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Summary. We analyze economies with indivisible commodities. There are two
reasons for doing so. First, we extend and provide some new insights into sunspot
equilibrium theory. Finite competitive economies with perfect markets and convex
consumption sets do not allow sunspot equilibria; these same economies with
nonconvex consumption sets do, and they have several properties that can never
arise in convex environments. Second, we provide a reinterpretation of the
employment lotteries used in contract theory and in macroeconomic models with
indivisible labor. We show how socially optimal employment lotteries can be de-
centralized as competitive equilibria without lotteries once sunspots are introduced.

1 Introduction

The allocation of resources in the presence of nonconvexities can be an important
and complicated problem. Indeed, King Solomon made his name by proposing a
mechanism to solve one such problem. In this paper, we analyze economies with
indivisible commodities, with two main objectives. First, we extend and provide
some new insights into theories of “sunspot equilibria,” theories that examine how
extrinsic uncertainty can affect the economy’s resource allocation process and
welfare, where uncertainty is said to be extrinsic if it in no way affects the
fundamental structure of the economy (that is, its preferences, endowments or
technology). Second, we provide a reinterpretation of “employment lotteries,”
devices that have been used in contract theory and in macroeconomics to allocate
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and the University of Pennsylvania Research Foundation for research support. The views expressed
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2 K. Shell and R Wright

resources in economies with indivisible labor. Tt turns out there is a close connection
between sunspots and lotteries; in particular, if competitive markets are designed
to accommodate aggregate extrinsic uncertainty, there is no need for agents to use
individual randomization devices like lotteries.

In terms of its relationship to the sunspot literature, this work continues the
program of characterizing environments in which extrinsic uncertainty plays a role.
In (strictly) convex economies, it is well known that: (1) finite economies with
complete and unrestricted markets and competitive behavior do not allow
equilibria in which sunspots matter; (2) allocations that depend nontrivially on
sunspots are never Pareto optimal; (3) equilibria in economies without extrinsic
uncertainty always reappear, once extrinsic uncertainty is introduced, as degenerate
sunspot equilibria." There has been less work on nonconvex settings. Cass and
Polemarchakis (1990) argue that finite, competitive economies with complete,
unrestricted markets but nonconvex production sets cannot have nondegenerate
sunspot equilibria. Guesnerie and Laffont (1987) and Pietra (1991) consider
nonconvex preferences, and do have examples that contain nondegenerate sunspot
equilibria and no degenerate equilibria, and also show that these nondegenerate
sunspot equilibria can be Pareto optimal.

We study finite competitive economies with complete and unrestricted markets,
convex preferences and technology, but nonconvex consumption sets.2 We show
that: (1) these economies can have nondegenerate sunspot equilibria; (2) sunspot
equilibria in these economies can be Pareto optimal and can even dominate
certainty equilibrium allocations; (3) equilibria in the economy without sunspots do
not necessarily reappear as degenerate sunspot equilibria when extrinsic uncertainty
is introduced. These contrast with results (1)-(3) above for convex economies
(although they are similar to the results for the case of nonconvex preferences).
Additionally, in contrast to much of the existing literature, instead of prespecifying
the probability distribution of sunspots, we solve for it as part of our equilibrium
concept and we analyze the “stability” of sunspot equilibria with respect to
generalizations of the exogenous uncertainty and with respect to cooperative
agreements among the agents.

These results led us to explore the connection between sunspots and the
employment lotteries used in macroeconomics by Rogerson (1984, 1988), Hansen

! See Cass and Shell (1983, 1989). It is also well known that sunspots can matter in some infinite horizon
economies, including overlapping generations models (e.g., Shell 1977, Azariadis 1981), and 1n economies
with incomplete markets (Cass 1984), iquidity constraints (Woodford 1986), limited participation (Cass
and Shell 1983), or imperfect competition (Peck and Shell 1991). Note that, in this paper, we restrict
attention to economies without private information; Cole (1989) provides an example of a finite, convex,
private information economy in which extrinsic uncertainty can play a role, although he does not relate
his example to the sunspot hterature.

* To be more precise about what we mean by a finite economy, some of our examples may have a
continuum of agents, but the commodity space 1s always finite dimensional at least before the introduction
of sunspots. However, if we were to introduce extrinsic uncertainty by way of a continuous random
variable, for example, then the commodity space after the introduction of sunspots would be infinite
dimensional. To be more precise about preferences and consumption sets, when we say utility functions
are concave we mean they are defined as concave functions on the convex hull of the consumption set.
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Indivisibilities, lotteries, and sunspot equilibria 3

(1985), Greenwood and Huffman (1987, 1988), Hansen and Sargent (1988), Rogerson
and Wright (1988), and others (see Prescott 1986 and Lucas 1987 for discussions of
the relevance for modern business cycle theory). In these models, labor is indivisible
and is allocated randomly by lotteries, as in versions of the Azariadis (1975)-Baily
(1974) labor contract model that assume indivisible labor or some other non-
convexity.? Furthermore, these lotteries are similar to those used in the private
information economies of Prescott and Townsend (1984a, 1984b) and Townsend
(1987) where opportunity sets can be nonconvex due to incentive constraints, and
the nonconvex economies studied by Hyland and Zeckhauser (1979), Pratt and
Zeckhauser (1983), and Bergstrom (1986).

This literature can be interpreted as studying optimal randomized allocations,
or socially optimal lotteries. We demonstrate here how to decentralize these
allocations as competitive equilibria with sunspots. In particular, in a version of the
environment originally specified by Rogerson (1984, 1988), we support the optimal
randomized allocation as a competitive equilibrium with complete contingent
commodity markets and extrinsic uncertainty. It seems useful to make explicit this
close relationship between lotteries and sunspot equilibria, especially in the context
of a standard model like the indivisible labor economy. Furthermore, there is an
advantage to supporting these allocations as sunspot equilibria, rather having
agents use lotteries, as in Rogerson. The advantage is that our technique can work
with a finite number of agents, since we do not need to appeal to any law of large
numbers, as Rogerson does. One interpretation of this is that sunspots can act as
a signaling device to coordinate individual actions as well as a randomization device
to convexify opportunity sets.

The paper can be summarized as follows. In Sect. 2 we examine pure exchange.
We show in a simple two agent example that nondegenerate sunspot equilibria exist
and can Pareto dominate the certainty equilibrium allocation, and that the latter
does not survive as a degenerate sunspot equilibrium once extrinsic uncertainty is
introduced (Proposition 1). We generalize this to N agents and show how to
construct sunspot equilibria with a minimal number of states (Proposition 2). We
then look for equilibria with different distributions of the extrinsic uncertainty.
There can be many distributions consistent with different equilibria with different
welfare properties; but if we assume the distribution is continuous then there is at
most one equilibrium (up to a relabeling). The allocation supported by this
equilibrium is also the unique core allocation that survives replication (Proposi-
tion 3). In Sect. 3 we study the indivisible labor economy. It has a unique certainty
equilibrium that is optimal with respect to the set of certainty allocations, but can
be dominated in expected utility terms by an allocation with employment lotteries
(Rogerson’s result). We construct a nondegenerate sunspot equilibrium that

3 In spite of much early confusion 1n the labor contract literature, random layoffs do not require
differences 1 risk aversion between employers and workers, nor do they require intrinsic uncertainty
(like technology shocks) at all. The standard contract model does have stochastic shocks as well as
differential attitudes towards risk, but the random layoffs result from nonconvexitics and not from these
assumptions. See Burdett and Wright (1989) for further discussion.
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4 K. Shell and R. Wright

supports this allocation (Proposition 4), and also show how to reduce the
distribution of extrinsic uncertainty to the minimal number of states. In Sect. 4 we
conclude.*

2 Indivisibilities and sunspots in pure exchange

There are K goods and the commodity space is R¥. However, some of the goods
may be indivisible. To say x, is indivisible means that it must either be consumed
in a single unit or not at all, x,€{0,1}.° If we label goods so that the first J are
divisible, the consumption set for each consumer is given by X = R’ x {0,1}%7,
In general, there is a measure space (I, £, a) of consumers, where [ is the set of agents,
€2 is a o algebra of subsets of I, and « is a measure defined on £. In the economies
studied below, sometimes I will be a finite set, and sometimes a continuum. The
preferences of consumer i are described by a strictly increasing, strictly concave, von
Neumann-Morgenstern utility function, U*: X - R, where X is the convex hull of
X. His endowment is given by e'eRX, but note that we do not necessarily assume
that e'e X. Thus, consumers may be endowed with and may trade fractional claims
on indivisible goods, even though they can only consume integer quantities.® There
18 no intrinsic uncertainty (that is, preferences and endowments are nonstochastic).
An allocation (x') is a list of consumption points for all consumers, and is feasible
if x'e X for all i and | x'a(di) < [ e'a(di).” A feasible allocation is Pareto optimal with
respect to X if there does not exist an alternative feasible allocation (X) such that
U'(%) = U'(x*) for all i, with strict inequality for a set of agents with positive measure.
Note that optimality is defined with respect to X, which incorporates two
notions: obviously we must take into account the indivisibilities inherent in the
consumption set and, also, we must take into account the basic commodity space of
which the consumption set is a subset (see below). A Walrasian equilibrium (WE) is
an allocation and a price vector peRX normalized so that Y pe= 1, satisfying: (a) for

k .
all i, x* maximizes U'(x) over X subject to p-x=p-¢, and (b) jx‘oc(di)§je‘oz(di)
(feasibility). This is the standard definition of a competitive equilibrium, and we call
it Walrasian simply to emphasize that is does not allow extrinsic uncertainty. This

* We are for the most part here not concerned with questions of the existence or determinacy of certainty
equilibria with indrvisibilities; see Henry (1970) and Mas-Collel (1977) on these 1ssues. We also neglect
the literature on fair allocations with idivisible commodities, including Crawford and Heller (1979),
Svenson (1983) and Maskin (1987), and much of the literature on core allocations with indivisible
commodities, including Shapley and Scarf (1974) and Quinzu (1984).

* More generally, one could assume an indmvisible good can be consumed in any integer quantity,
x,€{0,1,2,.. }, the results for this case are similar.

® Thus, ¢ is 1n the commodity space but not necessarily in the consumption set. An alternative
formulation that delivers virtually the same results 1s to assume U(x) is a step function of each indivisible
good (a form of local satiation) Under this Interpretation, 1t does not matter if X actually restricts
indivisible goods to 1ntegers or not and, therefore, we could mnsist that endowments belong to X without
changing the results.

7 The measure «(i) and the { x'a(di) notation, which implicitly assumes that x* 1s integrable, are used to
allow for both a finite number of traders and a continuum of traders as special cases (see Aumann 1964,
1966 for the foundations of equilibrium and core analysis with a continuum of traders).
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Indivisibilities, lotteries, and sunspot equilibria 5

differentiates it from the notion of a sunspot equilibrium to be discussed below,
which is also a competitive equilibrium but incorporates extrinsic uncertainty.®

We concentrate for now on some examples with one indivisible good, x, so that
X ={0,1}. In fact, we can demonstrate the basic message in the case of two
consumers (N =2) with e' =e¢?=1/2. This economy has a unique WE, with
x! = x? = 0, which yields utilities U* = 0 if we normalize U'(0) to zero. This is not
Pareto optimal with respect to X; it is dominated by giving x = 1 to one of the
agents and nothing to the other.® Now consider randomizing over the allocations
that are optimal with respect to X, by forming the lotzery

(xx%) = {(1,0) with prob z,

) 2.n
(0,1) withprobm,

where n1,€[0,1]and n, = 1 — n,. The expected utilities generated by this lottery are
EU'=m,U(1), for i = 1,2, which exceeds the utilities generated by the Walrasian
mechanism. We say that the randomized allocation Pareto dominates the WE
allocation, although not with respect to X, since it is not actually an element of X
(this illustrates the point of defining optimality taking into account the underlying
commodity space).

The fact that the extrinsic uncertainty introduced by the lottery has a role here
leads us to consider equilibria with sunspots. Returning to the general model, we
introduce extrinsic uncertainty by way of a probability space (S, X, z), where S is a
set of states s representing sunspot activity, X is a ¢ algebra of subsets called events,
and 7 is a probability measure. By the definition of extrinsic uncertainty, preferences
and endowments do not depends on s — although, in principle, agents’ behavior
might. We model this by reformulating the commodity space as the set of
r-measurable functions of the state, x: S —IR”, bounded in the essential supremum
norm. Let this space be denoted by Z. The consumption set is now the set of such
functions such that x(s)e X for all s.

In particular, consumer i chooses such a function x'(*) to solve the following
problem,

maximize EU* = | U'[x'(s)] n(ds)
S

subject to | p(s)x'(s)n(ds) < | p(s)e'n(ds) = Wi, (2.2)
5 5

where Wiis wealth, and j is a measurable function with the following interpretation.
For any set Ae X, | p,(s)n(ds) is the cost of one unit of good k to be delivered just
A

8 Tt is standard to define equilibrium using the condition |x'a(di) < fe'a(di), and then prove that this in
fact holds with strict equality for any good that has a positive price in equilibrium. In our economues,
however, the condition may hold with strict inequality even if the good has a positive price, simply
because the economy cannot possibly consume everything when the aggregate endowment of some
indivisible good 1s not exactly an integer.

9 The first Welfare Theorem does not hold because 1t requires that at least one good be divisible.
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6 K. Shell and R. Wright

in case event A occurs. If s has a density function, ¢(s), then we can write the budget
constraint as | p(s)x'(s)ds < W', where p(s) = p(s)o(s), and the kb component p,(s) is
precisely the price of good k in state s. Similarly, if §={s,,s,,...} is discrete,
we can write the budget constraint as )" p(s;)x(s,) < W", where p(s )= Plsjn(s;).t°

A feasible allocation for the econorr{y with sunspots is a list [x'(-)] with x(-)eZ
for each i, such that [ x'(s)a(di) < [ e'a(di) almost surely. It is degenerate if, for all
I, x'(s) = x* almost surely; in other words, if the allocation is essentially independent
of the state. It is nondegenerate otherwise. We sometimes abuse terms slightly and
identify an allocation for the economy without uncertainty with a degenerate
allocation in the more general economy; that is, x‘e X is identified with x'()eZ,
where x/(s) = x* for all 5. An allocation [x'()] is Pareto optimal with respect to Z if
there does not exist another feasible allocation [£(+)] such that [U(s)In(ds) =
jU'[xi(s)]n(ds) for all i, with strict inequality for a set of agents with positive
measure. A sunspot equilibrium (SE) is an allocation together with a nonnegative
pricing function p(-), normalized so that _fZﬁk(s)n(ds) = 1, satisfying: (a) for all i,

k

x'(-) solves (2.2), and (b) feasibility. A SE is degenerate if the implied allocation is
degenerate and nondegenerate otherwise.

We review a few facts about convex economies (where X is convex and U’
strictly concave), all of which are easy to prove. First, in any convex economy, a
nondegenerate allocation [x'(s)] is never Pareto optimal with respect to Z, since it
is dominated by the degenerate allocation £'(s) = %' for all s, where %* = [ x¥(s)n(ds),
for all i. An implication is that, in any convex economy for which the First Welfare
Theorem holds, there cannot exist nondegenerate SE. If the First Welfare Theorem
does not hold - say, for some of the possible reasons mentioned in footnote 1 — then
there may exist nondegenerate SE, but they are not optimal. F inally, in a convex
model, if the allocation (x') and price p constitute a WE for the economy without
uncertainty, then we can always construct a degenerate SE by setting x/(s) = x* for
all s and i, and j(s) = p for all s.

Consider again the economy with X = {0,1}, N = 2, and e! = ¢2 = 1/2. Introduce
a little extrinsic uncertainty by assuming there are exactly two states of possible
sunspot activity, S = {s,, s, }, and let =, denote the probability of state j, with n;>0

1 Despite the mtuitive nature of this formulation, there are some technical issues that need to be dealt
with when S is not finite dimensional. The standard way to define a price system 1n an infinite dimensional
commodity space Z is by a continuous linear functional, :Z — R. Then a valuation equilibrium is a
feasible allocation (z'), z'e Z for all 1, together with a price system v, such that every | maximizes u'(z')
over Z subject to v(z') < v(e). An inner product representation for v 1s a vector p 1n the dual space of Z,
such that v(z) = p-z for every zeZ, with the natural interpretation as the price vector. Our commodity
space Z is the space of measurable functions bounded in the essential supremum norm; thus, p should
be an element of the set of measurable functions bounded in the L, norm, such that

v(x) = [p(s)x(s)n{ds) for all xeZ

Although it 1s not true for all economies, our economies satisfy conditions that guarantee such a
representation exists for any valuation equilibrium; hence, we only consider inner product prices in what
follows. See Bewley (1972), Prescott and Lucas (1972), or Stokey et al (1989).

COopyNgnt © 20T Al RS Reserved



Indivisibilities, lotteries, and sunspot equilibria 7

and n, + 7, = 1. Problem (2.2) becomes
maximize EU* = 7, U'[x'(s;)] + 7, U [x'(s,)]
subject to p(s;)x'(s;) + pls2)x'(s2) £ 1/2, (2.3)

where p(s,) is the price of the good in state s;, as discussed above, normalized so
that p(s,) + p(s,) = 1. Then the following results hold.

Proposition 1. In the economy with X ={0,1}, N =2,e' =e*=1/2,and S = {51,821},
we have: (a) If mn, #n, then SE do not exist. (b) If my=m, then there are
exactly two SE, with prices p(s,)=p(s;)=1/2 and one of the following two
allocations

[x!(sy),x'(59)1=(1,0) and [x*(s,).x*(s2)1=(0.1)
[x!(s,), x"52)1=(0. 1) and  [x%(s,), x*(s2)]=(1,0), (2.4)

which are simply relabelings of the same outcome. (c) All SE are nondegenerate,
and in particular, the WE allocation cannot be supported as a SE. (d) The SE are
Pareto optimal with respect to Z and dominate the WE allocation.

Proof. For any prices the budget set of each agent must contain either [x(s,), x(s;)]=
(1,0) or (0, 1). Feasibility entails in(s) < 1 for all 5. These two observations imply

that any SE must involve one of the two allocations in (2.4), and this proves (c).
Suppose the first allocation in (2.4)is a SE;if Mr. 1is to demand (1, 0) we must have

T UM+ (1 — 1)U 0) 2 7, U0 + (1 —m)U(L).

This implies [U*(1)— UY0)J(1 —27,) <0, or m, 2 1/2. Similarly, if Mr. 2 is to
demand (0, 1) we must have m, < 1/2,andso 7, = 1/2. The same is true for the other
allocation in (2.4), and this verifies (a). Given these results, the allocations in (2.4)
in fact solve problem (2.3) for both agents if and only if p(s,) = p(s,), which proves (b).
Finally, the statements in (d) are obvious from our earlier discussion of lotteries
and their welfare properties. [

This example is interesting because it contrasts with the results for convex
economies outlined above. In convex economies, WE always reappears as SE, so
that result (c) could not have held. Result (d) could not have held in a convex
economy, where SE are never Pareto optimal; SE are not only optimal here, they
dominate the WE allocation. Also, results (a) and (b) go beyond the existing literature
in that, instead of taking the probability distribution of extrinsic uncertainty as
given, we have gone some way towards deriving what that distribution must be in
order for SE to exist (given two states, in this example, they have to be equiprobable).

To pursue these issues further, we begin to generalize things slightly by now
assuming that there are N agents, N < oo, while we continue to assume X = {0, 1}
and homogeneous endowments, ¢' = e. There is no loss in generality to assuming
e < 1.!' The unique WE again entails x’ =0, and utilities U'(x*) =0 for all i. Let

11 More generally, let i's endowment be y' + e, where y' 1s the integer part and e is the fractional part
that 1s common across agents, and let his utility function be u:{0,1,.. } >R Then, wecanlete' =e and
define a new utility function U'.{0,1} =R by U'(x} = u'(y' + x) to get exactly the model in the text.
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3 K. Shell and R. Wright

n=int(Ne) be the integer part of the aggregate endowment. If n =0 the WE is
optimal. If n > 1, however, then one can generalize Proposition 1 to show that there
exists a SE with N equiprobable states and constant prices supporting an allocation
with x' =1 in exactly n states and x' =0 in the remaining N — n states, for each
consumer i. This SE is optimal, and dominates the WE. However, rather than N
states, we prefer to construct SE with as few states as possible.

To this end, let n*/N* reduce n/N to its lowest terms (e.g., 10/4 reduces to 5/2).
Let there be N* equiprobable states and constant prices, p(s,) = 1/N*. Agent i has
wealth W' = e, which means that the greatest number of units he can afford is n*.
Given he consumes n* units, strict concavity implies he maximizes utility by
consuming exactly 1 unit in n* states and 0 units in the remaining N* — n* states.
Therefore, to construct a SE we need only choose an allocation with two properties:
(a) each agent i receives x' =1 in n* states and x' =0 in the rest, so that he is
maximizing utility subject to his budget constraint, and (b) in each state the fraction
n*/N* of agents receive x* = 1 while the rest receive 0, so that markets clear. One
way to choose such an allocation is to use a square matrix of size N* denoted la,;],
with the property that each element is either 0 or 1, all columns sum to n*, and all
rows sum to n*. Then, for each consumer i = 1,2,... N*, we set x'(s,) = a,,, while
for consumers i=N*+1,..., we simply reproduce the allocation of the first N*.

Such a matrix [a,] can always be constructed.!? Figure 1a shows the case
N* =3 and n* = 1, where Mr. 1 consumes ! unit in state s,, Mr. 2 consumes 1 unit
ins,, and Mr. 3 consumes 1 unit in s,. Figure 1b shows the case N* = 3 and n* = 2,
where Mr. 1 consumes 1 unit in states s; and s, etc. The general discussion is
summarized as follows:

S Sy S3 Sy S, S3

1 1 0 0 1 1 0 1

2 0 1 0 2 1 1 0

3 0 0 1 3 0 1 1
a b

Fig. la. N*=3and n*=1.b N*=3 and n*=2.

'2 The algorithm is as follows: Begin with g, = O for all 1,;. If n* > 1 then change a,, from O to 1 1f i = ;
if n* 2 2 then also change a,, from O to 1 1f 1 = j + | modulo N*xf n* > 3 then also change a, from0Oto 11f
1=+ 2 modulo N*, and so on. This is known as the method of cireulants 1n combinatorial analysis
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Indivisibilities, lotteries, and sunspot equilibria 9

Proposition 2. The economy with X = (0,1} and N consumers with e'=e <1 for
all i has a unique WE with x' =0 for all i. Let n=int(Ne) and let n*/N* reduce n/N
to its lowest terms. Then this economy has a SE with N* states, n(s)) = p(s;) = 1/N*,
and an allocation where x'(s)) =1 in n* states and x'(s;) =0 in N* —n* states for
all i. If n* 2 1, then the SE is optimal with respect to Z and dominates the WE, and
the WE does not reappear as a SE.

The next step is to consider heterogeneous endowments. Suppose X = {0, 1},
N =2 and 0<e' <e? with e! +¢>=1. Assume S = {s,,5,} with m;=n(s)), and
consider the Edgeworth box in Fig. 2, with the endowment point e on the diagonal.
Clearly any SE must have the price line going through e and also through either
the point A =(1,0) or the point B =(0, 1). The former case is shown and implies
p(s,)/p(s,) = e*/e’. At these prices, Mr. 1 necessarily chooses point A, while A is also
in the demand correspondence of Mr. 2 ifand only if 7, < 1/2. Thus, for any 7; < 1/2,
there is a SE with prices [p(s;), p(s2)] = (e', ¢?) and allocation

[x'(s;), x'(5,)]1=(1,0) and [x*(s,),x*(52)]=(0,1).

Symmetrically, for any m, = 1/2, there is a SE with the prices and the allocation
reversed.

The point of this example is that there can be many different SE, with different
values of m, and, therefore, with different expected utilities. This contrasts with our

Mr.

Fig. 2. The Edgeworth Box.

Copyright © 2001 All Rights Reserved



10 K. Shell and R. Wright

earlier results, where the equality of endowments delivered a uniform distribution
of states as the unique distribution consistent with SE. Furthermore, notice that
here the equilibrium with 7, = 1/2 has both agents consuming x’ = 1 with the same
probability and therefore receiving the same expected utility, even if e! is very small
compared to e. Mr. 2 starts with more, so why doesn’t he end up with more? One
answer is that with N =2, a lottery of the form (2.1) is in the core for any =,.
However, if we replicate this economy, the lottery with 7, = 1/2 may no longer be
in the core. For instance, suppose that e2 = m/M is a rational number. Then any
coalition of size M type-2 agents could hold its own lottery where each member
receives x = | with probability m/M = % > 1/2.

At the extreme, suppose there is a continuum of agents with unit mass, and let
, be the fraction of type t, t=1,2,..., T< oo, where cach type ¢ agent has

endowment ¢’ and ) a,e' = 1. Then any coalition of type ¢ agents with positive
t

measure could hold a lottery in which each member receives x* = 1 with probability
e', therefore, any core allocation must have prob(x' = 1) = €' for almost all type ¢
agents. At the same time, feasibility means that total consumption cannot exceed
the total endowment, so that the set of agents for whom prob(x) > ¢' must be null.
We conclude that the core consists of randomized allocations in which prob(x'=1)=¢
for almost all i. This seems intuitively like what an equilibrium should be; but recall
from the above discussion that there generally can be many SE with different
probability distributions. We claim, however, that unless prob(x'=1)=¢', the
SE will not be “stable” with respect to the introduction of other probability
distributions for sunspot activity.

To illustrate this, let I be the set of agents and let their endowments satisfy
e'e[0,1] and je‘a(di) = 1. Now assume that s is a continuous random variable with
density ¢(s). Problem (2.2) then becomes

maximize | U'[x'(s)Jo(s)ds
N

subject to | p(s)x'(s)ds < e, (2.5)
S

where p(s) is the price of a unit of the good in state s. Unless P(s) = ¢@(s) for almost
all s, agents will switch their consumption from states with p(s) > ¢(s) to those with
P(s) < @(s) to get more utility at the same cost, and markets could not clear. This
means that equilibrium requires p(s) = ¢(s), in which case problem (2.5) is solved by
setting x'(s) = 1 for all s in any set of measure ¢". Any partition S;, with prob(S;) = ¢
for all i, generates a SE with prices p(s) = ¢(s) and an allocation described by
x'(s)=1if and only if seS,.

Hence, with continuous sunspots, there is a unique (up to a relabeling) SE.
Summarizing, we have the following proposition.

Proposition 3. Suppose [e'a(di) = 1. Let s be continuous with density ¢(s). Then, up
to a relabeling, there is a unique SE, and it has the Jollowing properties: (a) p(s) = ¢(s)
Jor all s, and (b) prob(x') = e for almost all i. The corresponding allocation is the
unique core allocation that necessarily survives replication. With a finite distribu-
tion for s, there can be other SE, with allocations such that prob(x') # ¢'.
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Indivisibilities, lotteries, and sunspot equilibria 11

We close this section with an example involving two goods, one divisible and
the other indivisible: X =R, x {0,1}. Let I be a continuum of homogeneous
consumers with unit mass. Suppose ¢' =(1/2,1/2) and U'(x,, x,) = ul(x,) + u(x,) for
all i, where u(0)=0. Then, in WE, exactly half of the consumers receive
(x,x5) =(1,0) while the other half receive (0, 1). Note that in contrast to our earlier
examples, the WE allocation here is Pareto optimal with respect to X, and yields
utilities U' = u(1) for all i. Yet it is obvious the lottery that gives each agent

{(1/2, 0) withprob1/2

xl’ 1 =
*5:X2)=11/2.1) withprob 1,2

yields greater expected utility (by strict concavity).

Following the reasoning of the earlier examples, we could support this
randomized allocation as a SE, which is optimal with respect to Z, with two
equiprobable states and prices p;(s ;) = pals;) for each state s;. The fact that the SE
dominates the WE here is more striking because the First Welfare Theorem implies
the WE is optimal with respect to X, although not with respect to Z (while in
Proposition 1, the SE dominated a WE that was not even optimal within the set of
nonrandomized allocations). This economy has some other interesting properties,
but we do not pursue them because things are quite similar in the model studied in
the next section — the indivisible labor economy of Rogerson (1984, 1988). One
important point to note, however, is that the above example works perfectly well
when the set I contains an finite number of agents rather than a continuum, as long
as that number is even.

3 Employment lotteries and sunspot equilibria

The consumption set is now X =R, x {0, 1}. There is a continuum of homogene-
ous consumers with unit mass. Their preferences are described by the utility function
U(x,, x,), where we write (x;, x,) =(c,?) with the interpretation that the consump-
tion good c is divisible while leisure £ is not. It simplifies the presentation to assume
U is continuously differentiable with respect to ¢ and that U,(c,#)— oo as ¢ —~0 for
all #. The endowment point is e=(0,1). There is a representative firm, with
production set Y = {yeR%:y, £ f(y,)}. We write (y;,¥,)= (q,h). Assume the
production function is twice continuously differentiable, with f* >0, f" <0, and
f'(h)— oo as h—0. All consumers share equally in the ownership of the firm and
any profit that is earned is distributed back to them equally as dividends. As above,
there is no intrinsic uncertainty: preferences, endowments, and technology are all
nonstochastic.

We refer to this model as the indivisible labor economy. A feasible allocation is
a consumption — leisure pair for each iel, x' = (¢, /') X, and a production plan for
the firm, y = (g, h)e Y, satisfying { ¢'di + h = 1 and | ¢'di = g.Itis Pareto optimal with
respect to X if there is no feasible alternative that dominates it in the obvious sense.
A Walrasian equilibrium is a list [(x), y, T, p, w] such that: (a) for all ;, x' maximizes
U(x) over X subject to pc+wf Sw+ 11, where IT is profit; (b) y maximizes
IT= pq — wh over Y; and (c) feasibility.
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12 K. Shell and R. Wright

In WE, each agent will have either x' = (17, 1)or(w + I7,0). Let u be the measure
of agents that choose the latter option; for obvious reasons, they are called employed
while the others are called unemployed. If ue(0,1) then U(IT,1) = U(w + IT,0). It is
easy to show that there exists a unique WE (up to a relabeling). It is Pareto optimal
with respect to X by the First Welfare Theorem. Let W* be the common utility of
consumers in WE. Rogerson’s insight was to construct a randomized allocation (or
lottery) in which each consumer receives (¢', ') = (cy, 0) with probability u and
(¢','}=(c,, 1) with probability 1 — x. This yields expected utility V = pU(c,,0) +
(1 —u)U(cy, 1), and can be maximized with respect to (4, ¢q,¢,). Given the results
in the previous section, it should be no surprise that the application of such a
randomization device can be useful in this economy.

Consider the social planner’s problem of maximizing V by choosing y, ¢, and
¢, subject to the feasibility constraint puc, + (1 — ey £ f(p) and the constraint
# = 1 (nonnegativity constraints can be ignored, given our curvature assumptions).
Let 4 and f be the multipliers on these constraints. Then, the solution to the
planner’s problem is fully characterized by

Ulco,0) = Ule, )+ ALf (W) —co + ¢, 1=
1U (cg,0) —pud =0
(I =mUler, ) =1 - p)i=0

S (1) = peo — (1 — pye; =0, 3.1

plus p < land (1 — u) = 0. Let (u*, cg, c¥), along with (4%, B*), be the solution, and
let V* the implied level of expected utility. As long as p* < 1, we “typically” have
V*> W*, and the lottery improves welfare even though the WE is optimal with
respect to X.13

Our goal now is to decentralize the planner’s randomized allocation. Rogerson
(1988) discusses the possibility of supporting randomized allocations as equilibria
of a mechanism in which each individual “chooses a lottery where with probability
(1] they work... and with probability [1 — 4] they don’t.” This means that
individual wage income will be uncertain and, therefore, it “is assumed that the
individual can purchase insurance. .. contingent on the outcome of the lottery.” We
will use a more conventional mechanism, with contingent commodity markets
rather than individual lotteries and insurance contracts. This is not only more
standard, it also has one substantive advantage. When Rogerson lets his individuals
choose lotteries, he appeals to a law of large numbers to guarantee that the
probability of working chosen by each agent equals the actual number who end up
working. As illustrated by the examples in the previous section, our equilibrium
concepts works perfectly well with a small number of agents. One interpretation of

13 Utility functions of the class U = u(c + v(£)), where u( ) and v( ) are increasing, concave functions,
are the only ones that entail V* = Ww*
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Indivisibilities, lotteries, and sunspot equilibria 13

this is that sunspots act not only as a randomizing mechanism, but also a coordinat-
ing mechanism.'*

As in the previous section, we introduce sunspots by way of a probability space
(S, X, 7). Each consumer i chooses a measurable bounded function, x*:S— X, to
solve

maximize EU = | U[c(s),Z(s)]n(ds)
S
subject to | [p(s)c(s) + w(s)/ (s)]m(ds) = T+ jw(s)n(ds), (3.2)
5 s

where IT denotes the representative agent’s share of profit, while p(s) and w(s) have
the usual interpretations: for any set AeX, {p(s)n(ds) and j w(s)n(ds) are the
A A

respective costs of one unit of consumption and leisure to be delivered just in case
event A occurs. Similarly, the firm chooses a function, y:§— Y, to solve

maximize IT= | [p(s)g(s) — w(s)h(s)]n(ds). (3.3)
5

A sunspot equilibrium is list [x'("), y("), IT, p(-), w(-)], satisfying: (a) for all i, x'(-)
solves (3.2); (b) IT and y(-) solve (3.3); and (c) | #*(s)di + h(s) =1 and fc(s)di = qfs)
for all 5. It is nondegenerate, Pareto optimal, etc,, if the obvious conditions hold.

Proposition 4. In the indivisible labor economy, the planner’s randomized allocation
can be supported as nondegenerate SE.

Proof. We will construct a particular SE with s distributed uniformly on [0, 1]. Let
p(s) =1 for all 5, and let w(s) = f'(u*), where u* is the employment rate chosen as
the solution to the planner’s problem. This immediately implies from the profit
maximization condition, f'[h(s)] = w(s), that h(s) = u* for all s. Consider consumer
i. Let Sy = {seS:/(s)=0} and S, = {seS:#(s) = 1}, and let ji = prob(S,). Problem
(3.2) can then be rewritten (ignoring the superscript i)

maximize EU=U [ [c(s),0]ds + | U[c(s), 1]ds
So S

subject to _f c(s)ds + f c(syds + (1 — Q) f " (p¥) = +f'(u*) (3.4)
S

So

after substituting p(s) and w(s). By strict concavity, the solution to (3.4) involves
setting ¢(s) = ¢, for all s€ Sy and ¢(s) = ¢, for all seS,. Problem (3.4) therefore further

14 prescott and Townsend (1984a, 1984b) discuss decentralization of optimal randomized allocations
In their private information economies, where the objects being traded are lotteries over points 1n
commodity space. They suggest (1984b, p.18) the possibility of supporting these allocations as
decentralized equilibna with allocations indexed by “a naturally occurring random variable that 1s
unrelated to preferences and technology” that can be interpreted as our sunspot activity, but this is never
explicitly carred out. Upon pursuing this to fruition, one sees that an advantage of sunspots 1s that they
not only randomize but also coordinate activity, which means that economues with finite populations
can take advantage of convexification without appealing to the law of large numbers.
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14 K. Shell and R. Wright

reduces to
maximize EU = pU(¢,,0) + (1 — MU, 1y
subject to ¢y + (1 — )¢, — Af ' (u*) = f(u*) — p* f'(u*) (3.5)
after also inserting IT = f(u*) — wEf(u*). ‘
Notice that the only feature of /(s) that matters for this problem is =
prob [#(s) = 0] (consumers only care about the number of states, and not the names
of states, in which they work). Hence, all that is really necessary to solve (3.5) is to

choose é,,¢,, and f. Let 4 and B be the multipliers on the budget constraint and
the constraint /i < 1; then the first order conditions are

W) + (A — )" (@*) — péo — (1~ p)é, =0, (3.6)
plus 4 <1and E(l — f1) = 0. Comparing (3.6) with (3.1), we see that the problem (3.5)
is in fact solved by setting ji= u*, Co=cg, and ¢, =c*. In other words, the
consumer’s demand correspondence includes the employment probability and
consumption the planner chooses.

All that remains is to construct an employment allocation [/i(s)] with two
properties: (a) [ £*(s)ds = 1 — u* for all i, so that each individual works in exactly u*
states, and (b) {£'(s)di = 1 — u* for all x, so that there are exactly p* individuals
working in each state. Given p = y*, define [£ i(s)] by:

0 if ie[l—p—s1—5]
1 otherwise ’
1 if ie[l—5,2—pu—s]
0 otherwise.

ifs<1 —uthen["(s)z{

ifs>1 —,uthen{”(s)={

This is illustrated in Fig. 3a for 4 = 1/3, from which it is clear that ¢'(s) integrates
to 1 — u both horizontally for each i and vertically for each s, as required. This
completes the proof. []

The set of sunspot states in the equilibrium constructed in the proofis S =[0,17;
but this is not necessarily the minimal set that can be used. As in the previous section,
we can also construct a SE with as few states as possible. If p is a rational number,
let n*/N* reduce u to its lowest terms. Then, there is a SE with N* equiprobable
states, where each individual works in n* of them and enjoys leisure in the rest. This
is shown in Fig. 3b, again for the case y = 1/3. There are three states, S = {s,,5,,53}.
Each consumer works in 1 of the three states, and each state has 1 /3 of the consumers
working. The outcome is equivalent to that with a continuum of states, as in
Fig. 3a, but whenever y is a rational number we can economize on the number of
states and, therefore, on the number of contingent commodity markets needed to
decentralize the allocation. If 1 is irrational, an infinite number of states and markets
are required to support the planner’s allocation exactly.
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Fig. 3. a Continuum of states supports u=1/3. b Three states support u=1/3.

Finally, we point out that, as in Sect. 2, there are several features of this economy
that are interesting from the perspective of the sunspot literature. In the convex
version of this economy, SE do not exist, and any allocation that depends
nontrivially on extrinsic uncertainty is inefficient. Here there is a nondegenerate SE,
it is Pareto optimal, and it dominates the (certainty) WE allocation, even though
the latter is optimal with respect to the set of nonrandomized allocations. And the
WE does not reappear as a degenerate SE since, except for the case of very special
utility functions or corner solutions, the WE allocation does not solve the first order
conditions (3.6).

4 Concluding remarks

This paper has explored the role of extrinsic uncertainty in economies with
indivisible commodities. It was demonstrated that nonconvex consumption sets
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16 K. Shell and R. Wright

imply a potential role for lotteries, and that these lotteries are closely related to the
concept of sunspot equilibria. In our models, sunspot equilibria can be Pareto
optimal and can dominate certainty allocations (even when these allocations are
optimal within the set of nonstochastic outcomes). We also showed for this class of
models that not all sunspot equilibria are equally plausible: some are not stable
with respect to cooperative coalition formation, and some are not stable with respect
to changes in the probability distribution of extrinsic uncertainty. The extent to
which these “stability” issues are important in the convex economies studied in the
literature is an interesting open question.

Extrinsic uncertainty, self-fulfilling prophecies, animal spirits, and related
phenomena have been thought for some time to have a role in macroeconomics. It
has even been suggested that they may be a contributing factor to problems like
inefficiency and unemployment. Here we have presented models in which extrinsic
uncertainty certainly does have a role to play in the allocation of economic
resources, and a role in the determination of unemployment in particular. But, far
from reducing or inhibiting the competitive mechanism’s welfare properties,
extrinsic uncertainty actually leads to more efficient outcomes here.
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