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This paper analyzes the effects of moral hazard on long-run consumption or
utility. Given exponential utility, it is shown that the utility of those with unobserv-
able endowments becomes arbitrarily negative as long as any positive fraction of
otherwise identical agents have observable endowments. Next, it is shown that
assuming a finite number of agents results in essentially the same outcomes as with
a continuum of agents. Finally, it is shown that the key characteristic determining
whether the utility of almost all agents becomes arbitrarily low is whether limc � �U$(c)
is bounded away from zero. Journal of Economic Literature Classification Numbers:
D30; D31; D80; D82. � 1998 Academic Press

1. INTRODUCTION

The repeated unobserved endowment economies of Green [4] and
Thomas and Worrall [9] have provoked much interest not only because
they are viewed as simple and natural environments for exploring limited
insurance in a dynamic setting, but also because of the extreme results
which they derive. In Green's model, the efficient societal arrangement
regarding a continuum of agents associated with an incentive problem
(unobservable endowments) involves their eventual ``immiserization''
(almost all agents' consumption diverging to negative infinity). The single
agent model of Thomas and Worrall [9] (where the agent faces a single
risk neutral principal) independently derives the same result more
generally: For the class of utility functions considered, the agent's utility
almost surely becomes arbitrarily negative. These results seemed to imply
that there was something about repeated moral hazard which caused a
downward trend in the consumption of agents associated with an incentive
problem. Later papers seem to show that such an implication is false: By
considering different sets of assumptions than those in [4] and [9], one
can create environments where agents' consumption distributions con-
tinually spread without a negative drift (Atkeson and Lucas [2]), or the

article no. ET972389

174
0022-0531�98 �25.00
Copyright � 1998 by Academic Press
All rights of reproduction in any form reserved.



File: DISTL2 238902 . By:CV . Date:15:05:98 . Time:07:42 LOP8M. V8.B. Page 01:01
Codes: 3519 Signs: 3031 . Length: 45 pic 0 pts, 190 mm

consumption distribution converges to a bounded limiting distribution
(Wang [10]).

It is difficult to tell from this collection of papers which results represent
fragile special cases and which results hold more generally. Further, it is
difficult to see overall what the key characteristics of moral hazard environ-
ments are which determine the long run consumption of agents. This paper
attempts to rectify this problem by isolating the roles of the assumptions in
the above models. I argue that the effects of moral hazard on consumption
in the long run has little to do with the technology determining resource
constraints (a focus of Atkeson and Lucas [2]) or the number of agents (a
focus of Wang [10]) but instead hinges, somewhat unappealingly, on
characteristics of the utility function.

The first section isolates the role of resource constraints using the
exponential utility specification of Green [4]. In [4] (as well as Thomas
and Worrall [9]), society can shift consumption across dates using a
technology which discounts at a rate corresponding to the utility rate of
discount. I show here (restating a result of Atkeson and Lucas [2]) that
perturbing the economy of [4] to require that aggregate consumption
equal the aggregate endowment date by date implies that each agent's con-
sumption is the sum of an i.i.d. term and a term which follows a random
walk without drift, overturning the immiserization result. This would seem
to imply that the assumption in [4] of an ability of society to transfer con-
sumption across dates at a fixed interest rate equal to the utility rate of dis-
count is solely responsible for the immiserization result and not the
assumption of repeated moral hazard. I argue here that such an implication
is false. I show that if one imposes a date by date resource constraint but
allows any positive fraction of agents to have observable endowments, the
consumption of almost all agents with unobservable endowments goes to
negative infinity while the consumption of those agents with observable
endowments goes to positive infinity.

The second section isolates the role of the number of agents. I show here
that assuming a finite number of agents instead of a continuum essentially
leaves unchanged the results of [4] regardless of whether there is a period
by period or present value resource constraint. This is a very different
result from Wang [10] who modifies [4] by additionally imposing a lower
bound on consumption and utility.1 With this bounding of utilities, [10]
proves the existence of a bounded limiting distribution of consumption
with movement. Agents do not get ``stuck'' at any particular consumption
level but forever move about the limiting distribution.
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1 The bounding of utilities in [10] is implicit. Wang [10] assumes utility is defined on the entire
real line, with restrictions that U$(c) exist and be positive everywhere, and that consumption be
non-negative. This implies that the utility is bounded below on the consumption set.
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The third section considers the role of the characteristics of the utility
function when the rate of interest is set to the utility rate of discount. While
the first two sections focus on exponential utility, this section considers
what results are special to this utility specification and what generalizes.
This is important because the results of Thomas and Worrall [9] imply the
utility of agents converging to negative infinity for a seemingly very general
set of utility functions. I dispute this by considering an example here which
perturbs [4] (as well as [9]) only in the choice of utility function.
(Further, this is a well-behaved function: strictly increasing, concave, with
decreasing absolute risk aversion.) In this example, by varying endow-
ments, one can deliver an arbitrarily high fraction of agents diverging to
either positive or negative infinity. The key assumption which determines
whether a positive mass of utility paths tends to positive infinity is whether
marginal utility is bounded away from zero as consumption increases.

One type of assumption that is purposely not discussed here is the role
of bounds on either consumption or utility. Phelan [7] discusses the role
of endogenous bounds on continuation utility given limited commitment.
I argue here that the results of [10] crucially depend on utility bounds only
by showing how they are overturned by considering the no bound alter-
native. Further, the paper of Aiyagari and Alvarez [1] can be considered
a study regarding when utility bounds in incentive models are reflecting or
absorbing. The strategy of this paper is to only consider environments
where the set of feasible continuation utilities is open, and thus isolate the
role of moral hazard on long run consumption outcomes independent of
how moral hazard may interact with commitment issues.

2. THE ROLE OF RESOURCE CONSTRAINTS

Consider a world with a continuum of infinitely lived agents with unit
mass. The physical aspects of each period are identical. In each period,
each agent receives an unobservable perishable endowment e. (Assume a
finite number of possible realizations [e1 , ..., eM], with e i>ej for i> j.) Let
?(e) denote the fraction of agents who receive a particular e realization.
The fraction ?(e) is also taken as the probability of any particular agent
receiving endowment e.2 Agents care about expected discounted utility
where their single period utility function over consumption is assumed, as
in [4], to be the constant absolute risk aversion specification U(ct):
R � R& such that U(ct)=&exp(&#ct) (where #>0). Note that the feasible
consumption set is assumed to be the entire real line. Agents discount future
utils by the parameter ;<1. These are identical assumptions as [4].
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It is easiest to consider the role of resource constraints if one posits (as
in Phelan [6]) the existence of a price-taking financial intermediary or
``representative firm'' with which the agents sign enforceable lifetime con-
tracts. This representative firm is assumed to have access a credit market
which trades one-period ahead consumption in terms of current consump-
tion. Let $t denote the price of t+1 period consumption in terms of date
t consumption. Given a specified sequence [$t]�

t=0 , it is straightforward to
show that a cost-minimizing firm can, without loss, treat each agent
separately. Since endowments are assumed independent across agents,
making the transfer to one agent contingent on the announced endowment
of any other agent only lowers expected utility.

Consider the decision problem of a firm considering a contract for an
agent promised a lifetime utility w. In this context, a ``contract'' specifies a
possibly negative transfer from the firm to the agent at each date in the
agent's life as a function of the history his endowment announcements. If
one assumes $t=$<1 for all t, (or the interest rate faced by the firm is
constant) efficient contracts can be shown to be recursive with the expected
discounted utility of the agent as the state variable.

Given the assumption of a constant $, the choice variables of the firm are
as follows. For each lifetime utility level w, the firm chooses a transfer from
the firm to the agent T(e | w), and a function W$(e | w) specifying the
agent's expected discounted utility from the beginning of the next period.
The functions T(e | w) and W$(e | w), along with the initial utility promise
w0 , completely specify the lifetime contract.

This recursive formulation requires that the representative firm respect
incentives and utility promises. For an agent who was promised a specific
expected discounted utility w, a firm must pick policies which actually
deliver this expected utility. This can be expressed in the form of the
promise-keeping constraint (for each w # R& )

w=:
e

?(e)[&exp(&#(e+T(e | w)))+ ;W$(e | w)]. (1)

The firm must also respect the unobservability of endowments. This is
expressed as the incentive constraint (for each w # R& and [e, ê] where
e>ê)

&exp(&#(e+T(e | w)))+;W$(e | w)

�&exp(&#(e+T(ê | w)))+;W$(ê | w). (2)

This states that agents with high endowments must be willing to reveal
them. (Note I assume that agents cannot over-report endowments.)
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Let C*(w) denote the minimized cost (or expected net transfers) in terms
of current (or present value) consumption of providing expected discoun-
ted utility w, and T*(e | w) and W$*(e | w) denote the policies which
achieve C*(w). Now standard arguments imply C*(w) is a fixed point of
the Bellman operator

(BC )(w)# min
T(e), W$(e)

:
e

?(e)(T(e)+$C(W$(e))), (3)

subject to (1) and (2), and that T*(e | w) and W$*(e | w) solve the mini-
mization in (3) for all w.

For the exponential utility case, Lemma 1 states that T*(e | w) and
W$*(e | w) take a simple separable form.3

Lemma 1. If U(c)=&exp(&#c), and $<1 is constant, the cost minimiz-
ing contract for the representative firm can be represented by functions
T*(e | w) and W$*(e | w) which take the separable form T*(e | w)=
&log(&w)�#+t(e), W$*(e | w)=&w w$(e).

Proof. See Appendix.

One can now examine the implications on consumption dynamics of the
above result. If w0 is an agent's initial utility and e{ is his vector of his
endowment realizations from t=1 } } } {, his consumption at date { is

c{=
&log(w0 >{&1

t=1 &w$(e t))
#

+e{+t(e{)

=
&log(&w0)

#
+ :

{&1

t=1

&log(&w$(et))
#

+ e{+t(e{). (4)

The simple arithmetic of logarithms guarantees that an agent's initial
unconditional payment is permanent, as is every addition to it through the
function w$(e). Each agent's consumption is the sum of an i.i.d. term (his
endowment, e{ , plus his conditional transfer, t(e{)) and a term (the remain-
der of Eq. (4)) which is a random walk (i.i.d. innovations).

Nowhere has a resource constraint been used. The above result is solely
due to an assumed constant interest rate faced by the firm and the assump-
tion of exponential utility. In Green [4], society (or the social planner) is
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3 This is not a new result. This result is proved by [4] and [9] for the case where $=;. Further,
while stated differently, the result itself (for all $) is in Atkeson and Lucas [2, p. 444]. The proof
here is different than in [2] and is useful as an outline of the strategy for the proofs of Lemmas
2 and 3, which are new results.
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assumed able to transfer resources across dates at the utility rate of dis-
count ;. Thus the planner's problem in [4] is the firm's problem here with
$=;. It happens to be at this particular $, the random walk component of
consumption has a negative drift. (A discussion of why this occurs is in sec-
tion four.) That consumption is the sum of random walk component and
an i.i.d. component, however, holds for all $<1.

Now consider assuming a date by date resource constraint (as in Atkeson
and Lucas [2]). A clear implication of this is that aggregate consumption
must be equal at all dates since the aggregate endowment is equal at all
dates. Since the above characterization holds for all $<1, if $ is chosen such
that the random walk component of consumption is driftless, then aggregate
consumption is indeed constant. Atkeson and Lucas [2] show this can be
done. Further, Eq. (4) makes clear that initial utilities, w0 , can be chosen to
scale up or down consumption at all dates such that this constant aggregate
consumption equals the aggregate endowment. Let $* denote the value for
$ such that aggregate consumption is constant. It is straightforward to show
that $*<;. (When $=; the firm chooses a negative drift in consumption.
Lowering the price of future consumption induces the firm to provide
lifetime utils more in terms of future consumption.)

This would seem to imply that the assumption in [4] that $=;, and not
moral hazard, is responsible for the negative drift in consumption since with
the more ``reasonable'' $* derived from a closed economy, no such drift
occurs. I argue with the following lemma that such an intuition is misleading.

Lemma 2. If U(c)=&exp(&#c), aggregate consumption must equal the
aggregate endowment date by date, and fraction + # (0, 1) agents have
observable endowments, efficiency implies almost all agents with unobser-
vable endowments have consumption go to negative infinity, and all agents
with observable endowments have consumption go to positive infinity.

Proof. Consider a representative firm which takes as given an ability to
transfer consumption across dates at given prices. For now, assume a con-
stant price $ of one-period ahead consumption. As when all agents have
unobservable endowments, it is straightforward to then show that the
price-taking firm can, without loss, treat each agent separately. Given this,
the consumption characterization for agents with unobservable endow-
ments is given by Eq. (4). Equation (4) implies that for these agents

c{+1&c{=
&log(&w$(e{))

#
+(e{+1&e{)+(t(e{+1)&t(e{)). (5)

That e is i.i.d. across agents and time implies that if one aggregates
across all agents with unobservable endowments, the last two terms of (5)
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drop out and the first right-hand-side term becomes a constant, inde-
pendent of {. Thus, for any given $, the aggregate consumption of those
with unobservable endowments will equal the previous period's aggregate
consumption for that group plus a constant.

Agents with observable endowments will have deterministic consumption
paths due to the lack of an incentive problem. Cost minimization by the
firm and exponential utility for the agents implies consumption in a given
period is simply the previous period's consumption level plus a constant.
This implies that over both groups, for any $, the representative firm will
choose contracts which deliver aggregate consumption in a given period as
the previous period's aggregate consumption plus a constant. Thus for
these contracts to satisfy the resource constraint, one needs to find a $
which causes this constant addition, aggregated over both groups, to be
zero.

If $=; this constant addition is zero for those with observable endow-
ments. On the other hand, the results of [4] and [9] (which assume $=;)
imply that the consumption of those with unobservable endowments is the
sum of an i.i.d. term and a term which follows a random walk with negative
drift. This implies that the aggregate consumption of those with unob-
servable endowments is decreasing by a constant amount each date. Thus
$=; causes the firm to choose contracts where aggregate consumption
decreases over time.

Next suppose $=$*<;, where $* is the rate which causes the firm to
choose w$(e) such that expectation of the right-hand side of (5) is zero. By
definition, the mean consumption of those with unobservable endowments
is now constant across dates. However, the consumption of those agents
with observable endowments will now have a constant positive increase.
Here, aggregate consumption increases over time.

For $ greater than $* and less than ;, the consumption of those with
unobservable endowments is a random walk with negative drift (plus an
i.i.d. term), and the consumption of agents with observable endowments
has a constant positive increase. Since the drift term for both types of
agents is continuous in $, this implies there exists a $ such that $*<$<;
where aggregate consumption is constant.

What is left to show is that the contract chosen by the representative
firm given this $ is efficient. Suppose an efficient allocation delivers the
same distribution of initial utilities as the contract chosen by the price-
taking representative firm, but where aggregate consumption is weakly less
at all dates and strictly less at some date. Since the aggregate endowment
is the same at all dates, efficiency requires that such an allocation not have
one agent's consumption depend on the announced endowment of another.
This implies the allocation could have been chosen by the firm and would
have lowered its costs yielding a contradiction. K

180 CHRISTOPHER PHELAN
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3. THE ROLE OF THE NUMBER OF AGENTS

To contrast with the previous environment with a continuum of agents,
consider a world with N infinitely lived agents with names n=1, ..., N.
Analogous to the previous environment, assume endowments are i.i.d.
across both agents and time. Given this structure, the aggregate state of
this economy is a vector e=(e1, ..., eN). Given the existence of aggregate
uncertainty, let the price taking representative firm (as in Phelan [6]) have
access to two sufficient spot markets: an insurance market which trades the
consumption good contingent on the aggregate state in terms of non-con-
tingent consumption, and a credit market which trades one-period ahead
non-contingent consumption in terms of current state-contingent consump-
tion. Let B(e) denote the price of e-contingent consumption in terms of
non-contingent consumption (thus �e B(e)=1) and $(e) denote the price
of one-period ahead non-contingent consumption in terms of current
e-contingent consumption.

With a continuum of agents, we considered two cases: (1) where society
could borrow and lend at the utility rate of discount, and (2) where
aggregate consumption was constrained to equal the aggregate endowment
date by date. The analogue here to the first case is where the representative
firm faces prices $(e)=; and B(e)=?(e), (where ?(e) is the probability of
endowment vector e). Given this, the representative firm can treat each
agent separately and the results are the same as for a continuum of agents.
In the second case, prices $(e) and B(e) must cause the representative firm
to set aggregate consumption equal to the aggregate endowment date by
date.

Given the date by date resource constraint, the representative firm must
now consider the joint contract for agents with required utilities, w=
(w1, ..., wN). Under the assumption that the price vectors $(e) and B(e) are
the same for each date, efficient contracts can again be shown to be recur-
sive. This allows the firm to consider the vector of expected discounted
utilities of the agents as a state variable. Given this, the choice variables of
the firm are for each vector w, a transfer from the firm to each agent
T(e | w)=(T 1(e | w), ..., T N(e | w)), and a vector of functions W$(e | w)=
(W$1(e | w), ..., W$N(e | w)) specifying each agent's expected discounted
utility from the beginning of the next period, for each vector of endowment
announcements.

As before, there is an appropriate promise keeping condition (for each
wn # R& and each n)

wn=:
e

?(e)[&exp(&#(en+T n(e | w)))+ ;W$n(e | w)], (6)
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and incentive condition (for each n and [e, (e&n, ên)] where en>ên)

&exp(&#(en+T n(e | w)))+;W$n(e | w)

�&exp(&#(en+T n((e&n, ên) | w)))+;W$n((e&n, ên) | w). (7)

Let C*(w): Rn
& � R denote the minimized cost in terms of current (or

present value) non-contingent consumption of providing the N agents with
a vector of expected discounted utilities w, and T*(e | w) and W$*(e | w)
denote the policies which achieve C*(w). Analogous to the continuum
agent economy, C*(w) is a fixed point of the Bellman operator

(BC )(w)# min
T(e | w), W$(e | w)

:
e

B(e) {:
n

T n(e | w)+$(e) C(W$(e | w))= , (8)

subject to (6) and (7), and T*(e | w) and W$*(e | w) solve the minimization
in (8) for all w.

Lemma 3, analogous to Lemma 1, states that the efficient functions
T*(e | w) and W$*(e | w) take the same simple separable form.

Lemma 3. If U(c)=&exp(&#c) and $(e) and B(e) are constant over
time, the functions T*(e | w) and W$*(e | w) take the separable form
T n*(e | w)=&log(&wn)�#+tn(e), W$n*(e | w)=&wn w$n(e).

Proof. See Appendix.

One can now examine the implications on consumption dynamics for the
case of a finite number of agents. If w0 is the vector of agent's initial utilities
and (e1 , ..., e{) is the vector of endowment realizations from t=1 } } } {,
agent n's consumption at date { is

cn
{=

&log(wn
0 >{&1

t=1 &w$n(e t))
#

+en
{+tn(e{)

=
&log(&wn

0)
#

+ :
{&1

t=1

&log(&w$n(e t))
#

+en
{ +tn(e{). (9)

Again, the simple arithmetic of logarithms guarantees that an agent's initial
unconditional payment is permanent, as is every addition to it through the
function w$n(e). Each agent's consumption is the sum of an i.i.d. term (his
endowment plus his conditional transfer tn) and a term (the remainder of
Eq. (9)) which is a random walk (i.i.d. innovations).

The resource constraint has not yet been used. The characterization
above depends only on constant price vectors $(e) and B(e) and exponen-
tial utility. For aggregate transfers to be zero at each date and history, a
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vector of initial utilities w0 and prices $(e) and B(e) must be chosen
correctly. Aggregate transfers on the first date are

:
n \&log(&wn

0)
#

+tn(e1)+ . (10)

If aggregate transfers are to be the same (zero) regardless of the realization
of e1 , Eq. (10) makes clear that for all realization pairs (e~ 1 , ê1)

:
n

tn(e~ 1)=:
n

tn(ê1). (11)

On the second date, net transfers are

:
n \&log(&wn

0)
#

+
&log(&w$n(e1))

#
+tn(e2)+ . (12)

Since net transfer must be the same (zero) for each date, comparing (12)
with (10) (and using (11)) makes clear that a necessary condition for the
resource constraint to be satisfied is for all e,

:
n

&log(&w$n(e))
#

=0. (13)

(Note that conditions (11) and (13) are precisely the correct number of
conditions to pin down the prices B(e) and $(e).) If Eq. (13) holds for each
e realization, it certainly holds in expectation. Symmetry implies for any
two agents m and n

:
e

?(e)
&log(&w$m(e))

#
=:

e

?(e)
&log(&w$n(e))

#
. (14)

Equation (14) and the expectation of (13) imply that for each agent n,

:
e

?(e)
&log(&w$n(e))

#
=0. (15)

As with a continuum of agents and a date by date resource constraint, each
agent's consumption is the sum of an i.i.d. term and a term which follows
a driftless random walk.

Gaining an intuitive understanding what happens here is easier given a
two-agent, two-endowment, equal initial utility example. In the first period,
if both agents have the high endowment or both have the low endowment,
no transfer occurs and the contract starts over. If one has a high and one
has a low endowment, the agent with a high endowment transfers some
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consumption to the agent with the low endowment. In return, the agent
with the low endowment makes a constant transfer in every subsequent
period to the agent with the high endowment regardless of future endow-
ments. Except for this constant unconditional transfer, the contract then
starts over.

To restate, the assumption of a finite number of agents in no way
changes the results for the case of exponential utility with no consumption
bounds. If society can borrow and lend at the utility rate of discount
($=;) and insure at prices corresponding to the probabilities, then with
probability one, each agent's consumption diverges to negative infinity. If
a date by date resource constraint is imposed, the consumption of each
agent is the sum of an i.i.d. term and a term which follows a driftless ran-
dom walk. These are the same results as with a continuum of agents.

This makes clear that the results of Wang [10] depend crucially on his
assumption that c�0. The effect of Wang's bounding of utilities is less
clear. The case where agents have bounded consumption but unbounded
utility (say, logarithmic utility) is ruled out by Wang's assumption that
utility is increasing on the entire real line. If $(e)=; and B(e)=?(e),
Thomas and Worrall [9] implies that each agent's consumption converges
to zero with probability one. If there is a date by date resource constraint
and a finite number of agents, whether the agents converge to the open
utility boundaries or to a non-degenerate distribution is an open question.

4. THE ROLE OF THE UTILITY FUNCTION

This section considers the role of the utility function in determining long-
term outcomes.

The role of the utility function can best be seen in these environments by
assuming $=; and extending the results of [9] which hold for a more
general class of utility functions than exponential utility. Thomas and
Worrall [9] show if C(w) is the present-value cost to the firm of providing
w lifetime utils to an agent, then C$(w) follows a martingale as long as the
set of feasible w values is an open set. (This can be guaranteed if utility is
unbounded below.) The argument is that one way to increase the agent's
current lifetime utility by = utils (where = is small) is to promise him the
incentive compatible continuation contract associated with an extra =�;
lifetime utils starting tomorrow for each endowment realization today. If
$=;, this has cost to the firm of �e ?(e) C$(w$(e)). If tomorrow's lifetime
utility levels w$(e) are interior, envelope arguments apply and this cost is
also the marginal cost of providing utils today, C$(w), and thus C$(w) is a
martingale. (This is where one needs the set of feasible continuation utilities
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to be open.) Thomas and Worrall [9] use the fact that non-negative mar-
tingales almost surely converge (Doob's martingale convergence theorem
(see [3])) to show, for a more general class of utility functions than
exponential, that almost all utility paths go to negative infinity.

Their argument is that efficiency requires that the agent's beginning of
period continuation utility, w, must almost never converge to a point in the
set of feasible continuation utilities.4 On the other hand, C$(w) must almost
always converge, since it is a positive martingale. Since C$(w) is a strictly
increasing function (from the strict convexity of C(w)��again, see [9]), this
implies that w must converge either to an open boundary of the set of
feasible utilities or diverge to infinity or negative infinity in such a way as
to make the limit of C$(w) finite. In the class of utility functions considered
by [9], this implies w converges to negative infinity. To better explain this
result, I will follow [9] and examine two known functions which bound
C(w). Let C

�
(w) denote the cost function associated with observable endow-

ments, and C� (w) denote the cost function associated with restricting the
firm to making unconditional (and thus trivially incentive compatible)
transfers. Figure 1 displays these functions for the exponential utility case.5

If a denotes the lower bound on consumption (or negative infinity if
consumption is unbounded), the assumptions limc � a U(c)=&� and
limc � a U$(c)=� imply limw � &� C

�
$(w)=limw � &� C� $(w)=0. This and

convexity of C(w) implies limw � &� C$(w)=0, otherwise C(w) would cross
C� (w) or C

�
(w). Thus one way for C$(w) to converge is for w � &�.

Thomas and Worrall [9] further assume limc � � U(c)<�. This implies
limw � b C

�
$(w)=limw � b C� $(w)=� where b denotes the least upper bound

on lifetime utility. If one imposes the weaker condition that limc � �

U$(c)=0 (which allows b=�) it is still the case that limw � b C
�
$(w)=

limw � b C� $(w)=�. This implies C$(w) is a strictly increasing function with
limw � � C$(w)=�. Thus the only way C$(w) can converge without w con-
verging to an interior point in the set of feasible utilities is for w � &�.

I next argue that it is not the case that all reasonable utility functions
cause utility to diverge only downward. In particular, if limc � � U$(c)>0,
then the utility of an arbitrarily high fraction of agents can approach
positive infinity. I argue this somewhat informally by presenting an example.

Let consumption take on the entire real line and let U(c)=
:c&exp(&#c). This function displays strict concavity and strictly decreas-
ing absolute risk aversion. It violates the assumptions of [9] only by being
unbounded above. Further, the assumption that utility is bounded above is
not used by [9] to show that C$(w) is strictly increasing or that efficiency
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4 Put simply, if w converges, then consumption is no longer history dependent. This rules out
insurance, which is inefficient.

5 In the figure, U(c)=&exp(&c), e # [0, 10] with ?(e1)=?(e2)=1�2 and ;=0.9.
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Fig. 1. C� (w) and C
�
(w) for exponential utility.

requires w to almost never converge in the set of feasible utilities. The func-
tions C� (w) and C

�
(w) for this case are displayed in Fig. 2 with :=#=1. As

before, limc � &� U$(c)=� implies limw � &� C
�
$(w)=limw � &� C� $(w)=0

and thus limw � &� C$(w)=0. Thus it remains the case that one way for
C$(w) to converge without w converging to an interior point in the set of
feasible utilities is for w � &�. On the other hand, with limc � � U$(c)=
:<�, limw � � C

�
$(w)=limw � � C� $(w)=1�: and thus limw � � C$(w)=

1�:. Thus, in this example, another way for C$(w) to converge without w
converging to an interior point in the set of feasible utilities is for w � �.
Since w must almost never converge in the set of feasible utilities, almost
all agents must have w � � or w � &�. One can next use properties of

Fig. 2. C� (w) and C
�
(w) for exponential plus linear utility.
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C$(w) to show that the fraction of agents whose utility diverges upward is
pinned down by initial conditions, and these conditions can be set to get
an arbitrarily high or low fraction of agents go in either direction.

To do this, note that convexity of C(w) implies C$(w)<1�: for all w.
Thus unlike the case where limc � � U$(c)=0, C$(w) is a bounded mar-
tingale. This implies not only that almost all C$(w) paths converge, but
that the expected value of the limiting distribution of C$(w) equals the
expected value of C$(w) at each date. Given this, it cannot be the case that
almost all agents have w � &� or almost all agents have w � �. Instead,
an agent whose initial utility is w0 must have w � � with probability
:C$(w0) from the fact that limw � &� C$(w)=0 and limw � � C$(w)=1�:.

This implies that a particular agent's probability of diverging upward or
downward is an increasing function only of his initial lifetime utility w0 . To
pin this down, one must somehow determine initial lifetime utility
promises. Suppose all agents are entitled to an initial lifetime utility w0 such
that C(w0)=0, or the present expected value of the each agent's consump-
tion stream equals the present expected value of his endowment stream.
This is the initial utility which is delivered when agents initially own their
endowments and there is competition in the provision of lifetime insurance
contracts. Given this, one can set up endowments such that an arbitrarily
high or low fraction of agents have w � �.

To do this, consider some baseline values for the endowment levels
[e1 , ..., eM] and probabilities ?(e) and consider adding an amount x to
each endowment level. Define WA(x) to be the utility of autarky (zero
transfers at all states and dates) as a function of x, and WF (x) to be the
utility of the full information contract (perfect insurance with zero expected
transfers at each date) given x. Likewise, define W(x) such that
C(W(x))=0. Since WA(x) is unbounded above and W(x)�WA(x) (zero
transfers is incentive compatible), W(x) is unbounded above. This implies
that limx � � C$(W(x))=1�: (because limw � � C$(w)=1�:) or that as one
increases x, the fraction of agents whose utility approaches infinity,
:C$(W(x)), approaches unity. In the other direction, since WF (x) is
unbounded below and W(x)�WF (x), W(x) is unbounded below. This
implies limx � &� C$(W(x))=0 (because limw � &� C$(w)=0) or that as
one decreases x, the fraction of agents whose utility approaches negative
infinity, 1&:C$(W(x)), approaches unity.

5. CONCLUSIONS

This paper analyzed the effects of moral hazard on long-run consump-
tion or utility by isolating the effects of various types of assumptions. It
argued that resource constraints and the number of agents were relatively
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unimportant while characteristics of the utility function were paramount. It
was shown that date by date resource constraints fail to cause a zero trend
in the expected consumption of agents facing moral hazard if any positive
fraction of otherwise identical agents have observable endowments.
Further, it is shown that if consumption is unbounded, the results for a
continuum of agents go through for the case of a finite number of agents
with or without a date by date resource constraint. Finally, it was shown
that the key characteristic determining whether the consumption of almost
all agents goes to its lower bound is whether limc � � U$(c) is bounded
away from zero.

APPENDIX

Proof of Lemma 1. Consider a change of variables where T(e | w)=
z(w)+t(e | w). Further, let W$(e | w)=exp(&#z(w)) w$(e | w). This non-
endowment-contingent payment z(w) (and the scaling of utility promises
by it) is simply harmless extra degrees of freedom in the firm's choice
problem. For z(w) set equal to any function, t(e | w) and w$(e | w) can still
be chosen to achieve any desired T(e | w) and W$(e | w) functions.

Next, replace for T(e | w) and W$(e | w) in the incentive condition (7)
yielding a cancellation of z(w), or,

&exp(&#(e+t(e | w)))+;w$(e | w)�&exp(&#(e+t(ê | w)))+;w$(ê | w).

(16)

This implies that incentive compatibility is unaffected by the function z(w).
Next, since it is harmless to set z(w) to any function, let z(w)=

&log(&w)�#. Replacing for T(e | w) and W$(e | w) in the promise keeping
condition (6) yields the constraint,

&1=:
e

?(e)[&exp(&#(e+t(e | w)))+;w$(e | w)]. (17)

This implies that under the assumption that z(w)=&log(&w)�#, the con-
straints for the firm can be written independent of the promised utility w.
Next note that under this assumed z(w), the function generating future
utilities W$(e | w) can be written W$(e | w)=exp(&#z(w)) w$(e | w)=&w
w$(e | w).

Recall that C*(w) denotes the minimized cost (or expected net transfers)
in terms of current (or present value) consumption of providing expected
discounted utility w. Likewise, let C

�
(w) denote the cost function associated

with the full information problem and C� (w) denote the cost function
associated with restricting the firm to unconditional transfers. Since making
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transfers unconditional is incentive compatible, for all w, C
�
(w)�C*(w)�

C� (w). Further, C� (w)&C
�
(w) can be shown to be bounded. (One way is to

define C� (w) as the cost of providing utility w given that the lowest endow-
ment occurs with probability 1. Here, the contract subject to unconditional
transfers, the full information contract, and the best incentive compatible
contract are all the same. Further, it is clear that C� (w)�C� (w). Finally,
C� (w)&C

�
(w)=(1�(1&$))(�e ?(e)e&e1).)

Given this, one can define a contraction operator B on the space of func-
tions between C

�
(w) and C� (w) with the supremum of the difference between

functions as the metric. The cost function C*(w) is the unique fixed point
of the contraction operator B defined by

(BC )(w)# min
t(e | w), w$(e | w) # R& {

&log(&w)
#

+t(e | w)+$C(&w w$(e | w))=
(18)

subject to (16) and (17).
One can guess and confirm that the function C*(w) takes the form

C*(w)=
1

1&$ \
&log(&w)

# ++X (19)

as follows. First, if one substitutes the guessed form into (18) it becomes

(BC )(w)# min
t(e | w), w$(e | w) # R& { 1

1&$
&log(&w)

#
+t(e | w)

+$ \&log(&w$(e | w))
#

+X +=
=

1
1&$

&log(&w)
#

+ min
t(e | w), w$(e | w) # R& {t(e | w)+$ \&log(&w$(e | w))

#
+X += (20)

where each minimization is again subject to (16) and (17). Since the con-
straints are independent of w, the part of the objective function which
depends on w can be brought outside the minimimization problem. This
shows B preserves the guessed form, (which represents a compact subset of
the space of functions lying between C

�
(w) and C� (w)) thus confirming the

guess form. Further, this shows that the functions which solve the mini-
mization problem are independent of w. K
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Proof of Lemma 3. This proof follows the same path as the proof to
Lemma 1, differing only to take into account the joint choice of transfers
and promises. Again consider a change of variables where T n(e | w)=
z(wn)+t7(e | w) and let W$n(e | w)=exp(&#z(wn)) w$7(e | w). As before,
this non-endowment-contingent payment z(w) (and the scaling of utility
promises by it) is simply harmless extra degrees of freedom in the firm's
choice problem. Again, replacing for T(e | w) and W$(e | w) in the incentive
condition (7) yields a cancellation of z(wn), or,

&exp(&#(en+tn(e | w)))+;w$n(e | w)

�&exp(&#(en+tn((e&n, ê) | w)))+;w$n((e&n, ê) | w), (21)

again implying that incentive compatibility is unaffected by the function
z(wn).

Next, by setting z(wn)=&log(&wn)�# and replacing for T(e | w) and
W$(e | w) in the promise keeping condition (6) yields the constraint,

&1=:
e

?(e)[&exp(&#(en+tn(e | w)))+;w$n(e | w)], (22)

again implying that under the assumption that z(wn)=&log(&wn)�#, the
constraints for the firm can be written independent of the vector of promised
utilities w, and W$n(e | w)=exp(&#z(wn)) w$n(e | w)=&wnw$n(e | w).

Let C*(w) denote the minimized cost (or expected net transfers) in terms
of current non-contingent consumption of providing expected discounted
utility vector w, and note C*(w) is the fixed point of a contraction operator
B defined by

(BC )(w)# min
t(e | w), w$(e | w)

:
e

B(e) {:
n \&log(&wn)

#
+tn(e | w)+

+$(e) C(&w1 w$1(e | w), ..., &wN w$N(e | w))= (23)

subject to (21) and (22).
Analogously to before, one can guess and confirm that the function

C*(w) takes the form

C*(w)=
1

1&$� \:
n

&log(&wn)
# ++X (24)

(where $� #�e B(e) $(e)) by substituting the guessed form into (23) and
again noting that the mapping B preserves the guessed form, and that the
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parts of the objective function which depend on w can be brought outside
the minimization problem. K
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