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Abstract 

General competitive analysis is extended to cover a dynamic, pure

exchange econo,ny with privately observed shocks to preferences. In 

the linear, infinite-dimensional space containing lotteries we estab

lish the existence of optima, the existence of competitive equilibria, 

that every competitive equilibrium is an optimum, and, with some 

revealing qualifications, that every optimum can be supported as a 

competitive equilibrium. An example illustrates that rationing and 

securities with contrived risk have an equilibrium interpretation. 



1. Introduction 

The last decade has witnessed a virtual explosion in the economics of pri-

vate information and moral hazard. We have for example a literature on optimal 

contracts, principal-agent relationships, and auctions which seeks to explain or 

evaluate observed arrangements and a literature on signaling and adverse 

selection in competitive insurance markets which uncovers various existence and 

welfare anomalies. 11 There is no doubt now that private information has had 

and will continue to have important implications for positive and normative re-

search. 

Yet, despite these advances, or perhaps because of them, we believe more 

research is needed in relating the above-mentioned literatures to constructs 

with which economists are already familiar. In principal the gains from such 

research can be multiple. To the extent that a standard construct turns out 

to be inapplicable when private information is introduced into an otherwise 

standard environment, the economic nature of private information, and the 

difficulties caused by it, might be better understood. Such an outcome would 

be consistent with the above-mentioned literature which uncovers various exis-

tence and welfare anomalies. At the same time there remains the possibility that 

a standard construct might be modified with the introduction of private informa-

tion in such a way as to create a construct which combines the explanatory power 

cf the standard construct with the explanatory power of private information. 

Such a construct might also have important normative implications. 

Some research along these lines has been undertaken. Independently, both 

Myerson [1979] and Harris and Townsend [1977][1981] have shown that standard 

11 No attempt can be made here to survey these literatures; interested readers 
are referred to Hirshliefer and Riley [1979]. 
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concepts of feasibility and optimality are inapplicable in games or environments 

with private information. That is, following the Arrow [1953] and Debreu [1959] 

treatment of uncertainty, one may well index allocations by the realizations of 

random variables. But if these random variables are privately observed shocks 

or parameters, then not all shock-contingent allocations are achievable. It is 

~ if shock-contingent allocations must be such that each agent has an incentive 

to correctly reveal his own privately-observed shock. It turns out, though, that 

the conditions which give each agent just such an incentive, which Hurwicz [1971] 

labeled the incentive compatibility conditions, are frequently both necessary and 

sufficient conditions for achievability. That is, in environments with private in-

formation, it may be enough to append these conditions onto the standard definitions 

of feasibility and optimality, and go on to characterize (private information) opti-

mal allocations in the usual way. We would like to emphasize here the success of 

this and related techniques in various recent applications: Chari (1980), Green 

(1980) and Grossman and Hart [1980] explain underemployment; Chiang and Spatt 

[1980] explain observations in industrial organization; Morton [1980] explains 

strike duration; and Baron and Myerson [1979], Earris and Raviv [1979], [1980], 

and Myerson [1980] examine auction design and monopoly pricing schemes. 11 

In addition to extending the analysis of private-information optima, the 

purpose of this paper is to begin an exploration of the applicability of general 

equilibrium competitive analysis, another standard construct, to economies with 

a large number of agents and private information. On the face of it, this under-

taking would seem to be difficult; the incentive compatibility conditions in-

crease more than proportionately with an increase in the number of agents. 

11 Some of this recent literature postdates an earlier draft of this paper. We 
cite it here to make the case that standard constructs modified to allow for pri
vate information have indeed proved successful and in all likelihood will con
tinue to be so. 
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Moreover such conditions can introduce nonconvexities, whereas in competitive 

analysis, convexity is usually assumed ~ priori. Here we handle the first 

problem by consideration of large economies in which the distribution of un-

observed shocks in the population is the same as the probability distribution 

of shocks for each individual, and by treating agents with the same shock in the 

same way. We handle the second problem by following von Neumann and Mortenstern's 

[1947] seminal contribution, using lotteries to make spaces convex. Then, making 

use of some rather abstract theorems of Debreu, both the existence and the optimal-

ity of competitive equilibria in an environment with private information are es-

tablished. These results illustrate the tremendous power of the work of Arrow, 

Debreu, McKenzie, and others in the theory of general economic equilibrium. 

And the tie-in indicates that there need be no existence and welfare anomalies 

for a large class of environments with private information. 11 

Of course the use of lotteries to make space convex and to establish exis-

tence in game theory has become standard. And lotteries have been used in 

41 Bayesian games which have private information and in social choice theory. - But 

to our knowledge lotteries have not been used explicitly in general equilibrium 

competitive analysis. Moreover, we establish in this paper that lotteries some-

times have considerable power in overcoming the barriers to trade implicit in 

the incentive-compatibility conditions. That is, private-information optimal 

deterministic allocations, defined above, need not be optimal. We show by an 

11 In separate work we are establishing that externalities in the signaling 
environment of Spence [1974] and Riley [19791 and the insurance environment of 
Rothschild-Stiglitz (1976] and Wilson [1978] can generate nonexistence and non
optimality. 

~I See Myerson [1979] and Fishburn [1972a], [1972b), Gibbard [1977], Intriligator 
[1979], Zeckhauser (1969],[1973] respectively. Other literature with lotteries 
is cited below. 
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example that there can exist a stochastic allocation which strictly dominates 

the best deterministic allocation 11. The example itself can be interpreted 

as a model of apparent disequilibrium phenomena (first-come first-serve, ra-

tioning, queues, etc.) and of securities with contrived risk. But the sto-

chastic allocation of the example is actually both an optimal allocation in 

the relevant (~~) sense and a competitive equilibrium allocation in the 

linear space containing lotteries. The example thus gives a hint of the ex-

p1anatory power of the constructs we develop in this paper, and of their we1-

fare implications. 

There is, however, one standard general equilibrium result which fails in 

this paper. In the linear space containing lotteries, the second fundamental 

welfare theorem, that optima can be supported as competitive equilibria, holds 

only with qualifications. We find these qualifications revealing of the dif-

ficulties of decentralization in environments with private information. 

This paper proceeds as follows. Section 2 presents the example mentioned 

above and introduces many of the concepts which are developed in the rest of 

the paper. Section 3 makes explicit how lotteries overcome the barriers to 

trade and the nonconvexities associated with the incentive-compatibility con-

ditions. Section 4 describes the underlying environment, a simple, pure-exchange, 

dynamic economy with period by period shocks to individual preferences, moti-

v~ted by Lucas [1980]. Section 4 goes on to describe the linear space con-

taining lotteries, the space of signed measures, and the linear product space 

L containing shock-contingent lotteries. Consumption sets and preferences 

are defined on the space L; certain incentive compatibility conditions are 

11 This is consistent with findings in the literature on optimal taxation, 
that stochastic taxation schemes can strictly dominate the best deterministic 
schemes. See Stiglitz [1976] and Weiss [1976]. 
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loaded into the consumption set. Implementable allocations are then defined 

by certain resource constraints and by a prior self-selection constraint. A 

(private information) Pareto optimum is also defined. Section 5 establishes the 

existence of an optimum by consideration of a linear programming problem. 

Section 6 introduces an aggregate production set in the space L and then 

defines attainable states as in Debreu [1954]. The production set and market 

clearing conditions are such that attainable states are equivalent with allo

cations satisfying the resource constraints in the pure exchange economy. A 

price system on L is also defined, a linear functional. Then a competitive 

equilibrium is defined in the usual way, following Debreu [1954]. The exis

tence of a competitive equilibrium (in the linear space of signed measures) is 

established for various approximate economies, in which the underlying commodity 

space is finite, using a theorem of Debreu [1962] for Euclidean spaces. Then 

the existence of a competitiv~ equilibrium for the unrestricted economy is es

tablished by taking a limit of the approximate economies, as suggested by' 

Bewley [1972]. 

Section 7 considers the two fundamental theorems of contemporary welfare 

economics, following Debreu [1954] in linear spaces. That every competitive 

equilibrium is an optimum is virtually immediate. Also, every optimum can be 

supported as a competitive equilibrium with endowment selection. In the latter 

an agent chooses an endowment from a certain finite set, essentially by announc

ing his initial preference shock, and then trades from that endowment subject to 

the usual budget constraint and subject to a self-selection constraint which takes 

into account the preferences of others, and which depends on the announced type. 

Again, we find these qualifications revealing of the difficulties caused by 

private information. 
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2. A Model of Rationing and of Securities with Contrived Risk 

Motivated by Lucas [1980] or Gale [1980J, imagine an economy with a continuum 

of households. Each household is endowed initially with e units of the single 

consumption good of the mouel, and has preferences over consumption c described 

by the utility function U(c, e). Here U(·, e) is continuous, strictly increasing, 

and concave. Parameter e is interpreted as a shock to preferences at the begin-

ning of the consumption period, known only to the household itself. In this 

sense there is private information. Parameter e is viewed ~ priori as a random 

variable, taking on values e' and el 
with probabilities A(e') and A(e

D
), respec-

tively. Suppose also that A(e) represents the fraction of households in the 

population in the consumption period with parameter draw 6; thus there is no 

. 6/ aggregate uncerta~nty. -

The introduction of shocks to preferences may be viewed as somewhat un-

satisfactory. But the model can be given an alternative interpretation, with 

shocks to technology. Suppose there are actually two goods in the economy, a 

transferable good c which enters as an input into the household production 

function, and with which the household is endowed in amount e, and a nontransfer-

able good q, the output of the household production process and over which the 

household has utility function V(q). Imagine the household production tech-

nology f is subject to shocks e, i.e., q = fCc, e), where parameter e is de-

scribed above. As Lucas writes, think of a need for medical services, unantici-

pated to the household itself. With this set up, one induces an indirect utility 

function U over the input good c, namely U(c, e) = V[f(c, e)J. 

Now as a special case of the above model, suppose that U(c, e') is strictly 

~/ In the planning period we suppose that each agent knows only what the dis
tribution of the parameter in the population will be, and it is thus that for 
each the A(e) are regarded as probabilities. There are problems in the other 
direction, from independent and identically distributed random variables on the 
continuum to measurable (integrable) sample paths. Unlike Malinvaud [1973J we 

deal directly in the limit economy with a continuum of agents. 
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concave and continuously differentiable with U'(a, 6') = = and U'(=, e') = a, 

and that U(c, eU) = kc. Equivalently, suppose the technology f is described by 

q = c
6 

where a < e' < 1 and eU = 1, and that preferences over q are described 

by a linear function V(q) = q. Thus, either directly or indirectly, households 

of type e' are ~ post risk averse and household of type eU 
are ~ post risk 

neutral. Admittedly this specification is somewhat extreme, but it will serve 

us well in making the points of this section. The crucial feature is that 

there be differences in curvatures ~ post. 

Now consider the following resource allocation scheme. Prior to the real-

ization of the shock 6 some central planner (who could just as well be one of 

the households) instructs all households to surrender to him all endowed units 

of the consumption good e. Then, subsequent to the revelation of the shock e, 

agents are asked to commit themselves to a choice of one of two distribution 

centers. In the first center the planner guarantees an allotment of c* units 

of the consumption good. In the second, household are offered the possibility 

of c units of the consumption good, but there is no guarantee (Here c > c*). 

Households committed to the second center are imagined to arrive in a random 

fashion (independent of starting times) and to receive c on a first-come first-

serve basis. Alternatively households might form a queue. 

All households believe the guarantee in the first center and assess the 

probability of being served in the second center as a and of receiving zero 

as 1 - a. They then commit themselves to a center, and their beliefs turn 

out to be self-fulfilling. All who choose the first center receive c*, and 

fraction a of those who choose the second center receive c while fraction 1 - a 

go away empty-handed. Collusion among households has been ruled our ~ priori; 

71 households must respect their position in the queue. -

II We thank John Bryant for pointing out this implicit restriction. 
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Upon observing the number of unserved customers in the second center, a 

casual observer might find the above-described scheme somewhat unsatisfactory. 

Since some go away empty-handed, the "price" must be too low, that is, the po-

tential allotment of c is too high. In fact, if the receipt were lowered to 

some c**, all could be served. This would of course be preferred ~ post by 

those who go unserved. ~I 

The above-described scheme can be given a second interpretation. Prior to 

the realization of shock e, each household agrees to surrender its endo\vment e 

in exchange for a security with two options. Under the first option the house-

hold receives c*. Under the second the household is to receive c, but there is 

a possibility of default, assessed at probability a. That is, under the second 

option, the return is risky. But this risk is entirely man-made. 

Situations with such contrived risk may seem somewhat unusual. Apart from 

the activity of risk-lovers (gamblers) we do not seem to see agents spinning 

wheels of fortune. But if nature provides a random variable with a continuous 

density unrelated to any households preferences, endowments, or technology, then 

lotteries can be effected by making the allocations contingent on the realiza-

tions of that random variable. Thus the lottery would not ~ inconsistent 

with the usual state-contingent treatment of uncertainty. 21 In fact a random 

device was implicit in the above-given model of first-come first-serve, which 

~I Of course this is not the only model of apparent underpricing. In a pro
vocative article Cheung [1977] argues that apparent underpricing of better seats 
in theaters, so that they fill up early on, is a way of reducing the costs of 
monitoring seat assignments. But the theory developed here has something in 
common with Cheung's, the use of apparent underpricing to discriminate among 
potential buyers with unobserved characteristics. Such discrimination also under
lies the model of credit-rationing of Stiglitz and Weiss [1980], though they pro
ceed in a different way and draw somewhat different conclusions than the analysis 
of this paper; see also Aker10ff [1970], Stiglitz [1976], Wilson [1977]. 

We would like to thank Kenneth J. Arrow for pointing this out to us. 
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made use of random arrival times. 

It is now argued that there is a specification of c*, c**, c, U(., 9') and 

~ such that the stochastic allocation of the above-described scheme is Pareto 

optimal. Following Arrow and Debreu, index consumption by the shock 6. That 

is, let c(e) denote the allocation of each household of type e. (We insist that 

each be treated identically as if each had no name). Suppose also that the as-

signment of c(6) to households of type 9 is possible, as if there were full 

information, even though e is private to the household. Then consider the 

maximization of the expected utility of the (representative) household, prior 

to the realization of shock 6, by choice of consumption allocations c(9), and 

subject to a resource constraint that economy-wide average consumption not 

exceed the economy-wide average endowment. That is 

(2.1) Max , " " /I II A(6 )U[c(6 ) ,6 ] + A(6 )U[c(6 ),6 ] 

c (6') ~ 0, c (6") ~ 0 

subject to 

(2.2) A (9 ') c (9 ') + A (6 " ) c (6 ") ~ e. 

Note here that the terms A(6) enter the objective function, the expected 

utility of the representative household prior to the parameter draw e, as 

probabilities, while these terms enter the resource constraint as population 

proportions. Necessary and sufficient conditions for a solution to this prob-

lem are: 

(2.3) U'[c(6'),e'] 
~ 1/ /I 

U [c (6 ), e ] 

(2.4) 
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This problem may be solved in two steps (see Figure 1): 

First let k be the slope of the linear utility function U(·,6
H

) and let c* > 0 

denote the unique solution to 

(2.5) U' [c (6 ') , e '] = k. 

Then from (2.4), set 

c** =e-A(6')c* 

Ace H
) 

We shall assume for purposes of this section that e > c*, as depicted in 

Figure 1. 

Now returning to the actual private information economy, one notes an 

apparently severe implementation problem. The allocation c(6') = c*, 

cC6
H

) = c** with c* < c**, is unattainable, at least in an announcement game 

with truth-telling. 10/ 
H 

That is, all agents would announce 6 and receive c**, 

but of course this violates (2.2). But it is argued that the appropriate in-

centives can be induced by going to lotteries and exploiting differences in 

risk aversion. The allocation c(6) described above is not attainable. But 

there is an allocation in lotteries which is attainable and which yields the 

same value for the objective function (2.1). In particular consider a lottery 

~'which is a random choice over two bundles 0 and c with probabilities 1 - a 

and':' rt:spectively and has mean E (c) == (l~)O + Cc'~ = c**. Figure 1 estab
~ 

lishes that by setting c > c** it may be possible to get the dispersion of the 

lottery ~ large enough that a risk averse household prefers the sure thing, 

10/ 
Building on Harris and Townsend [1977] [1981] and Myerson [1979], this can 

be shown to be without loss of generality. 
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Figure 1 

1/ 
U(c,e ) 

........•.. _------

c c* e c** 

OD = expected utility of gamble if ~ = e' 

OE = utility of c* if e = e' 

e" OF = utility for both c** and gamble if e 

"..' 

./ 
." ." U(c,e') 

consumption 
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c*, to the lottery~. Thus U(c*,9') is the utility to housholds of typ~ 9'. 

Of course a risk neutral household would prefer the lottery ~ as its mean con

sumption is higher, and would achieve the utility of the mean U(C*~,9H). 

Finally note that with the above scheme, and consequent choice of the agents, 

the resource constraint is 

(2.6) 

Here we interpret the lottery ~ as a situation in which 1~ is the fraction of 

those agents who choose the lottery who are assigned 0, and similarly for ~ 

and c. Note also that (2.6) is satisfied since E (c) = c** and (2.4) is sat
~ 

isfied by construction. We have thus established that the above-described re-

source allocation scheme achieves the utility of a full-information optimum. 

It is therefore private-information optimal as well. 11/ 

As the above-described allocation in lotteries is optimal, it seems 

natural to ask whether such an allocation can be supported as a competitive 

equilibrium. We establish here that such a competitive equilibrium exists, 

making the point that the above-described apparent disequilibrium phenomena are 

in fact equilibrium phenomena, and that securities with contrived risk are con-

sistent with exchange in competitive markets. 

For this purpose, then, imagine that the underlying commodity space C is 

fin£te, i.e., c can tnk~ on nnly a finite number of valuAs. The household is 

imagined to choose a probability measure x(c,9), c E C on this finite space 
, H 

for each possible value of 0, namelye and e. (Here 0 ~ x(c,9) ~ 1 and 

11/ Note that we have not formally defined private-information optimal alloca
tions. Such a definition naturally follows a more general treatment of the in
centive compatibility conditions in section 3. In general, full-information 
optimality is an inappropriate welfare criterion; by altering the example, fu1l
information optimal allocations can be made unachievable. 
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~cECx(c,e) = 1.) That is, the household is supposed to announce its actual shock 

e, and receive c with probability x(c,6).1£/ The household is effectively endowed 

with two such probability measures S(c,e') and S(c,e
u
), each putting mass one on 

the point e. Preferences of the household are described by expected utility over 

e and over the chosen lotteries: 

(2.7) ~A(e) ~ x(c,e)U(c,9). 
e c 

Imagine also that there is an intermediary or firm in the economy who can 

make commitments to buy and sell the consumption good from consumers of different 

types. A production choice y(c,e), cEC specifies the number of units of the 

bundle with c units of the consumption good which the firm must deliver to con-

sumers announcing they are of type e. (If y(c,a) is negative there is a commit-

ment to take in resources). The production set Y is defined by 

(2.9) Y a (y(c,e), cEc, a a', e
l

: L A(e)~cy(c,a) so}. 
a c 

Thus the firm cannot distribute more than it takes in. 

Finally the price system in this economy is an element of the same Euclidean 

space, denoted p(c,a), cEC, a',e
u

• We then have the obvious 

Definition: A competitive equilibrium is a price system tP*(c,e)}, a consumption 

allocation tx*(c,e)}, and a production allocation (y*(c,6)j such that the 

(x*(c,6)} maximize objective function (2.7) subject to the budget constraint 

(2.10) ~ ~ p*(c,a)x(c,a) s L L p*(c,e)S(c,e); 
e c e c 

12/ In general constraints ensuring this outcome will have to be imposed ex
plicitly. Here they are not needed. 
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(2.11) 2: 2: p~~(c,8)y(c,e) 
e c 
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constrained by the production set (2.9); and markets clear 

(2.12) x*(c,8) = y*(c,9) + S(c,9) cEc, a a' a" , . 

Now for an equilibrium specification let the price system be 

p*(c,6) = A(6)c, let the consumption allocation x*(c,6) be 

x*(c*,9') = 1 x* (~,9 ") = Ci x* (0,9 ") = l-Ci 

and let y*(c,9) be determined by (2.12). 

With price system p*(c,ij) the problem facing the consumer is 

subject to 

Max 2: A(e) ~ x(c,6) U (c,a) 
9 c 

2: 2: A(a)c S(c,e) = e. 
f:l c 

This is just the stochastic version of program (2.1)-(2.2). The allocation 

x*(c,e) satisfies the constraint and yields value equal to the optimal solu-

tion of the deterministic program. If some allocations x**(c,6) yielded greater 

value than x*(c,f:l) for the stochastic system, the deterministic allocation with 

the same means would be feasible and would yield greater value for the determin-

istic problem that that problem's optimal solution. This is impossible, estab-

lishing x*(c,a) is optimal for the stochastic program. By construction of 

y*(c,6), market clearing condition (2.12) is satisfied. In addition under p*(c,e) 

the value of any y€Y is 

L l: A(e) c y(c,9) 
a c 
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which is nonpositive by definition of Y. As the budget constraint is binding and 

y*(c,9) = x*(c,e) - S(c,9) the value of y*(c,6) is zero. Thus y*(c,6) maximizes 

profits. Thus the existence of a competitive equilibrium supporting the optimal 

allocation has been established. 

3. The Use of Lotteries to Overcome Barriers to Trade and Nonconvexities 

Thus far there has been no formal treatment of the incentive-compatibility 

conditions, though these implicitly motivated the use of lotteries in the pre-

vious section. So, returning to deterministic allocations for a moment, con-

e 9 --9',9". sider a set of shock-contingent consumptions c( ), Under a direct 

revelation mechanism with truth-telling, there can be an assignment of c(6) to 

a e-type agent if and only if 

U [ c (6 ') ,9 '] ~ U [ c (6" ) ,9 ' ] 

(3.1) 
U [c (9" ) ,9"] ~ U [c (9 ') ,e /I ] • 

These are the appropriate incentive-compatibility conditions in deterministic 

allocations for the simple economy of the previous section as well as for 

economies in which the consumption set is a subset of R~, so that c(6) is an 

£-dimensional vector. 

We should emphasize here that each agent is assumed to know all aspects of 

the environment other than the particular parameter draws of other agents. For 

. example, the utility function U(·,9) of others is known up to the parameter 

draw 9. Thus conditions like (3.1) or their stochastic analogues are supposed 

to capture completely all the incentive (or disincentive) effects of private 

information in any well-defined game or resource allocation scheme for our 

economy. Hereafter we shall cease to make reference to mechanisms and take 

conditions like (3.1) to be natural restrictions in the space of parameter-
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contingent allocations. They are for us a given of the analysis. Thus pri-

vate information Pareto optima are defined relative to such restrictions. 

There are two difficulties associated with constraints like (3.1). First 

these constraints impose rather severe restrictions on mutually beneficial 

exchange. Second the space of parameter-contingent allocations restricted by 

(3.1) is generally not convex. 

To illustrate the first difficulty we consider the single-commodity economy 

of the previous section. Then, with more preferred to less, conditions (3.1) 

imply that c(6') Ot c(6") and c(6") Ot c(6'). Thus the only implementable alloca-

, II 

tions are c(6 ) = c(9 ), so there can be no gains from trade. We have shown in the 

previous section that lotteries sometimes can overcome such barriers to trade. 

The second difficulty is that the space of parameter-contingent allocations 

restricted by (3.1) is generally not convex. To illustrate this consider a two-

commodity economy with preferences described by the utility function 

where u(') is strictly increasing and strictly concave and where 

, /I o < 6 < e < 1. Then the nature of condition (3.1) is illustrated in Figure 2a. 

The preferences of the agent depend on the parameter draw 6: Essentially, 

there are two sets of indifference curves, the flatter set corresponding to the 

p~rameter draw 6'. Thus in Figure 2a if c(6') is the allocation to an agent 

, /I e" of type 6 , then the allocation c(e ) to an agent of type which satisfies 

(3.1), must lie in the shaded region. Now in Figure (2b) the pairs 

, e"' II cA = (c(e )A' c( )A)' cB = (c(e )B' c(e )B) both satisfy (3.1) with 

c(9')A = c(e')B and with c(S")A and c(6")B distinct but both on the upper bound-

ary of the shaded region. Now from a convex combination of these two pairs, 

c(t) = tCA + (l-t)cB, 0 < t < 1. Then tc(6
11

)A + (l-t)c(e")B cannot lie in the 
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Figure 2a 
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shaded region, and hence c(t) does not satisfy (3.1). See Figure 2. 

To illustrate how this nonconvexity is overcome in the space of probability 

measures, again suppose for simplicity that the underlying commodity space is 

finite, i.e., c can be one of a finite number of possible bundles in C. Then let 

xeS) be a random assignment to each agent of type e, where x(c,6) is the probability 

of bundle c. Then a parameter-contingent random allocation (x(e'),x(e
H » can be 

achieved in a direct-revelation mechanism with truth-telling if and only if 

(3.2a) ~ U(c,~')x(c,e') ~ ~ U(c,a')x(c,e') 
cEC cEC 

(3.2b) ~ U(c,e')x(c,e
H

) ~ ~ 
H , 

U(c,e )x(c,6 ) • 
cEC cEC 

These conditions are the random analogues of (3.1). These conditions are 

linear in the x(c,e) and therefore constitute convex constraints. 

In the previous section no use was made of conve~ity in establishing the 

existence of a competitive equilibrium or its optimality. But in general the 

incentive-compatibility conditions must be imposed explicitly, as constraints, 

and convexity will be needed. 

4. The Formal Securities Model 

Consider now a three-period model with a continuum of agents and t commod-

ities. Each of the agents has an endowment vector et » 0 in each period t, 

t ~ 0,1,2. Letting c
t 

denote the consumption vector in period t, each agent 

has preferences over consumption sequences (c t1;=0 as described by the utility 

function 

Here E is an expectations operator (the random variables will be described 
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momentarily). Also consumption is bounded, 0 ~ c
t 

~ b. Each single-period 

utility function U(.,6 t ) is continuous, concave, and strictly increasing with 

u(0,6
t

) ~ O. The parameter 6
t 

is interpreted as a shock to individual pref

erences at the beginning of period t, observed only by the individual agent. 

For simplicity parameter 6
t 

is assumed to take on only a finite number of 

values; that is, for each t, 6 t E e = (1,2, .•• ,n}. Fraction ~(et) of agents in 

the population have the parameter draw 6
t 

at time t, where 

o < ~(et) < 1, ~e E eA(9 ) = 1. From the point of view of the individual agent 
t t 

at the beginning of time 0, 60 is known, and ~(6t) represents the probability 

of the parameter draw 6 t at time t, t = 1,2. Notationa1ly it will be convenient 

in what follows to convert the parameter 6
0 

to the parameter i, and thus we may 

refer to agents of type i, i = 1,2, ••. ,n classified by their initial parameter 

draw. 

We have deliberately kept our model simple, rather than attempting great 

generality. Some obvious extentions are possible. First, one may easily in-

crease the number of periods to any finite horizon. Three periods were the small-

est number necessary to illustrate the nature of the incentive compatibility con-

straints. Second, utility functions may be supposed to depend on the entire his-

tory of individual shocks. Third, there can be statistical dependence in the 

6
t

, t ~ 1, as long as there is independence from the initial parameter 6
0 

= i. 

Observable heterogeneous characteristics and nontrivial production could be in-

troduced. We did not do so in order to focus on private information. 

This section now makes precise the notion of a lottery on the underlying 

space of possible consumptions. The space of lotteries is shown to be a subset 

of a linear space. Individual consumption sets, preferences, and endowments are 

defined on this linear space. Implementable allocations and Pareto optimal 

allocations are also defined. 
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.t 
First, denote the underlying commodity space by C = tc E R : 0 ~ c ~ b} . 

We then begin with the space 5 of all finite, real-valued, countable-additive 

set functions on the Borel sets of C, denoted by B(C), i.e., functions mapping 

such Borel sets into the rea1s. The operations of addition and scalar mUltip-

lication are defined as follows: 

(i). Given any two elements ~ and ~ of 5, a third element ~ + ~ is 5 

called the ~ is determined by the condition 

(~ + ~)(B) = ~(B) + ~(B) BEe (C) • 

(ii). Given any real number a and any element ~ of S, a second element 

a~ in S called the scalar product is determined by the condition 

BE 2(C). 

With these definitions the axioms defining a linear space are satisfied. 11/ 

Finally integration of measurable functions is well defined. -14/ 

13/ See Kolmogorov and Fomin, [1970], p. 118. The zero element of S assigns 
the number zero to every Borel set and the negative element -~ of an element 
~ is defined by (-~)(B) = -~(B) for every B E B(C). Note that the space of 
probability measures on C is not a linear space, since if ~(C) = 1, 
(a~) (C) < 1 for a < 1. 

14/ Note that here and below the integral is Lebesgue; see for example Ash 
[1972] pp. 36-37. Note that typically, and in Ash, integration is defined 
relative to measures, i.e., nonnegative real-valued, countab1y-additive set 
functions. By the Jordan-Hahn decomposition theorem, however, any countably
additive, real-valued set function ~ on the a-field B(C) may be expressed 
as the difference of two measures ~+and ~-, i.e., ~ = ~+ - ~-. Hence for any 
Borel measurable function h, define Shd(~+ - ~-) = Shd~+ - Sh~-J where the 
two terms on the right-hand side are defined in the usual way. For this last 
equality we are also using the fact that for any two measures ~ and ~ and any 
two scalars a and S, and for any Borel measurable function h, 
Shd(a~ + e~) = aShd~ + e Shd~. With the above-given definition of integration 
relative to general countab1y-additive set functions, this linearity continues 
to hold. 
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Motivated by the previous discussion one suspects that "consumption" in 

period one should be indexed by 9
1 

and "consumption" in period two should be 

indexed by 6
1 

and 6
2

, This leads us to consider the space L with typical 

element ~ = [~O' t~l (6 1)}, t~2(61,62)}] where the components, ~O' the ~l (6 1) 

and the ~2(al,e2) are each elements of S. Addition and scalar multiplication 

on the space L is defined in the obvious way -- termwise. Then it is easily 

verified that since S is a linear space, so also is L. Consumption sets, pref-

erences, and endowments are all to be defined relative to the linear space L. 

Note L is the 1 + n + n
2 

cross product space of S. 

The consumption sets and preferences are defined first. Returning to 

the space S, recall that a probability measure p is a real-valued, countably-

additive, nonnegative set function with p(C) ~ 1. Thus a probability measure 

pES is our desired notion of a lottery. The one-period expected utility of 

an agent under such a probability measure p, given the parameter draw a, is 

S U(c,6)p(dc). 

C 

Note here since U(·,6) is continuous on compac.t set C it follows that U(. ,6) 

is Borel measurable and bounded. Thus expected utility is well defined. Now 

let 

P - t~ E L: ~O' the ~l(el)' and the ~2(el,62) are all probability measures of S}. 

Then given any ~ E P, impose the further requirement that 

(4.1) 

Condition (4.1) is a period t = 2 incentive compatibility requirement. Its 

analogue in section 3 is (3.2). If restricted in period t = 2 to choosing a 
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member of (~2(6l,e2)} with some al fixed in advance, the representative agent 

would weakly prefer ~2(~1,e2) if his parameter draw is 9 2 , Given (4.1), the 

period t = 1 incentive compatibility requirement is 

(4.2) 

If asked in period t = 1 to choose a member of (~1(al)'(~2(el,e2)}} the repre

sentative agent would weakly prefer the pair (~1(9l)'(~2(9l,62)}) if his param

eter draw is actually a l • 

Finally let 

x = (~E P: ~ satisfies (4.1) and (4.2)}. 

The space Xc L is the consumption set of the representative agent. Given any 

x E X, let preferences be given by 

A point x
O 

E X is a satiation point in X for agent i if W(x,i) 

o 
~W(x ,i) for all x EX. 

The endowment of agent i in each period t is a l-dimensional vector 

et » 0, e t E C. So let S be that element of P such that So puts all mass on 

eO' Sl (e 1) puts all mass on e l for each e 1 E e, and S2 (9 1,6
2

) puts all mass on 

e2 for e l,e 2 E e. 
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We now have a pure exchange economy defined by the population fractions 

A(i), i E e = (1,2, •.• ,n}, the linear space L, the common consumption set Xc L, 

the common endo~.;ment ~ E L, and preferences We' ,i) defined on X for every agent 

of type i, i E e. 

An imp1ementab1e allocation for this economy is an n-tuple (x.) with 
~ 

x. E X for every i which satisfies the resource constraints in each period t, 
~ 

t = 0,1,2, 11/ 

(4.4) ~ A(i) S c xiO(dc) ~ eO 
~ 

(4.5) 

(4.6) 

and which satisfies a prior self-selection constraint 

(4.7) W(x. ,i) 2 W(x. ,i) 
~ . J 

V i,j E e. 

The three resource constraints (4.4) - (4.6) are the analogues of (2.6) in 

the example of section 2. Thus we assume that fraction xiO(B) of the agents 

of type i, those who have chosen the lottery xiO ' is assigned an allocation 

in B E B(G) in period zero, and similarly for x
il

(B,9
l
), x

i2
(B,9

1
,9

2
). 

11/ The integration below is coordinate wise. Thus in (4.4) for example, 

where n.(c) is the projection of c onto the jth coordinate axis. 
J 
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The prior self-selection constraint captures the idea that an allocation 

(Xi) can be actually implemented only if each agent of type i reveals his 

true type by the choice of the bundle x. from among the n-tuple (xi) • 
1. 

An implementab1e allocation (xi) is said to be a Pareto optimum if 

there does not exist an implementab1e allocation (x~) such that 

(4.8) W(x~ ,i) 2 W(x. ,i) 
1. . 1. 

i=1,2, ... ,n 

with a strict inequality for some i. 

5. Existence of a Pareto Optimum 

To establish the existence of a Pareto optimum for our economy it is 

enough to establish the existence of a solution to the following problem. 

Problem (1): 

(5.1) 

where 

Maximize a weighted average of the utilities of the agent types 

!: W(i) W(x.,i) 
i 1. 

o < w(i) < 1, ~ w(i) = 1 
i 

by choice of the n-tuple (xi)' xi E X, subject to the resource constraints 

(4.4) - (4.6) and the prior self-selection constraint (4.7). We wish to 

make use of the theorem that continuous real-valued functions on nonempty, 

compact sets have a maximum. 

We need to introduce a topology on the space of probability measures 

so notions of continuity and compactness may be well defined. Let P* 

denote the space of probability measures with common sigma algebra a (C), 

the Borel sets of the underlying commodity space C. Let the topology on p* 
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be defined by integrals of (bounded) continuous, real-valued functions on C. 16/ 

That is, let sets of the form 

1,2, ... ,J} 

define the base for our topology, where ~o is an arbitrary probability measure 

in P7<, f. is an arbitrary (bounded) continuous function on C, €. is an arbitrary 
J J 

positive number, and J is an arbitrary positive integer. With this topology 

a sequence of measures ~m in p* converges to a measure ~ in p* if and only if 

lim S f(c)~m(dc) 
nf7CO 

.' J f(c)\1(dc) 

for every (bounded) continuous function f on C. Notationally we write 

III W 
\1 ~~, i.e., weak convergence of measures. 

i. 
The underlying commodity space C is a subset of R , and so is a separable 

metric space. It follows that the space of probability measures on C, P*, 

with the above topology, is metrizable, i.e., there exists a metric on p* 

which induces the same open sets. (See Parthasarathy [1967J, Theorem 6.2, 

Chapter 2.) Horeover, since C is compact, p* is a compact (metric) space 

(Parthasarathy, Theorem 6.4, Chapter 2). Since P, to which the x. belong, 
l. 

2 
of p* and we are concerned with (x.) , is the (Hn+n ) product space the n-tuple 

l. 

pn of P and therefore 2 product of P*. let be the n product space the n(Hn+n ) 

n 
~et the topology on P be the product topology. (See Royden [1968] Theorem 19, 

p. 166). Since p* is metrizable, so also in pn (Royden [1965], p. 151). Hence 

pn is a compact metric space. Con1lergence of measures in pn is equivalent with 

~/ We similarly introduce a topology on S and the associated 1 + n + n
2 

product topology on L. 
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weak convergence of measures coordinate-wise. 

The objective function in Problem (1) is (5.1). From (4.3) we have 

(5.2) W(xi,i) - j U(c,i)xiO(dc) + ~ ~(61) SU(c,6
1
)xil (dc,6 l ) 

1 

To establish continuity of (5.1) it is enough to show that for every sequence 

~" 
(x~) ~ (x.), 

~ ~ 

n 
~ Jl(i)W(x~,i) 

rtr+<D i=l ~ 
lim 

So it is enough to show that 

(5.3) lim W(x~,i) 
rtr+':I:I ~ 

W(x.,i) 
~ 

n 
I-

i=l 
Jl(i)W(x. ,i). 

~ 

ifi € e. 

Since the U(·,S ) are (bounded) continuous functions on C, the continuity of 
t 

W(',i) with respect to x. is immediate. 
~ 

Now consider the domain of the choice elements in Problem (1), space pn 

restricted by the resource constraints (4.3) - (4.6), the prior self-selection 

constraint (4.7) and the incentive compatibility constraints (4.1) and (4.2) 

for each agent type. Call this space T. This restricted space T is nonempty 

d 1 =-n. since it contains the en owment n-tup e, ~ As closed subsets of compact 

spaces are compact (Kolmogorov and Fomin [1970J, Theorem 2, p. 93), we need 

only establish T is closed. So it is enough to establish that given any 
w 

sequence (x~) ~ (x.) with (X~)€T, that (x.)€T. Now if (x~)€T, then in (4.1) 
~ ~ ~ ~ ~ 

for e:~ample 
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Taking the limit of this inequality as m7=, and using the fact that u(·,9 2) 

is a (bounded) continuous function, one obtains 

A similar argument applied termwise establishes the desired property for (4.2). 

The same type of argument is used to establish the desired property for (4.7), 

and also for the resource constraints (4.4) - (4.6), where coordinate-wise 

the integrand is a (bounded) continuous function. 

We conclude by noting (again) that continuous real-valued functions on 

compact topological spaces achieve a maximum. (Royden [1968], Proposition 9, 

p. 161). Hence the existence of a Pareto optimum is established. 

The above argument relies heavily on the compactness of C. In fact this 

assumption is crucial. By modifying the first example of section 2 where C 

is not compact we have produced an environment in which one can get arbitrarily 

close to but not attain the utility of a full-information optimum; thus for 

this environment a Pareto optimum does not exist. 

6. Existence of a Competitive Equilibrium 

In this section we establish that our economy can be decentralized with 

a price system, that is, that ther~ exists a competitive equilibrium. We ac

complish this task by introducing a firm into the analysis, with a judiciously 

chosen (aggregate) production set. We then follow the spirit of a method 

developed by Bewley (1972] for establishing the existence of a competitive 

equilibrium with a continuum of commodities. Various approximate economies 

are considered, with a finite number of commodities. Existence of a competitive 
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equilibrium for these economies is established with a theorem of Debreu (1962). 

One then takes an appropriate limit. 

Let there be one firm in our economy with production set Y C L, where 

Y = tyEL (6.1),(6.2), and (6.3) below are satisfied}: 

(6.1) 

(6.2) 

(6.3) 

To be noted here is that the components of some yEY are elements of S, and thus 

each is a way of adding. A negative weight corresponds to a commitment to 

take in resources and positive weight corresponds to a commitment to dis-

tribute resources. Thus in (6.1), for example, the term SCjYO(dC) should be 

interpreted as the net trade (sale) of the jth consumption good in period 

zero. Inequality (6.1) states that as a clearing house or intermediary, the 

firm cannot supply more of the consumption good than it acquires. When indexed 

by the parameter e, a component of y should be interpreted as a commitment to . 

agents who announce they are of type e. The production set Y, it should be noted 

contains the zero element of L and also displays constant returns to scale. 

Following Debreu [1954] we define a ~ of our economy as an (n+l)-

tuple [(xi),y) of elements of L. A state [(x.),y) is said to be attainable 
1 

if xiEX for every i Ee , yEy, and E~=lA(i)xi- y = S. Now suppose a state 

[(x.),y] is attainable. Then setting y = L.A(i)x. - S in (6.1) - (6.3), one 
111 

obtains the resource constraints (4.4) - (4.6). Similarly, given any n-tuple 

(x.), x.EX, satisfying the resource constraints (4.4) - (4.6), define y by 
1 1 
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y = ~.l(i)~. - ~, and then yEY. Thus there is a one-to-one correspondence between 
~ ~ 

attainable states in the economy with production and allocations in the pure 

exchange economy satisfying the resource constraints. An attainable state 

[(xi),y] is said to be a Pareto optimum if the n-tuple (Xi) satisfies (4.7) 

and there does not exist an attainable state [(x~),y'] which satisfies (4.7) 
~ 

and Pareto dominates, i.e., satisfies (4.8). Again there is a one-to-one 

correspondence between optimal states and optimal allocations. 

A price system for our economy is some real-valued linear functional 

on L, that is, some mapping v L~~. More will be said about price 

2 systems v in what follows, but we may note here that v will have (l+n+n ) 

components each of which is a continuous linear functional on S relative 

to the weak topology. That is, given some ~ E L, then 

where the functions f O(')' fl("~l)' f 2(·,61,6 2) are (bounded) continuous 

functions on C. (See Dunford and Schwartz, [1957], Theorem 9, p. 421). 

We now make the following 

Definition: A competitive equilibrium is a state [(x~),y*] and a price system 
~ 

v* such that 

(i) for every i, xt maximizes W(xi,i) subject to Xi E X and 

v*(x.) ~ v*(~); 
~ 

(ii) y* maximizes v*(y) subject to y E Y; and 

(iii) 

An outline of our proof for the existence of a competitive equilibrium 
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for our economy is as follows. First the underlying commodity space C is 

restricted to a finite number of points, the nodes of a mesh or grid on C. 

In this restricted economy a countably-additive, real-valued set function is 

completely defined by an element of a Euclidean space, with dimension equal 

to the dimension of the restricted C. The linear space of these restricted 

economies is the 1 + n + n
2 

cross product of this Euclidean space. Consumption 

sets, preferences, endowments, and a production set may be defined on this 

space in the obvious way. The existence of a competitive equilibrium for the 

restricted economy is established using a theorem of Debreu [1962]. Then let-

ting the grid get finer and finer, one can construct a sequence competitive 

equilibria for the economies which are less and less restricted. A subsequence 

of these competitive allocations and prices converges and the limiting alloca-

tions and prices are shown to be a competitive equilibrium for the unrestricted 

economy. We now give a more detailed argument. 

The first restricted economy may be constructed in an essentially arbitrary 

way by subdividing each of the ~ coordinate axes of the commodity space C into 

intervals, subject to the following restrictions. First, each endowment point 

e
t

, t = 0,1,2, must be one of the nodes of the consequent grid. Second, let-

ting 

(6.4) c* > max 

° i 

,... eO c* > max ~ et .., for t = 1,2, 
LA (i)J' t LA(6 t)J 

each point c~, t = 0,1,2 must be one of these nodes. (We thus suppose that 

the upper bound b of C is such that 0 < c* S b). Third, the element zero must 
t 

be an element of the consequent grid. The first of these restrictions will 

mean the endowment points lie in each of the restricted consumption sets, and 

the second will mean that no agent is ever satiated in his attainable consump-
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tion sets. (See condition b.1 of the theorem below). 

The second restricted economy is obtained from the first by equal sub-

division of the original intervals of the L coordinate axes. The third is 

obtained by equal subdivision of the second, and so on. In what follows we 

let the subscript k be the index number of the sequence of restricted economies. 

Note that the length of each of the intervals goes to zero as ~=, so that 

these grids are finer and finer. 

k For the kth restricted economy let C be the restricted underlying com-

modity space and Lk be the finite dimensional subspace of L for which the 

support of each of the n
2 + n + 1 measures is Ck . That is, let xO(c), the 

xl(c,e
l

) and the x2 (c, ~l' ~2) for c E C
k 

each be the measure of tc}, the set 

containing the single point c. Then the space Lk is finite dimensional and a 

point is characterized by the vector (xO(c), x l (c,6 1), and x2(c,el'~2)} c E C
k

, 

61,6
2 

E S. Note that the integral of an integrable function f: c~ R with 

respect to a measure x on Ck is 

(6.5) 
r 
J f(c)x(dc) = 
c 

l:: f(c)x(c). 
c E Ck 

The consumption and production possibility sets for the kth restricted 

k k k k 
economy are X = X n Land Y = Y n L respectively. By result (6.5), the 

integrals used in the definition of X, Y and W,name1y in (4.1)-(4.2), (6.1)-

_ (6.3) and (4.3) respectively, have representations as finite sums over the 

elements of C
k

. As eO' e1 and e2 belong to C
k

, the endowment for economy k 

is Sk = S ELk. 

As our linear space for the kth restricted economy is a subset of 

Euclidean space, the price system is also an element of this Euclidean space. 

Thus we may define a price system pk = (p~(c», (p~(c,e1»' (p~(c,61,62»}' 



-30-

~1,e2E8, where each component is an element of R. 

Now let m be the least common denominator of the A(i), i = 1,2, ... ,n and 

consider the kth restricted finite economy containing number A(i)m agents of 

type i and production set myk lZ/ Now restrict attention to an m-agent 

economy in which all agents of any given type i must be treated identically. 

Then following Debreu [1962] we have the following 

Definition: a quasi-equilibrium of the kth restricted finite economy is a state 

k* k* k* 
[xi ' y 1 and a price system p such that 

(Q') 

(p) 

(y) 

(0 ) 

k* for every i, is x. a greatest 
~ 

under W(· ,i) and/or p 

k* k* Max p my = 

k* k l: m,,- (i)x. - my 
~ 

i 

k* 
p :f O. 

k* p 

_k = mS 

k* k* . x. 
~ 

myk 

element 

k* = p 

{Xi E Xk: k* S; k* p . x. p 
~ 

Sk Nin p k* Xk. = , 

A quasi-equilibrium is a competitive equilibrium if the first part of con-

dition (Q') holds. In what follows we shall establish the existence of a 

ski 

quasi-equilibrium using a theorem of Debreu [1962], and then establish direct-

ly that it is also a competitive equilibrium. It is immediate that a compet-

itive equilibrium for the kth restricted finite economy is also a competitive 

equilibrium for the original kth restricted economy with a continuum of agents 

(m cancels out of conditions (6) and (Y)). 

We make use of the follmo1ing theorem, as a special case of Debreu [1962], 

lZl We are assuming that each "-(i) is rational. An extension to arbitrary 
real "- (i) 's 1oJould entail a limiting argument. 
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Theorem (Debreu): The kth restricted finite economy has a quasi-equilibrium 

if 

(a .1) 

(a.2) k X is closed and convex; 

for every i, 

(b .1) 

(b.2) 

(b.3) 

(c .1) 

(c.2) 

(d.l) 

(d.2) 

f ., ~k h' .. xk or every consumpt~on xi ~n Ai' t ere ~s a consumpt~on ~n 

preferred to xi' 

'. Xk for every xi ~n ,the sets 

tx. € Xk W(x.,i) ~ W(x~,i)} 
~ ~ ~ 

for every x~ in Xk 
~ , 

is convex, 

k o € mY, 

the set tx. € Xk 
~ 

W(x. ,i) ~ W(x~,i)} 
1. ~ 

where A(H) is the asymptotic cone of set H, mH = ts : s = mh, h € H}, and X~ is the 

bl f h i th . kth . d attaina e consumption set or t e type consumer 1.n restr~cte economy. 

Each of these conditions holds for our restricted finite economy, as 
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We indicate in the appendix. Thus the existence of a quasi-equ~librium is 

established. We now verify that the first part of condition (a) must hold. 

In a quasi-equilibrium condition (S) holds, i.e., there exists a maximizing 

k k* element in Y given p k* It follows that no component of p can be 

negative. Also from condition (5) not all components can be zero. There-

k* fore at least one component of p is positive. Ma • •. k* . h 
x~m~z~ng p . y w~t 

respect to y in yk one obtains 

(6.6a) k*( ) _ .I.k 
PO c ~O . c 

(6.6b) 

(6.6c) 

o 

).,(c ) A(6 Hk . c = 0 
122 

'fc c C
k 

'-

'f c E Ck , 'fij 1 E e 

"ic E Ck , 'f 6
1

,9
2 

E 9 

k 
where the ~t' t = 0,1,2 are nonnegative £-dimensional vectors of Lagrange multi-

pliers. By virtue of the existence of a maximum and the existence of at least 

one positive price, one of these Lagrange multipliers is positive. Thus 

k k + ~k 0 .1. + .1. e . e > = ~O . eO ~l' 1 2 2 

since et > 0, t = 0,1,2. But the measure which puts mass one on the zero 

element of the underlying commodity space for all possible parameter draws 

k* 
has valuation zero under p 

k* 
Thus p 

part of condition (a) cannot hold. 

k k* k S > Min p . X and the second 

Now x~* denotes the maximizing element for the ith agent type in a 
~ 

( k*}= 
competitive equilibrium of the kth restricted economy. For any i, xi k=O 

is a sequence in the space of 1 + n + n
2 

dimensional vector~ of probability 

measures on the underlying consumption set C. This ~etric space is compact, 

so there exists a convergent subsequence. Since there are a finite number 
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allocations (x~*)} which converges 
~ 
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to construct a subsequence of the sequence 

= to some allocation (x.). It may be guessed 
~ 

= that this limit, (Xi)' will constitute part of an equilibrium specification 

for the unrestricted economy. 

For every restricted economy k, the price system is (6.6). Moreover, 

the price system may be normalized by dividing through by the sum of all the 

Lagrange multipliers so that in fact each Lagrange multiplier may be taken 

to be between zero and one. Thus one may again find a further subsequence of 

sequence of vectors (~~} which converges to some number l~:} with components 

between zero and one. Moreover the Lagrange multipliers in (~~ must sum to 1. 

In what follows then we restrict attention to the subsequence of economies, 

h~ = h ~ 
indexed by h, such that for every i, Xi -t Xi and for every t, ~ t .-, ~ t' 

For each economy h the equilibrium price system is a linear functional 

h v defined by 

(6.7) 
h 

v (x) = 

= • c Xo ( c ) + Z ).. (9 1) i: ,I, h (9 ) k fl' c Xl c, I 
91 cEC 

= Thus it may be guessed that an equilibrium price system v for the unrestricted 

economy will be 

(6.8) 
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CD 

A(e ) '¥ 2 2 

Note that since the sum of the Lagrange multipliers is strictly positive, 
CD 

V (~) > O. 
<:0 

It is first established that x. solves 
1. 

(6.9) 

Max W(x,i) 

x E X 
s.t. 

Note that in the competitive equilibrium of the hth restricted finite economy, 

h* 
xi solves 

Max W(x,i) s.t. 

x E Xh 

(6.10) 
h h h 

v (x) S; v (S ). 

So from (6.21) and the definition of v
h 

in (6.7) 

(6.11) 

s; 'I,h + 'I,h . e + ,,,h 
'0 . eO '1 1 '2' e 2 . 

h* w = (6 1) . . (bounded) Recalling that xi ~ xi ' and noting that in .1 we are 1.ntegrat1.ng 

continuous functions on C, we may take the limit of both sides of (6.11) as 
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::c 
h~ oo, and obtain that xi satisfies (6.9). = Thus x. is a feasible solution. 

~ 
0) 

Now suppose x. is not a maximizing element, so that there exists some i.E X 
~ ~ 

satisfying (6.9) with 

<XI 

W(x.,i) > W(x.,i). 
~ ~ 

~h h h* Then it is possible to construct some x. such that W(x.,i) > W(x. , i) and 
~ ~ ~ 

This will contradict x~* as maximizing in the hth restricted 
~ 

CD 

Now define y 
CD 

1: A(i)x. 
~ 

- s. 0) 

We want to show y solves 
i 

0) 

Max v (y). 
yEY 

Then we will have both profit maximization and market clearing, the remaining 

conditions of a competitive equilibrium to be verified. First note that the 

0) 

budget constraint (6.9) may be assumed to hold as an equality undar x .. Then 
~ 

0) 

inserting the functional v from (6.8), mUltiplying through by A(i) and summing 

over i 

CD 

(6.12) ~O 

We shall make use of (6.12) below. 

maximizing production vector in yh. 

the definition of yh 

h* Now in each restricted economy h, y is the 

Thus from the market clearing condition and 

18/ For the details of this argument see Prescott and Townsend [1979] . 
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(6.13) " \(i) 
,"' h* 

S; e ,:.. J c xiO(dc) 
i 0 

(6.14) I. ).. (6
1

) L ).. (i) 
r h* 
j c Xil (dc ,6 1) S; e 

9
1 i 1 

(6.15) I. ).. (9
1

) L. ).. (9
2

) L )..(i) S c h* x
i2

(dc,6 l ,9
2

) S; e
2

. 
9

1 
6 2 i 

h* w cx> 
Taking the limit as ~cx>, recalling that x. ~ x., and noting that we are 

1 1. 

integrating over (bounded) continuous functions 

(6.16 ) J 
cx> 

I. )..(i) c xiO(dc) s; e 
i 0 

(6.17) L: ).. (9 1) L)..(i) S c 
cx> 

xil (dc ,9 1) s; e 

t:ll i 1 

(6.18) 

cx> cx> cx> 
So from the construction of y ,y E Y. Now under the price system v , the 

problem of the firm is 

co 

+ ~2 

subject to (6.1)-(6.3). Thus profits are nonpositive. 
co 

cx> 
~~reover at y profits 

are zero, using (6.12). Hence, y is profit maximizing. This completes the 

proof of the existence of a competitive equilibrium for the limit economy. 

It is readily verified that for one-period economy (with period zero 
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only) there need be no randomness in a competitive equilibrium. Agents are 

risk averse, and the incentive-compatibility conditions need not be imposed 

explicitly. In this sense the work developed here reduces to standard compet

itive analysis when the information structure is private but not seauential. 

7. The Welfare Theorems 

We now turn to the two fundamental theorems of contemporary welfare 

economics and ask whether any competitive equilibrium allocation is optimal 

and whether any optimum can be supported in a competitive equilibrium. Both 

questions may be answered in the affirmative, but the second affirmative 

answer has some revealing qualifications. 

In the context of private information we rely heavily on Debreu's [1954] 

treatment in general linear spaces. To establish that any competitive equilib-

rium is an optimum, just two properties are sufficient: 

(I) X is convex. 

(II) 'if x', x" E X and V iEe, 

,,, ; ex 
W(x ,i) < W(x ,i) implies W(x ,i) < W(x ,i) 

a , /I 

where x = (1 - a)x + ax ,0 < a < 1. 

For property I, note that a linear combination of two probability measures 

is again a probability measure, and that constraints (4.1) and (4.2) hold 

under convex combinations, as indicated in the discussion in Section 3. 

For property II, it is readily verified that 

a , II 

W(x ,i) = (1 - a) W(x ,i) + aw(x ,i). 

That is, the objective function is linear in probability measures, a natural 

consequence of the expected-utility hypothesis. In summary we have 
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Theorem 1: Every competitive equilibrium with state (x*,y*) and price system 

v* is an optimum. 

Proof: The proof follows Debreu [1954] quite closely. For details see Prescott 

and Townsend [1979]. 

To establish that any optimum can be supported as a competitive equilibrium 

three more properties are sufficient: 

(III) Tf x, , " x , x E X and Tf iEG!, the set [a E[O, 1] : 

a , /I 

is closed where x = (1 - O')x + ax 

(IV) Y is convex. 

(V) Y has an interior point. 

Property III follows immediately from the linearity of the objective function. 

Property IV follows from the linearily of L and from the fact that constraints 

(6.1)-(6.3) hold under convex combinations. For property V pick a degenerate 

element of L such that (6.1)-(6.3) hold as strict inequalities. 12/ There now 

follows 

Theorem 2: Every optimum [(x~), y*] for which the set N = [(x.): x. E X~(x~), 
~ ~ ~ ~ ~ 

x~ E x:(~) for at least one k, (Xi) satisfies (3.7)} is n0nempty, is associat

ed with a nontrivial continuous linear functional v* on L such that 

(1) X~ solves 
~ 

Min v*(x.) 
~ ~ 

xiEX. (x~) 
~ ~ 

19/ Here the interior point is relative to the product topology on L; see 
footnote 16. 



subject to 

(7.1) 

(ii) 

where 

W(x. ,j) ~ W(x~ j) 
1 J, 

y* solves 

~( *) = x. X. 
1 1 

Max v*(y) 
yEy 

(x. E X: 
1 
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'if j i: i, 

W(x.,i) ~ W(x~,i)} 
1 1 

Proof: Again the proof follows Debreu [1954] with suitable modifications. 

For details see Prescott and Townsend [1979]. 

Here of course x~ is a minimizer of expenditure on the weak upper contour 
1 

set relative to x~ restricted by (7.1). Relative to this, Debreu makes 
1 

the 

Remark: Suppose that for every i E 8 there exists an x~ satisfying (7.1) with 
1 

v*(x~) < v*(x~). Then x* solves 
1 1 i 

Problem (2): 

subject to 

Max W(x. , i) 
1 

x.EX 
1 

v*(x.) ~ v*(x~) 
1 1 
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(7.1) W(x.,j) ~ W(x~,j) 
~ J 

v j + i. 

Proof: Again the proof follows Debreu [1954]. See Prescott and Townsend [1979] 

for details. 

Thus, under the conditions of the Remark, 20/ an optimum [(x~),y*] can 
~ 

be supported as a kind of competitive equilibrium, relative to a price system 

v*. But note first that the problem confronting each agent of type i (problem 

2) is not that which appears in the definition of a competitive eqUilibrium, 

even with S replaced by x~. In particular constraint (7.1) has been imposed. 
~ 

Thus, unlike the standard decentralization result, each agent type i must know 

not only his own endowment and preferences (and prices), but also the prefer-

ences and assignment of other agents. Second, no agent of type i can be forced 

to solve problem (2); on an ~ priori basis each agent's type is not known, yet 

problem 2 is defined relative to the parameter i. We circumvent these diffi-

culties by modifying the definition of a competitive equilibrium to allow for 

endowment selection. 

Suppose in what follows that (x~) is an optimal allocation and v* is 
~ 

the price system in Theorem 2. Let each agent choose one component of (x~) 
~ 

as his endowment, and then maximize (solve problem 2). That is, suppose agent 

type i chooses ~, k + i as his endowment. Then under v* his problem would be 

subject to 

Max W(x,i) 
xEX 

20/ Recall from section 6 the equilibrium price system puts value zero on the 
vector of probability measures putting all mass on the zero element of the 
underlying commodity space. So the conditions of the remark are frequently 
satisfied. 



v* (x) s; v* (x*) 
k 

W(x,j) s; W(x~,j) 
J 
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v j :/: k. 

",k 
Of course any solution to this problem, say xi' must satisfy the constraints. 

In particular, setting j = i. 

"'k .) W(x.,~ S; W(x~,i). 
~ ~ 

That is, agent type i can do no better than x* by "pretending" to be some type 
i 

k :/: i. Alternatively, if agent type i chooses the endowment x~, his problem 
~ 

would be problem 2, and we know x* solves that problem. It follows that x* 
i i 

is a maximizing endowment choice. In summary the (allocation-type) tuple 

(x~,i) solves 
~ 

Problem 3: 

subject to 

Max W(x, i) 
xEX,kE8 

v*(x) s; v*(x*) 
k 

W(x,j) s; W(x~,j) 
J 

This gives us the following 

v j :/: k. 

Definition: A comoetitive equilibrium with endowment selection is a state 

[(x~),y*J and a price system v* such that 
~ 

(i) V i, (x~,i) solves problem 3; 
~ 



(ii) y* solves 

(iii) 

Max v*(y); 
yEY 

~ A(i)x~ = y* - S. 
i ~ 
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We have thus shown that under the conditions of the Remark, any optimum can 

be supported as a competitive equilibrium with endowment selection. 
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Appendix 

Section 5 -- Verifying the conditions of the Theorem (Debreu) 

k k As for (a.l) note that the asymptotic cone of mX , denoted A(mX ) equals 

the singleton (O}. (See Debreu [1959] for a definition of the asymptotic cone.) 

Thus (a.l) follows immediately. Also, any asymptotic cone must contain zero, 

so (d.2) is immediate. Condition (a.2) may be verified directly by using the 

definition of Xk and taking a limit of elements of Xk for closure and a convex 

combination for convexity. 

For condition (b.l), ~~ is the attainable consumption set of any agent of 
l. 

type i, the set of all consumption allocations x. for the agents of type i 
l. 

consistent with consumption allocation~ (x.) for all agents satisfying the 
l. 

resource constraints k (4.4)-(4.6), restricted to C . Let ~. denote the attainable 
l. 

k consumption set when unrestricted to C . Now pick any consumption x. in 2~. 
l. l. 

In 

the unrestricted economy x. is weakly dominated under preferences (4.3) by a con
l. 

sumption which puts probability one on the mean consumption under xi' denoted 

(1) 

This mean consumption E(c i ) is consistent with (4.4)-(4.6) since xi is. 

Now consider the consumption c. defined by 
l. 

at t a 

cil 
t 
CPl 

A(9 1)E (cn (CPl» at t = 1, for all CPl 

ci2 = t A(CP1) L A. (CP2)E (c i2 (CPl ,CP2» 
CPl CP2 

at t = 2, for all CPl'~2' 

The consumption c must weakly dominate under (3.3) the consumption E(c.), 
l. 
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is consistent also with (4.4)-(4.6) and satisfies the incentive compatibility 

constraints (4.1) and (4.2) since it is parameter independent. Thus the con

sumption c i must be in ~i' But then 

C < c* 
iO 0 

by the construction of c~, t = 0,1,2 in condition (6.4). So c* E Xk strictly 

dominates c which weakly dominates X.' 
~ 

For (b.2) one may note that W(x,i) is linear in X and consider the limit 

of convergent sequences. For (b.3) one may take convex combinations. For 

(d.l) 0 E myk from the definition of yk. For 

~ ( k) ~k ~ k ~k and 0 ~ A mY , and also that ~ ~ X and mS 

(c.l) and (c.2) note that 0 E myk 

E mXk. 
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