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The paper studies two-person supergames. Each player is restricted to carry out 
his strategies by finite automata. A player’s aim is to maximize his average payoff 
and subject to that, to minimize the number of states of his machine. A solution is 
defined as a pair of machines in which the choice of machine is optimal for each 
player at every stage of the game. Several properties of the solution are studied and 
are applied to the repeated prisoner’s dilemma. In particular it is shown that 
cooperation cannot be the outcome of a solution of the infinitely repeated prisoner’s 
dilemma. Journal of Economic Literature Classification Numbers: Oil, 022, 026. 
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1. INTRODUCTION 

In the fifties Simon pointed out the importance of “bounded rationality” 
to economic theory (see Simon [lo, 111). Although Simon’s ideas have 
received worldwide recognition we still find Simon pointing out “... an 
urgent need to expand the established body of economic analysis, which is 
largely concerned with substantive rationality, to encompass the 
procedural aspects of decision making” [ll, p. 5061, The reasons why 
Simon’s work has had a limited impact on economic theory are quite clear: 
it is difficult to embed the procedural aspects of decision making in formal 
economics models and we do not possess a unique natural theory describ- 
ing these aspects. As economists we are confronted with a choice between 
waiting for a satisfactory description of the procedure of human decision 
making and analyzing somewhat artificial models capturing certain 
elements of “bounded rationality.” I prefer the latter. 

The term “bounded rationality” was used to cover a wide range of issues. 

* Some of the work on this paper was done while I visited the Institute for International 
Economic Studies at the University of Stockholm in August 1983. I am grateful to this 
Institute for its hospitality. I benefited from the many discussions with Ken Binmore. Ed 
Green, Charles Wilson, and Asher Wolinsky, whom I would like to thank. I would also like to 
thank Doug McManus and Cathy Weinberger for their editorial comments. 
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Therefore I would like to emphasize that I deal here only with one specific 
procedural aspect: rules of behavior are costly to operate and decision 
makers aim to minimize these costs. Thus, for example, I do not deal with 
the costs of computing optimal behavioral rules. 

The cornerstone of the model is a two-person supergame. In the 
supergame, a game, G, is repeated sequentially an infinite number of times. 
At each repetition each player chooses a one period G-strategy, the choice 
of which may depend on the outcome in the previous periods. At the end of 
each period, the players receive the one period G-payoffs. Streams of 
payoffs are evaluated according to the criterion of the limit of the means. A 
supergame strategy is a plan how to play G at every period, conditional on 
every possible history. 

There are three reasons for my choice of a supergame as the fundamental 
component of this model: 

(a) The supergame has already been intensively analysed. 

(b) The set of supergame strategies has a natural internal structure. 

(c) We have strong intuitions about the relative complexity of 
supergame strategies. 

This helps us to test the plausibility of the forthcoming definition of the 
complexity of a strategy. 

Our first departure from the standard treatment of the supergame is in 
the strategy spaces. A player is required to play’the repeated game using a 
kind of finite automaton called a (Moore) machine. A machine consists of 
a finite set of states, one of them an initial state, an output function, and a 
transition function. Given that the machine is at the state qr in the tth 
round of the repeated game, the output function determines the one-shot 
game strategy that the player plays as a function of the element qt. The 
transition function determines the state q’+’ as a function of the state qf 
and of the opposing player’s move at period t. 

Finite automata have been used for the study of computer operation. 
Sometimes brain functioning is modeled as a finite automaton. However, 
the question of whether a finite automaton is a reasonable way to model a 
decision maker is certainly central to the evaluation of the current study. 
There is an artificial element in the description of a player’s behavior as a 
machine. In the absence of a more estabhshed tool to model a decision 
maker I believe Moore’s machine to be a reasonable tool for formalizing a 
player’s behavior in a supergame. 

If we just constrain the players in a supergame to choose only machines 
(rather than supergame strategies) we still get an extensive set of Nash 
equilibrium payoffs. This set includes all individually rational payoffs which 
are rational convex combinations of the one-shot game payoffs. 



FINITE AUTOMATA 85 

Here comes the second departure from the standard supergame model. 
The players are expected to take into consideration not only the supergame 
payoffs, but also the complexity of the machines they use. Therefore, before 
proceeding, we must formalize the notion of complexity. The formalization 
of this notion was a central topic in the theory of automata. Several 
sophisticated measures have been suggested in the literature. It seems that 
considerable work is needed to construct complexity measures that are 
relevant in economic contexts. Obviously the measure of complexity has to 
be carefully matched to the interpretation given to the ““machines.” 

The formalization I am using in this paper is fairly naive. 
the number of states in the machine. To be more precise, imagine that the 
players bear the cost of maintaining the states of the machine. Each period 
a player has to pay a “small” fee for each of the states maintained in his 
machine. He pays the fee for every state he chooses to keep in his machine 
regardless of the frequency of its usage. I will refer to these costs as the 
n~airztenance costs of the machine. 

As to the tradeoff between maintenance costs and the supergame payoffs 
I have studied here a limit case: the maintenance costs are infinitesimal. 
The players care primarily about the average payoff and they care 
lexicographically only secondarily about the maintenance costs. 

The complexity notion, the definition of maintenance costs, and the 
trade-off between the maintenance costs and the supergame payoff will 
induce the definition of the solution for the model. A solution (called semi- 
perfect-equilibrium) is a pair of machines, one for each of the players, 
which satisfies at every stage of the game: 

(a) Neither of the players can achieve a higher average payoff by a 
unilateral change of his own machine. 

(b) Neither of the players is able to reduce the number of the states 
used. 

This paper concentrates on the classical repeated prisoner’s dilemma. 
(For a reference to the importance of the game in the development of game 
theory, see Lute and Raiffa [6].) Figure 1 describes the one-shot prisoner’s 
dilemma. 

FIGURE !  
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FIGURE 2 

The only Nash equilibrium of the one-shot game is (D, D). In the 
repeated game (with the limit of the means evaluation criterion), any 
feasible and individually rational payoff is a repeated game payoff of a 
Nash equilibrium (the Folk theorem) and in fact even of a perfect 
equilibrium (for the study of the perfect equilibria of the repeated games 
see Rubinstein [9] and the references there). 

In contrast, it will be shown here that a repeated game payoff of a 
solution must be either (0,O) or an internal point on the segment combin- 
ing (0,2) and (2,O). (See Fig. 2.) The cooperative payoff vector (2,2) is 
not achieved by a solution. 

Thus the current paper’s approach is very different from that of three 
previous bounded rationality studies of the prisoner’s dilemma in which 
cooperation is explained by “bounded rationality.” Radner [S] applied the 
c-equilibrium concept to a finitely repeated prisoner’s dilemma. Under the 
title “Can Bounded Rationality Resolve the Prisoner’s Dilemma?” he 
showed that the players can come “close” to the vector payoff (2,2) by 
using a pair of strategies which will be “almost” the best response of one 
against the other. 

Smale [12] incorporates a bounded memory assumption. The players 
can retain in their memory only some kind of average of the past payoffs, 
and their strategies should be “good” in a well-defined way which captures 
a notion of bounded rationality. Again, the payoff (2,2) is established as 
the solution’s payoff. 

The closest to this paper is Green [4]. Green studies the finitely-repeated 
prisoner’s dilemma. He assumes that the players use a restricted class of 
strategies. The use of a strategy is associated with a cost. Green’s choice of 
the restricted class of strategies and of the costs is motivated by an intuitive 
argument in which a strategy is replaced by a Turing machine, and the 
machines vary in their costs. 
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The idea that finite automata theory may be useful for modelling boun- 
ded rationality in economic contexts is not new. Marschak and McGuire 
make this suggestion in unpublished notes [7]. Aumann [ l] suggests the 
use of finite automata in the context of repeated games (see Aumann [l: 
p. 211. 

I am aware of some studies of the complexity of multi-stage decision 
processes. Futia [2] concentrates on applications of an algebraic approach 
for complexity due to Rhodes. (See Futia [2] and the reference there.) This 
measure is quite sophisticated but complicated. It enables Futia to draw a 
few conclusions on the complexity of some stopping rules for sequential 
search problems. Varian, in an unpublished work Ct3], applied the 
algebraic automata theory approach to social decision theory. We also uses 
the number of states as a measure of complexity of a social welfare rule. 
For other references see Gottinger [3]. 

Following presentation of the model, I define the solution (Sect. 2). 
then present some results regarding the structure of a solution for a general 
supergame (Sect. 3) and apply the results to the special case of the repeated 
prisoner’s dilemma (Sect. 4). I refrain from any final conclusions. By all 
accounts this work should be considered only a small step forward on a 
very long path. I have my own doubts about some of the details of the 
model. Even so I hope that the paper will serve as a demonstration of the 
scope of the formal approach for the study of “bounded rationality” 
elements in the framework of “game theory-.” 

2. THE MODEL 

2.1. The Supergame 

Let G = (S,, &, ul, ul) be a two person game in normal form, where 5’: 
is a finite set of strategies for player i and ui: S, x S2 -+ R is player i’s payoff 
function. 

The supergame of G consists of an infinite sequence of repetitions of G 
taking place at periods t = 1, 2, 3,.... At period t the players make 
simultaneous moves denoted by sf~ Si and then each player learns his 
opponent’s move. A supergame strategy is a sequence of functions (f’) izC r, 
wheref’ determines a player’s choice of action at period t as a function of 
the previous t - I outcomes 

In the standard supergame a player has to choose a supergame strategy. 
In the current model a player must choose a Moore machine. 
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2.2. Moore Machines 

A Moore machine for player i, denoted Mi, is a four-tuple 
(Q, qp, ;li, pi), where Qi is a finite set, qp E Qj, ii: Qi --f Si, and 
,u~: Qi x Sj + Qi (j# i). The set Qi is the set of the internal states of the 
machine Mi. The state qp is the initial state. The element Ai is a strategy 
in the game G that player i chooses whenever his machine is at state qi. 
The function ,LL~ is called a transition function. If the machine is at state qi 
and the other player chooses sj E Sj then the machine’s next internal state is 
Pi(4i9 sj). 

Given the players choose machines M, and M, the supergame is played 
as follows: At the first period the machine of player i starts at the state 
qf = qp. Player i chooses of = Ai E Sj. In the second period the machine 
of player i moves into the state q: = pi(qf, 3;) (j # i). In general, given that 
the machines are at period t at the states q; and q;, player i chooses 
sj = Ai E Si and at period t + 1 his state is q: + ’ = pi(ql, $). Thus a pair of 
machines generates deterministically a sequence of G’s outcomes, 
(st,, s;);“,i, and a seuquence of pairs of states, (qi, q;)y= 1. 

2.3. Examples 

The following is a list of examples of machines which carry out familiar 
strategies in the repeated prisoner’s dilemma. Diagrams, called transition 
diagrams, are used to illustrate the machines. The vertices of the diagram 
correspond to the states. One of the states is indicated to be the starting 
point. A letter C (or D) on an arch connecting the state q to the state q’ 
means that given that the machine is at state q and the other player’s move 
C (or D) is observed, the machine’s state is changed to q’. The letter below 
the circle of a state q indicates the value of the I function of the machine at 
the state q. 

(a) The one-state machine diagrammed in Fig. 3 plays C constantly: 

Q= (8% cl0 = 4*, 4q”) = c, and ‘44*, . ) = q”, 

(b) The two-states machine represented in Fig. 4 carries out the “tit 
for tat”: 

Q = (qc, qD), q” = qc, 4q,) = s, and p(q, s) = qs for s = C, D. 

C, D 

FIGURE 3 
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FIGURE 4 

(c) The “grim strategy” (play C as long as the other player plays C) 
is executed by the machine diagrammed in Fig. 5: 

(d) The strategy to play C until the other player plays D and then to 
punish him for three periods before returning to the cooperative behavior 
needs at least a four-states machine (see Fig. 6): 

Q=~PI,P~,P~), q'=q, J-(q)=C ~P/J=D (h = 1, 2, 3), 

dq,C)=q, dq,D)=p,, PL(P~,.)=P~+,, (h=L2), and P(P~,.)-cI. 

2.4. The Solution Concept 

Let M, and M, be a pair of machines for the two players. Let 
q’= (q;, q;), t = 1, 2 )... be the sequence of states of the machines and 
s’= (s:, s;), t = 1, 2,... be the sequence of actual plays of the supergame. 
Since the machines are finite there is a minimal t2 and 1, > f,, such that 
q’l=qf2+1. Thus at period t, + 1 the pair of states repeats itself for the first 
time. I refer to the finite sequence (qi,..., q’l- ‘) as the introductory part of 
the play by (M,, M2) and to the finite sequence (qf’,..~, 4”) as the cycle of 
the play of the pairs (M,, M2). The length of the cycle is denoted by T, 
T= t, - t, + 1. 

Define the supergame payoff of player i as the average payoff in the 
cycle, i.e., 

FIGURE 5 
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FIGURE 6 

Let M= (Q, q”, 1, p) be a machine. Denote by 1441 the number of states 
in Q; for q E Q denote by M(q) the machine (Q, q, 1, p), that is the 
machine M starting at the state q. Let >L be the lexicographic order on [w2. 
Define 

Thus the pair of machines (M,, M2) is preferred by player i to the pair of 
machines (%r, A,) if player i achieves in (M,, M2) a higher average payoff 
or if he gets the same average payoff using a machine with less states. 

The pair (MT, Mz) is said to be a Nash equilibrium if there is no M, or 
M, such that (M,, M2)>i (MT, M;) or (MT, M,) >2 (M:, 44:). The 
main definition in this paper is the following: 

DEFINITION. A pair of machines (AI,*, MC) is a semi-perfect-equilibrium 
(SPE) if there is no time t, no M, , and no M, such that 

(Ml, WYcG)) >I (WYq;), wY4;)) 

or 

(Mf(q;), M2) >2 (W(d), WYq;)). 

(Recall that q: is the state of MT at period t where the game is played by 
the pair of machines (M:, M:).) 

Thus in a SPE there is no stage of the play of the game after which one 
of the players prefers to change his machine. The SPE differs from the 
Nash equilibrium concept in the requirement that the machine M” be 
optimal for player i against A&j* not only at the beginning of the game but 
also at the start of each repetition. The additional requirements are in the 
spirit of Selten’s subgame perfection and the idea of dynamically con- 
sistency. However notice that the option of replacing the machine is not 
modelled as a part of the game. It appears only in the solution concept and 
is required only on the equilibrium path. 
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2.5. A Discussion of the Solution Concept 

(a) The Restriction of Strategies to Finite Automata 

The players are restricted to play the repeated game with finite 
automata. By itself this requirement is quite weak. consider again the 
repeated prisoner’s dilemma. For every rational convex combination 
El, a2> a3> a49 such that 

(u,, u2) = %a 2) + a,@, 0) + 6(3, - 1) + CL4 - 123) 3 (0, 0) 

there exists a pair of machines (M,, M2) such that 

and none of the players can deviate and achieve a higher average payoff 
even by using a strategy which cannot be executed by a finite machine. The 
machines follow the well-known Folk theorem’s equilibrium: they play 
(C, C) N, times, (D, D) N2 times, (D, C) N3 times, and (C, D) N4 times, 
where xh = N,/N, N = ci = 1 Nh. After N periods they start again from the 
beginning. Where player i deviates, the other player, j, responds by moving 
to an absorbing state q where Aj(q) = D and ~~(4, ) = q. Note that this pair 
of machines is not SPE since given that player i is using M,, the other 
player, j, can achieve the average payoff uj even with a machine which does 
not include the punishment state. 

(b) A Comparison with Nash Equilibrium 

The “trigger” strategies as well as the “tit for tat” strategies are not even 
Nash equilibria in the machines game since they include states which are 
never used. If both players use the machines of Fig. 5, for example, then the 
state q. is not used and each player is able to drop this state without 
affecting the supergame payoff. 

The definition of SPE requires further that a solution includes only states 
which are used infinitely often. 

consider the machine for the repeated prisoner’s dilemma which is 
represented by Fig. 7. If both players use this machine, we get a pair of 
machines which is a Nash Equilibrium and which is not SPE. Here, the 

FIGURE I 
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punishment phase is used in the introductory part of the play before the 
players reach the cycle. The instability of this pair of machines is due to the 
ability of the players to drop the state q1 after the first period. From the 
point of view of period 2 the state q1 is redundant. 

(c) Threats in SPE 

The definition of SPE does not exclude the possibility of players 
threatening their opponents. However, the punishment should have the 
feature that it could be executed through states of the machine which will 
be used anyway in the regular course of the game. 

The idea is that if threatening demands resources, and in equilibrium 
they are not exercised, then it is not optimal to hold the threats unless the 
threatening machinery has some other functions as well. 

The above considerations have some similarity to phenomena frequently 
observed in real life: social institutions, various types of organizations, and 
human abilities degenerate or are readily discarded if they are not used 
regularly. 

(d) The Trade-off Between the Supergame Payoff and the Procedural Costs 

A more natural model might allow a real trade-off between the 
supergame payoff and the procedural costs. Here a most extreme case is 
studied. The players care lexicographically primarily about the average 
payoff and only secondarily about the measure of complexity of the 
machine. This is done mainly for the sake of simplicity. It is an 
approximation of a situation in which the magnitude of the procedural 
costs is small relative to the supergame payoff. The strength of this 
assumption is that it allows a deviating player to achieve a higher payoff 
even using a very complicated machine. 

(e) The MeasuFe of Complexity 

The measure of complexity of a machine which is used in this paper is 
the number of states held in the machine. This measure remain the measure 
for complexity throughout the course of the game. Thus, for example, it is 
not cheaper to maintain states if they were used in the past. The definition 
of SPE is motivated by the scenario described in the introduction. A player 
“pays” a “very small” fee per state per period that the state is held in its 
machine. Operating the machine with less states is desirable since it saves 
future costs associated with maintaining the extra states. 

As mentioned earlier the measure of complexity used here is very naive. 
Other possible complexity measures may take into account the complexity 
of the transition function. 
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3. PROPERTIES OF SPE 

In this section two properties of SPE are proved. First, we shall show 
that during a cycle no player will repeat the same states twice. Note that 
the “memory” of a player is embedded in the name of the state. This con- 
clusion means, therefore, that at a solution each player keeps track of his 
exact position in the cycle. 

Second, we shall show that in a solution there is full coordination in tim- 
ing the switching of the one-shot game strategies. Whenever one player 
changes his strategy, the other player changes his strategy too. This fact has 
a clear implication to repeated 2 x 2 matrix games, in which case at a 
solution the G-outcomes are all on one of the matrix’s two diagonals. 

In the following, let (MT, M: ) be a pair of machines with a cycle 
(q”,..., q*?). Denote ni(M:, Mf) by 7-r:. Given two number k and 1 between 
t1 and t,, define the set T(k, 1) s (t1,..., t2} as the set of periods from k to i 
in the oriented cycle from t, to t2; that is, 

T(k’ I)= i 

(k, k + l,..., 1; k 6 I, 
{k, k+ l,..., t,, t,, t, + I,..., I> k > 1. 

Let A j(k, I) be i’s average payoff in T(k, 1). 

PROPOSITION 1. If (MT, MT) is a solution then: 

(a) For all i, the states qi’,..., qf2 are distinct. 

(b) For all t> tl, A~(q~)=A~(q:+‘) ifand only if1~~(q~)=A.“(q~+‘). 

The proof of the proposition is divided into three simple Lemmas: 

LEMMA 1. Ifq:l=q:?forsomet,~k,<kl~t2thenAz(k,,kz-L)=n~. 

frooJ Assume that A,(k,, k,- 1) >n,*. (A similar proof is needed for 
the case where A,(k,, k?- 1) < 7~;). Let us define a machine, M2, for 
player 2 such that rc,(Mf, MJ = A,(k,, kz - 1). The machine M2 includes 
k2 - 1 states pl,..., p k2~1 Its initial state is p’. The function & of the 
machine Mz mimics M;j that is, &(pk) = .&(&) for all 1 <k < k, - 1. 33~ 
transition function, pLz, satisfies pL2(pk, r2:(qf)) = pk’ i for k < k2 - 1 and 
j.&F- i, A::(qP- l )) = pkl. Clearly the cycle of (MT, ?) is ((q’;], phi),...> 
(q/;2-l, pkZpl)) and z2(Mf, M2)=Az(k1, k,- l)>n,“. 

LEMMA 2. For all i and for all t, <k, <k, < t,, qfil # qt?. 

Proof Let (k, h) be the lexicographically minimal pair of integers 
k > k - h = 12 t,, such that there exists a player i satisfying qf = qf. Assume 
that i = 1; q$ # q’;, otherwise the cycle is shorter. The number of the states 

642/39/l -5 
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of M; is at least h + 1 unless k = t, + 1. Next define an h-state machine, 
M1, ensuring that rc2(MF, M2) = A,(Z, k - 1) (and by Lemma 1 also equal 
to rrt). The machine M, includes the states p’,..., pk-‘. The function A2 
satisfies A,(pj) = A;(& and the transition function ,u2 satisfies 
/b(Pl mq:)) = P’+ l f or j< k - 1 and ,u2(pk-‘, Af(q”-‘)) = p’. The initial 
state of M, is p’. The cycle of (Mf(qi), M2) is ((q:, qi),..., (qifhel, qi+ “-I)) 
and thus n,*(Mf(qi), M2) = n; as long as k#tZ+l, IM,(<lM:/, 
therefore, k = t2 + 1 and qfl# qp for all t, 6 kl <k, < tz and for all i. 

LEMMA 3. There is no j> t, such that A,Y(q{) # ilF(q{+ ‘) and A.:(q{) = 
Q(qif’). 

ProoJ: If otherwise, player 2 would deviate at t, by a machine M, 
which satisfies rc2(MT, M2) = 7~; and IM,l < IMT(. The machine includes 
all the states of Mz with the exception of qj+ I. The initial state of M, 
is qg if j# t2, and is q;* if j= t2. The function & is as Q. The transition 
function of M2 is modified from ,u; such that ,u2(q{, AI( = qi and 
p2(qj2, A,(q{+l)) = q;+2. Note the simple idea behind the proof. In M; 
player 2 uses qi+ l only for counting the periods. Since player 1 is behaving 
differently in periods j and j+ 1, player 2 could avoid the need to use qi+ 1 
and instead rely on the “free” service that player 1 provides him by 
switching from A;“(q() to A,*(q{+‘). 

4. THE REPEATED PRISONER'S DILEMA 

In this section, Proposition 1 is used for characterizing the SPE payoffs 
in the repeated prisoner’s dilemma. 

PROPOSITION 2. The pair (z.$, 7~;) is a solution’s payoff if and only iJ 

(C> IE;) = (0,O) or where there is a rational number a such that (x,Y, rcf) = 
c((3, - 1) + (1 - a)( - 1,3) > (0,O). 

Proof Let us start with the “necessary” part. Assume that (M:, M:) is 
a solution such that rcj(M,*, Mz)= n”. If 7~” GO then M,? must be the 
single state machine which plays D constantly. In such a case M,* must be 
the same as MT and (z:, 7~:) = (0,O). 

After the introductory part the outcomes must, according to 
Proposition 1, include (C, C) and (D, D) only or (C, D) and (D, C) only. 
Assume that in the cycle only (C, C) and (D, D) are played and that (C, C) 
is played in the cycle at least once. Let k, satisfy the condition that 
(A:(qfl), @(q$l)) = (C, C). Let k ,̂ satisfy that ,uz(qil, D) = qp+l. Then 
A,(k, + 1, c2) > nf, since otherwise Ar(ff, + 1, k,)> n4 and player 1 can 
deviate profitably by making the change in MT such that l,(q/;l) = D and 
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p&7;‘, C) = &+ I. Since A,(k,+l,k^,)>7r~>O, we can choose 
k,, k, + 1 < k2 GE2 to satisfy that Al(k, + 1, k,) > n: and (Ar(q/;l), 
g(qp)) = (C, C). 

In the same way we can continue to choose a sequence k, 5 k,, k,, k,,... . 
Because of the finite number of states in the machines we eventually reach 
ifm such that k,= k,. Then the contradiction to nl(M,*, Mz)=rc: is 
straightforward. 

Finally, let us turn to the sufficiency part of the proposition. Let N1 and 
N, be two natural numbers such that (n:, nt) = (¶/N)[N,(3, - 1) + 
NA - L3)1> C&O), w  h ere N = N, + N,. Let us construct a solution (see 
Fig. 8) whereby in the course of its cycle the players will play (D, C) 
N, times and (C, D) N2 times. Define M:= (Q:, 4;, A:, pf), QF= 
@I:,..., q?), 4:: = 4:, 

kdN, 
N,<k<N’ 

1 
41, 

1 ’ 
s,=D; kdNl, 

/Gvql;, s*)= q:+ l, s2 = c; k<N,, 

k+ l(modh’) 
41 s2=C, D; N,<k<N. 

Similarly define Mz. Clearly (MT, A@) has the desired N periods cycle 
and neither of the players can deviate and increase his average payoff. Let 
us verify that for a player to achieve of” he needs a machine with at least N 
states. 

Assume that M, is a machine for player 2 such that xJMJ=, M,) = n;. It 
follows that the length of the cycle of the play of the game by MF and M, 
is at least N. Player 1 must play C in the cycle at least once. Therefore, Mf 
reaches one of the states q;YI+l,..., q;Y at least once during the cycle of 
(MT, M,). Due to the structure of MT it must pass sequentially through 
the block [qyl+ I,..., q;Y]. In order to return to qrl + L it has to go through 
all the states [qf,..., q;Yl]. Therefore the sequence of player l’s states in the 
cycle of (M:, M2) must each be composed of blocks of the type [si ,..., qflj 

FIGURE 8 
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[q: ,..., qp] ,..., [q: ,..., q:‘] [q;“” l,.,., q;Yl, where 1 <k, ,..., k,d N, and 
k, = N,. In this way player 2 can only meet the average nz by ensuring 
that player 1 will use his states in the cycle in blocks of 

cq:,..., 4;y’l cq;y’+ l,..., 4y1. 

For this a necessary requirement for M, is that player 2 plays C 
whenever l’s state is one from among qj,..., q;Y’ and for achieving the 
average 7~; player 1 must play D whenever l’s state is taken from among 

NI + 1 
41 

N 
,..., 91 . 

Let [PI,..., pN] be the states of M2 which are used by player 2 parallel to 
one of the appearances of a series of states [qf ,..., qrl] [qf’l+ ‘,..., q;Y] in the 
plays of the game. Clearly pN’ # pN1+l. Therefore, pNIP1 # pN1 since they 
compel different ,u-responses to the choice of C by player 1, 
L4PN’ - I, C) = pN’ while p2(pN1, C) = pN’+ ‘. Since 1, differs on pNI-’ and 
P N~+l it also follows that pN’-’ # pN’+ ‘. Repeating this argument it is easy 
to show that all (ph)fcl are different. 
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