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REPUTATION IN BARGAINING AND DURABLE 
GOODS MONOPOLY 

BY LAWRENCE M. AUSUBEL AND RAYMOND J. DENECKERE1 

This paper analyzes durable goods monopoly in an infinite-horizon, discrete-time game. 
We prove that, as the time interval between successive offers approaches zero, all seller 
payoffs between zero and static monopoly profits are supported by subgame perfect 
equilibria. This reverses a well-known conjecture of Coase. Alternatively, one can interpret 
the model as a sequential bargaining game with one-sided incomplete information in which 
an uninformed seller makes all the offers. Our folk theorem for seller payoffs equally 
applies to the set of sequential equilibria of this bargaining game. 

KEYwoRDs: Durable goods monopoly, bargaining, Coase conjecture, reputation, folk 
theorem. 

1. INTRODUCTION 

ASSUME THAT A SINGLE FIRM CONTROLS the supply of an infinitely durable good. 
In a classic paper, Ronald Coase (1972) asked what sales plan this monopolist 
would adopt to maximize her profits. Coase provided a partial answer by 
observing that the naive policy of forever offering the good at a static monopoly 
price is not credible. To paraphrase Martin Hellwig (1975), the monopolist who 
announces such a policy cannot "keep a straight face"-she has an irresistable 
temptation to cut the price at future dates, to generate additional sales and 
profits. Coase supplemented his answer by conjecturing that, with rational 
consumer expectations, "the competitive outcome may be achieved even if there 
is but a single supplier." Several subsequent authors have produced models 
possessing subgame perfect equilibria which support Coase's conjecture. 

Nevertheless, Coase's original puzzle concerning the optimal monopoly pricing 
rule remains essentially unsolved. In this paper, we propose an answer: the firm 
introduces the durable good at approximately the static monopoly price. She then 
follows the slowest rate of price descent that enables her to maintain her 
credibility. As the time interval between successive periods of the game ap- 
proaches zero, the rate of descent can be made arbitrarily slow while preserving 
subgame perfection. This enables the supplier to earn nearly static monopoly 

1 The authors' work was supported in part by National Science Foundation Grants SES-85-69701 
and IST-86-09129, by the Kellogg School's Paget Research Fund and Esmark Research Chair, and by 
National Science Foundation Grant SES-83-20464 at the Institute for Mathematical Studies in the 
Social Sciences, Stanford University, Stanford, California. The appendices make substantial use of 
ideas and analysis contained in the papers of Fudenberg, Levine, and Tirole (1985) and Gul, 
Sonnenschein, and Wilson (1986). We learned a great deal from these authors, and we are glad to be 
able to acknowledge our intellectual debt here. We would also like to thank Varadarajan Chari, 
Kenneth Judd, David Kreps, and Roger Myerson for helpful suggestions and stimulating discussions, 
and two anonymous referees for comments which greatly improved the exposition of this paper. The 
usual disclaimer applies. 
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profits. Thus it is possible, even in a durable goods market, that a monopoly is a 
monopoly.2 

The identical reasoning carries over to bargaining games with incomplete 
information, since essentially the same mathematical model may depict either a 
continuum of actual consumers with different valuations or a single buyer with a 
continuum of possible valuations. Thus, in an infinite-horizon bargaining game 
where the seller makes repeated offers to a buyer whose valuation she does not 
know, we prove that there exist sequential equilibria where the seller extracts 
essentially monopoly surplus. 

In contrast, the Coase conjecture predicts that the monopolist's initial offer 
inexorably descends toward marginal cost (and her profits approach zero) as the 
time interval between periods shrinks to zero. The intuition behind the conjecture 
is that, once any initial quantity of the good has been sold, the monopolist is 
always tempted to sell additional output, until the competitive level is reached. 
But if consumers expect the monopolist to flood the market "in the twinkling of 
an eye" (Coase (1972)), they will decline to purchase at prices much above 
marginal cost. 

Bulow (1982) analyzed Coase's reasoning in a finite-horizon model. By back- 
ward induction, Bulow calculated the monopolist's best action in each period 
before the last and showed that it is always to charge unambiguously less than 
the static monopoly price. Stokey (1981) studied the monopolist who lacks 
commitment powers in an infinite-horizon model. She constructed an equilibrium 
which is the limit of the unique equilibria of finite-horizon versions of the 
same model, and demonstrated that it satisfies the Coase conjecture. Gul, 
Sonnenschein, and Wilson (1986) discovered a continuum of additional subgame 
perfect equilibria in the infinite-horizon game. However, they proved that these 
weak-Markov equilibria (subgame perfect equilibria in which buyers use "sta- 
tionary" strategies) behave qualitatively like the backward induction equilibrium 
-the initial price converges to marginal cost.? 

The noncooperative bargaining literature developed in parallel to the study of 
durable goods monopoly.4 To escape from Rubinstein's (1982) complete infor- 
mation result that all bargaining is concluded in the first round, this literature 
introduced incomplete information into the bargaining process. Incomplete infor- 
mation often added a continuum of sequential equilibria (e.g., Fudenberg and 
Tirole (1983)). One modeling technique, however, offered apparent promise for 

2 This provides an answer to Coase's puzzle by identifying the equilibrium which (subject to 
credibility) is most favorable to the firm. Given that the firm is a monopolist and has the sole ability 
to make offers, this equilibrium certainly seems quite sensible. However, we show in Theorem 6.4 that 
there exists a continuum of other equilibria, in which the monopolist may earn substantially lower 
profits. 

3 Bond and Samuelson (1984) examined a durable good subject to depreciation. The prospect of 
replacement sales reduces the monopolist's tendency to cut prices, when the time interval between 
periods is positive; however, Coase's limiting result continues to hold. Kahn (1986) considered the 
case of increasing marginal cost and showed that this provides the durable goods monopolist with 
some incentive not to flood the market instantaneously. Consequently, initial price does not converge 
to marginal cost. 

4 For a thorough review of this literature, see Rubinstein (1987). 
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yielding results with greater predictive value: restricting the game to one-sided 
offers with one-sided uncertainty. When the uninformed party makes all the 
offers (the informed party only responding with "yes" or "no"), the complica- 
tions of strategic communication largely disappear. One may have (unjustifiably 
and, we will show, incorrectly) conjectured from this literature that the multiplic- 
ity of equilibrium outcomes vanished as well. 

Sobel and Takahashi (1983) wrote the first paper to explore this approach. 
Their results mirror those obtained by Bulow (1982) and Stokey (1981) in the 
durable goods monopoly context. Fudenberg, Levine, and Tirole (1985) analyzed 
two distinct cases in the infinite-horizon game. In the case where the buyer's 
valuation is known discretely to exceed the seller's, they proved that the model 
generically has a unique sequential equilibrium and that there is a finite time by 
which all negotiations conclude. In the second (and, we think, more reasonable) 
case where there is no gap between the lowest buyer valuation and the seller's 
valuation, they demonstrated the existence of a backward induction equilibrium. 
All of the equilibria they constructed are weak-Markov and can be shown to 
satisfy the Coase conjecture. 

The main result of our paper is a folk theorem for seller payoffs, for the "no 
gap" case. -As the time interval between successive periods approaches zero in 
durable goods monopoly (bargaining), the set of monopolist (seller) payoffs 
associated with subgame perfect (sequential) equilibria expands to the entire 
interval from zero to static monopoly profits. 

We prove our Folk Theorem by constructing "reputational equilibria" consist- 
ing of a main price path and a punishment path. The main path starts with an 
arbitrary initial price and follows with an arbitrarily-slow (but positive) real-time 
rate of sales. The punishment path is taken from a weak-Markov equilibrium. As 
the time interval between periods approaches zero, adherence to the main path 
becomes subgame perfect, because (by the Coase conjecture) the punishment 
becomes increasingly severe. Continuously varying the initial price and the 
subsequent rate of sales yields all levels of profit. 

Let us provide an interpretation of these equilibria. Initially, consumers believe 
they are facing a strong monopolist who will continue to adhere to the main price 
path specified in the equilibrium. However, the moment a deviation from the 
main price path occurs, consumers decide they are dealing with a weak monopolist 
who has read the Coase (1972) paper (and believes its message). The prospect of 
ruining her reputation thus deters the monopolist from ever deviating. 

Observe that the vast multiplicity of equilibria in the current game is not due 
to the presence of incomplete information. "Reputation," in our equilibria, does 
not involve the seller's type5-buyers have no beliefs to be updated when 
off-equilibrium behavior is observed. Indeed, the durable goods monopoly model 
is a game of complete information. In the bargaining interpretation of the model, 
the only (observable) off-equilibrium buyer behavior which continues the game is 

5One can also introduce reputation effects by adding buyer uncertainty about the monopolist's 
marginal cost. 
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rejection of a nonpositive offer, and so there is little or no scope for the seller to 
make alternative inferences about the buyer's type. Hence, an equilibrium re- 
finement which acts only to constrain off-equilibrium beliefs about type would 
have no effect on the set of equilibrium payoffs. Alternatively, one can limit the 
set of outcomes by restricting attention to weak-Markov equilibria. We do not 
find this restriction completely natural and, in any case, it is interesting to see 
what equilibria arise when the Markovian assumption is relaxed. 

We extend and use two types of results (which seemingly endorse the Coase 
conjecture) to prove our folk theorem (which reverses the Coase conjecture). 
After describing the model (Section 2 ) and presenting a linear example (Section 
3), we first demonstrate a general existence result on weak-Markov equilibria 
(Section 4). We then show that price paths associated with weak-Markov equilib- 
ria are uniformly low compared to the demand curve (Section 5). In Section 6, we 
proceed to establish the folk theorem for seller payoffs, under very general 
conditions. We conclude with Section 7. 

2. THE MODEL 

We consider a market for a good which is infinitely durable, and which is 
demanded only in quantity zero or one. There is a continuum of infinitely-lived 
consumers, indexed by q e I= [0,1]. The preferences of these consumers are 
completely specified by a monotone nonincreasing function f: [0,1] a- R + satis- 
fying f(q) > 0 for q e [0,1), where f(q) denotes the reservation value of cus- 
tomer q, and by a common discount rate r. More precisely, if individual q 
purchases the good at time t for the price pt, he derives a net surplus of 
e- rt[f(q) - pt]. Consumers seek to maximize their net surplus. The monopolist, 
meanwhile, faces a constant marginal cost of production, which we assume 
(without loss of generality) to equal zero. Her objective is to maximize the net 
present value of profits, using the same discount rate as consumers. 

The monopolist offers the durable good for sale at discrete moments in time, 
spaced equally apart. The symbol z will denote the time interval between 
successive offers, and so sales occur at times t = 0, z, 2z,..., nz,.... We will 
sometimes refer to the "period" n rather than to the "time" t (= nz). Within 
each period, the timing of moves is as follows: first, the monopolist names a 
price; then, consumers who have not previously purchased decide whether or not 
to buy. After a time interval z elapses, play repeats. 

A strategy for the monopolist specifies the price she will charge in each period, 
as a function of the history of prices charged in previous periods and the history 
of purchases by consumers. A strategy for a consumer specifies, in each period, 
whether or not to buy in that period, given the current price charged and the 
history of past prices and purchases. Formally, let G(z, r) denote the above game 
when the time interval between successive sales is z and payoffs are discounted at 
the rate r. Let a be a pure strategy for the monopolist. Then a is a sequence of 
functions {fn), a The function an at date nz determines the monopolist's price 
in period n as a function of the prices she charged in previous periods and the 
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actions chosen by consumers in the past. We impose measurability restrictions on 
joint consumer strategies below which imply that the set of consumer acceptances 
in period n, Q,, will be a measurable set, i.e.,Qn e S2, where Q2 is the Borel 
a-algebra on I. Then an: yn X n - y, with Y= [0, f(0)] and yn and Qn the 
n-fold Cartesian products of Y and Q2. A strategy combination for consumers is a 
sequence of functions {T }n)0 where Tn: yn+l X 2n X I - {0,1} is such that for 
each yn+l E yn+l and each BEn , Tn(yn+1, Bn, .) is measurable. Decision 
"O" is to be interpreted as a decision not to buy in the current period; decision 
"1" indicates that a sale takes place in the current period. Obviously, we require 
that Tn(y+'1, B, q) = 0 for all q E U-0QJ.6 

Let 2 be the pure strategy space for the monopolist, and T be the set of pure 
strategy combinations for consumers. The strategy profile { a, ), with = 
{ T( }) 0, generates a path of prices and sales which can be computed recursively. 
The pattern of prices and sales over time in turn determines the payoffs to the 
players. Let 7r(a, r) be the net present value of profits generated by the strategy 
profile {a, T}, and let uq(a, T) be the discounted net surplus derived by con- 
sumer q. The profile { a, } is a Nash equilibrium if and only if 

7rT(, T) > 7T(a', T), VA' e , and 

Uq(o, rq, _ q) > Uq(o, Tq, T_q), Vq E rTq, q-a.e., 

where Tq is the projection of T onto the qth component (and similarly for Tq). An 
n-period history of the game is a sequence of prices in periods 0,..., (n - 1) and a 
specification of the set of consumers who bought in each period prior to n. We 
denote such a history by the symbol Hn. Thus, Hn E ynx 2n. The symbol Hn, 
refers to Hn followed by a price announced by the monopolist in period n. Thus, 
Hn' E yn+l X Sn. The strategy profile (a, T) induces strategy profiles (oI , rIHn) 
and (ao H, TI H), after the histories Hn and H,, respectively. The strategy pair 
(a,T) is a subgame perfect equilibrium if and only if (o I, HTIH) is a Nash 
equilibrium in the game remaining after the history Hn, for all n and all Hn, and 
similarly after any history H,. In order to ensure the existence of an equilibrium, 
we will have to allow the monopolist to mix at any stage of the game. 2 will 
denote her set of behavioral strategies. It should be clear to the reader how to 
extend the above definitions when behavioral strategies are allowed. We will 
henceforth restrict attention to equilibria in which deviations by sets of measure 
zero of consumers change neither the actions of the remaining consumers nor 
those of the monopolist. This requirement reflects our quest for equilibria in 
which consumers act as price takers.7 Since f(-) is monotone, and given the 
measure-zero restriction, there is no further loss of generality in assuming that 
f(.) is left-continuous. 

6 For notational simplicity, we chose to indicate the domain of definition of an to be Yn X n2 and 
the domain of definition of Tn to be yn+ 1 X Qn X I. However, only elements of s2n consistent with 
the restriction that a consumer can accept at most one offer by the monopolist can occur. One should 
restrict the domain of definition of ao and T" accordingly. 

7This restriction may affect the equilibrium set, as demonstrated in Gul, Sonnenschein, and 
Wilson (1986, p. 170). 
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Let qn = m(U>-OQj) be the (Lebesgue) measure of customers who have pur- 
chased. The next lemma, whose proof is given in Fudenberg, Levine, and Tirole 
(1985, Lemma 1), will imply that, along any equilibrium path, the remaining 
buyer valuations are a truncated sample of the original ones. Consequently, the 
single number qn (incompletely) summarizes prior consumer actions. 

LEMMA 2.1: In any subgame perfect equilibrium, after any history Hn, and for 
any current price p, there exists a cutoff valuation /(p, Hn) such that every 
consumer with valuation exceeding 13( p, Hn) accepts the monopolist 's offer of p and 
every consumer with valuation less than /( p, Hn) rejects. 

In general, a buyer's accept/reject decision may depend not only on the 
current price, p, but also on the history, Hn. We define a weak-Markov 
equilibrium to be a subgame perfect equilibrium in which (after histories that 
contain no simultaneous buyer deviations of positive measure; see footnote 9, 
below) the accept/reject decisions of all (remaining) buyers depend only on the 
current price. The set of all weak-Markov equilibria is denoted by the symbol 
Ew(f, z). 

The buyer's strategy in a weak-Markov equilibrium can be described by an 
acceptance function P(-), where consumer q accepts a price p if and only if 
p < P(q). When f (.) is strictly monotone, Lemma 2.1 implies that P(.) is 
nonincreasing. When f (.) has flat sections, P(.) may be nonmonotone. However, 
any consumers who violate monotonicity for P(.) have identical valuations, so by 
permuting them, we may (without loss of generality) assume that P(-) is 
monotone. Since deviations by sets of measure zero of consumers do not affect 
the equilibrium, we further assume (still without loss of generality) that P(-) is a 
left-continuous, nonincreasing function. Thus (after histories that contain no 
buyer deviations), the set of remaining buyers is an interval (q, 1], where 
O<q<1. 

For a given weak-Markov equilibrium, consider the net present value of profits 
to the monopolist after any history for which the set of remaining buyers (except 
for sets of measure zero) equals (q, 1]. Since buyer acceptances depend only on 
the prices which the monopolist will henceforth charge, this value is a function 
R(.) of q only, and must satisfy the dynamic programming equation: 

(2.1) R(q) = max {P(y)(y - q) + 3R(y)}, 
yE[q,1] 

where 8 erz. Observe that P(y) > 0, for y E [0,1), and hence that R(y) > 0 
on the same domain.8 Consequently, (2.1) implies that there are sales in every 
period in any weak-Markov equilibrium, until consumers are exhausted. More- 
over, in the case of "no gap" (i.e., f(1) = 0), sales necessarily occur over infinite 

8In any subgame perfect equilibrium, the monopolist only charges nonnegative prices (Fudenberg, 
Levine, and Tirole (1985, L emma 2)). Thus, a rational consumer y will always accept a price of 
(1 - 8)f(y), as f(y) -(1 - 8)f(y) > kf ff(y) - p}, for all p > 0 and k > 1. Since f(y) > 0 for all 
y E [0,1), this establishes P(y) > (1 - 8)f (y) > 0. 
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time. This is because only nonpositive prices can clear the market entirely and 
because it is suboptimal for the monopolist to ever charge a nonpositive price 
(since P(y) > 0 for y e [0,1)). 

Let T(q) be the argmax correspondence in (2.1) and let t(q) = inf { T(q)}. 
Then the monopolist's equilibrium action when customers (q, 1] remain is always 
to charge a price of P(y), for some y E T(q). Since T(-) is monotone, it is 
single-valued except at possibly a countable set of q. Excluding this set, the 
monopolist's action depends only on the summary statistic q, and in fact is to 
charge the price S(q) P(t(q)). Meanwhile, suppose that the set of remaining 
customers was brought to (q, 1] by an offer of P(q), where q has the property 
that T(q) is single-valued. Buyer optimization requires that consumer q was 
indifferent between the price P(q) and the deferred offer S(q). Consequently: 

(2.2) f (q) - P(q) = 8 [f (q) - S(q)] . 

When T(q) is multiple-valued, the monopolist may now mix among prices in the 
set P(T(q)) P(y): y E T(q)}. A variant of (2.2) still holds, where S(q) is 
replaced by an element of the convex hull of P(T(q)) which has the interpreta- 
tion of expected price. If p-1 was the price charged in the previous period, the 
monopolist should now play a (possibly) mixed strategy such that the expected 
price, p, satisfies: 

(2.3) f (q)-p-1 > 8 [f (q)-p], but 

f (q ) -p-, <8 [f (q') -p], for all q' E-(q,l]. 

Such a mixed strategy justifies the decision of q to purchase in the previous 
period and of all q' E (q, 1] to reject. Proposition 4.3 will demonstrate that 
randomization cannot occur along the equilibrium path except, possibly, in the 
initial period. 

Equation (2.2) and inequality (2.3) establish that it is sufficient for a monopolist, 
in optimizing against consumers who use an acceptance function P(q), to utilize 
a strategy which only depends on q and the previous price P-1i It is convenient 
to restrict attention to equilibria which have this property. We will henceforth 
consider this restriction part of the definition of weak-Markov equilibrium. Note, 
via Proposition 4.3, that requiring the monopolist to condition only on q and 
p- does not affect the players' equilibrium payoffs attainable in weak-Markov 
equilibria. 

Perhaps a more natural Markovian restriction would be to limit the monopolist 
to condition her strategy on the payoff-relevant part of the history, namely q, 
only. Unfortunately, such equilibria (termed strong-Markov equilibria) do not, in 
general, exist (see Fudenberg, Levine, and Tirole (1985)). In fact, if (P, R) is 
associated with a weak-Markov equilibrium and P(-) is discontinuous, it is 
possible to show that randomization is (generically) necessary whenever Pi lies 
in a discontinuity of the range of P(-). 

One final remark: for expositional ease, all of our subsequent definitions, 
theorems and proofs will be phrased in the language of durable goods monopoly. 
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However, all of our results also hold for the bargaining game, provided one 
substitutes "sequential equilibrium" whenever the phrase "subgame perfect equi- 
librium" appears. It should then be understood that if F(v) denotes the (com- 
monly known) distribution function of buyer valuations, F(v)= 1 -y, where 
y = inf { q: f(q) = v }. Furthermore, qn then corresponds to the seller's point of 
truncation, after history Hn, of her prior distribution on the buyer's valuation. 

3. A LINEAR EXAMPLE 

Consider a linear demand example with unit slope and unit intercept, i.e., 
f(q) = 1- q. Let z be the time interval between periods. For this case, Stokey 
(1981) and Sobel and Takahashi (1983) proved the existence of a strong-Markov 
equilibrium in which the monopolist charges a price equalling az(l - q) after any 
history in which all consumers (q, 1] remain, and earns a corresponding profit of 

R(q) = (a/2)(1 - q)2. These authors also showed that limz 0az=0, thereby 
confirming the Coase conjecture. 

We will now indicate how to construct reputational equilibria which yield the 
monopolist, for sufficiently small z, essentially any payoff between zero and static 
monopoly profits. Consider a strategy in which the monopolist follows an 
exponentially descending price path p(t) =poe- t (confined to the grid of times 

(0, z, 2z,... }), as long as no deviation from this rule has occurred in the past, 
and reverts to the strong-Markov equilibrium described above, otherwise. Con- 
sumers adopt strategies which are optimal given this behavior. 

Fix the real-time rate of descent q > 0 to be sufficiently slow that, indepen- 
dently of z, the sales in the initial period are bounded away from zero. For any 
time interval z > 0, let the (equilibrium path) price in period n be Pn p(nz). 
Then, by consumer indifference, the set of consumers remaining after period n 

equals (qnl,, 1], where qn,+ satisfies: f(qn+l) - pn = 8[f(qn+1) - Pn+l] Hence, 
f(qn +l) =pn[(1 - 8e- ')/(1 - 8)]. Since demand is linear, this establishes that 
sales exponentially descend at the same rate 71, and that the price and sales in 
every period are constant multiples of (1 - qn). Consequently, along the equilib- 
rium path, the continuation profits evaluated in any period n > 1 are a constant 
multiple, XZ, of (1 - qn)2. Observe that as the interval z approaches zero, 
consumers purchase at arbitrarily close to the times that they would against a 
continuous-time price path poe-'. Thus, --> X > 0, where X is the constant 
derived from a profit calculation along a continuous time path. 

In every period, the monopolist must weigh continuation profits against the 

payoff from optimally deviating. Any deviation causes the consumers to instantly 
adopt the acceptance function from the strong-Markov equilibrium. Hence, the 

optimal derivation when customers (qn, 1] remain yields profits of exactly R(qn) 
= (az/2)(1 - qn)2. Observe that there exists z1 > 0 such that whenever the time 
interval satisfies 0 < z < zl, we have az/2 < Xz, deterring deviations from the 
continuation path in all periods n > 1. Meanwhile, let ro(,, z) denote the seller's 

equilibrium profits evaluated in period zero. Since limZ,0o(, z) >0, there 

518 
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exists Z2 (0 < Z2 < Z1) such that whenever the time interval satisfies 0 < Z < Z2, we 
have az/2 <0Q(,q, z), deterring deviations in period zero as well. 

Finally, note that limz 1 ogo(, z) = po(l - po) and that static monopoly profits 
equal 1/4. We conclude that by continuously varying the initial price po and the 
rate of descent n, and by making z sufficiently small, every level of profits in 
(0,1/4) can be sustained. 

4. EXISTENCE OF WEAK-MARKOV EQUILIBRIA 

In order to extend the reasoning of the previous section to general demand 
curves, we need to demonstrate two facts which were demonstrated by formula 
for the linear case. We lay this groundwork here and in the next section. First, we 
show the existence of weak-Markov equilibria for general demand curves (see 
also Appendix A). This gives us well-defined secondary paths, reverted to in case 
of deviation from the proposed equilibrium path. Then, in Section 5, we demon- 
strate that these secondary paths become uniformly low (compared to the highest 
valuation remaining) as z approaches zero, enabling them to be effective deter- 
rents. 

We begin by defining general demand curves. 

DEFINITION 4.1: An (inverse) demand curve f is a nonnegative-valued, left- 
continuous, nonincreasing function on [0,11 which, without loss of generality, we 
normalize so that f(O) = 1 and f(q) > 0 whenever 0 < q < 1. 

Using this terminology, we prove the following theorem in Appendix A:9 

THEOREM 4.2 (Existence of Weak-Markov Equilibria): Let f be any (inverse) 
demand curve. Then for every r > 0 and every z > 0, there exists a weak-Markov 
equilibrium. 

This theorem strengthens results by Fudenberg-Levine-Tirole (1985), who 
prove existence for differentiable demand curves with derivative bounded below 
and above, and Gul-Sonnenschein-Wilson (1986), who prove existence for de- 
mand curves with f(l) > 0 that satisfy a Lipschitz condition at 1. For example, 
Theorem 4.2 extends existence to nondifferentiable and possibly discontinuous 
curves with f(l) = 0. It also contains the case where f(1) > 0 but f'(1) is infinite. 
The proof of Theorem 4.2 may be of some general interest, since it uses a version 

9We follow the tradition of Gul, Sonnenschein, and Wilson (1986, pp. 159-160) of not specifying 
equilibrium behavior following simultaneous deviations by consumers. This is formally correct in the 
case of a durable goods monopoly since any such deviation will lead to a rescaled (see Definition 5.2) 
demand curve satisfying the conditions of Theorem 4.2. We can thus specify a subgame perfect 
equilibrium which is played from that node onward. Note, however, that neither of the prior existence 
theorems would guarantee existence of equilibria following (off-equilibrium) nonmonotone purchase 
behavior by consumers. Notice also that in the bargaining interpretation of the model, simultaneous 
deviations are unobservable and, hence, are not an issue. 



520 LAWRENCE M. AUSUBEL AND RAYMOND J. DENECKERE 

of the maximum theorem which does not require objective functions to be 
continuous. In Appendix A, we also establish the following theorem: 

PROPOSITION 4.3: Along any weak-Markov equilibrium path, the monopolist 
does not randomize, except (possibly) in the initial period. 

5. THE UNIFORM COASE CONJECTURE 

In this section, we strengthen the "Coase conjecture" by presenting a theorem 
that guarantees uniformly low prices for all weak-Markov equilibria of families of 
demand curves. 

While the uniform Coase conjecture is of independent interest, we require it 
here as an intermediate step for use in the main result of the paper: the folk 
theorem of Section 6. It should be observed that there is a straightforward reason 
why we did not need to examine families of demand curves to treat the linear 
case in Section 3: given linear demand, every derived residual demand curve is 
linear as well.10 For generic demand curves, however, the residual demand curves 
are no longer rescaled versions of the original one. Thus, considerations of 
subgame perfection lead us naturally to study families of demand curves. We will 
demonstrate, for all residual demand curves arising from a demand curve f, that 
all price paths derived from weak-Markov equilibria are uniformly low compared 
to the highest remaining consumer valuation. This establishes that weak-Markov 
price paths may be used to deter deviation from the main price paths of 
reputational equilibria. 

Define FL, M, a to be the family of ctemand curves which are enveloped by 
scalar multiples of demand curves (1 - q)a, for some positive a. To be precise, we 
have the following definition: 

DEFINITION 5.1: For 0 < M < 1 < L < oo and a > 0, L, M,a is the set of all 
(inverse) demand curves f(t) such that M(1 - X)a < f(x) < L(1 - X)a, for all 
x E [0, 1]. 

The only significant restriction implicit in the definition of ,L M, a is that 
f(1) = 0. Otherwise, the family is very general. It allows, for example, differen- 
tiable demand curves with derivatives bounded above and bounded away from 
zero, demand curves which are not Lipschitz-continuous at 1, and demand curves 
which are severely discontinuous. 

Let us also define a rescaled residual demand curve as a normalized version of 
the demand that remains after any proportion of customers have purchased: 

10 Identical reasoning applies to the case where f(q) = (1 - q)a, considered by Sobel and 
Takahashi (1983). Furthermore, this is the only family that is closed under the joint operation of 
truncation and rescaling (see Definition 5.2). 
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DEFINITION 5.2: Let f be any demand curve. We define fq to be the rescaled 
residual (inverse) demand curve off at q (0 < q < 1) by: 

f[q+(1-q)x] 
fq(X)= f( q) for all x [0,1]. 

LEMMA 5.3: Iff E,L, M,a, then for every q (0 < q < 1), fq =YL/M, M/L,a. 

PROOF: Observe that 

f(q + (1 - q)x) =f(1 - (1 - q)(1 - x)) 

< L(1-q)a(l- x)a 
and 

f(q + (1 - q)x) > M(1- q)Y(1- x)Y. 
Also, 

M(1 - q)a <f(q) < L(1- q)a, 
so 

M f[q+(1-q)x] L 
L(1-x) < f() M(1- x)' L f(q) M 

proving the desired result. Q.E.D. 

Let L = L'/M' and M = M'/L'. Lemma 5.3 demonstrates that if f EFL', M', a 

then all residual demand curves arising from f are elements of 
L, M, . Hence, if 

we can show that the initial price is uniformly low for all demand curves in the 
family L, M, a, then we will also have established that all price paths arising from 
weak-Markov equilibria are uniformly low (compared to residual demand). We 

prove this fact in the following theorem: 

THEOREM 5.4 (The Uniform Coase Conjecture): For every L > 1, 0 < M < 1, 
0 < a < oo and e > 0, there exists z(L, M, a, e) such that for every f E ,L, M, a for 
every z satisfying 0 < z < z(L, M, a, e), and for every weak-Markov equilibrium 
(P, R) E wm(f, z), the monopolist charges an initial price less than or equal to e 
(and earns profits less than e). 

PROOF: See Appendix B. 

A uniform Coase conjecture also holds when f(1) > 0. Consider the family of 
demand curves satisfying f(1) < c and M(1 - x)' <f(x) -f(1) < L(1 - x)", for 
all x e [0,1]. Then an analogous result to Theorem 5.4 holds for this family, 
provided one substitutes "f(1) + e" for the bound on the initial price and profits. 

6. THE FOLK THEOREM FOR SELLER PAYOFFS 

In this section, we prove Theorem 6.4, the main result of the paper. First, let 

SE(f, r, z) denote, for the durable goods monopoly model, the set of all 

monopolist payoffs arising from subgame perfect equilibria when the demand 
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curve is f, the interest rate is r, and the time interval between periods is z. For 
the bargaining game with one-sided incomplete information, the same expression 
denotes the set of all seller payoffs arising from sequential equilibria. Theorem 
6.4 will establish that SE(f, r, z) expands to the entire interval from zero to 
static monopoly profits, as the time interval z approaches zero. Its proof utilizes 
the fact that f E L, M,a has the uniform Coase property, which we now define: 

DEFINITION 6.1: We will say that f has the uniform Coase property if, for 
some zI > 0: 

) there exists a subgame perfect equilibrium (ao, Tr) for all games with 
time interval z between periods, where 0 < z < z1, and, 
for every e > 0, there exists Z(e) (O < ,(e) < Zl) such that S,(q)/f(q) < 

(6.2) e, for all z (0 < z < Z(e)) and all q (0 < q < 1), 
where S,(q) denotes the supremum of all prices that the monopolist charges 
using strategy oz when the current state equals q (the supremum is taken over all 
possible price histories). 

LEMMA 6.2: If f E L, M,a, then f has the uniform Coase property. 

PROOF: Suppose fELM,,,,. Then by Theorem 4.2 there exists (ao,y)e 
Ewm(f, z) for all z > 0. We wish to show that {ao, }, T>0 satisfies (6.2). Observe, 
for any z, that (o, T,) induces a weak-Markov equilibrium for any residual 
demand curve arising from f. Define (az q, ,q) by multiplying all prices in 
(a,, T,) by f(q); observe that (a, q, , q) is a weak-Markov equilibrium for the 
rescaled residual demand curve fq, for all 0 < q < 1. (See Definition 5.2.) 

Using the notation in Definition 6.1, observe that Sz(q) = f(q)S, q(O). Further 
observe, by Lemma 5.3, that fq eL,' M', a where L' - L/M and M' M/L. By 
the uniform Coase conjecture (Theorem 5.4), for every e > 0, there exists Z(e) 
such that the initial price in any weak-Markov equilibrium is less than e, for any 
z (0 < z < z) and any demand curve in L', M, . We conclude that (6.2) holds. 

Q.E.D. 

Fudenberg, Levine, and Tirole (1985) have shown that Sz(q)>,f(l), for all 
q E [0,1), in any subgame perfect equilibrium. Hence, in the case of a "gap" (i.e., 
f(1) > 0), the uniform Coase property cannot hold. Indeed, these authors and 
Gul, Sonnenschein, and Wilson (1986) demonstrated that when f(1)> 0 and 
f(q) -f(1) < L(1 - q), for some L < oo, there exists a (generically) unique 
subgame perfect equilibrium. Obviously, if f E ML, Ma,, there is no gap, and hence 
there is scope for a folk theorem. 

Let p1 denote the price actually charged in period i (0 < i < n - 1). 

DEFINITION 6.3: For any p= (Pn }°0, any q~= {(q)=0, and any monopolist 
strategy a, define the reputational price strategy ( p', q, a) by: 

pn aPn, 
if p= pi and Qi = [qi, i+l] forall i (O < i n - 1), 

(oN, otherwise, 
where the set equality is up to sets of measure zero. 
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We will further call (p, q',) a reputational equilibrium if this reputational 
price strategy, in conjunction with optimal consumer behavior, forms a subgame 
perfect equilibrium. 

Observe that the definition of reputational equilibrium requires that strategy a, 
by itself, be associated with a subgame perfect equilibrium. A reputational 
equilibrium is defined analogously for the bargaining game; note that "q" is then 
omitted. We can now state and prove the main result. 

THEOREM 6.4 (The Folk Theorem for Seller Payoffs): Let f belong to L, M,a 
and let rr* denote static monopoly profits. Then for every real interest rate r > 0 and 
for every e > 0, there exists a z > 0 such that whenever the time interval between 
successive offers satisfies 0 < z < z: 

(6.3) [£, *-£] cSE(f,r,z). 

PROOF: By Lemma 6.2, f has the uniform Coase property. Let { (o, Tz o < z < 
be the family of subgame perfect equilibria guaranteed by (6.1), and let 
{ S)0 < z< be defined as in Definition 6.1. Define the function g(z)= 
sup {Sx(q)/f(q): 0 < x < z and 0 < q < 1). Observe that g(z) is well defined for 
0 < z < zl, since Sz is defined and Sz(q)/f(q) is uniformly bounded above by 1. 
Further observe, by (6.2), that limoz 0g(z) = 0. By definition, qo = 0. Choose 
arbitrary sales q1 in period zero (0 < q1 < 1). Let us define an exponential rate of 
subsequent sales by: 

(6.4) 1 - qn+ = e-naz(rz+g(z))(1 - ql), for any a > 0 and all n > 0. 

Our first step is to construct a price sequence {Pn}n __O which yields sales of 
(qn+i - qn) in period n (for all n > 0). Observe that if 0 < qi < 1, then (6.4) 
implies sales in all periods. To make consumer qn+1 indifferent between purchas- 
ing at price p, in period n and at price Pn+ 1 one period later, we must have: 

(6.5) f(qn+l) -Pn = 8[f(qn+) -Pn+l], for all n > 0, 

where 8 = e-rz. Solving for Pn and telescoping the resulting summation yields: 
00 

(6.6) Pn = (1-8) E 8 (qn+l+k), n > O. 
k=0 

Furthermore, the price sequence p- { pn }n° implied by (6.4) and (6.6) satisfies 
f(qn+ 1) >--Pn (for all n > 0) and equation (6.5), proving that consumers optimize 
along the sales path q-- { qn }n=1' 

CLAIM 1: For any ql (0 q < 1<l), there exists a> 0 and i> 0 such that 
(, q, z) defined by (6.4) and (6.6) is a reputational equilibrium for all z 
satisfying 0 < z < z < z1. 

PROOF OF CLAIM 1: Let Tn denote profits starting from period n if the price 
path p is followed in all periods. Define m to be the least integer greater than 

523 



LAWRENCE M. AUSUBEL AND RAYMOND J. DENECKERE 

I/z. Certainly z,1 3", , - , Observe that m 1 = eq(-mq1)rz 
- e 

and, by (6.4), qn+ - qn = (1 - qn) - (1 - qn+ ) 1 (1 - qn)(1 - e a(rz+g(z))) for 
all n > 1. Meanwhile, by (6.6), Pn±m ~ (1 - > 1f(qn±2m) 
(1 - S)Fk=0 k (1 - e r)f(qn+·2). Hence: 

(6.7) 
- 

( 
-ar +gz) 

and by similar reasoning, 

(6.8) >n q,po -> q(( - e- r)f(qm). 

Now, let Trn denote profits starting from period n if (az, TJ) is followed. Let q 
(0 < q < 1) denote a customer and let Pq denote the price at which customer q 
purchases, according to (az, rT). Let p4 denote the next (expected) price charged 
after Pql following aq. Observe by the definition of g(z) that p4 g(z)f(q). By 
consumer optimization, f(q) - Pq  3[f(q) - p41. Together these inequalities im- 
ply pq < [1 -38 +3Sg(z)]f(q), for all q (O q < 1), and so: 

(6.9) nz <[1-3±3g(z)J ff(q)dq, for all n > 0. 

Observe that the bound of (6.9) is a consequence of the uniform Coase property, 
but does not follow from the ordinary Coase conjecture. 

Let a = (8L/M)[e-r(1 - e -)] -. To prove subgame perfection, we must show 
that r,, g g,,Z, for all n > 0. Observe that there exists z2 such that for all z 
(O < z < z2): 1 - e a[g(z)±rz]> (a/2)[g(z) + rz]. Hence, (6.7) implies that 7n,, > 

4(L/M)(g(z) + rz)(1 - qn)f(qn±2m) for all n > 1 and 0 < z < z2. Since qn < 

qn±2m < 1 and f is monotone nonincreasing: 

J1f (q) dq < (qn±2m - qn)f (qn) ± (1 - q+mf(n2) 

Observe that JE.L, m, implies f(q) < (L/M)1 -f(q') whenever (1 - q')l 
(1 - q) = f. By (6.4), (1 - qn 2m)/(1 - q) = fi(z), for all n, where limz, P0(z) 
= 1. Consequently, there exists z3 > 0 such that f(qn) (2L/M)f(qn±2m), and 
hence J~f(q) dq < (2L/M)(1 - q )f(q,,,), for all n > 1 and for all z (0 < z < 

z3). Finally, there exists z4 > 0 such that [1 - 3 + 3g(z)] < 2[g(z) + rz] for all z 
(O < z < z4). Hence, for all z satisfying 0 < z < minm zl, z2, Z3, z4 and for all 
n > 1, we have by (6.9) that r > Itnz. It can easily be shown that we may set F so 
that ?t,> iroz for all z (0 < z < Z) as well. 

CLAIM 2: For any q (O < q < 1) and any X (O < X < 1), there exists i > O such 
that for every z (0 < z < Z), there is a reputational equilibrium with profits at 
least Xqf(q). 

PROOF OF CLAIM 2: Set q, = v/Kq. Define m to be the least integer greater 
than -log(1 - VK )/rz. (Observe that e -rz =1 - 1K.) Now define {q qn=2 
by (6.4). Then for arbitrary a> 0, there exists z5 such that for every z 

(O < z <z5), qm < q. By (6.6), Po > (1 - S)Em J3kf(qk 1)> (1) - "m)f(qm) 
 [1 - (1 - K)]f(q) = v'Kf(q), whenever 0 < z < z5. Hence, T0 > p0ql > Xqf f(q). 
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Using Claim 1, there exists z > 0 such that ( p, q, oz) defined using ql =- VXq, 
(6.4) and (6.6) is a reputational equilibrium, for all z (0 < z < ), proving 
Claim 2. 

REMAINDER OF PROOF OF THEOREM 6.4: Given any ql, let the quantity path q 
be defined by (6.4), let the price path p be defined by (6.6), and let T(q1, z) 
denote the profits associated with q and p. Then: 

00 00 

(6.10) r(ql, z) = E kr(qk+l 
- 

qk)Pk = ql + E (qk+l- qk)Pk. 
k=O k=l 

Suppose q[ > ql, and define q' and p' analogously. Observe, by (6.4), that 
q+1 -q < fqk+ l -- qka for a 1, d byll k >O. 
Hence, using (6.10), 7r(q, z) < r(ql, z) + Iq - qll. Define r(ql, z) = 

sup { r(q, z): 0 < q < ql}. Observe that X is monotone nondecreasing in ql and 
also satisfies (q', z) < f(ql, z) + Iq - qll. Thus, X is continuous in ql, for any 
z> 0. 

Let r* = supo q qf (q) and choose q* so that qr* = q*f(q*). Given e (0 < e 
< 7r*), define X = [7r* - £]/7r*. By Claim 2, there exists z6 > 0 such that there 
exists a reputational equilibrium with profits at least XTr* = r* - e whenever 
0 < z < z. Also, using (6.10), observe that limoz r(0, z) = 0, and so there exists 
z7 > 0 such that 7r(0, z) < e whenever 0 < z < z7. Finally, by Claim 1, there exists 

8 > 0 such that (pq, ', ) defined from q = 0 is a reputational equilibrium 
whenever 0 < z < Z. 

Define z = min {, z, z, Z }. Then for any z satisfying 0 < z < z, 7r(0, z) < e and 
r(v/Xq*, z) > I* - e. Furthermore, we have already shown that 7rT > rz for 

0 < z < z and n > 1, so (ip, ', ao) is a reputational equilibrium for all q1 that yield 
%o > rT(0, z). Finally, since 7(ql, z) is continuous in ql, the set { T(ql, z): 0 < ql < 

/X-q* and 7r(ql, z) > r(0, z)} is an interval. Since e and r* - e are both 
contained in that interval, we have established (6.3). Q.E.D. 

7. CONCLUSION 

Consider the outcome of durable goods monopoly (or bargaining) when the 
time interval between successive periods approaches infinity. In this situation, the 
monopolist (seller) has close to unlimited commitment power, and thus her 
maximum equilibrium payoff approaches static monopoly profits. Meanwhile, as 
we demonstrated in the Folk Theorem, the same outcome is attainable in the 
limit as the time interval between periods approaches zero. We conclude that the 
"maximum possible seller surplus" is minimized at some intermediate time 
interval-let us call this the time interval of least commitment. 

We explain this phenomenon as the result of two countervailing forces. When 
the time interval between periods is short, reputational effects may be devastat- 
ingly effective in preserving monopoly power. When the time interval between 
periods is long, reputational effects are superfluous. The most adverse circum- 
stance for the monopolist may be when the time interval is just long enough to 
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preclude reputational equilibria (but still sufficiently short that the inability to 
commit is a problem). 

Let us also explain the somewhat unexpected discontinuity in the equilibrium 
set, based on whether or not there is separation between seller and buyer 
valuations. Fudenberg, Levine, and Tirole (1985) demonstrated that in the case of 
a "gap" between seller and buyer valuations (and subject to some regularity 
conditions) there is a uniform finite bound to the number of periods in which 
sales can occur in any subgame perfect equilibrium. Backward induction then 
forces subgame perfect equilibria to be Markovian, and the Coase conjecture 
drives the initial price near the lowest buyer valuation. However, in the case of 
"no gap" treated here, sales necessarily occur over infinite time. There is no last 
period from which to apply backward induction, and reputation supports equilib- 
ria which approximate static monopoly pricing. 

We can also draw an interesting comparison between the present monopoly 
model and the analogous oligopoly model (Ausubel and Deneckere (1987) and 
Gul (1987)). Folk theorems for joint profits hold in the durable goods oligopoly, 
even when there is a "gap," because oligopolists can extend sales over infinite 
time. This defeats monopoly results driven by backward induction. Moreover, the 
oligopolists' joint profits may exceed the monopolist's theoretical maximum 
(when the time interval between periods is short), since Bertrand competition is a 
more severe " punishment" than Coase pricing. 

A limitation of the present analysis is that our Folk Theorem is only stated in 
terms of seller payoffs, and that we examine a model where only the uninformed 
party makes offers. We extend our results to buyer payoffs and to other extensive 
forms in a sequel (Ausubel and Deneckere (1989)). In particular, there is a folk 
theorem for seller payoffs in the alternating-offer game if and only if the (lowest) 
monopoly price does not exceed one-half the highest buyer valuation. 

Department of Managerial Economics & Decision Sciences, J. L. Kellogg Gradu- 
ate School of Management, Northwestern University, Evanston, IL 60208, U.S.A. 
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APPENDIX A 

EXISTENCE OF WEAK-MARKOV EQUILIBRIA 

DEFINITION A.1: Let P(.) and R(.) be left-continuous functions on [q,1], where 0 q- < 1, and 
let P(.) be nonincreasing and nonnegative. We will say that (P, R) supports a weak-Markov 
equilibrium on [q, 1] for (inverse) demand curve f(-) if equations (2.1) and (2.2) are satisfied for every 
q E [ q, 1). 

We have already argued in Section 2 that if (P, R) is associated with a weak-Markov equilibrium, 
then (2.1) holds for all q E [0, 1] and (2.2) is satisfied at all continuity points of t(.) in [0,1]. The 
left-continuity of f(-), P(-), and t(-), and the monotonicity of T(.), imply that (2.2) must hold 
everywhere. Conversely, suppose (2.1) and (2.2) are satisfied for all elements of [q, 1). Then if the state 
q E [q,1) and if the previous price, P-1, was in the range of P(.), we specify a weak-Markov 
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equilibrium by requiring that all consumers y accept if and only if P(y) p_l and that the 
monopolist charge S(q') in the next period, where q' = sup {y E [q, 1): P(y) >P-1 }. If P-1 was not 
in the range of P(.), consumers accept using the same rule, but the monopolist randomizes in the next 
period between sup P(T(q)) and inf P(T(q)) in such a way that the expected price, p, satisfies (2.3). 
That such a randomization is possible can be demonstrated using (2.2). 

LEMMA A.2: Suppose that (P, R) supports a weak-Markov equilibrium on [q,1]. Then R(-) is 
decreasing and Lipschitz continuous, satisfying: 0 < R(ql) - R(q2) < q2 - ql, whenever q < q1 << q2 1. 

PROOF: Observe that R(ql) > [t(q2)- ql]P(t(q2)) + 8R(t(q2)) > [t(q2) - q2]P(t(q2)) + 
8R(t(q2)) = R(q2), since P(x) > (1 - 8)f(x) > 0 for all x E [q, 1). Meanwhile, define tl(ql) = t(ql), 
t2(ql)= t(t(ql)), etc. Then the monopolist, starting from q2, has the option of selecting a sales path 
equal to max {q2, tk(q)}, for k = 1,2,3,.... This assures R(q2) > R(ql) - (q2 - ql). Q.E.D. 

LEMMA A.3:11 Suppose that (P7, Rq) supports a weak-Markov equilibrium on [q, 1], where 0 < q < 1. 
Then there exists (P, R) which supports a weak-Markov equilibrium on [0,1], with the property that 
P(q) = Pq(q) and R(q) = R(q) for all q E [q, 1]. 

PROOF: We proceed constructively. Let q' = max {0, - (1 - 8)Rq(q)/2). Observe that q< 1 
implies R(q) > 0 and so q' < q. Let us extend Rq(-) to Rq,(-) defined on [q',1] by: 

(A.1) Rq,(q) = maxy[q,1n[ 1] { [y - q]Pq(y) + 8R,(y) , 

and define tq,(q) to be the infimum of the argmax correspondence of (A.1). Also extend Pq(') to 

Pq,(.) defined on [q',1] by: 

(A.2) Pq,(q) = (1 -8)f(q) + 8Pq(t,(q)). 

It should now be observed that (Pq,, Rq,) satisfy: 

(A.3) Rq,(q) = maxy[q,l] {[y-q]Pq,(y) + 8R,(y)), for all qE [',1], 

using (A.1) and the fact that, for v E [q, q], [v - q]P,(v) + 8Rq,(v) < (1/2)(1 - 8)R(q) + 8Rq,(v) 
< (1/2)(1 - 8)Rq-(q) + 8Rq,(q) < Rq,(q). Thus, (Pq, Rq,) supports a weak-Markov equilibrium on 
[4',1]. A finite number of repetitions of the above argument extends (Pq, R) to the entire unit 
interval. Q.E.D. 

We will now introduce some notation and state a result which we use in proving Theorem 4.2. Let 
X and Y be compact, nonempty subsets of R. Let J, (n = 1,2,...) and J: X-. Y be upper 
semicontinuous functions. Define R(Jn) = max { J(x): x E X}, and T(Jn) = x E X: Jn(x) = R(Jn)}, 
and similarly for R(J) and T(J). Also define: J.(x)=conv{y: y=lim,_o J(x,), for some 
(x, )_1l c X such that xi-, x}; G(Jn) = graph of J.; and B,(J) = {(x', y') E XX Y: II(x', y') - 

(x, y)ll < e for some (x, y) E G(Jn)}. Finally, define: 

(A.4) p(J,J) = inf{e>0: G(J) c B(Jn) andG(J,,) c B(J)}. 

We may now state a generalization of the theorem of the maximum which does not require 
continuity of the objective. A proof may be found in Ausubel and Deneckere (1988): 

THEOREM OF THE MAXIMUM: Suppose Jn () and J( ) are upper semicontinuous functions from X into 

Y, and suppose limn,,_ p(J, J.) =0. Then limn.o R(J.)= R(J) and any cluster point from 
{T(Jn)}= 1 is an element of T(J). 

We are now ready to prove the following theorem: 

11 This lemma builds on Fudenberg, Levine, and Tirole (1985, Lemma 3) and Gul, Sonnenschein, 
and Wilson (1986, Lemma 5). 
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THEOREM 4.2 (Existence of Weak-Markov Equilibria): Let f be any (inverse) demand curve 
satisfying Definition 4.1. Then for every r > 0 and every z > 0, there exists a weak-Markov equilibrium. 

PROOF: Consider the sequence of demand curves: 

f/(q) if 0 q (n -1)/n, 
nq) (n - nq)f((n-1 )/n)+ (1-n+ nq)f(l1), if (n - 1)/n < q l1. 

Observe that f, and f differ only on ((n - )/n,1] and that, for every n, f, is linear on the latter 
interval. Hence, one can explicitly calculate a linear-quadratic pair (P,, R,) which supports a 
strong-Markov equilibrium on [(n - l)/n, 1] for f,. (See Section 3.) By Lemma A.3, this pair can be 
extended to (P,, R,) which supports an equilibrium on the entire unit interval. 

Without loss of generality, we may assume that { Pn },L converges pointwise for all rationals in 
[0,1]. (This can be assured by taking successive subsequences and applying a diagonal argument.) For 
every rational r E [0,1], let ¢ (r) = limn,, P(r). Define P(0) = (0) and, for every x E (0,1], define 
P(x) = limk (Io (rk), where each rk is rational and rk Ix. Observe that P(-) is well-defined, 
nonincreasing, and left continuous. Without loss of generality, we may also assume that { R,, }°° 
converges uniformly to a continuous function, which we denote by R(.). (This is made possible by 
Lemma A.2, which implies that { R,n} =l is an equicontinuous family which thus has a uniformly 
convergent subsequence.) The remainder of the proof will establish that the constructed (P, R) 
supports a weak-Markov equilibrium on [0,1] for the (limit) demand curve f. 

Define Jn(q, y) = [y - q]P,(y) + 8Rn(y) and J(q, y) = [y - q]P(y) + 8R(y). Also define T,(q) 
=argmax{J,(q, y): y [q, 1]} and T(q) analogously. Finally, let tn(q)=inf T(q) and t(q)= 
inf T(q). We will now argue that p(J(q, *), J,(q, .)) -- 0. The theorem of the maximum is then 
applicable, establishing that (2.1) is satisfied, for all q e [0,1]. 

Select arbitrary e > 0. Cover the closure of G(P) with e/5-balls. Take a finite subcover, denoting 
the centers (x,, P(xi)),lj, where x, < x,+ for all i I. By the definition of P(.), there exist 
rationals {y, },E, such that ly, - x,I < E/5 and I (y,) - P(xi)I < e/5. Furthermore, there exists N1 
such that for all n > Nl, and all i E I, IP,(y,)- ((y,)I < e/5. Hence, the distance from (y,, Pn(y,)) 
to (x,, P(x,)) is less than 3e/5, and so the E-ball centered at (y,, Pn(y,)) contains the e/5-ball 
centered at (x,, P(x,)), for all i e I. Consequently, B(P,,) D G(P), for all n > N1. 

Consider any consecutive xi, xi+1. Note that 0 < x,+ - x , x < 2/5, and: 

Pn,(y,) < P(xi) + 2/5, and 

Pn (y, + 1) > P(Xi+) 
- 2E/5. 

Let us observe that for every v [P(x,+l), P(x,)], there exists w(v) [x,, x,+] such that v E 
P(w(v)). Consequently, the union of all e-balls around the points {(w(v), v): v e [P(x,+l), P(x,)]} 
covers the rectangle D {(y,v): x, - E/5 <y<x,1 + /5 and P(x,+l) - 2/5 < P(x,)+ 
2c/5}. Using (A.5), note that (y,, P,(yi)) D and (y,,+, P,(y, +)) D. By the monotonicity of 
P,(-), it follows that G(P,) c B,(P), demonstrating that p(P, P,) < E for all n > N1. 

Since Rn -- R uniformly, there also exists N2 such that for all n > N2, p(R, R,) < e. Using the fact 
that Iy - ql < 1, we conclude that p(J(q, ), J,(q, )) < 2e, for n > max{Nl, N2}. Consequently, the 
hypothesis of the theorem of the maximum is satisfied, so (2.1) holds for all q E [0,1]. 

It remains to be argued that (2.2) is also satisfied. Consider any q E[0,1] where t(-), P(-), and 
P(t(.)) are continuous. Observe that each of these functions is monotone: hence this restriction 
excludes at most countably many points. First, the theorem of the maximum implies that every cluster 
point of {t,(q)})=L is an element of T(q). Now T(-) is single-valued at q since t(-) is continuous: 
hence limn,,_ t,(q) = t(q). Second, observe from the definition of P(-) that P(-) is continuous at q 
if and only if (-.) is continuous at q. Let p be any accumulation point of { P(q)}=l1 and let rk T q 
and Sk i q be sequences of rationals. Then, for all k, Pn(rk) > P,(q) > Pn(k), and hence 4p(rk) >p > 

4(sk). The continuity of 0(-) implies p is unique and p = limk -_. (rk)- P(q), demonstrating 
that lim,n Pn(q) = P(q). Third, since t(.) and P(t(.)) are continuous at q, P(.) is continuous at 
t(q) and, hence, 4(.) is continuous at t(q). Let p' be any accumulation point of { P(t f(q))}= 1 and 
let rk' T t(q) and sk J t(q) be sequences of rationals. Observe that for every k > 0, there exists N(k) 
such that tn(q) E (rk, sk) for all n > N(k). Consequently, P.(r') > Pn(t.(q)) > Pn(s'), for all n > 
N(k), and 0(rk) > p'> 4(s)), for all k. As before, we can conclude lim n Pn(tn(q)) = P(t(q)). 
Finally, by our construction of f,n(), f - f uniformly, and so lim_n fn(q) =f(q). Observe now 
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that since (P,, R,) supports a weak-Markov equilibrium for f,, we have for each n: 

(A.6) fn (q) - P (q) = 8[fn,(q) - P,( tn (q))]. - 

By taking limits as n - 0oo, we see that (2.2) is satisfied for all but (possibly) countably many q. 
Now consider any of the (at most countably many) excluded q (0,1]. Select a sequence of 

nonexcluded qk such that qk T q. Since (2.2) is satisfied for all qk and since f,,(), P,(-), and 
P,(t (.)) are left-continuous, we conclude that (2.2) is satisfied for q as well. This completes the proof 
of the theorem. Q.E.D. 

Finally, we obtain the following proposition: 

PROPOSITION 4.3: Along any weak-Markov equilibrium path, the monopolist does not randomize, 
except (possibly) in the initial period. 

PROOF: Suppose otherwise. Then there exists a history after which the state is q and the 
monopolist randomizes among elements of P(T(q)) to yield an expected price p2 < pl = sup P(T(q)). 
Define p' by f(q) - ' = 8[f(q) - p], i= 1,2. By (2.2) the price in the previous period must have 
been p . We now claim that P(q) > p, showing that the monopolist could have profited by setting pl 
instead. To see this, first observe that T(.) is a monotone increasing correspondence and so P(T(.)) is 
a nonincreasing correspondence. Next, let qn be such that qn I q and P(T(q,)) is single-valued. Then, 
using (2.2): P(q) = limn o P(q) = limn0 [(1 - 8)f(qn) + 8S(q)] > (1 - 8)f(q) + 8p1 =pl, es- 
tablishing the proposition. Q.E.D. 

APPENDIX B 

THE UNIFORM COASE CONJECTURE 

PROOF OF THEOREM 5.4: Suppose not. Then there exist > 0, a sequence {f, }n=1 cL,MN,a a 
sequence of positive numbers { z, }=l - 0, and a sequence of weak-Markov equilibria { P, R, }=1 
such that the initial price S.(0) > E for all n > 1. Construct (P, R) as in the proof of Theorem 4.2. Let 
y = inf{r: P(r) < E}. By left continuity, P(y)> E, but P(r) < e for every r>y. Recall that any 
weak-Markov equilibrium has sales in every period; hence S (0) > E implies P.(0) > E for all n. But 
since Pn is monotone and fn(q) < L(1 - q)a, we have P(1 -(e/2L)l/a) f(!l - (e/2L)1/a) < E/2, 
for all n > 1, implying that 0 < y < 1. 

Case I: Suppose R(y) > 0. 
Since Rn --R uniformly, there exists a rational q (y< q<l) and an integer nl such that 

Rn(q) > R(y)/2, for all n > ni. Since q > y, P(q) < e, so there exists o > 0 and integer n2 such that 
Pn(q)< e - for all n > n2. We will establish a lower bound on the real time t before which the 
price can drop by o, in equilibrium, and hence before which consumer q purchases. Consumer 0 
prefers to purchase at the initial equilibrium price, which is at least e, to buying at a price below E - C 
at time t, so 1 - E e-> t[ - (E - w)], or e-r < 1 - wo/(1 - e + O). This gives an upper bound on the 
profits attainable by the monopolist: 

(B.1) Rn()< )fP(x)dx+e-rtR (q), for all n> n2. 

Choose any integer m. Then for any consumer reservation price function P., the monopolist may 
charge prices (m - l)/m,(m - 2)/m,.., l/m, respectively, in the first (m - 1) periods. This earns 
the monopolist within 1/m of all "available surplus," within a factor e-(m-2)z of discounting. Hence 
R,(0) > e-r(m -2)z{ foPn(x) dx - 1/m}. Since z, -- 0, there exists n3(m) such that rzn < 1/m2 for all 
n > n3(m), and so: 

(B.2) Rn (O) > e-l/m Pn (x) dx-l/m), for all n > n3(m). 
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Since 0 < R(y)/2 < R,(q) for all n > nl, there exists an integer m such that (B.1) and (B.2) are 
contradictory for n > max (nl, 2, n3(m)}. 

Case II: Suppose R(y) = 0. 
By hypothesis, (Pn, Rn) is a subgame perfect equilibrium for all n. Suppose that, in the initial 

period, the monopolist chooses to deviate by charging a price of e/2. This defines a subgame. We will 
show that, for sufficiently large n, the posited behavior under (P, R,) in this subgame cannot be 
optimal for both the monopolist and consumers. 

Observe that any weak-Markov equilibrium has sales in every period; hence P,(O) > e for all n. 
Customer 0 is optimizing when he purchases at price e/2, so he must believe that the price will not 
drop rapidly thereafter. In particular, let t, be the first (real) time in which the price will drop below 
e/4. Then 1 - E/2 > e-rt"[l - e/4]. Letting e-' = (1 - e/2)/(1 - e/4), we have t, < t for all n. Thus 
a price less than or equal to e/4 is not charged until at least time t. 

Recall that y has been defined so that P(y) > e. Therefore, there exists a sequence of rationals 
yn t y such that P,(y,) > E/2 for all n. For arbitrarily chosen z > 0, there exists n1 such that z, < z 
for all n > i. Since R(y)=O, R,-* R uniformly, and Yn -y, there also exists n2 such that 
R,(yn) < (1/4)eze-'t for all n > n2. Write n for max{(n, n2}. Meanwhile, let m be the greatest even 
integer less than t/z. Let pl,...,Pm denote the first m prices charged by the monopolist along a 
subgame arising after the monopolist charges an initial price po = e/2. (When a mixed strategy is 
called for in period 1, let p, be the largest price which the monopolist randomizes over.) Observe that 
Pm > e/4. Following Gul-Sonnenschein-Wilson (1986), let a, = E/2 - (2i/m)[/2 -Pm] for 0 < i 
m/2. Define an alternative sequence pO,..., Pm/2 by p[ = min a,, p, } (for 0 < i < m/2). Observe 
that, by following p6..., Pm/2, the monopolist "does not lose time" on any sale and loses at most 
2(po -pm)/m on each sale. Furthermore, since Rn(yn) < (1/4)Eze-rt and since each sale before time 
t is at a price greater than e/4, the total number of customers sold to at Pl,..., pm is less than z. 

Let Vn denote the net present value of profits from following the equilibrium price path 
Pi, P2, P3, . after a price Po = e/2 was charged. Let VI' denote the value from following p{,..., P/2 
in the first m/2 periods and then continuing optimally. Let VI" denote the value to the monopolist of 
playing optimally, beginning in the period after a price Pm is charged. Then: 

Vn - Vn > [e-rt/2 - e- ]VJ" - (2/m)( po -p)z. 

We now place a lower bound on Vi'. Observe that, in the period after pm is charged, customer 
1- (e/4L)l/a remains in the market, since by the upper bound on f,: P,(1 - (e/4L)l/a) <f,(1 - 
(e/4L)1/") < e/4. Meanwhile, customer 1- (e/4L)/a/2 prefers to purchase at a price of [1- 
e-rz]f(l- (e/4L)i/a/2) this period to purchasing at a price of zero next period. By Defini- 
tion 5.1, f,(l - (/4L)l/a/2) > M[1-(1-(e/4L)/a/2)] =M(e/4L)2- . Hence, a price of 
(M/2a)(E/4L)(1 - e-) induces all customers in the interval [1 - (/4L)a,1 - (E/4L)1/a/2] to 
purchase, so V,', > [1 - e-rZ](M/21 +a)(/4L) +(/a). 

Recall that (po - Pm) < e/4 and m = t/z. Hence, for sufficiently small z (and the implied n): 

Vn, - Vn > (e-rt/2 _ e-rt)(1 - e-rz)( M/21 + a) (e/4L)l +(l/a) - (e/3t)z 
2 

(1-- e-rz){(e-rt/2- e-rt)(M/21+a)(e/4L)l+(l/a) 

-(e/3t)(z2/(1- e-rz))} 

Since lim 0 (z2/(1 - e-rz))= 0, Vn' - Vn > 0 for sufficiently small choice of z. This contradicts our 
hypothesis that, for all n, (Sn, P,) is a subgame perfect equilibrium. Q.E.D. 
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