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We examine a simple repeated principal-agent model with discounting. There are 
a risk averse borrower with an unobservable random income and a risk neutral 
lender. The efficient contract is characterized. It tends to the first-best (constant 
consumption) contract as the discount factor tends to one and the time horizon 
extends to infinity. I f  the time horizon is infinite and the contract is legally enfor- 
ceable the borrower’s utility becomes arbitrarily negative with probability one. If  
the borrower has constant absolute risk aversion consumption is transferred 
between any two states at a constant interest rate which is less than the rate of time 
preference. Journal of Economic Literature Classification Numbers: 026, 315. 
0 1990 Academic Press. Inc. 

1. INTRODUCTION 

A risk averse agent whose income fluctuates will want to stabilise 
consumption by borrowing and saving. If there is an infinite time horizon, 
no discounting of the future, and income is independently and identically 
distributed, consumption can be perfectly stabilised at the average value of 

* The financial support of the Economic and Social Research Council is much appreciated. 
We are grateful to Ben Lockwood with whom we have had many stimulating conversations 
on this topic, to Ed Green for a number of useful comments, and to Martin Cripps, 
Gareth Myles, Saul Jacka, and two particularly helpful anonymous referees and an Associate 
Editor. Thanks are also due to the participants of seminars at Warwick University and the 
University of Western Ontario. Of course all the usual caveats apply. 
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income by borrowing and lending at a zero rate of interest (Yaari [ 143). If, 
on the other hand, there is just one time period and no outsider can 
observe the agent’s income (so there is asymmetric information) consump- 
tion cannot be stabilized at all The purpose of this paper is to examine, 
when there is asymmetric informaton, how debt contracts can be used to 
stabilize consumption for any finite or infinite time horizon and any 
discount factor between zero and one. 

The model we study was first presented by Townsend [13]. There is a 
risk averse borrower who has an i.i.d. income stream. A risk neutral lender 
would like to offer insurance but cannot observe the borrower’s income, 
past or present. If the lender were to offer to stabilize the borrower’s 
consumption, the borrower would have an incentive to claim his income is 
low-such a contract is not incentive compatible. On the other hand a 
scheme in which the amount lent is independent of the borrower’s income 
is incentive compatible but does not share any risk. Grossman, Levhari, 
and Mirman [7] showed that if there were more than one period a simple 
loan contract with a fixed rate of interest could provide some insurance. 
Townsend pointed out that these simple loan schemes are not generally 
(constrained) efficient, there being better ways of tying future transfers to 
present claims. Townsend, however, only partially characterized the 
solution to the two-period, two-state problem. We characterize the efficient 
contract for any time horizon and finite state space. 

Models of this kind have a number of potential applications apart from 
the immediate one of how best to insure an individual whose income is 
unobservable. One is the study of liquidity constraints. Liquidity con- 
straints, it is often argued (for empirical support see, e.g., Flavin [4]), raise 
the marginal propensity to consume out of income above that predicted 
under perfect capital markets, and provide a greater role for stabilization 
policy. In our model of asymmetric information the borrower is con- 
strained in an efficient contract by his past history: if he has borrowed 
heavily in the past he will be able to borrow less in the current period 
than otherwise, this despite the fact that his future income prospects are 
unaffected. Another potential application is the study of international 
debt contracts. Naturally no simple model can do the problem justice; 
nevertheless even in the model studied here, which has no capital 
accumulation, it is shown that the borrower will inevitably get deeper and 
deeper into debt. What is interesting about this result is that the “debt 
problem” is a consequence of an efficient contract. 

In this paper we follow the methodology set out in Townsend [13] and 
view loan contracts as constrained Pareto efficient agreements between 
borrowers and lenders, so that no mutually beneficial gains remain 
unexploited. It is shown (Sections 3 and 4) that the efficient loan contract 
corresponds to the solution of a dynamic programming problem. This has 
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two important consequences. First the continuation of the loan contract is 
efficient at every date so the borrower and lender will never mutually agree 
to renegotiate the contract. This is not to say that one or other party will 
not wish to break the contract ex post; it is however assumed (apart from 
Section 8) that the contract is legally enforceable and therefore cannot be 
broken. Second, at any time the future course of the contract is determined 
solely by knowledge of a state variable. In particular, this state variable can 
be interpreted as the “indebtedness” of the borrower, where indebtedness 
represents the expected future net payments due to the lender. 

Section 5 presents the main and perhaps most surprising result of the 
paper. If the time horizon is infinite the borrower’s future utility becomes 
arbitrarily negative with probability one. The borrower gets deeper and 
deeper into debt, and consumption moves down as debt increases. The 
contract is therefore not very good at stabilizing consumption over time; 
nevertheless what appears to be happening is that making future utilities 
low reduces the cost of inducing incentive compatibility, which is obtained 
by variations in future utility. So stability in consumption in the initial 
periods is obtained at a cost of variation in consumption over time. 

While this result is of considerable interest in its own right, it also 
implies that if the discount factor is allowed to converge to one and the 
time horizon is infinite, the efficient contract cannot converge uniformly to 
the first-best, constant-consumption contract. Nevertheless the results of 
Radner [lo] suggest that it should be possible to approach first-best 
utilities. The dynamic programming approach permits a simple and natural 
proof of this since as we show in Section 6, the second-best Pareto frontier 
converges pointwise to the first-best frontier as the discount factor tends to 
one and the time horizon tends to infinity. 

In Section 7 we consider the special case where the borrower has an 
exponential utility function so that wealth effects are excluded. The efficient 
contract is explicitly solved for: it transfers consumption between any two 
states at a constant rate of interest, which is positive, but less than the com- 
mon rate of time preference. Thus a kind of “soft loan” can be the best way 
of insuring an agent whose income is unobservable; this is very intuitive, 
since the first-best contract, which stabilizes consumption, involves an 
implicit interest rate of minus one, but is not incentive compatible, whereas 
a loan contract with rate of interest equal to the rate of time preference, 
while avoiding incentive problems, is not very good at smoothing 
consumption since when income is low, the agent will be discouraged from 
borrowing to smooth his consumption by the high interest costs. 

Finally in Section 8 we drop the enforceability assumption and examine 
self-enforcing contracts. This is important because the results of Section 5 
show that for any fixed penalty associated with reneging, the borrower will 
eventually want to renege with probability one. It is shown that a non- 
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trivial self-enforcing contract will exist for discount factors near unity, and 
that such contracts do not use termination as an incentive device. 

The dynamic programming approach to repeated asymmetric informa- 
tion models was introduced by Green [S] in his seminal paper on social 
insurance. In his model there is a continuum of risk averse agents, each 
with unobservable, i.i.d. zero-one income streams and exponential utility 
functions who would like to insure one another. Green shows that 
consumption is a random walk with drift added to an i.i.d. term, a result 
we also obtain in the exponential case. The drift term is however negative, 
so Green’s scheme would only make sense if the community as a whole is 
able to borrow in the initial periods: an outside resource borrowed at the 
rate of time preference is necessary to finance the scheme, whereas in our 
model the negative drift term implies that the borrower gets deeper into 
debt.’ While we consider only a two person model, our main results 
are valid for all utility functions satisfying non-increasing absolute risk 
aversion, and for general Lid. processes and time horizons. Moreover, we 
characterise the asymptotic properties of efficient contracts both as time 
goes to infinity and as the discount rate goes to zero. 

The dynamic programming approach .is also used by Spear and 
Srivastava [I l] to study a repeated moral hazard problem in contrast to 
the hidden information problem studied here. Assuming the validity of the 
first-order approach and the existence of a differentiable solution they 
examine the time structure of an efficient contract. According as output 
exceeds or falls short of a critical level the future utility of the agent rises 
or falls. Similarly in our model the future utility of the borrower will rise 
or fall according to the size of his current income. They do not, however, 
examine the long-run properties of efficient contracts which are one of our 
main concerns here. 

2. THE MODEL 

As mentioned in the introduction we use the basic model introduced by 
Townsend [ 13 J. There are a borrower and a lender who both live T+ 1 
periods and can trade a single non-storable consumption good which we 
call income. Both try to maximise lifetime utility and discount the future by 
the common discount factor LXE (0, 1). At each date t = 0, 1, . . . . T, the 
borrower has a random income s, which takes on one of N possible values, 
to,, 02, . ..? 0,). We call this set of income values 0 and index it by 
s= { 1, 2, . . . . N} (by convention Bi > 0, for all i >j, i, Jo S). It is assumed 
that s, is identically and independently distributed and that the probability 
of income 13~ is ni, independent of t, where xi, s 7ti = 1. 

1 We are grateful to an associate editor for drawing our attention to this paper. 
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The borrower is risk averse and has a time-separable utility function 
which satisfies 

Assumption 1. The per period utility function of the borrower is 
v:(a,co)+R:v is C2 with supv(c)<co, infv(c)=--, v’>O, v”<O, 
- v”/v’ non-increasing and lim, _ ~ v’(c) = co. 

There are two slightly non-standard assumptions here. First it is 
assumed that the borrower’s absolute risk aversion is non-increasing. This 
is a sufficient condition for the valuation function of the dynamic program- 
ming problem solved later on to be concave. Second it is assumed that 
utility is unbounded below. This greatly facilitates the analysis in Section 5 
and in particular fits the special case of constant absolute risk aversion 
which we consider in Section 7. 

The lender is assumed to be risk neutral and therefore would be 
prepared to offer insurance to the borrower. The problem is that although 
the lender knows how income is distributed and knows Assumption 1 he 
cannot observe actual income either contemporaneously of retrospectively. 
Thus if he were to offer the borrower perfect insurance the borrower would 
always under report income. However, we know from the Revelation 
Principle* that if there is any way in which the lender can provide some 
insurance for the borrower there is an equivalent incentive compatible way 
in which the borrower reports his true income. Thus it is possible to write 
bT+‘(h’), (the payment at t, from the lender to the borrower if positive, a 
repayment if negative) as a function of history, h’= (so, si, . . . . s,) E @‘+ ‘, 
and define 

DEFINITION 1. A loan contract bT+ ’ is a sequence of functions 
(b~+l),=O,t ,_,_, T, where each b:” : @‘+I +(a--~,, 00). 

Allen [l] has shown that if the borrower can save and borrow at a rate 
of interest equal to the rate of time preference unobserved by the lender 
then there is no feasible loan contract which provides insurance. For in this 
case the borrower will evaluate any series of payments by its expected 
discounted value.. Incentive compatibility then requires that all series of 
payments must yield the same expected discounted value, so no risk can be 
shared. Many contracts, however, contain explicit provisions to control 
outside transactions; for example bank loans usually require that other 
debts be disclosed and most insurance contracts are void if it is found that 
material facts were unreported. Therefore we adopt the assumption that the 
lender can monitor or control all the borrower’s outside transactions. 

We know from Townsend [ 131 or from Grossman, Levhari, and 
Miman [7] that there do exist incentive compatible contracts when outside 

’ The Revelation Principle holds for any time horizon and any stochastic structure. 
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transactions can be monitored. We let BT+’ be the set of these incentive 
compatible loan contracts. It is described by a series of inequalities similar 
to those typical in one period incentive contracts (e.g., Hart [8]). To be 
precise, for any given contract b *+ ’ and some date t let V, be the highest 
expected future utility (discounted to date t + 1) which the borrower can 
get if he reports his income at date t to be r, = ~9~. Since income is i.i.d. Vi 
depends only upon the reported history, g’= (rO, Y,, . . . . rr), and not upon 
the actual history, h’= (so, si, . . . . 3,). Let bi = br+ ‘(g’-I, tYi) be the amount 
borrowed at time t if rr = ei and the past reported history is g’- ‘. Then if 
b T+’ is incentive compatible, i.e., if the borrower never has an incentive to 
lie, 

v(bi+f$)+d’i3v(bi+0,)+d’, (1) 

for every g’- ‘, t = 1, 2, . . . . T, and all i, je S. Thus BT+ ’ = {bT+ ’ satisfying 
Eq. (1)). 

3. THE DYNAMIC PROGRAMMING 
CHARACTERISATION OF EFFICIENT CONTRACTS 

An incentive compatible loan contract is efficient if it is undominated by 
any other incentive compatible contract. Efficient contracts can be charac- 
terized by a dynamic program. The basic idea is simple: in an efficient 
contract after any history h’, with s, = 8,, the remaining part of the contract 
from date t + 1 onwards, the continuation contract, must itself be efficient. 
Otherwise replacing it by an efficient continuation contract which gives the 
borrower the same expected future utility, Vi, from date t + 1 onwards will 
make the lender better off. (Note that the new continuation contract must 
give the borrower exactly V, and no more; otherwise an incentive com- 
patible constraint, Eq. (l), in some other state at date t might be violated). 
It only remains to check that the new contract is itself incentive compatible. 
If income is not i.i.d. then the future income stream of the borrower 
depends upon the actual history, while future loans and repayments depend 
upon the reported history. Therefore, although the continuation part of the 
contract after the history h’ is, by definition, incentive compatible, the new 
series of loans and repayments promised after this history might look more 
attractive than the old series after some other history h”. In this case the 
history h’ may be reported even when the true history is h”. If income is 
i.i.d. this cannot happen since Vi does not depend upon actual history. 
Thus the new contract will be incentive compatible for every possible h’. 
Because the continuation contract is efficient, the future utilities of the two 
parties must lie on the Pareto frontier for the remaining part of the 
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problem.3 Moreover the utilities must be chosen on the frontier to solve a 
dynamic programming optimality equation. Any set of future utilities for 
the borrower Vi can be chosen together with the current transfers bi so 
long as (1) is satisfied and the necessary overall utility for the borrower is 
exactly attained. So the optimality equation will say that these variables 
must be chosen to maximise the lender’s utility subject to these constraints. 
It should be stressed that maximising lender’s utility subject to giving the 
borrower a certain utility is just one way of characterising efficient 
contracts; doing it the other way around will lead to the same contracts. 

The dynamic programming approach we adopt treats the borrower’s net 
future utility, relative to autarky, as the state variable.4 So the first step will 
be to describe how the lender’s future utility depends on this state variable. 
First we consider contracts of a given length: a contract of length k, that 
is with k periods remaining, bk, begins at T-k + 1. Then the set of k 
period incentive compatible contracts that give the borrower a net expected 
utility of V is 

{ 

k-l 

Bk(I’)= bkEBk: E 1 a’(v(br(h’)+s,)-v(s,))= V 
7=0 1 

, 

where E is the expectations operator over all future income levels. The 
maximum expected discounted utility the lender can get from a k period 
contract when the borrower gets V can now be defined; this is just the 
constrained Pareto frontier for the k period problem. 

DEFINITION 2. The lender’s value function with k periods to go is 

k-l 

u,(v)= sup - E 1 cr’b$f ) 
bkp&(V) 1=0 

for any VE (-co, dk), where dk = (SUP V(c) - zieS XiV(Oi))(I - ctk)/( 1 -CC). 

It represents the expected discounted value of the series of future loans 
and repayments, and can therefore be thought of as the level of “indebted- 
ness” of the borrower to the lender at any particular time. While it is more 
convenient to work in terms of the borrower’s utility V as the state 
variable, the level of indebtedness is directly related to it through the value 
function at any date. 

3 As remarked in the introduction, this argument implies that there will never be an 
incentive to renegotiate the contract since any renegotiation would make at least one party 
worse off. 

4 Since there are two agents in the problem, there should normally be two optimality 
equations describing the evolution of utility in terms of the state variable. Since it is possible 
to define the borrower’s future utility as the state variable we need only consider one 
optimality equation as the other becomes trivial. We thank Vincent Brousseau for this remark. 
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For T= co the lender’s value function, which is independent of time, is 
denoted U,(V). The value U,(V) is not defined to the right of dk but if we 
let U,(Y) = - co for V> d, each Uk is defined on the common interval 
(-co, d,) and takes values in the extended reals. Thus it is possible to 
define the following 

DEFINITION 3. For any function U : ( - co, d,,) --f R u { - cc } the one- 
step operator L satisfies 

L( U)( v = sup c n,(-b;+aU(VJ), 
(h,. v,),,sEn(r’) ies 

:biE(a-l?,, co), V,E(-m,d,); 

~~sni(v(6;+A,)-v(B,)+rV,)= K 

v(b,+8,)+ccVi~v(bj+8,)+aVjforalli,jES . 
1 

The fundamental optimality equation of the dynamic programming algo- 
rithm is given in Lemma 1 (all proofs, and statements of further lemmas, 
are relegated to the appendix). 

LEMMA 1. For k 2 1 the one-step operator L defines the value functions 
recursively through the optimality equation 

The optimality equation shows how the value functions may be com- 
puted. In the finite horizon problem U, is found recursively by repeated 
application of L starting from U,rO; the optimum values of (bj, Vi)iES 
which are chosen at each application of L then constitute the contract 
which achieves the utilities corresponding to the constrained Pareto 
frontier for the k period problem. In the infinite horizon problem U, is a 
fixed point of L. 

To study the infinite horizon problem it would be helpful for both 
analytical and computational reasons to know if the sequence of functions, 
U,, converges to U, as k -+ co. While they do not converge in the 
supremum metric (since they cannot be restricted to the same metric space 
in this metric), pointwise convergence can nevertheless be proven. To use 
standard arguments it will be necessary to restrict the space of functions. 
There are natural bounds on U,(V). Consider first the contract which pays 
a constant amount yk at all dates, where y, satisfies CiES n,(v( yk + 0;) - 
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v(e,))( 1 - G?),/( 1 - a) = V. It is trivially incentive compatible and gives the 
borrower a net utility of V. Therefore the lender’s utility from this contract 
provides a lower bound to U,(V). On the other hand U,(V) can give the 
lender no more than the unconstrained first-best contract which pays ck-s, 
at all dates, where ck satisfies CieS ~c~(v(c~)-v(~~))(~ -&)/(l -a) = V. 
Thus 

-(1-ak)yk/(l-a)dU,(V)<(l-ak) 1 iTi(Oi-C,)/(l-a), (3) 
isS 

and in the limit, using an obvious notation, 

-y,/(l---a)<U*(V)< ~7~~(8~-c,)/(l-a). 
i‘ZS 

(4) 

These bounds tie down U, quite tightly, as depicted in Fig. 1; since 
lim, - D v’(c)=co, lim,,-,C$(V)=O, and limV,,,Ub(V)= -co. If 
a= -co then lim y-r --m U,(V) = co, while it is finite if a > - 00. Similarly 
lim V+rlk U,( V) = -co. Let F be the space of continuous functions on 
(-co, d,) lying between the bounds in (4). Since the gap between these 
bounds is itself bounded, F is a complete metric space in the supremum 
metric, and by standard arguments L is a contraction in F (Lemma 2). So 
U, is the unique fixed point of L in the space F and for any UE F, 
lim k _ o. Lk( U) = U,. To show that U, is the limit of the finite horizon 
value functions is not straightforward as U, 4 F. Nevertheless Lemma 3 

FIG. 1. The bounds on the value function. 

642/51/2-IO 
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shows that lim, _ Ix, U, is a fixed point of L and since the limit belongs to 
F (take limits in (3)) it follows that lim,, nrJ U, = U*. 

4. THE EFFICIENT CONTRACT 

To calculate the efficient contract it is necessary to solve the program- 
ming problem defined by Eq. (2). (S ince L is a contraction mapping a 
necessary and sufficient condition for efficiency is that the supremum in 
Definition 3 be attained for every k. This is guaranteed by Assumption 1.) 
To solve this problem we need to show that the value functions are 
concave. Starting with U, = 0, it is straightforward to see that U,(V) is 
strictly concave. Therefore we will invoke the induction hypothesis and 
assume U,- 1( V) is strictly concave too. 

To tackle the maximisation problem of Definition 3 it is first necessary 
to simplify the constraint set. Rewrite Eq. (1) as CVrv(bj+8,)- 
v(bi + ai) + tl( Vi - V,) b 0. This equation states that the borrower must be 
induced to report the true income Qj rather than the false income 0,. Since 
v is concave, it is easily shown (see, for example, Hart [I?] ) that if the local 
downward constraints Ci,+, 3 0 and upward constraints Ci,i+ I 3 0 hold 
for each i E S then the global constraints C, 2 0 hold for each i, je S. It is 
intuitively unlikely that the borrower should wish to report a higher 
income than he actually has, so it is to be expected that the downward 
incentive compatibility constraints will bind at the optimum, and this is 
what Lemma 4 proves. It is shown, under the induction hypothesis that 
Uk- ,( I’) is strictly concave, that all the local downward incentive com- 
patibility constraints, Ci,, _ , 3 0, always bind and none of the local upward 
incentive compatibility constraints, Ci. ;+ 1 2 0, ever do. This means that the 
borrower is always just indifferent about reporting that his income was 
actually a little lower than it was, but would never want to report that his 
income was in fact higher. 

It also follows from the concavity of v and adding Ci,iP 1 2 0 and 
C, _ ,,i > 0 that 6, 1 > bi and Vi > VjP i. This of itself imposes considerable 
structure on the contract. For example, in low income states more is 
borrowed but at the cost of a lower future utility or a greater level of 
indebtedness for the borrower. (This would of course not be true of the 
first-best contract where what is borrowed today does not affect future 
indebtedness). Further, Lemma 4 shows that the optimum contract 
involves coinsurance so that the lender’s expected future utility is also 
lower when the borrower’s income is lower. 

Having simplified the constraint set we are in a position to consider the 
properties of the value function U,(V). It is obviously decreasing, but it is 
not so obvious that it is concave because the constraint set itself is not 
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convex. Since, however, the borrower’s utility function exhibits N.I.A.R.A. 
(Assumption 1) it can be shown that there is a unique (bi, VJiEs which 
attains the supremum in Definition 3, so the efficient contract is unique, 
and strict concavity can be proved. 

PROPOSITION 1. There is a unique (bi, Vi)iGs which attains the supremum 
in Definition 3. U,(V) is decreasing, strictly concave, and continuously dif- 
ferentiable on (- co, dk) and U,(V) is decreasing, concave, and continuously 
differentiable on (- CO, d,). 

The efficient contract is stationary in the sense that V incorporates all 
the information necessary to calculate (bi, Vi)isS. That is, V contains all 
the necessary information about past history. Thus the efficient contract 
can be determined recursively by solving the optimality equation starting 
with some initial value of V, which may be considered to be determined 
either by market forces or by some bargaining procedure if there is imper- 
fect competition. Since there is a one-to-one correspondence between V and 
U,(V) the efficient contract is somewhat like a standard borrowing/lending 
contract in which the key variable is the borrower’s indebtedness. To 
determine the current transfers it is only necessary to know the level of 
indebtedness. This analogy will be made even clearer in Section 7 which 
examines the constant absolute risk aversion case. These results are 
summarized by the following proposition: 

PROPOSITION 2. For any T there exists an efficient coinsurance contract 
such that after any history bi 6 b,- ,, Vi3 V/i- 1, i = 2, 3, . . . . N. The local 
upward incentive compatibility constraints never bind, the local downward 
incentive compatibility constraints always do. 

If we let L, (pi)iss, be the multipliers associated with the constraints 
~i,,~i(v(bi+t3i)-v(Oi)+clVi)= V, Cii-, 20, the first order necessary 
conditions for a solution to the optimality equation are5 

“i(l-~v’(bi+8i))=~iVr(bi+~i)-~i+lv’(bi+Bi+1), (5) 

71i(U;--l(vi)+~)=~i+l-~i, (6) 

for i= 2, 3, . . . . N, where pl=pN+l =O, together with the envelope condi- 
tion 

r.&(V)= -1. (7) 

5 Ed Green has pointed out to us that a solution to these equations need not be feasible. 
They are however necessary at the optimum, and we only need suffkiency in calculating the 
solution to the example of Section 8, where the tirst-order conditions are indeed sufficient. 
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5. THE INFINITE HORIZON CONTRACT 

We shall concentrate on the case T= cc for the rest of the paper. In this 
section we consider the long run properties of an efficient infinite horizon 
contract. Because the infinite horizon value function U, is independent of 
time, the relationship between V and the current transfers does not change, 
so we need only look at how V varies through time. We define V’ to be the 
random variable representing the borrower’s utility at the beginning of 
period t. It is possible to show that, at any date t, VN > V> V, (Lemma 5), 
so that the level of indebtedness rises after the lowest income state and falls 
after the highest income state. A slightly stronger result can also be 
demonstrated: if the borrower experiences a long enough sequence of high 
income states he will eventually become a creditor, and if he experiences a 
long enough sequence of low income states he will become a debtor 
(Lemma 5). So V’ can rise or fall, but it would be of considerable interest 
to discover its long run tendency. To do this we use the fact that viewed 
as a stochastic process Ui( V) is a non-positive martingale. To see this 
consider increasing the borrower’s utility at any date by one unit. One way 
of doing this is to increase every Vi by a factor of l/cr while keeping every 
bj constant. Such a change preserves incentive compatibility at a cost to the 
lender of CiEs niU; ( Vi). By the envelope theorem this is locally as good 
a way to increase V as any other and so is equal to Ui (V). Formally, 
summing (6) over i E S and using (7) yields 

1 7t, U; ( Vi) = U;( V). 
res 

Then using the martingale convergence theorem it is possible to prove: 

PROPOSITION 3. Zf T= co, V’ converges to - CO almost surely. 

The idea behind the proof is quite simple. U;( V’) must converge almost 
surely, so it only needs to be shown that it does not converge to a non-zero 
limit with positive probability, since if Ui( V’) converges to zero, V’ 
converges to -co, Likewise if Ui( V’) converges to a non-zero limit, V’ 
converges to a finite limit. However, because the future Vi’s are always 
spread out to aid incentive compatibility it can be shown that this only 
happens with zero probability. 

The economic intuition behind the result seems to be that the cost of 
incentive compatibility is in some sense cheaper when V is low. To see this 
first note that the advantage of having a history dependent contract stems 
from using future utility, the Vi’s, as inducements to truth-telling. To do 
this they must differ. Since U, is concave this is costly because the lender’s 
future utility falls as the dispersion of the Vi’s increases. For example, if 
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N= 2 the cost of spreading Vi and V2 an equal small amount z either side 
of their average value, V’, is approximately -(l/2) z’Ui( I”). From the 
properties of U, at its endpoints it follows that lim., --m UG (V) = 0, and 
limv,dm Ug (V) = - co. Thus while it is not possible to assert that U;(V) 
is monotonically decreasing (it is monotonic in the example in Section 7) 
it must decline on average which is all that is needed to prove the result. 
Thus the cost of obtaining a given spread of V, and V, is generally lower 
when they themselves are lower: incentive compatibility is in this sense 
cheaper when future utilities are lower. Therefore although it is preferable 
to try to keep V constant in order to smooth consumption over time there 
is a strong enough incentive to cause it to drift downwards. A contract then 
in which V declines over time can induce the borrower to tell the truth by 
using large variability in future utility and at the same time smooth 
consumption in the initial periods. 

6. THE EFFICIENT CONTRACT FOR DISCOUNT FACTORS CLOSE TO ONE 

Although Proposition 3 shows that the efficient contract cannot converge 
uniformly to the first-best contract, the results of Radner [lo] and Fuden- 
berg, Holmstrom, and Milgrom [3] strongly suggest that first-best utilities 
can be approached as the discount factor gets close to unity. Radner uses 
a statistical approach based on a contract which penalizes the agent 
periodically if his record does not meet a specified standard. Such a rule is 
not usually efficient nor necessarily incentive compatible, but for discount 
factors close enough to one the periods of punishment become insignificant 
relative to the periods of first-best payments. Fudenberg, Holmstrom, and 
Milgrom adopt a different approach in which the agent can covertly 
borrow and save at a rate of interest equal to the rate of time preference. 
The agent’s ability to self-insure in this way effectively reduces his risk 
aversion in any given period and in the limit he behaves as if he were risk 
neutral. 

The dynamic programming approach affords a simple and natural proof 
of this convergence result. In particular it can be shown that the second- 
best Pareto-frontier converges pointwise to the first-best frontier6 and that 
the efficient contract payments converge pointwise to the first-best levels. 
This second result complements Radner’s result that payments are at their 
first-best levels in almost every period in the limit. To keep expected future 
utility bounded as c1+ 1 all per-period utilities are multiplied by (1 - 01) in 
this section. Let VT be the borrower’s normalised discounted future utility 
and U: (I’s) the corresponding utility of the lender. For any given Y the 

6 For more details in a more general model see Lockwood and Thomas [9]. 
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first-best contract gives the lender an expected return of -ZieS rcibF, 
where v(bF + ei) = V for all i E S. It is necessary to show lim, ~, U”,(V) = 
-,YiEszib,+. Consider the following contract. In the first period pay by. 
This implies that CiES7ci Vi= V, and it is possible to choose the Vi’s to 
satisfy the downward incentive constraints with equality since they are all 
linear in Vi. Then follow the efficient contract from date two onwards. 
Because this almost eflicient contract is incentive compatible it cannot offer 
more utility than the efficient contract itself, i.e., U”,(V) > -Ciesxib,+ + 
(a/( 1 -E)) Ci,Sn,h,( Vy), where h,( Vy) = U”,( VT) - Ul;( V). So it is suf- 
ficient to show that (a/( 1 - ~1)) CitS x$z,J Vpl) -+ 0 as a + 1. 

PROPOSITION 4. For given V, as CI -+ 1 the utility of the lender from the 
efficient contract tends to the first-best level. 

By the convergence of the finite horizon value functions to the infinite 
horizon value functions (Lemmas 2 and 3) we have 

COROLLARY. For given V, and any E > 0, there are an a’ and a T’ such 
that U”,(V) > Ci, srcib: -E for T > T’, a > CC’. 

The intuition behind these two results is straightforward: for 01 close to 
unity incentive compatibility can be attained by a small divergence in the 
Vys. The cost of this divergence is ZIGS zjh,( Vy) which is positive because 
U” is concave. It goes to zero faster than CI goes to unity because U” is 
differentiable and hence locally linear. 

Although the efficient contract cannot converge uniformly to the 
first-best contract, a weaker result can be proved. 

PROPOSITION 5. For any history h’ the efficient contract payments 
converge to their first-best levels as CC-+ 1. 

7. CONSTANT ABSOLUTE RISK AVERSION 

A special case of Assumption 1 is the constant absolute risk aversion 
utility function v(c) = -exp( - Rc), where v : ( - co, co) + ( - co, 0). The 
optimality equation then is a concave programming problem since the 
constraints are linear in exp( - bi) and Vi, and the maximand is concave in 
these variables. Then by repeated application of the operator L, and letting 
A = --CicS7ci exp( -Re,)/( 1 -a), the discounted utility in the case of 
autarky, the following can be shown. 

PROPOSITION 6. Zf T= CC and v(c) = -exp( - Rc) then at the optimum 
exp( - Rbi) = -ai ( V + A ), Vi = di V + (di - 1) A, where the ai and d;s are 
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constants satisfying a, > ai-, > 0, dieI Z di > 0, CitS nid,” = I, 
.Zi, snia,:’ = -A, and U,(V)=R-l(l-a)pl {log(-V-A)+K), where 
K= Zi, sni log ai + a( 1 - a)-’ L’itS~i log di. 

Let I= U,(V) denote the level of indebtedness. Then the amount 
borrowed in state i when indebtedness is I is b;= R-’ (K-log a,) - 
(1 -a) Z. It is decreasing in income since ai > a,-, and decreasing in the 
level of indebtedness. How it varies with history depends on how indebted- 
ness evolves. The constant absolute risk aversion utility function implies 
that history dependence takes a very simple form because there are no 
income effects.7 Loans depend only on the number of times each state 
occurs and not on the order in which they occur. So if rj is the number of 
times state j occurs in history h’ and I, is the initial level of indebtedness, 
the amount lent in state i at date t + 1 is 

b(h’, flli) = R-‘{(K-log a;) -Cj..rjlog dj} - (1 -a) I,. (9) 

There are a number of consequences of Eq. (9). First, the repayments 
from the borrower to the lender tend to minus infinity with probability 
one. To see this note that for t long enough zj can be approximated by tnj. 
Then substituting in (9) proves the result since Ciesrri log di> 0 (see 
Proposition 7(ii) in the appendix). (This result is equivalent to Proposi- 
tion 3 because of the relationship between 6, and V given in Proposition 6.) 
Equally expected repayments are always increasing. 

Second it is possible to define an implicit rate of interest, independent 
of time, between any two states. Suppose that at some date state j is 
announced instead of state i, j < i, so an extra payment is received from 
the lender. Because the order of announcement does not matter, this can be 
corrected at a later date by announcing i instead of j, so that I returns to 
the value it would have had. In the meantime the borrower will be paying 
back more than he otherwise would, and so 

rv = - log( d,/d,)/log(a,/a,) 

is the implicit rate of interest between states i and j. There are N- 1 such 
independent interest rates, defined between adjacent states, all others being 
weighted averages of these. It can be shown that 0 < rii < (1 - a)/a so that 
each is positive and less than the rate of time preference. This is very 
intuitive since if it is to provide some insurance the borrower must be able 
to access funds relatively cheaply when necessary but must correspondingly 
receive a relatively low rate of return on his savings. In the limit as a -+ 1 
each rii -+ 0 so consumption risk can be eliminated (Yaari [14]). 

It should be remembered that these are purely implicit rates of interest. 

‘We are grateful to Barry Nalebuff for this observation 



382 THOMASANDWORRALL 

The borrower cannot borrow or save as much as he wants to but only 
what is dictated by the contract. If for example he suffers a series of low 
income levels his indebtedness will go up and he will only be able to 
borrow less and less, although his needs and future prospects have not 
changed. The borrower is constrained by his past history. We summarise 
the results of this section by 

PROPOSITION 7. If T = 00 and v(c) = - exp( - Rc) then (i) an invariant 
implicit rate of interest rij is defined between any two states, 
0 6 rii < (1 - a)/a, for each i, j E S; (ii) expected payments to the lender 
increase over time, and (iii) payments to the lender tend to infinity with 
probability one. 

8. SELF-ENFORCING LOAN CONTRACTS 

Proposition 3 showed that the borrower’s future utility will become 
arbitrarily negative with probability one. This stretches to the limit the 
assumption that the contract is costlessly enforceable. Indeed for any fixed 
penalty associated with breach of contract, Proposition 3 shows that the 
benefits to reneging will in the long term almost surely exceed the costs. 
Certainly when loans are international the costs of reneging are likely to be 
low as legal sanctions are difficult to enforce across national boundaries. 
An efficient contract should take these possibilities into account. So in this 
section we examine the situation when either party can costlessly renege, 
under the assumption that they remain in autarky after one of them has 
reneged. We examine self-enforcing contracts in which neither party ever 
has an incentive to renege. 

If the borrower has no outside opportunities and can costlessly renege he 
will do so whenever the net gain from the contract, looking forward, is 
negative, that is if v(b,+ 0J- v(e,)+ crV, ~0. Likewise the lender will 
renege if his net gain is negative. Thus the constraints 

v(bi+8,)-v(B,)+crViBO, iES (10) 

-b, + aU*( Vi) > 0, iES (11) 

should be added to the definition of the one-step operator L to rule out the 
incentive to renege. Changing the definition of L in this way does not 
invalidate the dynamic programming approach and the efficient contract 
can be characterised in the same way as before. The argument is very 
similar to that given at the beginning of Section 3, where the words “self- 
enforcing” should be added to “incentive compatible.” The crucial observa- 
tion is that again the continuation contract should always be efficient: if it 
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is not then replacing it by an incentive compatible, self-enforcing contract 
giving the borrower the same utility but the lender more means that the 
new contract is not only incentive compatible but also self-enforcing and 
Pareto superior.* 

Without outside enforcement the infinite time horizon is strictly 
necessary to avoid the unravelling problem familiar from finitely repeated 
games with a unique stage game equilibrium. That is, (10) and (11) could 
only be satisfied by a zero transfer in the last period, and therefore only by 
a zero transfer in the penultimate period and so on, so that no non-trivial 
contract can exist in the finite horizon case. 

It is nevertheless possible to show that for a sufhciently high discount 
factor a non-trivial contract exists for an infinite time horizon. The argu- 
ment is as follows. Consider first a simple two-period contract which differs 
only slightly from autarky. In the initial period if any state other than N 
is announced then no transfers are made in either period. However, if in the 
initial period state N is announced the borrower pays an amount Ab, to 
the lender and consequent upon this recieves Ab in the second period 
irrespective of the state. These are chosen so that the borrower is just 
indifferent about announcing N when it occurs. That is, v( - Ab, + 6,) + 
aCiE,niv(Ab + 0;) = ~(0,) + aCicsrriv(Oi). By the concavity of v this 
contract is incentive compatible and it satisfies (10). The expected profit 
to the lender is n,(AbN - adb) and the borrower gets a zero net utility 
gain. When c1= 1 a first order Taylor’s approximation yields Ab, = 
(Z ,,srriv’(O,)/v’(~,)) Ab, where the bracketed term is greater than one. So 
a small enough Ab can be found that expected profit is strictly positive. 
Now keep Ab constant at this level and reduce (y: below one. The lender’s 
profits and Ab, vary continuously with t(, so profit converges to a positive 
number as a -+ 1. Of course this contract violates (11) because the lender 
will always want to renege in the second period when he has to pay out. 
However, if this two-period contract is repeated every other period, thus 
forming an infinite horizon contract, the expected profit to the lender, 
z,,,(Ab,,, - aAb)/( 1 - a2), tends to infinity as c( -+ 1. The short-term gain to 
the lender from reneging in the second period is no more than Ab, so this 
will be outweighed by the future loss of not having the contract if a is near 
one. The long-term contract therefore satisfies (10) and (11) for a near one 
and we conclude that a non-trivial contract exists for such an a. 

Proposition 3 implies that one of the constraints in Eq. (10) will even- 
tually bind, so an efficient self-enforcing contract will be different from a 
contract which was legally enforceable. It would be interesting to know 

s In a labour contracts model [ 123 we consider the pure self-enforcement problem and 
show how this may be tackled using dynamic programming. Broader issues relating to self- 
enforcing contracts are dealt with there. 
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whether once (10) binds the contract effectively terminates, that is no 
future loans or repayments are scheduled, or whether it is always 
worthwhile to schedule future loans and repayments. That is, can termina- 
tion be used as an incentive device or not? The answer is negative: if a 
non-trivial contract exists at all, there must be a contract that gives the 
borrower a zero net gain and the lender a strictly positive net gain. This 
dominates a termination, where both get zero, so that by the Principle of 
Optimality such a termination could not be part of an efficient contract. To 
summarise: 

PROPOSITION 8. If both parties can renege and have no outside oppor- 
tunities then there exists some a.’ such that a non-trivial, self-enforcing 
contract exists for each ~1 E (a’, 1). Moreover such a non-trivial efficient 
contract will not terminate. 

APPENDIX 

LEMMA 1. U,(V)=L(Ukp,)(V)for VE(-co,d,%,). 

Proof (i) We first show U,( V) ,< L( U, _, )( V). Define 

k-l k -1 

U[bk] = -E 1 a’b(h’), U[bk:h’]=-E c a’b(h’):h’ . 
r=O 7=1+1 1 

U[b”] is the net gain to the lender from the contract bk and U[bk : h’] is 
the net gain after the history h’. Define V[b”] and V[bk : h’] analogously. 
So for any V(-co,d,) and any bkEBk(V), U[bk]=Zi.,zj(-bj+ 
U[bk : so = B;]). Then by the definition of U,_ 1, U[bk : so] < 
u& ,( V[bk : so]) and since (bi, V[bk : so = Bi]);,s~ A( V), zliGs ni( -bi + 
u,- L( V[bk : so = e,]) 6 L( U,-- r)( V[b”]). Therefore taking the supremum 
over all bk E Bk( V), U,(V) = sup U[b”] < L( U,_ ,)( V). 

(ii) We now show uk( V) 2 L( U, _, )(V). There exist some 
(ai? Kh, s CA(V) and E>O such that Z,.S~i(-/li+alJk_,(Kj))> 
L(uk-,)(v) - E for any V E (-co, d,). Equally U[bk: so = Oil 2 
u&,(Ki) -E, where [bk : so = Q,] eBk(Kj). Let p” be the contract which 
pays /Ii in the first period and follows [bk : so = ei] thereafter. Since income 
is i.i.d. /?” E pk( V[/?“]). So U[Bk] b Cj,szi( --pi + auks. ,(I&)) - a& 2 
L( uk -, ) - (1 + a) E. Since F is arbitrary, when the supremum is taken over 
all bk E Bk( V), Uk( V) k L( Uk 1)( V). 

LEMMA 2. F is a complete metric space in the supremem metric and L is 
a contraction on F. 
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Proof: To show that F is a metric space it suffices to show that the gap 
between the bounds in (4) is itself bounded. Since v is increasing and 
CiesZiV(y,, + Si) = v(c,), for given V, y, + fll <c, and SO J’,~ + fJi+ 6, < 
y,+O,,,+dI<cm+O,,,. Thus yno+8i-c,~0N-~, and therefore it 
must be the case that y,+.Zi,s~i(Oi-c,)/(l-~)~(Oh.-O1)/(l-~). 
Completeness is standard. For any iJ E F, L(U) can be no greater at any 
point than the upper bound in (4) since otherwise this would imply that 
utilities higher than the first-best could be achieved by ignoring the 
incentive constraints, which is impossible. Likewise, if L(U) were less at 
any point than the lower bound in (4), utility would be less than the trivial 
incentive compatible contract, despite starting with a value function no 
smaller than that corresponding to the trivial contract, again an 
impossibility. So L(U) E F. That L is a contraction now follows from 
standard arguments. 

LEMMA 3. Lim, _ Ix U, = L(lim, _ x, U,). 

Proof. Define U, = lim, _ u. U,. It is obvious the lender can do at least 
as well in k + 1 periods as he can in k periods. So for any V, U, < 
LU&L2Uo< ..’ fL”U& ‘.. <u,. Hence L“+‘U,, < LU, and taking 
limits U, f LU,. Again since L(LkU,)d U,, Cics(bi+~LkUO(Vi))< 
U,(V) for any (bi, Vi)i,,~/l(V). So taking limits Ci,s~i(-bi+aU,(V,)) 
d U,,(V) and taking the supremum, LU,( V) Q U,(V). 

LEMMA 4. Assuming Uk- ,( V) is strictly concave, at the solution to (2): 
(i) the local downward incentive compatibility constraints always bind, 
(ii) there is coinsurance, i.e. -b,+aU(Vi)> -bj-,+aU(V,-,) and 
v(bi+8i)+aVj>v(bi-~+8i_,)+aVi_,, (iii) the local upward incentive 
compatibility constraints never bind. 

Proof: (i) It is first shown that Ci,i-, = 0. Suppose to the contrary that 
Ci,+ 1 > 0, for some i E S. Then Vi > Vi- I since bi- 1 > bi. Then consider 
changing (bi, Vi)iss, as follows: keep V, fixed and if necessary reduce V, 
until C2,1 = 0. Next reduce V, until C3,2 = 0, and so on, until Ci,+ i = 0 for 
all iE S. Add the necessary constant to each Vi to leave EV, unchanged 
overall. Each ( Vi - Vi- , ) has been reduced so the lender’s utility is 
increased. The new contract offers the borrower the same utility and 
is incentive compatible since bi_, 2 6, and C,,+ 1 = 0 together imply 
Ci,i+ i > 0, i.e., the upward constraints hold. Hence the original contract 
has been improved, contrary to assumption. 

(ii) The latter follows from part (i). So suppose - bi+ aU( Vi) < 
- bi- , + aU( I/i-, ). Then replacing bi by hip , and V, by Vi- 1 raises the 
lender’s utility but leaves the borrower’s utility unchanged and is also 
incentive compatible. 
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(iii) Suppose we ignore the constraint Ci- I,i 2 0. If bi- 1 3 bi then by 
(i) the upward incentive constraint is automatically satisfied. So suppose 
that the solution has b, > bj- 1. Then Vi < Vi- I and C;_ i,i ~0. But then 
replacing bi_ , by bi and Vi- 1 by Vi cannot decrease the lender’s utility and 
cannot violate incentive compatibility. But v(bi + f3, _ I ) - v(bim., + 0, _ , ) > 
v(b, + ei) - v(bi _, f di) = a( Vi- 1 - Vi) since v is concave. So v(bi + O,- ,) + 
aV,> v(b,- 1 + Bi- 1) + crV,- , and the borrower’s utility is improved. 

Proof of Proposition 1. It is obvious that Uk( V) is decreasing. Assume 
U,-,(V) is strictly concave. Consider any V and V’ with the associated 
contracts (bi, V,)iGs, (b;, Vi)i,,. Let VT=SV,+(l-6) V: and define b,?’ 
by v(b~+8,)=6v(b,+O,)+(l -d)v(b:+Bi), for 6~(0, 1). So (b,+, V*)its 
gives the borrower average utility and the lender no less than average 
utility. Then C,?i_ , = c’K’,.~-~ + (1 -8) C:,,- , + dv(b,_, + 13~) + (1 -6) 
v(b:-, +B,)- v(b,*_ 1 + ei). By Lemma 4, at the optimum, C,,;-, =O and 
Cb+ 1 = 0 and since the risk premium is a decreasing function of 
income (Assumption 1) the third term is non-negative, so the downward 
constraints are satisfied. However, the contract (b,*, VT)jt, may violate the 
upward incentive contraints. Nevertheless,, using a similar argument to that 
used in Lemma 4(i), it is possible to construct a new contract from 
(bT> V?)ies which is incentive compatible and offers both the lender and 
the borrower no less utility. This may be done as follows. Keep V, fixed 
and reduce Vz until C2, 1 = 0 or until V, = V2. Then reduce V3 in the same 
way and so on. Add the necessary constant to each Vi to leave EV, 
unchanged overall. This will not make the lender worse off. Now if 
Vz = V,, which implies bf > b:, reduce b, until C2., =O, and proceed in 
the same way for b, and so on; since bj + 19, > bj f f 8,- 1 adding a con- 
stant to each b, to leave Eb, constant cannot make the borrower worse off. 
So in this new contract C,,_ , = 0 and b,- 1 2 b,. Thus the upward incentive 
constraints also hold. Strict concavity then follows because it is not 
possible to have both hi = b: and V, = Vi for all iE S and V # V’, so the 
contract (b,f+, VT),, s yields the lender strictly more than 6ZJk- ,( V) + 
(1 - 6) U, _ , ( V’). To complete the induction argument observe that DT, ( V) 
is trivially strictly concave. So each lJ,( V) is strictly concave, and their 
pointwise limit, U*(V), must be concave. Uniqueness of the optimum 
contract follows because it is not possible to have both bi = b: and Vi # Vi 
for all 2~ S for the same V, so non-uniqueness would imply b, # b: for 
some i, and the constructed contract is strictly better, true also for an 
infinite horizon. To prove continuous differentiability, consider a 
neighbourhood of values of V around any V’, and construct an incentive 
compatible contract for each V by taking the optimum contract at Y’ and 
keeping the future utilities constant but varying the b,‘s so as to maintain 
incentive compatibility and give V overall (there is a unique way of doing 
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this). The lender’s utility is then a concave function of V by a similar argu- 
ment to that given above, and this function is differentiable and equal to 
Uk at I/‘. The result follows from applying Lemma 1 of [a]. 

LEMMA 5. (i) U;( V,) < U;(V) < Ui( V,), (ii) VI < I/< V,, (iii)for any 
I/’ E (- co, d,) and y < UL( V’), if state N is repeated r times consecutively 
then U;( I”+‘) < y for T large enough; likewise for 0 > y > Ui( V’) zf state 1 
is repeated t times consecutively then UL( V*+‘) 2 y for t large enough. 

Proof (i) We shall show that U;( V,) < U;(V); the argument for 
U;(V) < U;( V,) is symmetric. Suppose, contrary to assumption, that 
U;( V,) > U;(V). Since V, 3 Vi for all in S, (8) implies U;( Vi) = U;(V) 
for all in S. So using the first-order conditions (5)-(7), v’(b,+ fIj) = l/A for 
all in S. Hence consumption is stabilized, and U, must be linear between 
V, and V. Consider some V’ < V and the associated (b:, Vl)ic,. Let v’ be 
the smallest value such that Ui( V’) = U!J V). There are two cases to 
consider; first U;( Vk) 3 U;(V) = U;( Vi) = Ui( V’). Since V(N < V it must 
be true that U;(V) = U;( v’) by the above argument. But V’ is the smallest 
value such that U;(V) = U;( V’), so VI = Vi and 6: = 6, for all i E S. From 
incentive compatibility, Vi = Vi.- 1 implies b( = bi.- I, a contradiction. The 
other possibility is U;( Vi) > UL( VX). The case N = 2 is dealt with for 
simplicity; the argument generalizes straightforwardly. From (5) and (6) 
UL( Vi)= - l/v’(b, + 0,) so b; > b,. From (6) Vi < V, and from (5) 
b; < b,. By incentive compatibility, Vi - Vi > V, - VI implies v(b, + 0,) - 
v(b, + 0,) > v(b; + 8,) - v(b’, + 0,). But since b; > b, and b; <b,, this is a 
contradiction. 

(ii) Follows immediately from (i) and concavity. 

(iii) Consider a sequence in which state N is repeated z times 
consecutively. With V= I”+‘-’ we have V’+‘= I/,, using the notation 
in the text where V is the current value of the borrower’s and V, is next 
period’s if state N occurs. So V’+’ > V’+‘-’ since V, > V, and thus 
V t+r > I/‘. Then U:( V”) < Ui( V’) since U, is concave. Suppose no r 
exists such that U’( VI+‘) < y. Then lim, _ m UL( V’+‘) > y or equivalently 
lim, + oo V’+’ < 4, where U;(4) = y; both limits exist by the concavity of 
U,. Note that the contract is continuous in V by the fact that the con- 
straint set A(V) is a continuous correspondence and the optimum contract 
is unique. So-there is a convergent sequence of contracts as z + co with V, 
tending to V. The limit contract must be optimum when V = lim, _ ai V’ + ‘, 
and has V, = lim, _ m V’ + ‘, so VN = V, a contradiction. Thus r as required 
exists. The case 0 > y > U;( V’) is proved similarly. 

Proof of Proposition 3. Ui is a non-positive martingale. Therefore 
by Doob’s Convergence Theorem [6, p. 2041 it converges almost surely 
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to some random variable, R. Recall that lim y+ _ r U: = 0 and 
lim,4dr U;(V) = - co; it s&ices to show R = 0 almost surely. Consider a 
path with the property that lim,, s Ui;( V’) = C #O and state N occurs 
infinitely often. We will show that such paths cannot exist. Take a sub- 
sequence composed of those dates when state N occurs. This sequence must 
have a convergent subsequence ( V “r’)r =0, 1.,,,, (since it eventually belongs to 
{ V : U;( V) E [C - E, C + E] 3 for some E > 0, which is bounded), and call 
the limit IV. Denote the general relationship between successive values of 
V by V If1 =,f( V’, ei) and observe that f is continuous in V’ (see the 
proof of Lemma S(iii)). So the sequence (f( V’(‘), ~9~))~=~.,,,.,, converges 
to f( W, 0,) and since by definition f = Vtfr), $,,, = V’(‘)+‘, V”‘)+l 
converges to f( W, 0,) as well. But both lim,, 3? Ui( V’@‘) = C and 
lim r~mUpr’z)+‘)=C, so by continuity of Ui we have lJi( W) = 
Uk(f( W, 0,)) = C, which contradicts Lemma 5(i). Since paths where 
state N occurs finitely often have zero probability, the probability that 
lim I _ m U;( V’) exists and is non-zero is zero, which completes the proof. 

Proof of Proposition 4. By the mean value theorem there is some 
K; between V; and V such that h,( 1/y) = (Ug)’ (K;)( V’- V). From the 
incentive constraints V4 - V:_, = (1 - a) BJa, where B, z v(b,*_ , + 0;) - 
v(bT + 0;) is a constant independent of cx. As 2’ieSrtr V,: = V, it follows that 
V;- V= V:(l -~j)-~jzi~,V;=~~ij~j(Vg- V,“)-C,,,n,(VJ- VP) and 
for i >j, Vy - VJ = 2’;:; Bk( 1 - a)/~, so substitution gives 

(a/(1 -a)) 1 v%( v;) = 5 n, c n,‘i’ Bk(( Vi,’ (K;) - (U;)’ (KY)). 
is.5 j-2 ,j-c i k=i 

Clearly V,’ + V, since V,’ - V,l_ , = B, (1 - a)/a, and so K” -P V for all i E S. 
Let U be the pointwise limit of U: Since Vi is concave it converges 
uniformly on all compact subsets of (-co, d,) and it is differentiable 
almost everywhere, Let D be the set of points where U(V) is differen- 
tiable. We have (UG)‘(K:) > (Ui( L’S + p) - Uz( V’))/p for p > 0. So 
lim,,,(Uz)‘(K:)2(U(V+,u)-U(V))/p or lim,,,(US)‘(Ki”)~U’(V) if 
VE D, in the limit as p -+ 0. For p < 0 the inequalities are reversed, so 
(U;)’ (KP) -+ U’(V) if VE D as a -t 0. Since b,+ is continuous in V and 
U(V) is differentiable almost everywhere the result is proved. 

Proof of Proposition 5. For simplicity (the same argument can be 
generalized) assume there are just two states. By incentive compatibility in 
the first period V; - V; = ((1 - a)/a)(v(b; + 19,) - v(b; + 0,)). The latter 
bracket can be shown to be bounded, so Vs -+ V. Since (U’)‘( V;) ---f U’(V), 
from (5) and (6), v’(bg + fli) + - l/U’(V) = v’(b,* + ei). Therefore bs + b:. 
Second period payments in state i, b{. depend on VT, as does Vz. So 
reapplying the same arguments, V; + V, 6: --) bJ* and so on. 
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Proof of Proposition 6. The solution is clearly feasible. It is also easy to 
check that U, is a fixed point of L. The ordering of the a,‘~ and d;s follows 
from adding the adjacent upward and downward incentive constraints. The 
other conditions are derived directly from (5), (6), and (7). 

Proof of Proposition 7. We take each part of the proof in turn. 

(i) Since ai 3 aj, and dj d d, for i>j, riib 0. As log is concave 
rij = -(log di-- log die ,)/(log ai-- log a,_ ,) < -(d, - dj_ ,) a,/(a,- ai_ 1) di. 
By Eq. (1) and Lemma 4 -ci(aj-a;-,)=cr(d;-dip,), where ci= 
exp( -RQ,), so rji< c,a,/ud,. But from (5) and (6) c,a,< (1 -a) di. 
Therefore ri,ip, < ( 1 - cc)/c~. By definition ri.ip 2 is a convex combination of 
r+ l and rj- i.i--2, SO ri,i-2< (1 - a)/~.. As it holds for i = 2, 3, . . . . N, 
ri, < (1 - M)/CX for all i,jE S. 

(ii) By definition expected payments change each period by 
-R-‘~i~,~;logd,=R-‘~;~sn;logd,~‘<R-’logCi~S~id;1=0. 

(iii) By the strong law of large numbers Tj/t converges to rci 
almost surely, so -R- ‘Ci, s(zi/t) log d, converges almost surely to 
-R-‘CiEsnilogdi, which is negative by (ii). So -tR-’ CiE,(zi/t)logdi 
converges to -co, almost surely, which from the formula for b(h’, Oi) 
proves the result. 
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