 5 states that if the SMLRP holds, then in a large election voters can 
predict the state with great accuracy if a vote is pivotal. More precisely, the 
distribution over states, conditional on a vote being pivotal, converges to a 
distribution that is arbitrarily concentrated around some state s', and s' solves 

(8) max Pr(piv I s, 7*n ). 
sE S 

LEMMA 5: Consider a sequence of voting equilibria (T *fn) and suppose Assump- 
tions 1-8 hold. Then there is a unique state S' that solves maxS E s Pr(piv I s, *n). 

For every 8 > 0, f{s :_Sni ?a}l3(s Ipiv,*f)ds > 1. 

PROOF: See Appendix. 

To get an intuition for Lemma 5, recall that by Lemma 4 at least one 
information service k must be asymptotically redundant. Thus, for every E > 0 
we find a sequence S with the property that (1) fs f3(s Ipiv 7T*) ds - 1 and 
(2) the probability of receiving any signal from service k varies by less than E on 
S'. If Assumption 8 holds, then every information service discriminates between 
every pair of states. Therefore, (2) can only hold if the maximum distance 
between any pair of states in S' is small. Hence, the probability distribution 
over states, conditional on a vote being pivotal, must be arbitrarily concentrated 
around one state for n large enough. Since Sn maximizes the probability that a 
vote is pivotal, it follows that the conditional probability distribution must be 
concentrated around Sn. 

Theorem 2 says that in large elections the expected vote share of alternative 
Q will be very close to q. Let XQ denote the preference type who is indifferent 
between Q and A in state s = 1 and let XA denote the preference type who is 
indifferent between A and Q in state s = 0. Then, by the assumption that voters 
never play weakly dominated strategies in a voting equilibrium, all preference 
types below XQ always vote for Q, and all types above XA always vote for A. 
Therefore, if 7*f is a sequence of voting equilibria, then Fx(XA) ? tn(s, 7T*n) > 

Fx(xQ). 

THEOREM 2: Suppose Assumptions (1)-(8) hold and suppose that Fx(xA) > q > 

Fx(xQ). Consider a sequence of symmetric voting equilibria (T*n). Then for all 
7q > 0 there is an n such that for n >n, Iq-t(s, T*nfl )I< for all s. 

In a large election the actual vote shares are close to the expected vote shares 
with high probability. Theorem 2 therefore implies that large elections will be 
close with probability close to one in every state. Note that Theorem 2 holds for 
a wide variety of preference distributions. 

To give an intuition for Theorem 2, suppose there is a state such that the 
expected vote share of Q is less than q - -q for all n. By Theorem 1 vote shares 
change very little as a function of s if the electorate is large. Therefore, for large 
enough n, the vote share of Q is less than q - r/2 for all states. Since the 
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expected vote share of Q is decreasing in s (Proposition 1), it must be that s = 0 
minimizes the difference between the expected vote share and q. But then (by 
Lemma 5), conditional on a vote being pivotal, the state is close to 0 with 
probability close to one. Since the fraction of voters who prefer Q in state s = 0 
is larger than q by assumption, the expected vote share of Q must be larger 
than q. This establishes the desired contradiction. 

PROOF: Suppose that q 2 t(s, 7T*f) + ?) for some s and for all n along some 
subsequence. From Equation 6 we get that 

t(O*n )-t(l , *n) < MaX FX(Xk,n )- F(X 
k 

Since the right-hand side of the above inequality tends to zero, by Theorem 1 we 
can find an n' such that for n > n' 

tn(0,#1*n) - tn(1, *n) < qr/2 

and hence q > tn(S) + -j/2, Vs. Since tn(S, T*n) is decreasing in s, it follows that 
Pr(piv I S, T*fn) iS maximized at s = 0 and hence Sn = 0. By Lemma 5 this implies 
that for every E' > 0 

f 
(s Ipiv, - *n) 1. 

But then, for every E > 0 there is an n' such that for n > n' all voters with 
preference parameters x > XQ + E must vote for A, and therefore Fx(xQ + E) > 
t(s, r*f) for all E> 0. Since Fx(xQ) <q we obtain a contradiction to the 
hypothesis that t(s, S*fn) > q + rq for all n. (For q< tn(S) -q an analogous 
contradiction can be obtained.) Q.E.D. 

The probability with which large elections choose the alternative that would 
have been chosen if the state variable were common knowledge serves as a 
natural benchmark for the performance of elections as information aggregation 
mechanisms.'0 We say large elections satisfy full infonnation equivalence if the 
alternative that wins a large election is almost certainly the same as the 
alternative that would have been chosen if the electorate were fully informed 
about the state variable. 

In order to formally define full information equivalence, let 

(9) x*=Fil(q). 

If q = 1/2, then x* is the expected preference parameter of the median voter. 
For arbitrary q we call the voter type with preference parameter x* the 

'0Alternatively, we could use as a benchmark the situation in which all the private signals are 
common knowledge among voters. Note, however, that Assumption 8 and the law of large numbers 
imply that in a large electorate knowing all signals is almost equivalent to actually knowing the true 
state of nature. 
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expected q-median. In an election in which the state is known, the actual 
q-median's preferred alternative wins. In a large election the actual q-median's 
preference parameter is very close to x* with probability close to one. There- 
fore, full information equivalence is satisfied in a large election if the expected 
q-median's preferred alternative wins with probability close to one. 

Clearly, the alternative preferred by the expected q-median depends on the 
state. Let 

(10) s* = arg minlv(x*, s)I. 
seS 

If v(x*, s*) = 0, then s * is the state in which the expected q-median voter is 
indifferent between the two alternatives. If v(x*, s*) > 0, then there is no state 
in which type x* prefers Q to A, and hence, s * = 0. Similarly, if v(x*, s*) < 0, 
then s* = 1. Informally, full information equivalence will be satisfied if Q is 
almost certainly the winner when s < s* and A almost certainly wins otherwise. 
We now formally define full information equivalence as follows: 

DEFINITION 3: We say that a sequence of strategy profiles satisfies full 
information equivalence if for all e > 0, there is an n such that for n' > n, the 
following holds: if s < s* - E then Q is elected with probability greater than 
1 - E; if s > s* + E then A is elected with probability greater than 1 - E. 

We now prove that full information equivalence holds for any sequence of 
voting equilibria. 

THEOREM 3: If Assumptions 1-8 hold, then every sequence of voting equilibria 
satisfies full information equivalence. 

To give an intuition, consider the case in which there is a state that makes the 
expected q-median voter indifferent between the two alternatives, i.e., v(x*, s*) 
= 0. Lemma 5 implies that, conditional on a vote being pivotal, the distribution 
over states puts almost all the weight on the neighborhood of one state Sn . Thus, 
voters essentially behave as if state S n has occurred. First we show that 
lim Sn = s*. To see this, note that if, e.g., V(x*, Sn) > E > 0, then the fraction of 
voters who prefer Q in state Sn is smaller than and bounded away from q. But 
then, the fraction of voters who vote for Q must be smaller than and bounded 
away from q, which contradicts Theorem 2. From Lemma 5 we know that the 
election is tied only if the state is very close to s*. Since the vote share of 
alternative Q is strictly decreasing in s, this can only be the case if for s < s* - E 

alternative Q wins with probability close to one, and for s > s* + E alternative A 
wins with probability close to one. 

PROOF: Case 1-If Fx(xQ) > q, then since all voters with x < XQ will vote for 
Q, alternative Q will be chosen with probability close to one for large n. 
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Moreover, this choice satisfies full information equivalence because voters with 
x <XQ prefer alternative Q in every state s. A similar argument shows that the 
Theorem is satisfied if Fx(xA) < q. 

Case 2-Suppose that Fx(xQ) < q <FX(XA). Lemma 5 implies that there is 
an s n such that for all 8 > 0 and for all E{1,.. ., M}, k E {1, ..., K}, 

J ,8(s Ipiv,IT a, k) >4 1. 
{s: Is-s" I <81 

We must show that v(x*, Sn) -> 0. Suppose that along some subsequence 

V(X*, Sn) E > 0. 

Let x < x* be such that v(x, 5n) > 0 along that subsequence. Then, since 
,B(s Ipiv, I is arbitrarily concentrated around Sn for large n, it follows that all 
voters with preference type x > (x* + x)/2 strictly prefer to vote for A. But this 
implies that t'(s) < Fx((x* + X)/2) <q - E' for some E' > 0 for all n which 
contradicts Theorem 2. Thus, we have established that v(x*, Sn) -> 0 and hence 
Sn 

It remains to be shown that for large n whenever s > s* + E, the probability 
that A is chosen is larger than 1 - E, and whenever s < s* - E, the probability 
that A is chosen is smaller than E. Let w(m I s, 7*n) denote the probability that 
m voters choose alternative Q if the state is s and the strategy profile is I*Tl 

Recall that Pr(piv ITs,*n) is a single peaked function of s. Thus /8(s I Tpiv,*n) 
can only be concentrated around s* if for s > s* + E, 

Pr(piv Is, *n) 

Pr(piv Is*,17*n) 

Therefore, for every E > 0 there is an n' such that for n > n' 

W(qn ITs, n) Pr(piv ITs,*n) 

w(qn Is*, * ) Pr(piv Is*,*n) 

Since t(s, *n)/t(s*,*n) < 1 for s > s* + E, it follows that for m > qn 

w(m Is, -f*n) t(s, *n) . (1 -t(s *n))n-m 

w(m Is* ,T )*n t(s*, I*n) . (1 -t(S *n))n-rn 

t(s, -*n)qn. (1 - t(s, 
- 
*n))n-qn 

t(s*, -J*n)qn. (1 - t(s*, *n))n -qn < E 

for n sufficiently large. And hence for all s > s* + E, 

E w(mIs,*n)<<E E w(mIs*, *n)?<E. 
m>qn m>qn 

This implies that A will be chosen with probability larger than 1 - e. An 
analogous argument shows that for s < s* - E the probability that A is chosen is 
smaller than E. Q.E.D. 
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5. EXAMPLES 

For the following examples we assume that 

(11) v(x, s) = -1 + 2x + 2s. 

Voter preference parameters are distributed uniformly.11 Further, we assume 
that for each information service k, there are two signals o- E {1, 21. 

5.1. Strategic Versus Naive Voting 

Suppose that voters naively act as assumed in the literature on the Condorcet 
Jury Theorem: each voter behaves as if her choice alone determines the 
outcome. Thus, a voter of type (x, k) with signal o- votes for Q if -1 + 2x + 
2E[s I o-, k] < 0 and for A if -1 + 2x + 2E[s I , k] > 0. In this case, a larger 
fraction of voters vote informatively than in a voting equilibrium, and hence, 
more information is revealed by the vote share. However, in contrast to voting 
equilibria, naive voting does not imply full information equivalence. 

Suppose g(s) = 2s. Suppose, further, that there is one information service and 
p(2 I s) = s and that q = 1/2. A simple calculation shows that E[s I v = 2] = 3/4 
and E[s I v= 1] = 1/2, and hence, under naive voting all preference types x > 0 
vote for A independent of their private signal. But this implies that in a large 
electorate, A will be elected with probability close to one for all s > 0. Full 
information equivalence requires that A be elected only if s > 1/2.12 

5.2. Example 2 

In this example we demonstrate how a failure of Assumption 7 (continuity of 

Pk( I s)) may lead to a voting equilibrium in which the fraction of voters who 
take informative action does not converge to zero, and hence, Theorems 1 and 2 
do not hold. However, voting equilibria still satisfy full information equivalence. 

Suppose that g(s) = 1, q = 1/2, and there is one information service that is 
described by 

11-or if s>1/2, 

where a < 1/2. The unique voting equilibrium is given by the cutpoints x1 = 

1/4 - a/2 and x2 = - 1/4 + a/2. The equilibrium strategies in this example 
are independent of n. 

11 The model setup used in this example is nearly identical to the setup used in Lohmann (1993) 
with the key differences that we assume no costs to participate and uncertainty about the location of 
voter ideal points. As mentioned above, Lohmann does not analyze the asymptotic properties of her 
model. 

12 In Feddersen and Pesendorfer (1994) we show that for the preferences and the information 
service given in this example, naive voting does not lead to full information equivalence whenever 
E(s) # 1/2. See also Austen-Smith and Banks (1996) and Myerson (1994) for a discussion of 
strategic voting and Jury theorems. 
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To see why the prescribed strategies are an equilibrium, note that It(s, ITf) - 

ql = 1(2 a - 1)2 for every s, and therefore, conditioning on the event that a vote 
is pivotal provides no information. As a consequence, the signal is informative, 
conditional on a vote being pivotal, and private information remains valuable for 
all n. 

5.3. Example 3 

We now give an example that demonstrates how Theorem 3 depends on the 
SMLRP. What is critical in this example is that voters with preference types 
around the expected q-median voter do not have access to an information 
service that discriminates between states as precisely as voters on the extremes. 
Suppose there are two information services, k E (1, 2}, and p 1( I s) = 1 - s and 
P2(0 I S) = 1/2, i.e., information service 2 is not informative. Further, let q = 1/2. 
The distribution F is such that all voters with preference parameters x e 
[- 1, -.2] U [.2,1] have access to information service 1 with probability 1, while 
all voters with preference parameters x E [- 1/6,1/6] have access to informa- 
tion service 2 with probability 1. 

We assume that g(s)= 1 for all s. Consider the cutpoints x2 = 0 for all 
(X= 1,2 and x1 = 1/6, x2 =-1/6. Since all voters who receive their informa- 
tion from service 1 have preference types outside the interval (-1/6,1/6), no 
voter takes informative action in this strategy profile. 

To see that this is an equilibrium, note that E(s Ipiv, ir, 1,1) = 1/3 and 
E(s Ipiv, , 2,1) = 2/3. Hence, -1 + 2x + 2E(s Ipiv, , 1,1) < 0 for x < -1/6 
and -1 +2x+2E(sIpiv,,2,1)>0 for x> 1/6. 

Therefore, irrespective of the state, each alternative has a 50% chance of 
winning the election and full information equivalence is not satisfied. 

6. UNCERTAINTY ABOUT THE DISTRIBUTION OF VOTERS' PREFERENCES 

Up to now we have assumed that voters know the distribution from which 
preferences are drawn. In this section, we show how introducing uncertainty 
about this distribution upsets the results. To simplify the analysis we assume 
that voters are uncertain about the expected fraction of partisans, i.e., voters 
who choose either alternative Q or alternative A irrespective of the state. Let F 
be a probability distribution that satisfies Assumption 3. In this section we 
assume that the distribution function according to which nature selects the 
electorate depends on the parameter A E [0, 1] and is given by 

H,(x) (i - 4)F(x) + 4(1 -A) if-1 ?x< 1, 
1 if x= 1. 

Thus, HA has 4(1 - A) mass at -1 and OA mass at + 1. We assume that for all 
A E [0,1], 

(12) HA(xQ) < q < HA(XA), 
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which implies that the expected fraction of voters who prefer one alternative 
irrespective of the state is always smaller than the fraction necessary to elect 
that alternative. 

In the first stage of the game, nature chooses both s and A independently. By 
l(A) we denote the density that describes the prior beliefs about the state A. We 
assume that there is an a > 0 such that 1/a > l(A) > a for all A E [0,1]. After 
choosing the state (s, A), nature selects an electorate by taking n independent 
draws from the distribution HA.13 

For the remainder of this section we assume that Assumptions 1, 2, 4-8 hold 
and that there is one information service described by p(cr I s). It is straightfor- 
ward to verify that, in this modified environment, Proposition 1 still holds.14 
Thus, there exists a voting equilibrium, and every voting equilibrium can be 
described by ordered cutpoints. 

Let 

(13) x(A) = HA 1 (q) 

denote the expected q-median voter if A is realized. Further, let s(A) be such 
that v(s(A), x(A)) = 0. Thus, s(A) is the state at which the expected q-median 
voter is indifferent between the two alternatives if A is realized. Note that (12) 
implies that s(A) is well-defined. Moreover, s(A) is a strictly decreasing function 
of A. 

A sequence of voting equilibria, therefore, satisfies full information equiva- 
lence if for all e > 0, there is an n such that if n' > n then the following holds 
for every A: if s < s(A) - E, then Q is elected with probability greater than 1 - e; 
if s > s(A) + E, then A is elected with probability greater than 1 - E. 

The first part of Theorem 4 says that the set of voters who use their private 
signal o- stays bounded away from zero in measure when the distribution of the 
electorate is uncertain. The second part says that full information equivalence 
does not hold. This latter result will be shown to hold for a typical utility 
function v(x, s). To make this precise, denote the set of utility functions that 
satisfy Assumption 1 by P. Endow P with the topology of uniform convergence. 
We say that a property holds for a generic utility function if it holds for all 
v E 0 cP where 0 is open and dense. 

The third part of the theorem says that if the uncertainty about the distribu- 
tion of preferences is small, as compared to the uncertainty about s (if 0 is 

13 In Feddersen and Pesendorfer (1994) voters, in addition to the signal o-, also get a signal that 
provides noisy information about A. All the following results also hold in this case and hence we 
omit the second signal. 

14 Note that if a voter learns her preference parameter x and if x E (-1,1) she does not learn 
anything about the realization of A since the likelihood of observing x E (- 1,1) is independent of A. 
The only voters who get information about the realization of A by observing their preference 
parameter are voters with x E { - 1, + 1}. However, these voters are partisans and will always vote for 
A (in the case of x = 1) or Q (in the case of -1) by Assumption 1. See Alesina and Rosenthal (1995) 
for a similar formulation. 
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small), then full information equivalence nearly holds. This should be seen as a 
continuity check. As the uncertainty about the distribution of preference types 
becomes small, the information aggregation results of the previous section are a 
good approximation of a situation where voters are also uncertain about the 
distribution of preference types. 

THEOREM 4: Suppose k = 1, Assumptions 1, 2, 4-8 hold, and the preference 
types are drawn according to the procedure described in this section. Consider a 
sequence of voting equilibria (fr*n). Then: 

(i) there is an j> O such that xn -Xn > q for all n; 
(ii) there exists an 0 c P, where 0 is open and dense, such that for every v E 0 

the election does not satisfy fuill information equivalence; 
(iii) For every e > 0 there is a 4' > 0 and an n' such that if 4 < 4', n > n', then 

there are (so, s) with the following properties: (1) if s < so, then Q is elected with 
probability greater than 1 - e; if s > sl, then A is elected with probability greater 
than 1-e; and (2) 1S0 -si?< Eandso<s(A)<s, for all A. 

PROOF: See Appendix. 

To provide an intuition for the proof of part (i) of Theorem 4, suppose for 
(s, A) the expected vote share of alternative Q is q. Since the vote share for Q is 
a strictly decreasing function of A, if the vote share for Q is responsive to 
changes in s, we can decrease s and simultaneously increase A so that the 
expected vote share stays unchanged. Conditional on being pivotal, a voter 
believes that one of the states has occurred for which the expected vote share of 
alternative Q is q. Thus, whether or not the vote share is responsive to changes 
in s, it is impossible to invert the map from states to vote counts. There is now a 
whole interval of states such that the expected vote share of alternative Q is q. 
Therefore, the beliefs over states, conditional on being pivotal, do not converge 
to a degenerate distribution. But then the private information of voters provides 
useful information, and hence, the fraction of voters who take informative 
action does not converge to zero. 

To provide an intuition for part (ii), note that full information equivalence 
requires that for states (s(A), A), the expected vote share of Q must be close to 
q for a large electorate, since otherwise, close to (s(A), A), the wrong candidate 
is chosen with high probability. This follows from the fact that the derivative of 
the expected vote share of A with respect to s is uniformly bounded above for 
all n. We show that for a generic choice of v, equilibrium strategies allow too 
few degrees of freedom to have the expected vote share equal to q for all states 
(s(A), A). 

Underlying Theorem 4 is the fact that there are two random variables, both of 
which are correlated with the votes for each alternative. This makes it impossi- 
ble for voters to invert back from votes to the payoff relevant state variable. As 
an alternative to the introduction of uncertainty about the distribution of voter 
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preferences, we could allow s to be a two-dimensional variable and get similar 
results.15 

7. CONCLUSION 

Taken together, our results demonstrate the importance of the information 
environment in determining the effectiveness of elections as information aggre- 
gation mechanisms. If voters are uncertain about a one-dimensional state 
variable, strategic voting results in effective information aggregation. If, for 
example, there is additional uncertainty about the distribution of preferences or 
if the payoff relevant uncertainty is of higher dimension, then electoral mecha- 
nisms do not perform so well. The importance of the dimensionality of uncer- 
tainty for the performance of elections suggests that future research should 
focus on the events that precede elections-nominating procedures, campaigns, 
polls, etc.-as such events determine the information environment. 
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APPENDIX 

PROOF OF PROPOSITION 1: First we demonstrate that any best response to a weakly undominated 
strategy can be characterized by ordered cutpoints. 

Note that by Assumption 1 there is an e > 0 such that v(x, s) < 0 for all s if x E [-1, -1 + e] 

and v(x, s) > 0 for all s if x E [1 - E, 1]. Therefore, for any strategy 7r that is not weakly dominated, 
types with x E [-1, -1 + E] vote for Q irrespective of the signal and types with x E [1 - E, 1] vote 
for A irrespective of their signal. This in turn implies for any strategy that is not weakly dominated 
Pr(piv I s) > 0 for all s and hence f3(s I piv, T, o-, k) is well defined. 

By Assumption 1 v is strictly increasing and continuous in x. In addition v(- 1, s) < 0, v(1, s) > 0 
for all s. Thus, it follows that there is a unique cutpoint xk E [-1,1] such that 

(14) E[v(x, s) Ipiv,W, r,k] =0 

(the expectation is taken with respect to /8(s Ipiv, ~T, o,k)). Clearly, 1 - E>xk > -1 + E. If x <xk, 
then a voter type (x, k) who receives signal o- strictly prefers to vote for Q, and if x > 4k, then a 
voter type (x, k) who receives signal o- strictly prefers to vote for A. 

By the MLRP, it follows that f8(s I piv, r, oa ', k) first order stochastically dominates 18(s I piv, 
T, o-, k) whenever o-' > o-. Since v(x, s) is increasing in s, it follows that 

E[ v(x, s) Ipiv, 77r, or ', k] 2 E[ v(x, s) Ipiv, 1-, ,- k] 

and xk >xk . Thus, any best response to a weakly undominated strategy can be characterized by 
ordered cutpoints. 

15 A result similar to the one given in Theorem 4 will hold as long as the two dimensions are not 
perfectly correlated, i.e., there does not exist a function a(s1, S2) such that v(x, s1, S2) = v'(x, a(sl, S2)) 
for some v'. 
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Using the above characterization of best responses we now demonstrate existence of a voting 
equilibrium. By the argument above, the cutpoints corresponding to any best response to a weakly 
undominated strategy profile are in the interval [-1 + E, 1 - E]. Thus, to demonstrate existence, 
consider the following function: 

qfr:[-1 + E,1- E]KM [-1 e -E]KM. 

To any KM-tuple a = (all,...,alM,...,aKl ....aKM), let fr(a) be the (unique) set of cutpoints 
associated with the best responses to the strategy characterized by the cutpoints (ak,). Note that 
substituting the cutpoints into Equation (6) we get 

K M 

(15) t(s, a) = E, E Pk(0_IsMFak?,,k) 
k=1 a=1 

which is continuous in a since F is continuous in x. Therefore, 13(s I piv, a, o-, k) is continuous in a, 
and hence, continuity of v implies X is continuous (a straightforward application of the Theorem of 
the Maximum). Thus, by Kakutani's fixed point theorem, the map Xf has a fixed point, and hence, 
the game has a voting equilibrium. 

The proof that t(s, i.*) is nonincreasing in s is in the text. Q.E.D. 

PROOF OF LEMMA 1: By assumption, t(s, 7TT) is nonincreasing and hence S'(irn) must be an 
interval which proves the first part of the lemma. Also, observe that since 0 < t(s, ifn) < 1, 
,8(s Ipiv, 7Fn) is well defined for all n and all s. 

Observe that if S (rn) = [0, 1] then JS,(w n) ,13(s IpivIi,) = 1, and hence, if we prove the lemma 
for the sequence of those n for which S ,(if) + [0, 1] holds, then we are done. Thus, we assume in 
the following that the complement of S i( fl) is nonempty. 

For t E [It t2] 5 [0, 1] define 

L(t = tq(l _t)l q 

and note that this is a concave, single peaked function which reaches a maximum at the t that solves 

minmt [tl, t2I - ql- 
Let t*n = arg mintE[t(l, 1n)t(o,n)] It - qi. Note that by the continuity of t(S,7Tn), there is an 

s E [0, 1] such that t*n = t(s, in). Since for s e S )(17 ), I t(s, sn) _ t*nI 2 7j, single-peakedness and 

continuity of L implies that there is a N such that for all n 

L(t*n)- sup L(t(sIi7n)) 2 ? . 

We define the set of states P,O7n) CS',(7-n) by 

pj7(n) = {s: L(t(s Iin)) 2L(t*n) - /2} 

Since t(s, sf) is nonincreasing and continuous, it follows that P7,1n) is a nonempty interval. In 
addition, there is a y > 0 such that the length of P,(77it) is larger than y for all n. To see this note 
that there is an E > 0 such that for all n 

max t(s, 7n) - min t(s,' n) > E. 
P (Wr n) p (7 n) 

(This follows since maxp (Wn) L(t(s, sn)) - minp,(W n) L(t(s, Wn)) = 8,,/2 and since L is continuous 
on [0, 1].) By the definition of t(s, sn) (see equation (2)) 

- t(s'Ii7T)I ? max p&(`is) -Pk(? I S')I- 
o,k 

The (uniform16) continuity of Pk( o I S) in s implies that there is an y > 0 (independent of n) such 

16 Recall that the domain of pk(r I s) is compact and hence continuity of Pk implies uniform 
continuity. 
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that 

max IPk (0-I S) - Pk (0 IS) I < 'E 
cr,k 

whenever Is - s'l < y. Therefore, P,(7Fi ) is an interval of size at least y. 
To prove the Lemma we now show that f, ; S (V,) f3(s Ipiv, 7rF) -- 0. 

(16) fs ,B IiV - n) = 4 s,(Wn) Pr(piv I s)g(s) fs s,r'n) Pr(piv I s)g(s) ds 

s(1s6fo) l( Pr(piv Iw)g(w)dw fs, p,(7n) Pr(piv Iw)g(w)dw 

< (SUpS rS(Wn) Pr(piv I s) fI , s(n) g(s) ds 

inf e p ,n) Pr( piv Is) pseP(Wn) g(s) ds 

To see the last inequality, note that g(s) 2 a > 0 implies that fs,Eg p 'I(Wn) g(s) ds 2 ay, and using 
Equation (3), we get that, for s' e S7(Rn) and for s I 

Pr(pivls') (L(t(s', -r)) { L(t*n) 68 \ ' ( 1 - 
(17 = < < 

Pr(piv I s) L(t(s,i 'n)) _ L(t*n) - 6/2 _ 1-/2 

Since 8 > 0, inequality (16) implies that ft s (rn) g(s) ds converges to zero as n oo, thus proving 
the Lemma. Q.E.D. 

PROOF OF LEMMA 2: By the assumption of ordered cutpoints it follows that 0 < t(s, 7Tn) < 1 and 
that t(s, -n) is nonincreasing in s. By Assumption 7 it follows that t(s, 1fn) is continuous and hence 
the hypothesis of Lemma 1 is satisfied. Therefore, it suffices to demonstrate that there is a constant 
c < o such that Ipk(uJ IsO) -Pk(- I1S2)I < W for any SI, 52 a S (ii n) with sI < S2 and for all o-. 

Let tk(s,n) = E F(xk, n,k)pk(o- Is) be the probability that a voter receives a signal from 
service k and votes for Q in state s. We first demonstrate that 

(18) 271 2 t(sl :TTn) _ n 
) >t T 

n 
) 7Tn). 

The first inequality in (18) follows from the definition of S (W n). Note that F(xk n, k) is nonincreas- 
ing in o- by the assumption of ordered cutpoints, and therefore, by the MLRP, tk(sl1, n)- 

tk(s2, 1T) 2 0 for all k. Since 

t(lS lt n)-( , -n) = t(s,7n) _ Ws,7n)), 

k 

the second inequality in (18) follows. 
Next we show that when F(x'k n' k) - F(Xk, n k) 2 S either 

(19) tk(S1, ) tk(S2, I) 2 (pk(1 IS1)Ipk(0 IS2))8 

or 

(20) tk(Sl Wn) tk(S2, Tn) 2 (pk(MIS2)-Pk(MISl))8 

must hold. 
For any subset of signals 0 c X, let Pr(O I s) = YoJ E o Pk((J I s). The probability that a voter votes 

for Q in state s if he receives a signal in 0 from service k is 

(21) E(F(xk n) I -EO,s)= F(XkPn k) pk(OI 
s) 
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This probability is nonincreasing in s. To see this note that by the MLRP of Pk(S I (J) it follows that 
the random variables s and o- are affiliated (see Milgrom and Weber (1982, Theorem 1)). Since 
F(Xk4', k) is a nonincreasing function of or we can apply Theorem 5 of Milgrom and Weber (1982) 
to show that (21) is nonincreasing in s. Thus E(F(xk4 n, k) I 0, sl) 2 E(F(xk, n'k) I 0, s2). 

Let 0 = {2,..., M - 1) denote the event that service k produces a signal o- such that 2 < ar 
<M- 1; then 

tk(Sl , T) -tk(S2,I 7T ) 

= (pk( I S1) -pk(' I s2))F(xlk',n k) + (pk(MI S) -pk(M I S2))F(XkMn, k) 

+ Pr(O I sj)E(F(xk,', k) I 0, sl) - Pr(O I s2)E(F(Xkn, k) I 0 s2) 

Since E(F(xk n, k) I 0, s1) ? E(F(xk' n, k) I 0, S2), it follows that 

tk(Sl ,I7Tn) _ tk(S2, I7T ) 

2( Pk(l I 51)-Pk(1 I S2))F(xlk,n,k) 

+ (pk(M I S1 -pk(M I S2))F(XM, n k) 

+ (Pr(O I s1) - Pr(O I s2))E(F(xk,n, k) I 0, s1). 

Now either Pr(O I s1) - Pr(O I s2) > 0 or Pr(O I sl) - Pr(O I s2) < 0. Note that by construction 
F(Xk n, k) 2 E(F(xk' n, k) I 0, s) > F(xk, n, k) for any s. Suppose Pr(O I s ) - Pr(O I S2) > 0. Then 

tk(Sl, I n) - tk(S2 Tn) 

2(Pk(l I sl)-Pk( I s2))F(xlk,n,k) 

+(pk(MIs 51-pk(M1 s2))F(xkMn, k) + (Pr(O I sl) - Pr(O I s2))F(xknS,k). 

Since, by definition, Pr(O I s) = 1 -pk(1 I s) - pk(M I s), we can simplify the right-hand side of the 
last inequality to obtain (19) as follows: 

t(lS Xi-n)-t7(T-, n) 2 kl|S)Pk( I S2))(F(xlk n, k) -F(Xk,n, k)) 

2 (Pk(' SI) 51-Pk(' I S2))'6- 

On the other hand, if Pr(O I s1) - Pr(O I s2) < 0, then 

tk(S, in) - tk(S2, iT ) 

2(Pk(' I SO -Pk( I S2))F(xlk,n 

+(Ppk(MIS) 5-pk(MI s2))F(xfk,n,k) + (Pr(O Isl) - Pr(O I s2))F(xk,n',k), 

which can again be simplified to yield (20) as follows: 

tk(Sll F tn) -t(S2, TFn) 2 ( Pk(M I S2)-_Pk(M I Sl ))(F(Xlk,n, k) -F(xk,n, k)) 

2 ( Pk(M I S2) -Pk(M I SM))8 

We complete the proof by showing that (18) and (19) imply there exists a constant c < oo such that 

(22) ?)C 2I Pk( UI I SO )-Pk(0 Is2)1 

for all cr. The argument for the case where (18) and (20) holds is entirely analogous and is therefore 
omitted. 

If (18) and (19) hold, then 27q/8 Pk(1 I S1) - Pk( I S2). Now the MLRP implies 

Pk( I S1) Pk(aI SI) 

Pk(' 52) Pk(a 1s2) 
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Recall that Pk((o I S) 2 a by Assumption 5, and therefore, 

a + 2rq/8 Pk(1I s) 

a Pk(' Is2) 

Thus, it must be the case that Pk((JIS) -Pk((J 1S2) < 2rj/(8a) for all o-. The equality 
M= 1 Pk(U I SI) = EM 1I Pk(o I S2) then implies that Pk( I S2) -Pk( I SI) < 2N (M- 1)/(8a). 

Therefore I pk(uI I SI)-Pk(uI I S2)1 < 2q -(M-1)/(Sa) for any o-. Q.E.D. 

PROOF OF LEMMA 3: Let S' c [0,1] be such that Pr{s E S' Ipiv, 1T*n`} - 1 and 

(23) [Pk( Is)-Pk(- IS')I < E 

for any s, s' E S' and for all o-. Thus, we can choose n' such that for n > n' 

(24) fs v(x, s),8(s Ipiv, 1T*n, o-, k) ds < E max Iv(x, s)I. 
S SE S,,x 

By (23) for any s E S'j we can write Pk(oJ I S) = a, + ? (s) where a < a, < 1 and I e(s)I < E. Note that 
v(1, 1) > 0, v( - 1, 0) < 0, and v(1, 1) 2 v(x, s) 2 v( - 1, 0) by Assumption 1. Thus it follows that 

(25) E[ v(x, s) Ipv7T*n M, k, SE - E[ v(x, s) IpvT*n 1, k, SE] 

l B(s Ipiv,7*n)(a, + E) 
< V (1 , 1 1, t, ( W I piV, 7T *n)( - )d s 

fS 
(w Ipiv,7T )(a, 

- E) dw 

,B(s Ipiv,7Tn)(am - E) 

,8 (W I piV, - *n d 

fS n3(w Ipiv, *n)(am + E) dw 

/3(S Ipiv,I*n)(aM ? E) 

J fwITiv*)(a,M- E)d)d 
Sn 83( W l piV, - *n)( -)d d 

=v(1,1)( 
- __ M-E )?f 

nIT )(a 1 _ dw 
a1?E aME( I iV ?1~-, - *n1E 
al - e aM + IT )am + c) ds- 

V1 )a,+1-E amf?e J 
V_J a,-,E amE JI 

where ol(E) can be made arbitrarily small for small E. Inequality (24), together with (25), then imply 
that 

(26) E[v(x, s) lpiv, M,k] - E[v(x, s) lpiv, 1, k] < 2E max lv(x,s)l + o1(E) 
s, x 

= 0(E). 

Recall that for all u, E[v(xkn, s) IpiV, T*n, o-, k]=O. By Assumption 1, for x 2x', v(x, s)-v(x', s) 
2 K(X - X') for some K > 0 and therefore 

(27) 0 = E[ v(xlk , s) Ipiv, M, k] -E[ v(xm , s) Ipiv, 1, k] 2 K(Xi nXM )o(c). 

Thus it follows that 

xkn - xkn < O(C)IK w1 m 

which proves the Lemma since E can be chosen arbitrarily close to zero. Q.E.D. 
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PROOF OF LEMMA 4: By Proposition 1, we have that 

E(v(s, Xk4') Ipiv, 7T*n, o-, k) = E(v(s, xkl'n) Ipiv, iT*n, o ', k) = 0. 

Since x xkn -XO' 0, it follows from the continuity of v(x, s) in x that for any x E [x O' , 4,n], 

E(v(s, x) Ipiv, iT*n, o- ', k) -E(v(s, x) Ipiv, ~T*n, o-, k) O-, . 

Note that v(x, s) is strictly increasing in s with Iv(X, S) - V(X, S')I ? KIS - S'i for some K> 0 by 
Assumption 1. Thus 

E(v(s, x) Ipiv, ~T*n, M, k) -E(v(x, s) Ipiv, ~T*n, 1, k) 

K (E(s Ipiv, T*n, Mz, k) -E(s Ipiv, -*n, 1 ) 

and hence it is sufficient to show that E(s Ipiv, *n, M, k) - E(s Ipiv, "*n, 1, k) > 8 for some 8 > 0 
whenever asymptotic redundance is violated. 

Suppose asymptotic redundance is violated for some k. Then, along some subsequence, there 
must exist a 8 > 0 and E > 0 and a sequence snj, sn, such that 

Pr([0,sn]Ipiv,7T*n)>8, Pr([sn,1]Ipiv,iT*n)>8 Vn and 

IPk( I s) -Pk(ois')i > E 

for some sn ? s < s' < sn and some o-. This must hold since otherwise for every E > 0 and every 
8 > 0 there exists a sequence of intervals In such that Pr(In Ipiv, T*fn) 2 1 - 28 for sufficiently large 
n, and Ipk(ns)-pk(oJIs')j?E for all s,s' I and every signal o- which implies asymptotic 
redundance. It follows from the continuity of pk(o- I s) that we can choose E such that s n - sn > E. 

Now let Sn = [0, sln], Sn= (s n, sn), and S = [sn, 1]. By the MLRP, E(s I S n, piv, *n,M, k) > 

E(s I S,piv, 7T*n, 1, k) for i= 1, 2, 3, and therefore, 

(28) E(s I piv, 7T *n, M k) -E(s I piv, * n, 1, k) 

3 

2 ? [Pr(SW Ipiv, ~T*n, Mt, k) -Pr(Sin Ipiv, 7T*n, 1, k)]E(s I S'n, piv, 1T*n, M, k). 
i=l1 

Suppose Pk( _ I S') - Pk( - I S) > E for some S, ?S < s' < sn (an analogous argument can be made 
for pk(JI S) -pk(I S') < -E) and some signal o-. Recall that by Assumption 5, pk(-I s) ? a 
for all (a, s). The MLRP then implies that pk(M I S') - pk(M I s) 2 ca. Since pk(M I s) is nonde- 
creasing in s, and pk(1 s) is nonincreasing in s this in turn implies that for any a S{, s3 E Sn 

Pk(M S1) -pk(M Is3) > Ea and Pk(1 IS1) -pk( IS3) <?. Since Pr(S," lpiv, I*)> for i = 1, 3, we 
may conclude that there is a y > 0 such that Pr(S{' Ipiv, 7*f, 1, k) -Pr(S{' Ipiv, v", M, k)> y 
and Pr(S3 I3piv, T*fl M, k) - Pr(S3 lpiv, n 1, k) > y. But then (28) and the fact that 
E(s I S ', piv, * n, M, k) is increasing in i with E(s I S n, piv, T*f, M, k) - E(s I Sjn, piv, *fn M, k) > E 

imply that 

E(s Ipiv, 1 *n, M, k) -E(s Ipiv, lT*n, 1, k) 2 yE, 

which completes the proof. Q.E.D. 

PROOF OF LEMMA 5: By Proposition 1, we have that 0 < t(s, *n) < 1, and hence 

f3(s IpiV, *n, o-, k) 

is well defined. 
First we show that t(s, 1T*n) is strictly decreasing in s. To see this, let (xk' n) denote the cutpoints 

corresponding to .*fl Also, let x" be defined by 

r. ^n, S) IpiV.-*nl _ r 



1054 T. FEDDERSEN AND W. PESENDORFER 

Since the signal satisfies the SMLRP it follows that 

(29) E[v(x, s) Ipiv, 7*n, 1, k] <E[v(x, s) Ipiv, 7T*'1 < E[v(x, s) Ipv,*n M, k]. 

This implies that xk,n > , >Xk'n. Since x?n is in the support of F(, k) for at least one k, it follows 
that F(xkn, k) - F(xkn, k)> 0 for some k. Since Pk(0 Is) satisfies the SMLRP it follows that 
Pk(_ I s) iS ordered by strict first order stochastic dominance. Hence t(s, v*n) = S , F(x n, k) 
Xpk(r o- s) is strictly decreasing in s. 

As a consequence, Pr(piv I s, T*f) is strictly increasing if t(s, iT*n) > q and strictly decreasing if 
this inequality is reversed. Continuity and monotonicity of t(s, 7r*n) then imply that there is a 
unique sn that solves 

'max Pr(piv I s, 
- 

*n), 
ssS 

and the first part of the Lemma follows. 
By the preceding argument and the fact that t(s, * n) is decreasing in s, it follows that 

Pr(piv I s,7r*n) is monotonically decreasing for s <Sn and for s ?Sn. This implies that for any 
8< 1/2 either (i) s' - 8 0 and sup{s,[o,l] ssnI> S Pr(piv Is5Ji *n) = Pr( piv ISn _- 5,*n) or (ii) 
S' + 8 < 1 and sup{s E [o l1s:Isnl > 8, Pr(piv I s', T*n) = Pr(piv I Sn + 8 ,Ti*n). Suppose that (i) holds. 
(Case (ii) is entirely analogous with the interval [Sn, Sn + 8] replacing [sn - 8, Sn].) Then 

sup{ - snl> 81 Pr(piv I s, *n) 

inf[n ,Sn] Pr(piv I s, *n) ? 

and since g(s) > a > 0 it follows that 

{s30s-s)l<8} 'p*n) ds lf{s:Is-snI ?o Pr(piv Is, , 7r *n)g(s) ds 
(30) 

p(Sn 
i *n)ds 

}fPr(piv IP i s, *n*)g(s) ds 

1 ? Jss_Snj> <} Pr(piv I s, T*n)g(s) ds 
f{s:ls-snIl > 5 Pr(piv Is, 5T*n)g(s) ds 

1 ? Sl . Pr(piv IlS, i*n )g(s) ds 
f[Sn_ 8,Sn] Pr(piv I s, if*n)g(S) ds 

> 1>0. 
1+- 

8a 

To show that in fact J{S:I ssnl < } ,B(s Ipiv, j*n) ds -* 1, we first claim that for any E > 0 we can find a 
sequence of sets In with supIn - inf In < E such that Pr{s E InIpiv,7T*n} -* 1. Assume for the 
moment this claim is true. Then, by (30) it must either be the case that sn E In or that infjn Is - sni 

0 since otherwise Pr{s In I piv, 7T*n} stays bounded away from zero. As a consequence, for every 
8 > 0 there is a E > 0 and an n' such that for n > n', In c {s: Is - snI < 8} and the Lemma follows. 

To complete the proof of the Lemma it therefore suffices to show that we can find a sequence of 
sets with Pr{s E I n Ipiv, 7T* n} .. 1 and sup I n - inf In <E. Assumption 8 implies that pk( Is) is 
strictly stochastically dominated by Pk( I s') for s' > s (see Witt (1980)). As a consequence, Pk(1 I s) iS 
strictly decreasing on [0, 1]. This, together with continuity of Pk(' I s), implies that for every E > 0 
there is a E' > 0 such that IPk(1 I s) -pk(' I s)l> E' whenever Is - sil > E. By Theorem 1 there is an 
information service k for which x4k'n - -* 0. Now, Lemma 4 implies that this informa- 
tion service is asymptotically redundant, i.e., there is a sequence of subsets of states Sn,I with 
Pr{s a S e Ipiv, 1 T "} 1. In addition, for any s, s' E Sn, we have that Ipk(a I S) -Pk(S I s')i < E, for 



ELECTIONS WITH PRIVATE INFORMATION 1055 

all cr. Thus it follows that sup Sn, - inf S, <K E. Hence choosing In = Sen' completes the proof of the 
Lemma. Q.ED. 

PROOF OF THEOREM 4-Part (i): Suppose that contrary to the Theorem, x4 - XM -' 0. Therefore, 
Ixa - X, 1 0 for all a-, a- '. Note that Lemma 4 can be applied to this modified framework without 
changing the proof and hence we conclude that the information service is asymptotically redundant. 
The SMLRP implies that p(l Is) is strictly decreasing on [0,1]. This, together with continuity of 
p(l Is), implies that for every E> 0 there is a E' >0 such that Ip(l Is) -p(l s')> E' whenever 
Is - s'l> E. By asymptotic redundance, there is a sequence of subsets of states S', with Pr{s E 
S', Ipiv,7'*} 1. In addition, for any s, S'ES', we have that Ip(oIls)-p(ols')I<E' for all a. 
Thus it follows that sup S', - inf S', <,E, and hence, the probability distribution over states s E [0,1] 
must converge to a probability distribution that has all its mass concentrated at some Sn. 

First we show that E < sn < 1 - E for some E > 0. To see this suppose, for example, sn - 0. For 
large n, (12) implies that the fraction of voters who prefer Q at s = 0 is larger than q + 71, for some 
-1 > 0. Therefore, the vote share of q must be larger than q + -q/2 for large n for all A and all s. But 
this in turn implies that s = 1 is the state for which voters are most likely to be pivotal, which 
contradicts Sn -O 0. 

Given the equilibrium cutpoints xn, let 

(31) t(s, A, ii*n) = (1 - 4) Ep( Is)F(xn ) + 4(1 - A), 

(32) Pr(piv I s, A, *n)= ( n t(s, k, 7r*n)qn _ (1-t(s, AST*n))nqn p IT ~~~qn, 

and 

Pr( piv ls,j*n) = f'Pr(piv I s, A, ii*n)l(A) dA. 
0 

Since E < s*n < 1 - E, the relative likelihood of being pivotal in state s n and states s = 0, 1 must be 
small. More precisely, it must be the case that 

Pr(piv I 0, *n) Pr(piv I 1, *n) 

Pr(pivIs *n, 7*n) 
> 

Pr(piv Is*n n ) 0*n) 

Let An(s)=argmin It(s, 'A,7*n)_qI and note that t(s, A,*n)q(l (, ,T*n))lq is a single 
peaked function that reaches its unique maximum at t(s, An(s), ii *n). 

Suppose An(s*n) 2 e > 0 for all n. We will show that in this case 

Pr(piv I O, 07 *n ) 

Pr(piv I s*n, 
- 

*n) 

stays bounded away from zero and therefore contradicts (33). First, define bn = t(0, A, 7Fl*n)- 

t(s*fn, A, IT*n) > 0 and hence t(0, A, *n) = t(s*fn, A + (bn/p),i *n). Note that bn is independent of 
A and that bn -O 0 (this follows since X n-4 -X 0). 

Pr(piv I ) f 1 t(O,A, 7r*n)qn. (l -t(O, A, 7T*n))n -qn l(A) dA 

Pr(piVl I *) f I t(s*n, A, -*n)qn. (1 _ t(S*n, A, 7*n))n- qn l(A) dA 

fb"/4,p t(s*n, A, f.*nl)qn. (1 _ 
t(S*nl, A, i*n))n-qn (A) dA 

e nin 
> 1l t(s*n A, *n)qn. (1 _t(S*n 77 A* n)) qIAd 

since A(S*n) > Es > O. 
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If A(s*n) -* 0 then it follows that A(s*n) stays bounded away from 1, and we can make an 
analogous argument showing that 

Pr(piv I 1, *n) 

PrMpiv I s* n,*n) 

stays bounded away from zero. 
Thus we have again a contradiction to (33), and therefore, we demonstrated that it cannot be the 

case that x1 -x - 0, which completes the proof of part (i). 
Part (ii): Since p(o- Is) is continuous in s, it follows that t(s, A, 7*nl) is uniformly continuous in 

(s, A), and therefore, full information equivalence requires that 

lim It(s(A), A, 7T*n) - ql = 0 
n x 

for all A. To prove part (ii) we will demonstrate that for a generic utility function there is a A E (0, 1) 
and an E > 0 such that It(s(A), A, '*f) - ql > E. 

Let - = {B E [0, 1]M: B, < B2 < < BM and Bl < BM} and observe that 

M 

(34) t( *)(- #p(or Is)B, + o(l- A) TB(s, A) 
tr 1 

for some vector B E.-P. For each B e.W we define 

(35) ;(B, A) = arg min [TB (s, A) -q] 
s 

Note that g(B, A) is a continuous function since (35) has a unique solution. (Recall that p(o- Is) 
satisfies the SMLRP.) 

Let P' denote the set of strictly decreasing continuous functions s: [0, 1] -* (0, 1) and endow it 
with the topology of uniform convergence. We will show that there is an open and dense set O' c P' 
such that for every s E O' there is an r1> 0 such that 

max IS(A) - (B, A)l > 7 
A 

for all B E [0, 1]M. Suppose for the moment that this claim is true. Since x(A) is a continuous and 
strictly increasing function it follows that for any s E P' there is a v(x, s) that satisfies Assumption 1 
and the equation v(s(A), x(A)) = 0 for all A. If v(s(A), x(A)) = 0 for all A, we will say in the following 
that s is generated by v. Let 0 = {v E P: v(s(A), x(A)) = 0 , for some s E 0'}. Since O' is open, 0 is 
also an open set. It remains to be shown that 0 is dense. To this end suppose that s is generated by 
v. If s' satisfies Ils' - sil < E, then we can define v'(s, x) v(s + s(A) - s(A), x) for all s E [s(A) - 
s'(A), 1 - s(A) - s(A)]. For E small enough s'(A) E [s(A) - s(A), 1 - s(A) - s'(A)] and hence any 
extension of v' to all of [0,1] x [- 1,1] generates s'(A). Note that for s E [s(A) - s'(A), 1 - s(A) - 
s(A)] we have that Iv'(s, x) - v(s, x)I < maxE < S <1 (v(s, x) - v(s - E, x)). Therefore, we can ex- 
tend v' to all of [0,1] x [-1,1] such that IIv - v'lI < maxE < s < 1 x (v(s, x) - v(s - E, x)). Since v is 
(uniformly) continuous, it follows that for every 8 > 0 there is an E > 0 such that if Its' - sIt < E, then 
we can find a v' that generates s' with the property that lIv' - vll < 8, and hence, 0 is dense in P. 

To prove the claim, consider points (A1,..., AM+ ) and let 0 < A1 < A2 < *- < AM++, < 1, and let 

S = {(sl,..., SM+ 1): si = ;(B, Ai) for all i = 1. M + 1 and some B ES=8'}. 

Since ; is a continuous function of B, it follows that S is contained in an M-dimensional manifold. 
Let S be the closure of S and note that S is also contained in an M-dimensional manifold. Consider 
the set of functions s that satisfy (s(Al ), . . ., s(AM+ I)) O S. Let O' denote this set and note that O' is 
open since S is a closed set. To see that O' is dense suppose that s X O'. The set 

T= {(s,,..., SM+1):Si = s'(Ai) for all i= 1. M+ 1 and some s' with Ils' - sil < E} 
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is an open subset of RM? 1. Since S is contained in an M-dimensional manifold, T\S is nonempty, 
and hence, there exists an s' with ls - s'jl < E and (s'(A1),...,s'(AM+ 1)) e S. Therefore, s' E O' 
which proves that O' is dense. 

Part (iii): Let s* be as in Theorem 3 (i.e., corresponding to 4 = 0) and suppose that part (iii) of 
the Theorem does not hold. Then there must exist an E > 0 and a sequence (n, on) with n -x oo, 

- 0 and (i) for s < s* - E alternative A is elected with probability greater than E or (ii) for 
s > s* + E alternative Q is elected with probability greater than E for all n. 

We will derive a contradiction. The proof repeats arguments given above and is therefore only 
sketched. First, we can use the same argument as in the proof of Theorem 1 to demonstrate that 
Ixn,4n-x4-I -*0. (As before we can show that if Ix n,--xn4nI> v>0 for all n, then the 
information service is asymptotically redundant. The argument is a slight modification of the 
argument given in Lemma 2, and, therefore, omitted. Lemma 3 demonstrates that asymptotic 
redundance of an information service implies that the cutpoints converge. This Lemma can be 
applied without modification, and hence, we demonstrated that cutpoints converge.) As in the proof 
of part (i), cutpoint convergence implies that the beliefs conditional on a vote being pivotal must 
converge to a point mass. I.e., there is a sequence of states sn such that for every 8 > 0, 
Pr(Is - sSnl> 8 Ipiv, l)-> 1. But then, by the same argument as in the proof of Theorem 2, the 
probability that any given voter votes for Q must converge to q. Repeating the argument of 
Theorem 3, this implies that sn -* s* and that we can choose 8 > 0 such that for s < s* - E, Q is 
elected with probability larger than 1 - E whereas for s >s - E, A is elected with probability 
greater than 1 - E which contradicts our initial hypothesis. Q.E.D. 
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